@lobehub/chat 1.84.23 → 1.84.25

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (76) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/apps/desktop/src/main/controllers/__tests__/BrowserWindowsCtr.test.ts +195 -0
  3. package/apps/desktop/src/main/controllers/__tests__/DevtoolsCtr.test.ts +44 -0
  4. package/apps/desktop/src/main/controllers/__tests__/MenuCtr.test.ts +82 -0
  5. package/apps/desktop/src/main/controllers/__tests__/ShortcutCtr.test.ts +64 -0
  6. package/apps/desktop/src/main/controllers/__tests__/TrayMenuCtr.test.ts +256 -0
  7. package/apps/desktop/src/main/controllers/__tests__/UpdaterCtr.test.ts +82 -0
  8. package/apps/desktop/src/main/services/fileSrv.ts +49 -10
  9. package/apps/desktop/vitest.config.ts +17 -0
  10. package/changelog/v1.json +18 -0
  11. package/locales/ar/hotkey.json +4 -0
  12. package/locales/ar/models.json +55 -13
  13. package/locales/ar/providers.json +0 -3
  14. package/locales/bg-BG/hotkey.json +4 -0
  15. package/locales/bg-BG/models.json +55 -13
  16. package/locales/bg-BG/providers.json +0 -3
  17. package/locales/de-DE/hotkey.json +4 -0
  18. package/locales/de-DE/models.json +55 -13
  19. package/locales/de-DE/providers.json +0 -3
  20. package/locales/en-US/hotkey.json +4 -0
  21. package/locales/en-US/models.json +55 -13
  22. package/locales/en-US/providers.json +0 -3
  23. package/locales/es-ES/hotkey.json +4 -0
  24. package/locales/es-ES/models.json +55 -13
  25. package/locales/es-ES/providers.json +0 -3
  26. package/locales/fa-IR/hotkey.json +4 -0
  27. package/locales/fa-IR/models.json +55 -13
  28. package/locales/fa-IR/providers.json +0 -3
  29. package/locales/fr-FR/hotkey.json +4 -0
  30. package/locales/fr-FR/models.json +55 -13
  31. package/locales/fr-FR/providers.json +0 -3
  32. package/locales/it-IT/hotkey.json +4 -0
  33. package/locales/it-IT/models.json +55 -13
  34. package/locales/it-IT/providers.json +0 -3
  35. package/locales/ja-JP/hotkey.json +4 -0
  36. package/locales/ja-JP/models.json +55 -13
  37. package/locales/ja-JP/providers.json +0 -3
  38. package/locales/ko-KR/hotkey.json +4 -0
  39. package/locales/ko-KR/models.json +55 -13
  40. package/locales/ko-KR/providers.json +0 -3
  41. package/locales/nl-NL/hotkey.json +4 -0
  42. package/locales/nl-NL/models.json +55 -13
  43. package/locales/nl-NL/providers.json +0 -3
  44. package/locales/pl-PL/hotkey.json +4 -0
  45. package/locales/pl-PL/models.json +55 -13
  46. package/locales/pl-PL/providers.json +0 -3
  47. package/locales/pt-BR/hotkey.json +4 -0
  48. package/locales/pt-BR/models.json +55 -13
  49. package/locales/pt-BR/providers.json +0 -3
  50. package/locales/ru-RU/hotkey.json +4 -0
  51. package/locales/ru-RU/models.json +55 -13
  52. package/locales/ru-RU/providers.json +0 -3
  53. package/locales/tr-TR/hotkey.json +4 -0
  54. package/locales/tr-TR/models.json +55 -13
  55. package/locales/tr-TR/providers.json +0 -3
  56. package/locales/vi-VN/hotkey.json +4 -0
  57. package/locales/vi-VN/models.json +55 -13
  58. package/locales/vi-VN/providers.json +0 -3
  59. package/locales/zh-CN/hotkey.json +4 -0
  60. package/locales/zh-CN/models.json +55 -13
  61. package/locales/zh-CN/providers.json +0 -3
  62. package/locales/zh-TW/hotkey.json +4 -0
  63. package/locales/zh-TW/models.json +55 -13
  64. package/locales/zh-TW/providers.json +0 -3
  65. package/package.json +1 -1
  66. package/packages/electron-server-ipc/package.json +3 -0
  67. package/packages/electron-server-ipc/src/ipcClient.ts +58 -21
  68. package/packages/electron-server-ipc/src/ipcServer.test.ts +417 -0
  69. package/packages/electron-server-ipc/src/ipcServer.ts +21 -16
  70. package/src/const/hotkeys.ts +7 -0
  71. package/src/const/url.ts +1 -1
  72. package/src/features/User/UserPanel/useMenu.tsx +2 -1
  73. package/src/locales/default/hotkey.ts +4 -0
  74. package/src/services/__tests__/_url.test.ts +23 -0
  75. package/src/types/hotkey.ts +1 -0
  76. package/vitest.config.ts +3 -2
@@ -71,6 +71,9 @@
71
71
  "DeepSeek-V3": {
72
72
  "description": "DeepSeek-V3 è un modello MoE sviluppato internamente dalla DeepSeek Company. I risultati di DeepSeek-V3 in molte valutazioni superano quelli di altri modelli open source come Qwen2.5-72B e Llama-3.1-405B, e si confronta alla pari con i modelli closed source di punta a livello mondiale come GPT-4o e Claude-3.5-Sonnet."
73
73
  },
74
+ "Doubao-1.5-thinking-pro-m": {
75
+ "description": "Doubao-1.5 è un nuovo modello di pensiero profondo (versione m con capacità di ragionamento multimodale native), che si distingue in matematica, programmazione, ragionamento scientifico e compiti generali come la scrittura creativa, raggiungendo o avvicinandosi ai livelli di punta del settore in vari benchmark autorevoli come AIME 2024, Codeforces, GPQA. Supporta una finestra di contesto di 128k e un output di 16k."
76
+ },
74
77
  "Doubao-1.5-vision-pro": {
75
78
  "description": "Doubao-1.5-vision-pro è un grande modello multimodale aggiornato, che supporta il riconoscimento di immagini a qualsiasi risoluzione e proporzioni estremamente lunghe, migliorando le capacità di ragionamento visivo, riconoscimento di documenti, comprensione delle informazioni dettagliate e rispetto delle istruzioni."
76
79
  },
@@ -293,6 +296,21 @@
293
296
  "Qwen/Qwen2.5-VL-72B-Instruct": {
294
297
  "description": "Qwen2.5-VL è un modello di linguaggio visivo della serie Qwen2.5. Questo modello presenta miglioramenti significativi in diversi aspetti: dispone di una capacità di comprensione visiva migliore, in grado di riconoscere oggetti comuni, analizzare testi, grafici e layout; come agente visivo, può ragionare e guidare dinamicamente l'uso degli strumenti; supporta la comprensione di video di durata superiore a un'ora e la cattura di eventi chiave; può localizzare oggetti nelle immagini con precisione attraverso la generazione di bounding box o punti; supporta la generazione di output strutturati, particolarmente adatti a dati scannerizzati come fatture e tabelle."
295
298
  },
299
+ "Qwen/Qwen3-14B": {
300
+ "description": "Qwen3 è un nuovo modello di Tongyi Qianwen con capacità notevolmente migliorate, raggiungendo livelli leader del settore in ragionamento, generico, agenti e multilingue, e supporta il passaggio della modalità di pensiero."
301
+ },
302
+ "Qwen/Qwen3-235B-A22B": {
303
+ "description": "Qwen3 è un nuovo modello di Tongyi Qianwen con capacità notevolmente migliorate, raggiungendo livelli leader del settore in ragionamento, generico, agenti e multilingue, e supporta il passaggio della modalità di pensiero."
304
+ },
305
+ "Qwen/Qwen3-30B-A3B": {
306
+ "description": "Qwen3 è un nuovo modello di Tongyi Qianwen con capacità notevolmente migliorate, raggiungendo livelli leader del settore in ragionamento, generico, agenti e multilingue, e supporta il passaggio della modalità di pensiero."
307
+ },
308
+ "Qwen/Qwen3-32B": {
309
+ "description": "Qwen3 è un nuovo modello di Tongyi Qianwen con capacità notevolmente migliorate, raggiungendo livelli leader del settore in ragionamento, generico, agenti e multilingue, e supporta il passaggio della modalità di pensiero."
310
+ },
311
+ "Qwen/Qwen3-8B": {
312
+ "description": "Qwen3 è un nuovo modello di Tongyi Qianwen con capacità notevolmente migliorate, raggiungendo livelli leader del settore in ragionamento, generico, agenti e multilingue, e supporta il passaggio della modalità di pensiero."
313
+ },
296
314
  "Qwen2-72B-Instruct": {
297
315
  "description": "Qwen2 è l'ultima serie del modello Qwen, supporta un contesto di 128k, e rispetto ai modelli open source attualmente migliori, Qwen2-72B supera significativamente i modelli leader attuali in comprensione del linguaggio naturale, conoscenza, codice, matematica e capacità multilingue."
298
316
  },
@@ -398,9 +416,6 @@
398
416
  "THUDM/glm-4-9b-chat": {
399
417
  "description": "GLM-4 9B è una versione open source, progettata per fornire un'esperienza di dialogo ottimizzata per applicazioni conversazionali."
400
418
  },
401
- "TeleAI/TeleChat2": {
402
- "description": "Il grande modello TeleChat2 è un modello semantico generativo sviluppato autonomamente da China Telecom, che supporta funzioni come domande e risposte enciclopediche, generazione di codice e generazione di testi lunghi, fornendo servizi di consulenza dialogica agli utenti, in grado di interagire con gli utenti, rispondere a domande e assistere nella creazione, aiutando gli utenti a ottenere informazioni, conoscenze e ispirazione in modo efficiente e conveniente. Il modello ha mostrato prestazioni eccellenti in problemi di illusione, generazione di testi lunghi e comprensione logica."
403
- },
404
419
  "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
405
420
  "description": "Qwen2.5-72B-Instruct è uno dei più recenti modelli linguistici di grandi dimensioni rilasciati da Alibaba Cloud. Questo modello da 72B ha capacità notevolmente migliorate in codifica e matematica. Il modello offre anche supporto multilingue, coprendo oltre 29 lingue, tra cui cinese e inglese. Ha mostrato miglioramenti significativi nel seguire istruzioni, comprendere dati strutturati e generare output strutturati (soprattutto JSON)."
406
421
  },
@@ -800,6 +815,12 @@
800
815
  "deepseek/deepseek-chat": {
801
816
  "description": "Un nuovo modello open source che integra capacità generali e di codice, mantenendo non solo le capacità di dialogo generali del modello Chat originale e la potente capacità di elaborazione del codice del modello Coder, ma allineandosi anche meglio alle preferenze umane. Inoltre, DeepSeek-V2.5 ha ottenuto notevoli miglioramenti in vari aspetti, come compiti di scrittura e seguire istruzioni."
802
817
  },
818
+ "deepseek/deepseek-chat-v3-0324": {
819
+ "description": "DeepSeek V3 è un modello misto esperto con 685B di parametri, l'ultima iterazione della serie di modelli di chat di punta del team DeepSeek.\n\nEredita il modello [DeepSeek V3](/deepseek/deepseek-chat-v3) e si comporta eccezionalmente in vari compiti."
820
+ },
821
+ "deepseek/deepseek-chat-v3-0324:free": {
822
+ "description": "DeepSeek V3 è un modello misto esperto con 685B di parametri, l'ultima iterazione della serie di modelli di chat di punta del team DeepSeek.\n\nEredita il modello [DeepSeek V3](/deepseek/deepseek-chat-v3) e si comporta eccezionalmente in vari compiti."
823
+ },
803
824
  "deepseek/deepseek-r1": {
804
825
  "description": "DeepSeek-R1 ha notevolmente migliorato le capacità di ragionamento del modello con pochissimi dati etichettati. Prima di fornire la risposta finale, il modello genera una catena di pensiero per migliorare l'accuratezza della risposta finale."
805
826
  },
@@ -851,9 +872,6 @@
851
872
  "doubao-1.5-thinking-pro": {
852
873
  "description": "Il modello di pensiero profondo Doubao-1.5, completamente nuovo, si distingue in ambiti professionali come matematica, programmazione e ragionamento scientifico, oltre che in compiti generali come la scrittura creativa, raggiungendo o avvicinandosi ai livelli di eccellenza del settore in numerosi benchmark autorevoli come AIME 2024, Codeforces e GPQA. Supporta una finestra di contesto di 128k e un output di 16k."
853
874
  },
854
- "doubao-1.5-thinking-pro-vision": {
855
- "description": "Il modello di pensiero profondo Doubao-1.5, completamente nuovo, si distingue in ambiti professionali come matematica, programmazione e ragionamento scientifico, oltre che in compiti generali come la scrittura creativa, raggiungendo o avvicinandosi ai livelli di eccellenza del settore in numerosi benchmark autorevoli come AIME 2024, Codeforces e GPQA. Supporta una finestra di contesto di 128k e un output di 16k."
856
- },
857
875
  "doubao-1.5-vision-lite": {
858
876
  "description": "Doubao-1.5-vision-lite è un grande modello multimodale aggiornato, che supporta il riconoscimento di immagini a qualsiasi risoluzione e proporzioni estremamente lunghe, migliorando le capacità di ragionamento visivo, riconoscimento di documenti, comprensione delle informazioni dettagliate e rispetto delle istruzioni. Supporta una finestra di contesto di 128k e una lunghezza di uscita massima di 16k token."
859
877
  },
@@ -995,9 +1013,6 @@
995
1013
  "gemini-2.0-flash-thinking-exp-01-21": {
996
1014
  "description": "Gemini 2.0 Flash Exp è il più recente modello AI multimodale sperimentale di Google, dotato di caratteristiche di nuova generazione, velocità eccezionale, chiamate a strumenti nativi e generazione multimodale."
997
1015
  },
998
- "gemini-2.0-pro-exp-02-05": {
999
- "description": "Gemini 2.0 Pro Experimental è il più recente modello AI multimodale sperimentale di Google, con un miglioramento della qualità rispetto alle versioni precedenti, in particolare per quanto riguarda la conoscenza del mondo, il codice e i contesti lunghi."
1000
- },
1001
1016
  "gemini-2.5-flash-preview-04-17": {
1002
1017
  "description": "Gemini 2.5 Flash Preview è il modello più conveniente di Google, che offre funzionalità complete."
1003
1018
  },
@@ -1007,6 +1022,9 @@
1007
1022
  "gemini-2.5-pro-preview-03-25": {
1008
1023
  "description": "Gemini 2.5 Pro Preview è il modello di pensiero più avanzato di Google, in grado di ragionare su problemi complessi in codice, matematica e nei campi STEM, oltre a utilizzare analisi di lungo contesto per grandi set di dati, codici sorgente e documenti."
1009
1024
  },
1025
+ "gemini-2.5-pro-preview-05-06": {
1026
+ "description": "Gemini 2.5 Pro Preview è il modello di pensiero più avanzato di Google, in grado di ragionare su problemi complessi nel codice, nella matematica e nei campi STEM, utilizzando analisi di lungo contesto per esaminare grandi set di dati, librerie di codice e documenti."
1027
+ },
1010
1028
  "gemma-7b-it": {
1011
1029
  "description": "Gemma 7B è adatto per l'elaborazione di compiti di piccole e medie dimensioni, combinando efficienza dei costi."
1012
1030
  },
@@ -1091,8 +1109,17 @@
1091
1109
  "google/gemini-2.0-flash-001": {
1092
1110
  "description": "Gemini 2.0 Flash offre funzionalità e miglioramenti di nuova generazione, tra cui velocità eccezionale, utilizzo di strumenti nativi, generazione multimodale e una finestra di contesto di 1M token."
1093
1111
  },
1094
- "google/gemini-2.0-pro-exp-02-05:free": {
1095
- "description": "Gemini 2.0 Pro Experimental è il più recente modello AI multimodale sperimentale di Google, con un miglioramento della qualità rispetto alle versioni precedenti, in particolare per quanto riguarda la conoscenza del mondo, il codice e i contesti lunghi."
1112
+ "google/gemini-2.0-flash-exp:free": {
1113
+ "description": "Gemini 2.0 Flash Experimental è il più recente modello AI multimodale sperimentale di Google, con un miglioramento della qualità rispetto alle versioni storiche, in particolare per quanto riguarda la conoscenza del mondo, il codice e il lungo contesto."
1114
+ },
1115
+ "google/gemini-2.5-flash-preview": {
1116
+ "description": "Gemini 2.5 Flash è il modello principale più avanzato di Google, progettato per ragionamenti avanzati, codifica, matematica e compiti scientifici. Include capacità di 'pensiero' integrate, permettendo di fornire risposte con maggiore accuratezza e una gestione contestuale più dettagliata.\n\nNota: questo modello ha due varianti: pensiero e non pensiero. I prezzi di output variano significativamente a seconda che la capacità di pensiero sia attivata o meno. Se scegli la variante standard (senza il suffisso ':thinking'), il modello eviterà esplicitamente di generare token di pensiero.\n\nPer sfruttare la capacità di pensiero e ricevere token di pensiero, devi scegliere la variante ':thinking', che comporterà un prezzo di output di pensiero più elevato.\n\nInoltre, Gemini 2.5 Flash può essere configurato tramite il parametro 'numero massimo di token per il ragionamento', come descritto nella documentazione (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
1117
+ },
1118
+ "google/gemini-2.5-flash-preview:thinking": {
1119
+ "description": "Gemini 2.5 Flash è il modello principale più avanzato di Google, progettato per ragionamenti avanzati, codifica, matematica e compiti scientifici. Include capacità di 'pensiero' integrate, permettendo di fornire risposte con maggiore accuratezza e una gestione contestuale più dettagliata.\n\nNota: questo modello ha due varianti: pensiero e non pensiero. I prezzi di output variano significativamente a seconda che la capacità di pensiero sia attivata o meno. Se scegli la variante standard (senza il suffisso ':thinking'), il modello eviterà esplicitamente di generare token di pensiero.\n\nPer sfruttare la capacità di pensiero e ricevere token di pensiero, devi scegliere la variante ':thinking', che comporterà un prezzo di output di pensiero più elevato.\n\nInoltre, Gemini 2.5 Flash può essere configurato tramite il parametro 'numero massimo di token per il ragionamento', come descritto nella documentazione (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
1120
+ },
1121
+ "google/gemini-2.5-pro-preview-03-25": {
1122
+ "description": "Gemini 2.5 Pro è il modello AI più avanzato di Google, progettato per ragionamenti avanzati, codifica, matematica e compiti scientifici. Esso incorpora capacità di 'pensiero', permettendo di fornire risposte con maggiore accuratezza e una gestione contestuale più dettagliata. Gemini 2.5 Pro ha ottenuto prestazioni di alto livello in vari benchmark, inclusa la prima posizione nella classifica LMArena, riflettendo un'eccellente allineamento con le preferenze umane e capacità di risoluzione di problemi complessi."
1096
1123
  },
1097
1124
  "google/gemini-flash-1.5": {
1098
1125
  "description": "Gemini 1.5 Flash offre capacità di elaborazione multimodale ottimizzate, adatte a vari scenari di compiti complessi."
@@ -1592,6 +1619,9 @@
1592
1619
  "mistral-large-latest": {
1593
1620
  "description": "Mistral Large è il modello di punta, specializzato in compiti multilingue, ragionamento complesso e generazione di codice, è la scelta ideale per applicazioni di alta gamma."
1594
1621
  },
1622
+ "mistral-medium-latest": {
1623
+ "description": "Mistral Medium 3 offre prestazioni all'avanguardia a un costo otto volte inferiore, semplificando radicalmente il deployment aziendale."
1624
+ },
1595
1625
  "mistral-nemo": {
1596
1626
  "description": "Mistral Nemo è un modello da 12B lanciato in collaborazione tra Mistral AI e NVIDIA, offre prestazioni eccellenti."
1597
1627
  },
@@ -1763,8 +1793,8 @@
1763
1793
  "qvq-72b-preview": {
1764
1794
  "description": "Il modello QVQ è un modello di ricerca sperimentale sviluppato dal team Qwen, focalizzato sul miglioramento delle capacità di ragionamento visivo, in particolare nel campo del ragionamento matematico."
1765
1795
  },
1766
- "qvq-max": {
1767
- "description": "Il modello di ragionamento visivo QVQ di Tongyi Qianwen supporta input visivi e output di catene di pensiero, dimostrando capacità superiori in matematica, programmazione, analisi visiva, creazione e compiti generali."
1796
+ "qvq-max-latest": {
1797
+ "description": "Il modello di ragionamento visivo QVQ di Tongyi Qianwen supporta input visivi e output di catene di pensiero, mostrando capacità superiori in matematica, programmazione, analisi visiva, creazione e compiti generali."
1768
1798
  },
1769
1799
  "qwen-coder-plus-latest": {
1770
1800
  "description": "Modello di codice Qwen di Tongyi."
@@ -2075,12 +2105,24 @@
2075
2105
  "text-embedding-3-small": {
2076
2106
  "description": "Modello di Embedding di nuova generazione, efficiente ed economico, adatto per la ricerca di conoscenza, applicazioni RAG e altri scenari."
2077
2107
  },
2108
+ "thudm/glm-4-32b": {
2109
+ "description": "GLM-4-32B-0414 è un modello linguistico a pesi aperti bilingue (cinese e inglese) da 32B, ottimizzato per la generazione di codice, chiamate a funzioni e compiti agenti. È stato pre-addestrato su 15T di dati di alta qualità e di ri-ragionamento, e ulteriormente perfezionato utilizzando l'allineamento delle preferenze umane, il campionamento di rifiuto e l'apprendimento rinforzato. Questo modello mostra prestazioni eccezionali in ragionamenti complessi, generazione di artefatti e compiti di output strutturato, raggiungendo prestazioni comparabili a GPT-4o e DeepSeek-V3-0324 in vari benchmark."
2110
+ },
2111
+ "thudm/glm-4-32b:free": {
2112
+ "description": "GLM-4-32B-0414 è un modello linguistico a pesi aperti bilingue (cinese e inglese) da 32B, ottimizzato per la generazione di codice, chiamate a funzioni e compiti agenti. È stato pre-addestrato su 15T di dati di alta qualità e di ri-ragionamento, e ulteriormente perfezionato utilizzando l'allineamento delle preferenze umane, il campionamento di rifiuto e l'apprendimento rinforzato. Questo modello mostra prestazioni eccezionali in ragionamenti complessi, generazione di artefatti e compiti di output strutturato, raggiungendo prestazioni comparabili a GPT-4o e DeepSeek-V3-0324 in vari benchmark."
2113
+ },
2078
2114
  "thudm/glm-4-9b-chat": {
2079
2115
  "description": "La versione open source dell'ultima generazione del modello pre-addestrato GLM-4 rilasciato da Zhizhu AI."
2080
2116
  },
2081
2117
  "thudm/glm-4-9b:free": {
2082
2118
  "description": "GLM-4-9B-0414 è un modello linguistico con 9 miliardi di parametri della serie GLM-4 sviluppato da THUDM. GLM-4-9B-0414 utilizza le stesse strategie di apprendimento rinforzato e allineamento del suo modello corrispondente più grande da 32B, raggiungendo alte prestazioni rispetto alle sue dimensioni, rendendolo adatto per implementazioni a risorse limitate che richiedono ancora forti capacità di comprensione e generazione del linguaggio."
2083
2119
  },
2120
+ "thudm/glm-z1-32b": {
2121
+ "description": "GLM-Z1-32B-0414 è una variante di ragionamento potenziata di GLM-4-32B, costruita per la risoluzione di problemi di matematica profonda, logica e orientati al codice. Utilizza l'apprendimento rinforzato esteso (specifico per compiti e basato su preferenze generali) per migliorare le prestazioni in compiti complessi a più passaggi. Rispetto al modello di base GLM-4-32B, Z1 ha migliorato significativamente le capacità di ragionamento strutturato e nei domini formali.\n\nQuesto modello supporta l'applicazione di 'passaggi di pensiero' tramite ingegneria dei prompt e offre una coerenza migliorata per output di lungo formato. È ottimizzato per flussi di lavoro agenti e supporta contesti lunghi (tramite YaRN), chiamate a strumenti JSON e configurazioni di campionamento a grana fine per un ragionamento stabile. È particolarmente adatto per casi d'uso che richiedono ragionamenti approfonditi, a più passaggi o deduzioni formali."
2122
+ },
2123
+ "thudm/glm-z1-32b:free": {
2124
+ "description": "GLM-Z1-32B-0414 è una variante di ragionamento potenziata di GLM-4-32B, costruita per la risoluzione di problemi di matematica profonda, logica e orientati al codice. Utilizza l'apprendimento rinforzato esteso (specifico per compiti e basato su preferenze generali) per migliorare le prestazioni in compiti complessi a più passaggi. Rispetto al modello di base GLM-4-32B, Z1 ha migliorato significativamente le capacità di ragionamento strutturato e nei domini formali.\n\nQuesto modello supporta l'applicazione di 'passaggi di pensiero' tramite ingegneria dei prompt e offre una coerenza migliorata per output di lungo formato. È ottimizzato per flussi di lavoro agenti e supporta contesti lunghi (tramite YaRN), chiamate a strumenti JSON e configurazioni di campionamento a grana fine per un ragionamento stabile. È particolarmente adatto per casi d'uso che richiedono ragionamenti approfonditi, a più passaggi o deduzioni formali."
2125
+ },
2084
2126
  "thudm/glm-z1-9b:free": {
2085
2127
  "description": "GLM-Z1-9B-0414 è un modello linguistico con 9 miliardi di parametri della serie GLM-4 sviluppato da THUDM. Utilizza tecniche inizialmente applicate a modelli GLM-Z1 più grandi, inclusi apprendimento rinforzato esteso, allineamento di ranking a coppie e addestramento per compiti di ragionamento intensivo come matematica, codifica e logica. Nonostante le sue dimensioni più piccole, mostra prestazioni robuste in compiti di ragionamento generali e supera molti modelli open source nel suo livello di pesi."
2086
2128
  },
@@ -29,9 +29,6 @@
29
29
  "deepseek": {
30
30
  "description": "DeepSeek è un'azienda focalizzata sulla ricerca e applicazione della tecnologia AI, il cui ultimo modello DeepSeek-V2.5 combina capacità di dialogo generico e elaborazione del codice, realizzando miglioramenti significativi nell'allineamento delle preferenze umane, nei compiti di scrittura e nel rispetto delle istruzioni."
31
31
  },
32
- "doubao": {
33
- "description": "Il grande modello sviluppato internamente da ByteDance. Validato attraverso oltre 50 scenari aziendali interni, con un utilizzo quotidiano di trilioni di token che affinano continuamente il modello, offre diverse capacità multimodali, creando esperienze aziendali ricche con risultati di alta qualità."
34
- },
35
32
  "fireworksai": {
36
33
  "description": "Fireworks AI è un fornitore leader di servizi di modelli linguistici avanzati, focalizzato su chiamate funzionali e elaborazione multimodale. Il suo ultimo modello Firefunction V2, basato su Llama-3, è ottimizzato per chiamate di funzione, dialogo e rispetto delle istruzioni. Il modello di linguaggio visivo FireLLaVA-13B supporta input misti di immagini e testo. Altri modelli notevoli includono la serie Llama e la serie Mixtral, offrendo supporto efficiente per il rispetto e la generazione di istruzioni multilingue."
37
34
  },
@@ -35,6 +35,10 @@
35
35
  "desc": "現在のページの主要な検索ボックスを呼び出す",
36
36
  "title": "検索"
37
37
  },
38
+ "showApp": {
39
+ "desc": "アプリのメインウィンドウを迅速に表示",
40
+ "title": "メインウィンドウを表示"
41
+ },
38
42
  "switchAgent": {
39
43
  "desc": "Ctrlキーを押しながら数字0〜9を押してサイドバーに固定されたアシスタントを切り替えます",
40
44
  "title": "アシスタントを素早く切り替え"
@@ -71,6 +71,9 @@
71
71
  "DeepSeek-V3": {
72
72
  "description": "DeepSeek-V3は、深度求索社が独自に開発したMoEモデルです。DeepSeek-V3は、Qwen2.5-72BやLlama-3.1-405Bなどの他のオープンソースモデルを超える評価成績を収め、性能面では世界トップクラスのクローズドソースモデルであるGPT-4oやClaude-3.5-Sonnetと肩を並べています。"
73
73
  },
74
+ "Doubao-1.5-thinking-pro-m": {
75
+ "description": "Doubao-1.5は新しい深い思考モデルであり(mバージョンはネイティブなマルチモーダル深推論能力を備えています)、数学、プログラミング、科学推論などの専門分野や創造的な執筆などの一般的なタスクで優れたパフォーマンスを発揮し、AIME 2024、Codeforces、GPQAなどの複数の権威あるベンチマークで業界の第一梯隊レベルに達しています。128kのコンテキストウィンドウと16kの出力をサポートしています。"
76
+ },
74
77
  "Doubao-1.5-vision-pro": {
75
78
  "description": "Doubao-1.5-vision-proは新たにアップグレードされた多モーダル大モデルで、任意の解像度と極端なアスペクト比の画像認識をサポートし、視覚推論、文書認識、詳細情報の理解、指示の遵守能力を強化しています。"
76
79
  },
@@ -293,6 +296,21 @@
293
296
  "Qwen/Qwen2.5-VL-72B-Instruct": {
294
297
  "description": "Qwen2.5-VLはQwen2.5シリーズの視覚言語モデルです。このモデルは複数の面で大幅な改善が見られます:一般的な物体の認識、テキスト・図表・レイアウトの分析能力が強化された視覚理解能力を備えています;視覚エージェントとして推論を行い、ツール使用を動的に指導できます;1時間以上の長い動画を理解し、重要なイベントを捕捉することが可能です;境界ボックスやポイントを生成することで画像内の物体を正確に位置特定できます;特に請求書や表などのスキャンデータに適した構造化出力の生成をサポートしています。"
295
298
  },
299
+ "Qwen/Qwen3-14B": {
300
+ "description": "Qwen3は、能力が大幅に向上した新世代の通義千問大モデルであり、推論、一般、エージェント、多言語などの複数のコア能力で業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
301
+ },
302
+ "Qwen/Qwen3-235B-A22B": {
303
+ "description": "Qwen3は、能力が大幅に向上した新世代の通義千問大モデルであり、推論、一般、エージェント、多言語などの複数のコア能力で業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
304
+ },
305
+ "Qwen/Qwen3-30B-A3B": {
306
+ "description": "Qwen3は、能力が大幅に向上した新世代の通義千問大モデルであり、推論、一般、エージェント、多言語などの複数のコア能力で業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
307
+ },
308
+ "Qwen/Qwen3-32B": {
309
+ "description": "Qwen3は、能力が大幅に向上した新世代の通義千問大モデルであり、推論、一般、エージェント、多言語などの複数のコア能力で業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
310
+ },
311
+ "Qwen/Qwen3-8B": {
312
+ "description": "Qwen3は、能力が大幅に向上した新世代の通義千問大モデルであり、推論、一般、エージェント、多言語などの複数のコア能力で業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
313
+ },
296
314
  "Qwen2-72B-Instruct": {
297
315
  "description": "Qwen2はQwenモデルの最新シリーズで、128kのコンテキストをサポートしています。現在の最適なオープンソースモデルと比較して、Qwen2-72Bは自然言語理解、知識、コード、数学、そして多言語などの能力において、現在のリーディングモデルを大幅に上回っています。"
298
316
  },
@@ -398,9 +416,6 @@
398
416
  "THUDM/glm-4-9b-chat": {
399
417
  "description": "GLM-4 9Bはオープンソース版で、会話アプリケーションに最適化された対話体験を提供します。"
400
418
  },
401
- "TeleAI/TeleChat2": {
402
- "description": "TeleChat2大モデルは中国電信が0から1まで自主開発した生成的意味大モデルで、百科問答、コード生成、長文生成などの機能をサポートし、ユーザーに対話相談サービスを提供します。ユーザーと対話し、質問に答え、創作を支援し、効率的かつ便利に情報、知識、インスピレーションを取得する手助けをします。モデルは幻覚問題、長文生成、論理理解などの面で優れたパフォーマンスを示しています。"
403
- },
404
419
  "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
405
420
  "description": "Qwen2.5-72B-InstructはAlibaba Cloudが発表した最新の大規模言語モデルシリーズの一つです。この72Bモデルはコーディングや数学などの分野で顕著な能力の改善を持っています。このモデルは29以上の言語をカバーする多言語サポートも提供しており、中国語、英語などが含まれています。モデルは指示の遵守、構造化データの理解、特にJSONのような構造化出力の生成において顕著な向上を示しています。"
406
421
  },
@@ -800,6 +815,12 @@
800
815
  "deepseek/deepseek-chat": {
801
816
  "description": "汎用性とコード能力を融合させた新しいオープンソースモデルで、元のChatモデルの汎用対話能力とCoderモデルの強力なコード処理能力を保持しつつ、人間の好みにより良く整合しています。さらに、DeepSeek-V2.5は執筆タスク、指示の遵守などの多くの面で大幅な向上を実現しました。"
802
817
  },
818
+ "deepseek/deepseek-chat-v3-0324": {
819
+ "description": "DeepSeek V3は、685Bパラメータの専門的な混合モデルであり、DeepSeekチームのフラッグシップチャットモデルシリーズの最新のイテレーションです。\n\nこれは、[DeepSeek V3](/deepseek/deepseek-chat-v3)モデルを継承し、さまざまなタスクで優れたパフォーマンスを発揮します。"
820
+ },
821
+ "deepseek/deepseek-chat-v3-0324:free": {
822
+ "description": "DeepSeek V3は、685Bパラメータの専門的な混合モデルであり、DeepSeekチームのフラッグシップチャットモデルシリーズの最新のイテレーションです。\n\nこれは、[DeepSeek V3](/deepseek/deepseek-chat-v3)モデルを継承し、さまざまなタスクで優れたパフォーマンスを発揮します。"
823
+ },
803
824
  "deepseek/deepseek-r1": {
804
825
  "description": "DeepSeek-R1は、わずかなラベル付きデータしかない状況で、モデルの推論能力を大幅に向上させました。最終的な回答を出力する前に、モデルは思考の連鎖を出力し、最終的な答えの正確性を向上させます。"
805
826
  },
@@ -851,9 +872,6 @@
851
872
  "doubao-1.5-thinking-pro": {
852
873
  "description": "Doubao-1.5の新しい深層思考モデルは、数学、プログラミング、科学的推論などの専門分野や、創造的な執筆などの一般的なタスクで優れたパフォーマンスを発揮し、AIME 2024、Codeforces、GPQAなどの複数の権威あるベンチマークで業界の最前線に達するか、またはそれに近いレベルを実現しています。128kのコンテキストウィンドウと16kの出力をサポートしています。"
853
874
  },
854
- "doubao-1.5-thinking-pro-vision": {
855
- "description": "Doubao-1.5の新しい深層思考モデルは、数学、プログラミング、科学的推論などの専門分野や、創造的な執筆などの一般的なタスクで優れたパフォーマンスを発揮し、AIME 2024、Codeforces、GPQAなどの複数の権威あるベンチマークで業界の最前線に達するか、またはそれに近いレベルを実現しています。128kのコンテキストウィンドウと16kの出力をサポートしています。"
856
- },
857
875
  "doubao-1.5-vision-lite": {
858
876
  "description": "Doubao-1.5-vision-liteは新たにアップグレードされた多モーダル大モデルで、任意の解像度と極端なアスペクト比の画像認識をサポートし、視覚推論、文書認識、詳細情報の理解、指示の遵守能力を強化しています。128kのコンテキストウィンドウをサポートし、出力長は最大16kトークンをサポートします。"
859
877
  },
@@ -995,9 +1013,6 @@
995
1013
  "gemini-2.0-flash-thinking-exp-01-21": {
996
1014
  "description": "Gemini 2.0 Flash Expは、Googleの最新の実験的なマルチモーダルAIモデルであり、次世代の機能、卓越した速度、ネイティブツールの呼び出し、マルチモーダル生成を備えています。"
997
1015
  },
998
- "gemini-2.0-pro-exp-02-05": {
999
- "description": "Gemini 2.0 Pro Experimentalは、Googleの最新の実験的なマルチモーダルAIモデルで、歴史的なバージョンと比較して品質が向上しています。特に、世界の知識、コード、長いコンテキストにおいて顕著です。"
1000
- },
1001
1016
  "gemini-2.5-flash-preview-04-17": {
1002
1017
  "description": "Gemini 2.5 Flash Previewは、Googleのコストパフォーマンスに優れたモデルで、包括的な機能を提供します。"
1003
1018
  },
@@ -1007,6 +1022,9 @@
1007
1022
  "gemini-2.5-pro-preview-03-25": {
1008
1023
  "description": "Gemini 2.5 Pro Previewは、Googleの最先端の思考モデルであり、コード、数学、STEM分野の複雑な問題に対して推論を行い、長いコンテキストを使用して大規模なデータセット、コードベース、文書を分析することができます。"
1009
1024
  },
1025
+ "gemini-2.5-pro-preview-05-06": {
1026
+ "description": "Gemini 2.5 Pro Previewは、Googleの最先端思考モデルであり、コード、数学、STEM分野の複雑な問題に対して推論を行い、長いコンテキストを使用して大規模なデータセット、コードベース、文書を分析することができます。"
1027
+ },
1010
1028
  "gemma-7b-it": {
1011
1029
  "description": "Gemma 7Bは、中小規模のタスク処理に適しており、コスト効果を兼ね備えています。"
1012
1030
  },
@@ -1091,8 +1109,17 @@
1091
1109
  "google/gemini-2.0-flash-001": {
1092
1110
  "description": "Gemini 2.0 Flashは、卓越した速度、ネイティブツールの使用、マルチモーダル生成、1Mトークンのコンテキストウィンドウを含む次世代の機能と改善を提供します。"
1093
1111
  },
1094
- "google/gemini-2.0-pro-exp-02-05:free": {
1095
- "description": "Gemini 2.0 Pro Experimentalは、Googleの最新の実験的なマルチモーダルAIモデルで、歴史的なバージョンと比較して品質が向上しています。特に、世界の知識、コード、長いコンテキストにおいて顕著です。"
1112
+ "google/gemini-2.0-flash-exp:free": {
1113
+ "description": "Gemini 2.0 Flash Experimentalは、Googleの最新の実験的なマルチモーダルAIモデルであり、歴史的なバージョンと比較して特に世界知識、コード、長いコンテキストにおいて品質が向上しています。"
1114
+ },
1115
+ "google/gemini-2.5-flash-preview": {
1116
+ "description": "Gemini 2.5 Flashは、Googleの最先端の主力モデルであり、高度な推論、コーディング、数学、科学タスクのために設計されています。内蔵の「思考」能力を備えており、より高い精度と詳細なコンテキスト処理で応答を提供します。\n\n注意:このモデルには、思考と非思考の2つのバリアントがあります。出力の価格は、思考能力が有効かどうかによって大きく異なります。標準バリアント(「:thinking」サフィックスなし)を選択すると、モデルは明示的に思考トークンの生成を避けます。\n\n思考能力を利用して思考トークンを受け取るには、「:thinking」バリアントを選択する必要があり、これにより思考出力の価格が高くなります。\n\nさらに、Gemini 2.5 Flashは、「推論最大トークン数」パラメータを介して構成可能であり、文書に記載されています (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)。"
1117
+ },
1118
+ "google/gemini-2.5-flash-preview:thinking": {
1119
+ "description": "Gemini 2.5 Flashは、Googleの最先端の主力モデルであり、高度な推論、コーディング、数学、科学タスクのために設計されています。内蔵の「思考」能力を備えており、より高い精度と詳細なコンテキスト処理で応答を提供します。\n\n注意:このモデルには、思考と非思考の2つのバリアントがあります。出力の価格は、思考能力が有効かどうかによって大きく異なります。標準バリアント(「:thinking」サフィックスなし)を選択すると、モデルは明示的に思考トークンの生成を避けます。\n\n思考能力を利用して思考トークンを受け取るには、「:thinking」バリアントを選択する必要があり、これにより思考出力の価格が高くなります。\n\nさらに、Gemini 2.5 Flashは、「推論最大トークン数」パラメータを介して構成可能であり、文書に記載されています (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)。"
1120
+ },
1121
+ "google/gemini-2.5-pro-preview-03-25": {
1122
+ "description": "Gemini 2.5 Proは、Googleの最先端AIモデルであり、高度な推論、コーディング、数学、科学タスクのために設計されています。思考能力を備えており、より高い精度と詳細なコンテキスト処理で推論応答を提供します。Gemini 2.5 Proは、複数のベンチマークテストでトップパフォーマンスを達成し、LMArenaランキングで1位を獲得しており、卓越した人間の好みの整合性と複雑な問題解決能力を反映しています。"
1096
1123
  },
1097
1124
  "google/gemini-flash-1.5": {
1098
1125
  "description": "Gemini 1.5 Flashは、最適化されたマルチモーダル処理能力を提供し、さまざまな複雑なタスクシナリオに適しています。"
@@ -1592,6 +1619,9 @@
1592
1619
  "mistral-large-latest": {
1593
1620
  "description": "Mistral Largeは、フラッグシップの大モデルであり、多言語タスク、複雑な推論、コード生成に優れ、高端アプリケーションに理想的な選択肢です。"
1594
1621
  },
1622
+ "mistral-medium-latest": {
1623
+ "description": "Mistral Medium 3は、8倍のコストで最先端のパフォーマンスを提供し、企業の展開を根本的に簡素化します。"
1624
+ },
1595
1625
  "mistral-nemo": {
1596
1626
  "description": "Mistral Nemoは、Mistral AIとNVIDIAが共同で開発した高効率の12Bモデルです。"
1597
1627
  },
@@ -1763,8 +1793,8 @@
1763
1793
  "qvq-72b-preview": {
1764
1794
  "description": "QVQモデルはQwenチームによって開発された実験的研究モデルで、視覚推論能力の向上に特化しており、特に数学推論の分野で優れた性能を発揮。"
1765
1795
  },
1766
- "qvq-max": {
1767
- "description": "通義千問QVQ視覚推論モデルは、視覚入力と思考の連鎖出力をサポートし、数学、プログラミング、視覚分析、創作、一般的なタスクにおいてより強力な能力を発揮します。"
1796
+ "qvq-max-latest": {
1797
+ "description": "通義千問QVQ視覚推論モデルは、視覚入力と思考連鎖出力をサポートし、数学、プログラミング、視覚分析、創作、一般的なタスクにおいてより強力な能力を発揮します。"
1768
1798
  },
1769
1799
  "qwen-coder-plus-latest": {
1770
1800
  "description": "通義千問コードモデル。"
@@ -2075,12 +2105,24 @@
2075
2105
  "text-embedding-3-small": {
2076
2106
  "description": "効率的で経済的な次世代埋め込みモデル、知識検索やRAGアプリケーションなどのシーンに適しています"
2077
2107
  },
2108
+ "thudm/glm-4-32b": {
2109
+ "description": "GLM-4-32B-0414は、32Bのバイリンガル(中英)オープンウェイト言語モデルであり、コード生成、関数呼び出し、エージェントタスクに最適化されています。15Tの高品質および再推論データで事前トレーニングされており、人間の好みの整合性、拒否サンプリング、強化学習を使用してさらに洗練されています。このモデルは、複雑な推論、アーティファクト生成、構造化出力タスクにおいて優れたパフォーマンスを示し、複数のベンチマークテストでGPT-4oおよびDeepSeek-V3-0324と同等のパフォーマンスを達成しています。"
2110
+ },
2111
+ "thudm/glm-4-32b:free": {
2112
+ "description": "GLM-4-32B-0414は、32Bのバイリンガル(中英)オープンウェイト言語モデルであり、コード生成、関数呼び出し、エージェントタスクに最適化されています。15Tの高品質および再推論データで事前トレーニングされており、人間の好みの整合性、拒否サンプリング、強化学習を使用してさらに洗練されています。このモデルは、複雑な推論、アーティファクト生成、構造化出力タスクにおいて優れたパフォーマンスを示し、複数のベンチマークテストでGPT-4oおよびDeepSeek-V3-0324と同等のパフォーマンスを達成しています。"
2113
+ },
2078
2114
  "thudm/glm-4-9b-chat": {
2079
2115
  "description": "智谱AIが発表したGLM-4シリーズの最新世代の事前トレーニングモデルのオープンソース版です。"
2080
2116
  },
2081
2117
  "thudm/glm-4-9b:free": {
2082
2118
  "description": "GLM-4-9B-0414はTHUDMによって開発されたGLM-4シリーズの90億パラメータの言語モデルです。GLM-4-9B-0414は、より大きな32B対応モデルと同じ強化学習と整合性戦略を使用してトレーニングされており、その規模に対して高性能を実現し、依然として強力な言語理解と生成能力を必要とするリソース制約のあるデプロイメントに適しています。"
2083
2119
  },
2120
+ "thudm/glm-z1-32b": {
2121
+ "description": "GLM-Z1-32B-0414は、GLM-4-32Bの強化推論バリアントであり、深い数学、論理、コード指向の問題解決のために構築されています。タスク特化型および一般的なペアの好みに基づく拡張強化学習を適用して、複雑な多段階タスクのパフォーマンスを向上させます。基礎となるGLM-4-32Bモデルと比較して、Z1は構造化推論と形式的な領域の能力を大幅に向上させています。\n\nこのモデルは、プロンプトエンジニアリングを通じて「思考」ステップを強制し、長形式の出力に対して改善された一貫性を提供します。エージェントワークフローに最適化されており、長いコンテキスト(YaRNを介して)、JSONツール呼び出し、安定した推論のための細粒度サンプリング設定をサポートしています。深く考慮された多段階推論や形式的な導出が必要なユースケースに非常に適しています。"
2122
+ },
2123
+ "thudm/glm-z1-32b:free": {
2124
+ "description": "GLM-Z1-32B-0414は、GLM-4-32Bの強化推論バリアントであり、深い数学、論理、コード指向の問題解決のために構築されています。タスク特化型および一般的なペアの好みに基づく拡張強化学習を適用して、複雑な多段階タスクのパフォーマンスを向上させます。基礎となるGLM-4-32Bモデルと比較して、Z1は構造化推論と形式的な領域の能力を大幅に向上させています。\n\nこのモデルは、プロンプトエンジニアリングを通じて「思考」ステップを強制し、長形式の出力に対して改善された一貫性を提供します。エージェントワークフローに最適化されており、長いコンテキスト(YaRNを介して)、JSONツール呼び出し、安定した推論のための細粒度サンプリング設定をサポートしています。深く考慮された多段階推論や形式的な導出が必要なユースケースに非常に適しています。"
2125
+ },
2084
2126
  "thudm/glm-z1-9b:free": {
2085
2127
  "description": "GLM-Z1-9B-0414はTHUDMによって開発されたGLM-4シリーズの9Bパラメータの言語モデルです。これは、より大きなGLM-Z1モデルに最初に適用された技術を採用しており、拡張強化学習、ペアランキング整合性、数学、コーディング、論理などの推論集約型タスクのトレーニングを含みます。規模は小さいものの、一般的な推論タスクにおいて強力な性能を発揮し、その重みレベルにおいて多くのオープンソースモデルを上回っています。"
2086
2128
  },
@@ -29,9 +29,6 @@
29
29
  "deepseek": {
30
30
  "description": "DeepSeekは、人工知能技術の研究と応用に特化した企業であり、最新のモデルDeepSeek-V2.5は、汎用対話とコード処理能力を融合させ、人間の好みの整合、ライティングタスク、指示の遵守などの面で顕著な向上を実現しています。"
31
31
  },
32
- "doubao": {
33
- "description": "バイトダンスが開発した独自の大規模モデルです。バイトダンス内部の50以上のビジネスシーンでの実践を通じて検証され、毎日数兆トークンの大規模な使用量で磨かれ、多様なモーダル能力を提供し、高品質なモデル効果で企業に豊かなビジネス体験を提供します。"
34
- },
35
32
  "fireworksai": {
36
33
  "description": "Fireworks AIは、先進的な言語モデルサービスのリーダーであり、機能呼び出しと多モーダル処理に特化しています。最新のモデルFirefunction V2はLlama-3に基づいており、関数呼び出し、対話、指示の遵守に最適化されています。視覚言語モデルFireLLaVA-13Bは、画像とテキストの混合入力をサポートしています。他の注目すべきモデルには、LlamaシリーズやMixtralシリーズがあり、高効率の多言語指示遵守と生成サポートを提供しています。"
37
34
  },
@@ -35,6 +35,10 @@
35
35
  "desc": "현재 페이지의 주요 검색 상자를 호출합니다.",
36
36
  "title": "검색"
37
37
  },
38
+ "showApp": {
39
+ "desc": "애플리케이션의 주 창을 빠르게 호출합니다.",
40
+ "title": "주 창 표시"
41
+ },
38
42
  "switchAgent": {
39
43
  "desc": "Ctrl 키를 누른 채로 숫자 0~9를 눌러 사이드바에 고정된 도우미를 전환합니다",
40
44
  "title": "도우미 빠른 전환"
@@ -71,6 +71,9 @@
71
71
  "DeepSeek-V3": {
72
72
  "description": "DeepSeek-V3는 심층 탐색 회사에서 자체 개발한 MoE 모델입니다. DeepSeek-V3는 여러 평가에서 Qwen2.5-72B 및 Llama-3.1-405B와 같은 다른 오픈 소스 모델을 초월하며, 성능 면에서 세계 최고의 폐쇄형 모델인 GPT-4o 및 Claude-3.5-Sonnet과 동등합니다."
73
73
  },
74
+ "Doubao-1.5-thinking-pro-m": {
75
+ "description": "Doubao-1.5는 새로운 깊은 사고 모델(m 버전은 원래 다중 모달 깊은 추론 능력을 갖추고 있음)로, 수학, 프로그래밍, 과학 추론 등 전문 분야 및 창의적 작문 등 일반 작업에서 뛰어난 성능을 보이며, AIME 2024, Codeforces, GPQA 등 여러 권위 있는 벤치마크에서 업계 1위 수준에 도달하거나 근접했습니다. 128k 맥락 창 및 16k 출력을 지원합니다."
76
+ },
74
77
  "Doubao-1.5-vision-pro": {
75
78
  "description": "Doubao-1.5-vision-pro는 새롭게 업그레이드된 다중 모드 대모델로, 임의의 해상도와 극단적인 가로 세로 비율의 이미지 인식을 지원하며, 시각적 추론, 문서 인식, 세부 정보 이해 및 지시 준수 능력을 강화합니다."
76
79
  },
@@ -293,6 +296,21 @@
293
296
  "Qwen/Qwen2.5-VL-72B-Instruct": {
294
297
  "description": "Qwen2.5-VL은 Qwen2.5 시리즈의 시각 언어 모델입니다. 이 모델은 여러 측면에서 뛰어난 성능을 보입니다: 일반적인 물체 인식, 텍스트/차트/레이아웃 분석 등 향상된 시각 이해 능력을 갖추었으며, 시각 에이전트로서 도구 사용을 동적으로 추론하고 안내할 수 있습니다. 1시간 이상의 장편 동영상 이해가 가능하며 주요 이벤트를 포착할 수 있고, 이미지 내 객체의 정확한 위치를 경계 상자 또는 점으로 표시할 수 있습니다. 특히 인보이스, 표 등 스캔 데이터에 적합한 구조화된 출력 생성이 가능합니다."
295
298
  },
299
+ "Qwen/Qwen3-14B": {
300
+ "description": "Qwen3는 능력이 크게 향상된 차세대 통의천문 대모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며 사고 모드 전환을 지원합니다."
301
+ },
302
+ "Qwen/Qwen3-235B-A22B": {
303
+ "description": "Qwen3는 능력이 크게 향상된 차세대 통의천문 대모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며 사고 모드 전환을 지원합니다."
304
+ },
305
+ "Qwen/Qwen3-30B-A3B": {
306
+ "description": "Qwen3는 능력이 크게 향상된 차세대 통의천문 대모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며 사고 모드 전환을 지원합니다."
307
+ },
308
+ "Qwen/Qwen3-32B": {
309
+ "description": "Qwen3는 능력이 크게 향상된 차세대 통의천문 대모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며 사고 모드 전환을 지원합니다."
310
+ },
311
+ "Qwen/Qwen3-8B": {
312
+ "description": "Qwen3는 능력이 크게 향상된 차세대 통의천문 대모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며 사고 모드 전환을 지원합니다."
313
+ },
296
314
  "Qwen2-72B-Instruct": {
297
315
  "description": "Qwen2는 Qwen 모델의 최신 시리즈로, 128k 컨텍스트를 지원합니다. 현재 최상의 오픈 소스 모델과 비교할 때, Qwen2-72B는 자연어 이해, 지식, 코드, 수학 및 다국어 등 여러 능력에서 현재 선도하는 모델을 현저히 초월합니다."
298
316
  },
@@ -398,9 +416,6 @@
398
416
  "THUDM/glm-4-9b-chat": {
399
417
  "description": "GLM-4 9B 오픈 소스 버전으로, 대화 응용을 위한 최적화된 대화 경험을 제공합니다."
400
418
  },
401
- "TeleAI/TeleChat2": {
402
- "description": "TeleChat2 대모델은 중국 전신이 0에서 1까지 독자적으로 개발한 생성적 의미 대모델로, 백과사전 질문 응답, 코드 생성, 긴 문서 생성 등의 기능을 지원하여 사용자에게 대화 상담 서비스를 제공합니다. 사용자가 질문에 답하고 창작을 도와주며, 효율적이고 편리하게 정보, 지식 및 영감을 얻을 수 있도록 돕습니다. 이 모델은 환각 문제, 긴 문서 생성, 논리 이해 등에서 뛰어난 성능을 보입니다."
403
- },
404
419
  "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
405
420
  "description": "Qwen2.5-72B-Instruct는 Alibaba Cloud에서 발표한 최신 대규모 언어 모델 시리즈 중 하나입니다. 이 72B 모델은 코딩 및 수학 분야에서 상당한 개선된 능력을 가지고 있습니다. 이 모델은 또한 29개 이상의 언어를 포함한 다국어 지원을 제공합니다. 모델은 지침 준수, 구조화된 데이터 이해 및 구조화된 출력 생성(특히 JSON)에서 상당한 향상을 보입니다."
406
421
  },
@@ -800,6 +815,12 @@
800
815
  "deepseek/deepseek-chat": {
801
816
  "description": "일반 및 코드 능력을 통합한 새로운 오픈 소스 모델로, 기존 Chat 모델의 일반 대화 능력과 Coder 모델의 강력한 코드 처리 능력을 유지하면서 인간의 선호에 더 잘 맞춰졌습니다. 또한, DeepSeek-V2.5는 작문 작업, 지시 따르기 등 여러 분야에서 큰 향상을 이루었습니다."
802
817
  },
818
+ "deepseek/deepseek-chat-v3-0324": {
819
+ "description": "DeepSeek V3는 685B 매개변수를 가진 전문가 혼합 모델로, DeepSeek 팀의 플래그십 채팅 모델 시리즈의 최신 반복입니다.\n\n이 모델은 [DeepSeek V3](/deepseek/deepseek-chat-v3) 모델을 계승하며 다양한 작업에서 뛰어난 성능을 보입니다."
820
+ },
821
+ "deepseek/deepseek-chat-v3-0324:free": {
822
+ "description": "DeepSeek V3는 685B 매개변수를 가진 전문가 혼합 모델로, DeepSeek 팀의 플래그십 채팅 모델 시리즈의 최신 반복입니다.\n\n이 모델은 [DeepSeek V3](/deepseek/deepseek-chat-v3) 모델을 계승하며 다양한 작업에서 뛰어난 성능을 보입니다."
823
+ },
803
824
  "deepseek/deepseek-r1": {
804
825
  "description": "DeepSeek-R1은 극히 적은 주석 데이터로 모델의 추론 능력을 크게 향상시킵니다. 최종 답변을 출력하기 전에 모델은 먼저 사고의 연쇄 내용을 출력하여 최종 답변의 정확성을 높입니다."
805
826
  },
@@ -851,9 +872,6 @@
851
872
  "doubao-1.5-thinking-pro": {
852
873
  "description": "Doubao-1.5는 수학, 프로그래밍, 과학적 추론 등 전문 분야와 창의적 글쓰기 등 일반 작업에서 뛰어난 성능을 발휘하는 새로운 심층 사고 모델입니다. AIME 2024, Codeforces, GPQA 등 여러 권위 있는 기준에서 업계 최상위 수준에 도달하거나 근접했습니다. 128k의 컨텍스트 윈도우와 16k 출력을 지원합니다."
853
874
  },
854
- "doubao-1.5-thinking-pro-vision": {
855
- "description": "Doubao-1.5는 수학, 프로그래밍, 과학적 추론 등 전문 분야와 창의적 글쓰기 등 일반 작업에서 뛰어난 성능을 발휘하는 새로운 심층 사고 모델입니다. AIME 2024, Codeforces, GPQA 등 여러 권위 있는 기준에서 업계 최상위 수준에 도달하거나 근접했습니다. 128k의 컨텍스트 윈도우와 16k 출력을 지원합니다."
856
- },
857
875
  "doubao-1.5-vision-lite": {
858
876
  "description": "Doubao-1.5-vision-lite는 새롭게 업그레이드된 다중 모드 대모델로, 임의의 해상도와 극단적인 가로 세로 비율의 이미지 인식을 지원하며, 시각적 추론, 문서 인식, 세부 정보 이해 및 지시 준수 능력을 강화합니다. 128k 문맥 창을 지원하며, 최대 16k 토큰의 출력 길이를 지원합니다."
859
877
  },
@@ -995,9 +1013,6 @@
995
1013
  "gemini-2.0-flash-thinking-exp-01-21": {
996
1014
  "description": "Gemini 2.0 Flash Exp는 Google의 최신 실험적 다중 모드 AI 모델로, 차세대 기능, 뛰어난 속도, 네이티브 도구 호출 및 다중 모드 생성을 제공합니다."
997
1015
  },
998
- "gemini-2.0-pro-exp-02-05": {
999
- "description": "Gemini 2.0 Pro Experimental은 Google의 최신 실험적 다중 모달 AI 모델로, 이전 버전과 비교하여 품질이 향상되었습니다. 특히 세계 지식, 코드 및 긴 문맥에 대해 개선되었습니다."
1000
- },
1001
1016
  "gemini-2.5-flash-preview-04-17": {
1002
1017
  "description": "Gemini 2.5 Flash Preview는 Google의 가장 가성비 높은 모델로, 포괄적인 기능을 제공합니다."
1003
1018
  },
@@ -1007,6 +1022,9 @@
1007
1022
  "gemini-2.5-pro-preview-03-25": {
1008
1023
  "description": "Gemini 2.5 Pro Preview는 Google의 최첨단 사고 모델로, 코드, 수학 및 STEM 분야의 복잡한 문제를 추론하고 긴 맥락을 사용하여 대규모 데이터 세트, 코드베이스 및 문서를 분석할 수 있습니다."
1009
1024
  },
1025
+ "gemini-2.5-pro-preview-05-06": {
1026
+ "description": "Gemini 2.5 Pro Preview는 Google의 최첨단 사고 모델로, 코드, 수학 및 STEM 분야의 복잡한 문제를 추론하고 긴 맥락을 사용하여 대규모 데이터 세트, 코드베이스 및 문서를 분석할 수 있습니다."
1027
+ },
1010
1028
  "gemma-7b-it": {
1011
1029
  "description": "Gemma 7B는 중소 규모 작업 처리에 적합하며, 비용 효과성을 갖추고 있습니다."
1012
1030
  },
@@ -1091,8 +1109,17 @@
1091
1109
  "google/gemini-2.0-flash-001": {
1092
1110
  "description": "Gemini 2.0 Flash는 뛰어난 속도, 원주율 도구 사용, 다중 모달 생성 및 1M 토큰 문맥 창을 포함한 차세대 기능과 개선 사항을 제공합니다."
1093
1111
  },
1094
- "google/gemini-2.0-pro-exp-02-05:free": {
1095
- "description": "Gemini 2.0 Pro Experimental은 Google의 최신 실험적 다중 모달 AI 모델로, 이전 버전과 비교하여 품질이 향상되었습니다. 특히 세계 지식, 코드 및 긴 문맥에 대해 개선되었습니다."
1112
+ "google/gemini-2.0-flash-exp:free": {
1113
+ "description": "Gemini 2.0 Flash Experimental은 Google의 최신 실험적 다중 모달 AI 모델로, 역사적 버전과 비교하여 품질이 향상되었으며, 특히 세계 지식, 코드 및 긴 맥락에 대해 개선되었습니다."
1114
+ },
1115
+ "google/gemini-2.5-flash-preview": {
1116
+ "description": "Gemini 2.5 Flash는 Google의 최첨단 주력 모델로, 고급 추론, 코딩, 수학 및 과학 작업을 위해 설계되었습니다. 내장된 '사고' 능력을 포함하고 있어 더 높은 정확성과 세밀한 맥락 처리를 통해 응답을 제공합니다.\n\n주의: 이 모델에는 두 가지 변형이 있습니다: 사고 및 비사고. 출력 가격은 사고 능력이 활성화되었는지 여부에 따라 크게 다릅니다. 표준 변형(‘:thinking’ 접미사가 없는)을 선택하면 모델이 사고 토큰 생성을 명확히 피합니다.\n\n사고 능력을 활용하고 사고 토큰을 수신하려면 ‘:thinking’ 변형을 선택해야 하며, 이는 더 높은 사고 출력 가격을 발생시킵니다.\n\n또한, Gemini 2.5 Flash는 문서에 설명된 대로 '추론 최대 토큰 수' 매개변수를 통해 구성할 수 있습니다 (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
1117
+ },
1118
+ "google/gemini-2.5-flash-preview:thinking": {
1119
+ "description": "Gemini 2.5 Flash는 Google의 최첨단 주력 모델로, 고급 추론, 코딩, 수학 및 과학 작업을 위해 설계되었습니다. 내장된 '사고' 능력을 포함하고 있어 더 높은 정확성과 세밀한 맥락 처리를 통해 응답을 제공합니다.\n\n주의: 이 모델에는 두 가지 변형이 있습니다: 사고 및 비사고. 출력 가격은 사고 능력이 활성화되었는지 여부에 따라 크게 다릅니다. 표준 변형(‘:thinking’ 접미사가 없는)을 선택하면 모델이 사고 토큰 생성을 명확히 피합니다.\n\n사고 능력을 활용하고 사고 토큰을 수신하려면 ‘:thinking’ 변형을 선택해야 하며, 이는 더 높은 사고 출력 가격을 발생시킵니다.\n\n또한, Gemini 2.5 Flash는 문서에 설명된 대로 '추론 최대 토큰 수' 매개변수를 통해 구성할 수 있습니다 (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
1120
+ },
1121
+ "google/gemini-2.5-pro-preview-03-25": {
1122
+ "description": "Gemini 2.5 Pro는 Google의 최첨단 AI 모델로, 고급 추론, 코딩, 수학 및 과학 작업을 위해 설계되었습니다. '사고' 능력을 갖추고 있어 더 높은 정확성과 세밀한 맥락 처리를 통해 추론 응답을 제공합니다. Gemini 2.5 Pro는 여러 벤치마크 테스트에서 최고 성능을 기록했으며, LMArena 순위에서 1위를 차지하여 뛰어난 인간 선호 정렬 및 복잡한 문제 해결 능력을 반영합니다."
1096
1123
  },
1097
1124
  "google/gemini-flash-1.5": {
1098
1125
  "description": "Gemini 1.5 Flash는 최적화된 다중 모달 처리 능력을 제공하며, 다양한 복잡한 작업 시나리오에 적합합니다."
@@ -1592,6 +1619,9 @@
1592
1619
  "mistral-large-latest": {
1593
1620
  "description": "Mistral Large는 플래그십 대형 모델로, 다국어 작업, 복잡한 추론 및 코드 생성에 능숙하여 고급 응용 프로그램에 이상적인 선택입니다."
1594
1621
  },
1622
+ "mistral-medium-latest": {
1623
+ "description": "Mistral Medium 3는 8배의 비용으로 최첨단 성능을 제공하며, 기업 배포를 근본적으로 단순화합니다."
1624
+ },
1595
1625
  "mistral-nemo": {
1596
1626
  "description": "Mistral Nemo는 Mistral AI와 NVIDIA가 협력하여 출시한 고효율 12B 모델입니다."
1597
1627
  },
@@ -1763,8 +1793,8 @@
1763
1793
  "qvq-72b-preview": {
1764
1794
  "description": "QVQ 모델은 Qwen 팀이 개발한 실험적 연구 모델로, 시각적 추론 능력 향상에 중점을 두고 있으며, 특히 수학적 추론 분야에서 두드러진 성과를 보입니다."
1765
1795
  },
1766
- "qvq-max": {
1767
- "description": "통의천문 QVQ 비주얼 추론 모델은 비주얼 입력과 사고 체인 출력을 지원하며, 수학, 프로그래밍, 비주얼 분석, 창작 및 일반 작업에서 더 강력한 능력을 보여줍니다."
1796
+ "qvq-max-latest": {
1797
+ "description": "통의천문 QVQ 비주얼 추론 모델은 비주얼 입력 사고 체인 출력을 지원하며, 수학, 프로그래밍, 비주얼 분석, 창작 및 일반 작업에서 더 강력한 능력을 보여줍니다."
1768
1798
  },
1769
1799
  "qwen-coder-plus-latest": {
1770
1800
  "description": "통의 천문 코드 모델입니다."
@@ -2075,12 +2105,24 @@
2075
2105
  "text-embedding-3-small": {
2076
2106
  "description": "효율적이고 경제적인 차세대 임베딩 모델로, 지식 검색, RAG 애플리케이션 등 다양한 상황에 적합합니다."
2077
2107
  },
2108
+ "thudm/glm-4-32b": {
2109
+ "description": "GLM-4-32B-0414는 32B 이중 언어(중국어 및 영어) 오픈 가중치 언어 모델로, 코드 생성, 함수 호출 및 에이전트 기반 작업에 최적화되어 있습니다. 15T의 고품질 및 재추론 데이터로 사전 훈련되었으며, 인간 선호 정렬, 거부 샘플링 및 강화 학습을 통해 추가적으로 개선되었습니다. 이 모델은 복잡한 추론, 아티팩트 생성 및 구조적 출력 작업에서 뛰어난 성능을 보이며, 여러 벤치마크 테스트에서 GPT-4o 및 DeepSeek-V3-0324와 동등한 성능을 달성했습니다."
2110
+ },
2111
+ "thudm/glm-4-32b:free": {
2112
+ "description": "GLM-4-32B-0414는 32B 이중 언어(중국어 및 영어) 오픈 가중치 언어 모델로, 코드 생성, 함수 호출 및 에이전트 기반 작업에 최적화되어 있습니다. 15T의 고품질 및 재추론 데이터로 사전 훈련되었으며, 인간 선호 정렬, 거부 샘플링 및 강화 학습을 통해 추가적으로 개선되었습니다. 이 모델은 복잡한 추론, 아티팩트 생성 및 구조적 출력 작업에서 뛰어난 성능을 보이며, 여러 벤치마크 테스트에서 GPT-4o 및 DeepSeek-V3-0324와 동등한 성능을 달성했습니다."
2113
+ },
2078
2114
  "thudm/glm-4-9b-chat": {
2079
2115
  "description": "지프 AI가 발표한 GLM-4 시리즈 최신 세대의 사전 훈련 모델의 오픈 소스 버전입니다."
2080
2116
  },
2081
2117
  "thudm/glm-4-9b:free": {
2082
2118
  "description": "GLM-4-9B-0414는 THUDM이 개발한 GLM-4 시리즈의 90억 매개변수 언어 모델입니다. GLM-4-9B-0414는 더 큰 32B 대응 모델과 동일한 강화 학습 및 정렬 전략을 사용하여 훈련되었으며, 그 규모에 비해 높은 성능을 달성하여 여전히 강력한 언어 이해 및 생성 능력이 필요한 자원 제한 배포에 적합합니다."
2083
2119
  },
2120
+ "thudm/glm-z1-32b": {
2121
+ "description": "GLM-Z1-32B-0414는 GLM-4-32B의 향상된 추론 변형으로, 깊은 수학, 논리 및 코드 중심 문제 해결을 위해 설계되었습니다. 이 모델은 복잡한 다단계 작업의 성능을 향상시키기 위해 확장 강화 학습(작업 특정 및 일반 쌍 선호 기반)을 적용합니다. 기본 GLM-4-32B 모델에 비해 Z1은 구조적 추론 및 형식적 분야의 능력을 크게 향상시킵니다.\n\n이 모델은 프롬프트 엔지니어링을 통해 '사고' 단계를 강제 실행할 수 있으며, 긴 형식 출력에 대한 개선된 일관성을 제공합니다. 에이전트 워크플로우에 최적화되어 있으며, 긴 맥락(YaRN을 통해), JSON 도구 호출 및 안정적인 추론을 위한 세분화된 샘플링 구성을 지원합니다. 깊이 있는 사고, 다단계 추론 또는 형식적 유도가 필요한 사용 사례에 매우 적합합니다."
2122
+ },
2123
+ "thudm/glm-z1-32b:free": {
2124
+ "description": "GLM-Z1-32B-0414는 GLM-4-32B의 향상된 추론 변형으로, 깊은 수학, 논리 및 코드 중심 문제 해결을 위해 설계되었습니다. 이 모델은 복잡한 다단계 작업의 성능을 향상시키기 위해 확장 강화 학습(작업 특정 및 일반 쌍 선호 기반)을 적용합니다. 기본 GLM-4-32B 모델에 비해 Z1은 구조적 추론 및 형식적 분야의 능력을 크게 향상시킵니다.\n\n이 모델은 프롬프트 엔지니어링을 통해 '사고' 단계를 강제 실행할 수 있으며, 긴 형식 출력에 대한 개선된 일관성을 제공합니다. 에이전트 워크플로우에 최적화되어 있으며, 긴 맥락(YaRN을 통해), JSON 도구 호출 및 안정적인 추론을 위한 세분화된 샘플링 구성을 지원합니다. 깊이 있는 사고, 다단계 추론 또는 형식적 유도가 필요한 사용 사례에 매우 적합합니다."
2125
+ },
2084
2126
  "thudm/glm-z1-9b:free": {
2085
2127
  "description": "GLM-Z1-9B-0414는 THUDM이 개발한 GLM-4 시리즈의 9B 매개변수 언어 모델입니다. 이 모델은 더 큰 GLM-Z1 모델에 처음 적용된 기술을 포함하여, 확장된 강화 학습, 쌍 순위 정렬 및 수학, 코드 및 논리와 같은 추론 집약적인 작업에 대한 훈련을 포함합니다. 비록 규모는 작지만, 일반 추론 작업에서 강력한 성능을 발휘하며, 많은 오픈 소스 모델보다 우수한 성능을 보입니다."
2086
2128
  },
@@ -29,9 +29,6 @@
29
29
  "deepseek": {
30
30
  "description": "DeepSeek는 인공지능 기술 연구 및 응용에 집중하는 회사로, 최신 모델인 DeepSeek-V2.5는 일반 대화 및 코드 처리 능력을 통합하고 인간의 선호 정렬, 작문 작업 및 지시 따르기 등에서 상당한 향상을 이루었습니다."
31
31
  },
32
- "doubao": {
33
- "description": "바이트댄스가 개발한 자체 대형 모델입니다. 바이트댄스 내부의 50개 이상의 비즈니스 시나리오에서 검증되었으며, 매일 수조 개의 토큰 사용량을 지속적으로 다듬어 다양한 모드 기능을 제공하여 우수한 모델 효과로 기업에 풍부한 비즈니스 경험을 제공합니다."
34
- },
35
32
  "fireworksai": {
36
33
  "description": "Fireworks AI는 기능 호출 및 다중 모드 처리를 전문으로 하는 선도적인 고급 언어 모델 서비스 제공업체입니다. 최신 모델인 Firefunction V2는 Llama-3를 기반으로 하며, 함수 호출, 대화 및 지시 따르기에 최적화되어 있습니다. 비주얼 언어 모델인 FireLLaVA-13B는 이미지와 텍스트 혼합 입력을 지원합니다. 기타 주목할 만한 모델로는 Llama 시리즈와 Mixtral 시리즈가 있으며, 효율적인 다국어 지시 따르기 및 생성 지원을 제공합니다."
37
34
  },
@@ -35,6 +35,10 @@
35
35
  "desc": "Roep het hoofdzoekvak van de huidige pagina op",
36
36
  "title": "Zoeken"
37
37
  },
38
+ "showApp": {
39
+ "desc": "Snel het hoofdvenster van de applicatie openen",
40
+ "title": "Hoofdvenster weergeven"
41
+ },
38
42
  "switchAgent": {
39
43
  "desc": "Schakel tussen de in de zijbalk vastgezette assistenten door Ctrl ingedrukt te houden en een cijfer van 0~9 te drukken",
40
44
  "title": "Snel wisselen van assistent"