@lobehub/chat 1.84.22 → 1.84.24
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/docker-compose/local/docker-compose.yml +2 -2
- package/docs/self-hosting/server-database/dokploy.mdx +2 -2
- package/docs/self-hosting/server-database/dokploy.zh-CN.mdx +98 -98
- package/locales/ar/hotkey.json +4 -0
- package/locales/ar/models.json +55 -13
- package/locales/ar/providers.json +0 -3
- package/locales/bg-BG/hotkey.json +4 -0
- package/locales/bg-BG/models.json +55 -13
- package/locales/bg-BG/providers.json +0 -3
- package/locales/de-DE/hotkey.json +4 -0
- package/locales/de-DE/models.json +55 -13
- package/locales/de-DE/providers.json +0 -3
- package/locales/en-US/hotkey.json +4 -0
- package/locales/en-US/models.json +55 -13
- package/locales/en-US/providers.json +0 -3
- package/locales/es-ES/hotkey.json +4 -0
- package/locales/es-ES/models.json +55 -13
- package/locales/es-ES/providers.json +0 -3
- package/locales/fa-IR/hotkey.json +4 -0
- package/locales/fa-IR/models.json +55 -13
- package/locales/fa-IR/providers.json +0 -3
- package/locales/fr-FR/hotkey.json +4 -0
- package/locales/fr-FR/models.json +55 -13
- package/locales/fr-FR/providers.json +0 -3
- package/locales/it-IT/hotkey.json +4 -0
- package/locales/it-IT/models.json +55 -13
- package/locales/it-IT/providers.json +0 -3
- package/locales/ja-JP/hotkey.json +4 -0
- package/locales/ja-JP/models.json +55 -13
- package/locales/ja-JP/providers.json +0 -3
- package/locales/ko-KR/hotkey.json +4 -0
- package/locales/ko-KR/models.json +55 -13
- package/locales/ko-KR/providers.json +0 -3
- package/locales/nl-NL/hotkey.json +4 -0
- package/locales/nl-NL/models.json +55 -13
- package/locales/nl-NL/providers.json +0 -3
- package/locales/pl-PL/hotkey.json +4 -0
- package/locales/pl-PL/models.json +55 -13
- package/locales/pl-PL/providers.json +0 -3
- package/locales/pt-BR/hotkey.json +4 -0
- package/locales/pt-BR/models.json +55 -13
- package/locales/pt-BR/providers.json +0 -3
- package/locales/ru-RU/hotkey.json +4 -0
- package/locales/ru-RU/models.json +55 -13
- package/locales/ru-RU/providers.json +0 -3
- package/locales/tr-TR/hotkey.json +4 -0
- package/locales/tr-TR/models.json +55 -13
- package/locales/tr-TR/providers.json +0 -3
- package/locales/vi-VN/hotkey.json +4 -0
- package/locales/vi-VN/models.json +55 -13
- package/locales/vi-VN/providers.json +0 -3
- package/locales/zh-CN/hotkey.json +4 -0
- package/locales/zh-CN/models.json +55 -13
- package/locales/zh-CN/providers.json +0 -3
- package/locales/zh-TW/hotkey.json +4 -0
- package/locales/zh-TW/models.json +55 -13
- package/locales/zh-TW/providers.json +0 -3
- package/package.json +1 -1
- package/src/config/aiModels/google.ts +37 -13
- package/src/config/aiModels/mistral.ts +22 -47
- package/src/config/aiModels/vertexai.ts +47 -74
- package/src/config/modelProviders/vertexai.ts +1 -1
- package/src/const/hotkeys.ts +7 -0
- package/src/const/url.ts +1 -1
- package/src/features/HotkeyHelperPanel/index.tsx +21 -17
- package/src/features/User/UserPanel/useMenu.tsx +2 -1
- package/src/locales/default/hotkey.ts +4 -0
- package/src/services/__tests__/_url.test.ts +23 -0
- package/src/types/hotkey.ts +1 -0
@@ -71,6 +71,9 @@
|
|
71
71
|
"DeepSeek-V3": {
|
72
72
|
"description": "DeepSeek-V3 es un modelo MoE desarrollado internamente por la empresa DeepSeek. Los resultados de DeepSeek-V3 en múltiples evaluaciones superan a otros modelos de código abierto como Qwen2.5-72B y Llama-3.1-405B, y su rendimiento es comparable al de los modelos cerrados de primer nivel mundial como GPT-4o y Claude-3.5-Sonnet."
|
73
73
|
},
|
74
|
+
"Doubao-1.5-thinking-pro-m": {
|
75
|
+
"description": "Doubao-1.5 es un nuevo modelo de pensamiento profundo (la versión m incluye capacidades de razonamiento multimodal nativas), destacándose en campos profesionales como matemáticas, programación, razonamiento científico y tareas generales como la escritura creativa, alcanzando o acercándose a los niveles de élite en múltiples pruebas de referencia como AIME 2024, Codeforces y GPQA. Soporta una ventana de contexto de 128k y una salida de 16k."
|
76
|
+
},
|
74
77
|
"Doubao-1.5-vision-pro": {
|
75
78
|
"description": "Doubao-1.5-vision-pro es un modelo multimodal de gran escala actualizado, que soporta el reconocimiento de imágenes de cualquier resolución y proporciones extremas, mejorando la capacidad de razonamiento visual, reconocimiento de documentos, comprensión de información detallada y seguimiento de instrucciones."
|
76
79
|
},
|
@@ -293,6 +296,21 @@
|
|
293
296
|
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
294
297
|
"description": "Qwen2.5-VL es el modelo de lenguaje visual de la serie Qwen2.5. Este modelo presenta mejoras significativas en múltiples aspectos: posee una mayor capacidad de comprensión visual, pudiendo reconocer objetos comunes, analizar texto, gráficos y diseños; como agente visual puede razonar y guiar dinámicamente el uso de herramientas; soporta la comprensión de videos largos de más de 1 hora capturando eventos clave; es capaz de localizar objetos en imágenes con precisión generando cuadros delimitadores o puntos; y admite la generación de salidas estructuradas, especialmente útil para datos escaneados como facturas o tablas."
|
295
298
|
},
|
299
|
+
"Qwen/Qwen3-14B": {
|
300
|
+
"description": "Qwen3 es un nuevo modelo de Tongyi Qianwen de próxima generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, general, agente y múltiples idiomas, y admite el cambio de modo de pensamiento."
|
301
|
+
},
|
302
|
+
"Qwen/Qwen3-235B-A22B": {
|
303
|
+
"description": "Qwen3 es un nuevo modelo de Tongyi Qianwen de próxima generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, general, agente y múltiples idiomas, y admite el cambio de modo de pensamiento."
|
304
|
+
},
|
305
|
+
"Qwen/Qwen3-30B-A3B": {
|
306
|
+
"description": "Qwen3 es un nuevo modelo de Tongyi Qianwen de próxima generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, general, agente y múltiples idiomas, y admite el cambio de modo de pensamiento."
|
307
|
+
},
|
308
|
+
"Qwen/Qwen3-32B": {
|
309
|
+
"description": "Qwen3 es un nuevo modelo de Tongyi Qianwen de próxima generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, general, agente y múltiples idiomas, y admite el cambio de modo de pensamiento."
|
310
|
+
},
|
311
|
+
"Qwen/Qwen3-8B": {
|
312
|
+
"description": "Qwen3 es un nuevo modelo de Tongyi Qianwen de próxima generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, general, agente y múltiples idiomas, y admite el cambio de modo de pensamiento."
|
313
|
+
},
|
296
314
|
"Qwen2-72B-Instruct": {
|
297
315
|
"description": "Qwen2 es la última serie del modelo Qwen, que admite un contexto de 128k. En comparación con los modelos de código abierto más óptimos actuales, Qwen2-72B supera significativamente a los modelos líderes actuales en comprensión del lenguaje natural, conocimiento, código, matemáticas y capacidades multilingües."
|
298
316
|
},
|
@@ -398,9 +416,6 @@
|
|
398
416
|
"THUDM/glm-4-9b-chat": {
|
399
417
|
"description": "GLM-4 9B es una versión de código abierto, que proporciona una experiencia de conversación optimizada para aplicaciones de diálogo."
|
400
418
|
},
|
401
|
-
"TeleAI/TeleChat2": {
|
402
|
-
"description": "El modelo grande TeleChat2 ha sido desarrollado de manera independiente por China Telecom desde cero, siendo un modelo semántico generativo que admite funciones como preguntas y respuestas enciclopédicas, generación de código y generación de textos largos, proporcionando servicios de consulta conversacional a los usuarios, permitiendo interacciones de diálogo, respondiendo preguntas y asistiendo en la creación, ayudando a los usuarios a obtener información, conocimiento e inspiración de manera eficiente y conveniente. El modelo ha mostrado un rendimiento destacado en problemas de alucinación, generación de textos largos y comprensión lógica."
|
403
|
-
},
|
404
419
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
405
420
|
"description": "Qwen2.5-72B-Instruct es uno de los últimos modelos de lenguaje a gran escala lanzados por Alibaba Cloud. Este modelo de 72B ha mejorado significativamente en áreas como codificación y matemáticas. También ofrece soporte multilingüe, abarcando más de 29 idiomas, incluidos chino e inglés. El modelo ha mostrado mejoras significativas en el seguimiento de instrucciones, comprensión de datos estructurados y generación de salidas estructuradas (especialmente JSON)."
|
406
421
|
},
|
@@ -800,6 +815,12 @@
|
|
800
815
|
"deepseek/deepseek-chat": {
|
801
816
|
"description": "Un nuevo modelo de código abierto que fusiona capacidades generales y de codificación, no solo conserva la capacidad de diálogo general del modelo Chat original y la potente capacidad de procesamiento de código del modelo Coder, sino que también se alinea mejor con las preferencias humanas. Además, DeepSeek-V2.5 ha logrado mejoras significativas en tareas de escritura, seguimiento de instrucciones y más."
|
802
817
|
},
|
818
|
+
"deepseek/deepseek-chat-v3-0324": {
|
819
|
+
"description": "DeepSeek V3 es un modelo experto de mezcla de 685B parámetros, la última iteración de la serie de modelos de chat insignia del equipo de DeepSeek.\n\nHereda el modelo [DeepSeek V3](/deepseek/deepseek-chat-v3) y se desempeña excepcionalmente en diversas tareas."
|
820
|
+
},
|
821
|
+
"deepseek/deepseek-chat-v3-0324:free": {
|
822
|
+
"description": "DeepSeek V3 es un modelo experto de mezcla de 685B parámetros, la última iteración de la serie de modelos de chat insignia del equipo de DeepSeek.\n\nHereda el modelo [DeepSeek V3](/deepseek/deepseek-chat-v3) y se desempeña excepcionalmente en diversas tareas."
|
823
|
+
},
|
803
824
|
"deepseek/deepseek-r1": {
|
804
825
|
"description": "DeepSeek-R1 mejora significativamente la capacidad de razonamiento del modelo con muy pocos datos etiquetados. Antes de proporcionar la respuesta final, el modelo genera una cadena de pensamiento para mejorar la precisión de la respuesta final."
|
805
826
|
},
|
@@ -851,9 +872,6 @@
|
|
851
872
|
"doubao-1.5-thinking-pro": {
|
852
873
|
"description": "El modelo de pensamiento profundo Doubao-1.5, completamente nuevo, destaca en campos especializados como matemáticas, programación y razonamiento científico, así como en tareas generales como la escritura creativa, alcanzando o acercándose al nivel de élite de la industria en múltiples estándares de referencia, como AIME 2024, Codeforces y GPQA. Soporta una ventana de contexto de 128k y una salida de 16k."
|
853
874
|
},
|
854
|
-
"doubao-1.5-thinking-pro-vision": {
|
855
|
-
"description": "El modelo de pensamiento profundo Doubao-1.5, completamente nuevo, destaca en campos especializados como matemáticas, programación y razonamiento científico, así como en tareas generales como la escritura creativa, alcanzando o acercándose al nivel de élite de la industria en múltiples estándares de referencia, como AIME 2024, Codeforces y GPQA. Soporta una ventana de contexto de 128k y una salida de 16k."
|
856
|
-
},
|
857
875
|
"doubao-1.5-vision-lite": {
|
858
876
|
"description": "Doubao-1.5-vision-lite es un modelo multimodal de gran escala actualizado, que soporta el reconocimiento de imágenes de cualquier resolución y proporciones extremas, mejorando la capacidad de razonamiento visual, reconocimiento de documentos, comprensión de información detallada y seguimiento de instrucciones. Soporta una ventana de contexto de 128k, con una longitud de salida que admite hasta 16k tokens."
|
859
877
|
},
|
@@ -995,9 +1013,6 @@
|
|
995
1013
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
996
1014
|
"description": "Gemini 2.0 Flash Exp es el último modelo experimental de IA multimodal de Google, con características de próxima generación, velocidad excepcional, llamadas nativas a herramientas y generación multimodal."
|
997
1015
|
},
|
998
|
-
"gemini-2.0-pro-exp-02-05": {
|
999
|
-
"description": "Gemini 2.0 Pro Experimental es el último modelo de IA multimodal experimental de Google, con mejoras de calidad en comparación con versiones anteriores, especialmente en conocimiento del mundo, código y contextos largos."
|
1000
|
-
},
|
1001
1016
|
"gemini-2.5-flash-preview-04-17": {
|
1002
1017
|
"description": "Gemini 2.5 Flash Preview es el modelo más rentable de Google, que ofrece una funcionalidad completa."
|
1003
1018
|
},
|
@@ -1007,6 +1022,9 @@
|
|
1007
1022
|
"gemini-2.5-pro-preview-03-25": {
|
1008
1023
|
"description": "Gemini 2.5 Pro Preview es el modelo de pensamiento más avanzado de Google, capaz de razonar sobre problemas complejos en código, matemáticas y campos STEM, así como de analizar grandes conjuntos de datos, bibliotecas de código y documentos utilizando un contexto largo."
|
1009
1024
|
},
|
1025
|
+
"gemini-2.5-pro-preview-05-06": {
|
1026
|
+
"description": "Gemini 2.5 Pro Preview es el modelo de pensamiento más avanzado de Google, capaz de razonar sobre problemas complejos en código, matemáticas y campos STEM, así como de analizar grandes conjuntos de datos, bibliotecas de código y documentos utilizando un análisis de contexto prolongado."
|
1027
|
+
},
|
1010
1028
|
"gemma-7b-it": {
|
1011
1029
|
"description": "Gemma 7B es adecuado para el procesamiento de tareas de pequeña y mediana escala, combinando rentabilidad."
|
1012
1030
|
},
|
@@ -1091,8 +1109,17 @@
|
|
1091
1109
|
"google/gemini-2.0-flash-001": {
|
1092
1110
|
"description": "Gemini 2.0 Flash ofrece funciones y mejoras de próxima generación, incluyendo velocidad excepcional, uso de herramientas nativas, generación multimodal y una ventana de contexto de 1M tokens."
|
1093
1111
|
},
|
1094
|
-
"google/gemini-2.0-
|
1095
|
-
"description": "Gemini 2.0
|
1112
|
+
"google/gemini-2.0-flash-exp:free": {
|
1113
|
+
"description": "Gemini 2.0 Flash Experimental es el último modelo de IA multimodal experimental de Google, con una mejora de calidad en comparación con versiones anteriores, especialmente en conocimiento del mundo, código y contexto largo."
|
1114
|
+
},
|
1115
|
+
"google/gemini-2.5-flash-preview": {
|
1116
|
+
"description": "Gemini 2.5 Flash es el modelo principal más avanzado de Google, diseñado para razonamiento avanzado, codificación, matemáticas y tareas científicas. Incluye la capacidad de 'pensar' incorporada, lo que le permite proporcionar respuestas con mayor precisión y un manejo más detallado del contexto.\n\nNota: Este modelo tiene dos variantes: con pensamiento y sin pensamiento. La fijación de precios de salida varía significativamente según si la capacidad de pensamiento está activada. Si elige la variante estándar (sin el sufijo ':thinking'), el modelo evitará explícitamente generar tokens de pensamiento.\n\nPara aprovechar la capacidad de pensamiento y recibir tokens de pensamiento, debe elegir la variante ':thinking', lo que resultará en un precio de salida de pensamiento más alto.\n\nAdemás, Gemini 2.5 Flash se puede configurar a través del parámetro 'número máximo de tokens de razonamiento', como se describe en la documentación (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1117
|
+
},
|
1118
|
+
"google/gemini-2.5-flash-preview:thinking": {
|
1119
|
+
"description": "Gemini 2.5 Flash es el modelo principal más avanzado de Google, diseñado para razonamiento avanzado, codificación, matemáticas y tareas científicas. Incluye la capacidad de 'pensar' incorporada, lo que le permite proporcionar respuestas con mayor precisión y un manejo más detallado del contexto.\n\nNota: Este modelo tiene dos variantes: con pensamiento y sin pensamiento. La fijación de precios de salida varía significativamente según si la capacidad de pensamiento está activada. Si elige la variante estándar (sin el sufijo ':thinking'), el modelo evitará explícitamente generar tokens de pensamiento.\n\nPara aprovechar la capacidad de pensamiento y recibir tokens de pensamiento, debe elegir la variante ':thinking', lo que resultará en un precio de salida de pensamiento más alto.\n\nAdemás, Gemini 2.5 Flash se puede configurar a través del parámetro 'número máximo de tokens de razonamiento', como se describe en la documentación (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1120
|
+
},
|
1121
|
+
"google/gemini-2.5-pro-preview-03-25": {
|
1122
|
+
"description": "Gemini 2.5 Pro es el modelo de IA más avanzado de Google, diseñado para razonamiento avanzado, codificación, matemáticas y tareas científicas. Posee la capacidad de 'pensar', lo que le permite razonar respuestas con mayor precisión y un manejo más detallado del contexto. Gemini 2.5 Pro ha logrado un rendimiento de primer nivel en múltiples pruebas de referencia, incluyendo el primer lugar en la clasificación de LMArena, reflejando una alineación excepcional con las preferencias humanas y una capacidad de resolución de problemas complejos."
|
1096
1123
|
},
|
1097
1124
|
"google/gemini-flash-1.5": {
|
1098
1125
|
"description": "Gemini 1.5 Flash ofrece capacidades de procesamiento multimodal optimizadas, adecuadas para una variedad de escenarios de tareas complejas."
|
@@ -1592,6 +1619,9 @@
|
|
1592
1619
|
"mistral-large-latest": {
|
1593
1620
|
"description": "Mistral Large es el modelo insignia, especializado en tareas multilingües, razonamiento complejo y generación de código, ideal para aplicaciones de alta gama."
|
1594
1621
|
},
|
1622
|
+
"mistral-medium-latest": {
|
1623
|
+
"description": "Mistral Medium 3 ofrece un rendimiento de vanguardia a un costo 8 veces menor y simplifica fundamentalmente el despliegue empresarial."
|
1624
|
+
},
|
1595
1625
|
"mistral-nemo": {
|
1596
1626
|
"description": "Mistral Nemo, desarrollado en colaboración entre Mistral AI y NVIDIA, es un modelo de 12B de alto rendimiento."
|
1597
1627
|
},
|
@@ -1763,8 +1793,8 @@
|
|
1763
1793
|
"qvq-72b-preview": {
|
1764
1794
|
"description": "El modelo QVQ es un modelo de investigación experimental desarrollado por el equipo de Qwen, enfocado en mejorar la capacidad de razonamiento visual, especialmente en el ámbito del razonamiento matemático."
|
1765
1795
|
},
|
1766
|
-
"qvq-max": {
|
1767
|
-
"description": "El modelo de razonamiento visual QVQ de Tongyi Qianwen admite entradas visuales y salidas de cadena de pensamiento, mostrando
|
1796
|
+
"qvq-max-latest": {
|
1797
|
+
"description": "El modelo de razonamiento visual QVQ de Tongyi Qianwen admite entradas visuales y salidas de cadena de pensamiento, mostrando capacidades más fuertes en matemáticas, programación, análisis visual, creación y tareas generales."
|
1768
1798
|
},
|
1769
1799
|
"qwen-coder-plus-latest": {
|
1770
1800
|
"description": "Modelo de código Qwen de Tongyi."
|
@@ -2075,12 +2105,24 @@
|
|
2075
2105
|
"text-embedding-3-small": {
|
2076
2106
|
"description": "Un modelo de Embedding de nueva generación, eficiente y económico, adecuado para la recuperación de conocimiento, aplicaciones RAG y más."
|
2077
2107
|
},
|
2108
|
+
"thudm/glm-4-32b": {
|
2109
|
+
"description": "GLM-4-32B-0414 es un modelo de lenguaje de pesos abiertos de 32B bilingüe (chino-inglés), optimizado para generación de código, llamadas a funciones y tareas de estilo agente. Ha sido preentrenado en 15T de datos de alta calidad y re-razonamiento, y se ha perfeccionado aún más utilizando alineación de preferencias humanas, muestreo de rechazo y aprendizaje por refuerzo. Este modelo destaca en razonamiento complejo, generación de artefactos y tareas de salida estructurada, alcanzando un rendimiento comparable al de GPT-4o y DeepSeek-V3-0324 en múltiples pruebas de referencia."
|
2110
|
+
},
|
2111
|
+
"thudm/glm-4-32b:free": {
|
2112
|
+
"description": "GLM-4-32B-0414 es un modelo de lenguaje de pesos abiertos de 32B bilingüe (chino-inglés), optimizado para generación de código, llamadas a funciones y tareas de estilo agente. Ha sido preentrenado en 15T de datos de alta calidad y re-razonamiento, y se ha perfeccionado aún más utilizando alineación de preferencias humanas, muestreo de rechazo y aprendizaje por refuerzo. Este modelo destaca en razonamiento complejo, generación de artefactos y tareas de salida estructurada, alcanzando un rendimiento comparable al de GPT-4o y DeepSeek-V3-0324 en múltiples pruebas de referencia."
|
2113
|
+
},
|
2078
2114
|
"thudm/glm-4-9b-chat": {
|
2079
2115
|
"description": "Versión de código abierto de la última generación del modelo preentrenado GLM-4 lanzado por Zhizhu AI."
|
2080
2116
|
},
|
2081
2117
|
"thudm/glm-4-9b:free": {
|
2082
2118
|
"description": "GLM-4-9B-0414 es un modelo de lenguaje de 9B parámetros en la serie GLM-4 desarrollado por THUDM. GLM-4-9B-0414 utiliza las mismas estrategias de aprendizaje por refuerzo y alineación que su modelo correspondiente de 32B, logrando un alto rendimiento en relación con su tamaño, lo que lo hace adecuado para implementaciones con recursos limitados que aún requieren una fuerte capacidad de comprensión y generación de lenguaje."
|
2083
2119
|
},
|
2120
|
+
"thudm/glm-z1-32b": {
|
2121
|
+
"description": "GLM-Z1-32B-0414 es una variante de razonamiento mejorada de GLM-4-32B, construida para resolver problemas de matemáticas profundas, lógica y orientados al código. Aplica aprendizaje por refuerzo extendido (específico para tareas y basado en preferencias emparejadas generales) para mejorar el rendimiento en tareas complejas de múltiples pasos. En comparación con el modelo base GLM-4-32B, Z1 mejora significativamente las capacidades de razonamiento estructurado y en dominios formalizados.\n\nEste modelo admite la ejecución forzada de pasos de 'pensamiento' a través de ingeniería de indicaciones y proporciona una coherencia mejorada para salidas de formato largo. Está optimizado para flujos de trabajo de agentes y admite contextos largos (a través de YaRN), llamadas a herramientas JSON y configuraciones de muestreo de alta precisión para razonamiento estable. Es ideal para casos de uso que requieren razonamiento reflexivo, de múltiples pasos o deducción formal."
|
2122
|
+
},
|
2123
|
+
"thudm/glm-z1-32b:free": {
|
2124
|
+
"description": "GLM-Z1-32B-0414 es una variante de razonamiento mejorada de GLM-4-32B, construida para resolver problemas de matemáticas profundas, lógica y orientados al código. Aplica aprendizaje por refuerzo extendido (específico para tareas y basado en preferencias emparejadas generales) para mejorar el rendimiento en tareas complejas de múltiples pasos. En comparación con el modelo base GLM-4-32B, Z1 mejora significativamente las capacidades de razonamiento estructurado y en dominios formalizados.\n\nEste modelo admite la ejecución forzada de pasos de 'pensamiento' a través de ingeniería de indicaciones y proporciona una coherencia mejorada para salidas de formato largo. Está optimizado para flujos de trabajo de agentes y admite contextos largos (a través de YaRN), llamadas a herramientas JSON y configuraciones de muestreo de alta precisión para razonamiento estable. Es ideal para casos de uso que requieren razonamiento reflexivo, de múltiples pasos o deducción formal."
|
2125
|
+
},
|
2084
2126
|
"thudm/glm-z1-9b:free": {
|
2085
2127
|
"description": "GLM-Z1-9B-0414 es un modelo de lenguaje de 9B parámetros en la serie GLM-4 desarrollado por THUDM. Utiliza técnicas inicialmente aplicadas al modelo GLM-Z1 más grande, incluyendo aprendizaje por refuerzo extendido, alineación de clasificación por pares y entrenamiento para tareas intensivas en razonamiento como matemáticas, código y lógica. A pesar de su menor tamaño, muestra un rendimiento robusto en tareas de razonamiento general y supera a muchos modelos de código abierto en su nivel de pesos."
|
2086
2128
|
},
|
@@ -29,9 +29,6 @@
|
|
29
29
|
"deepseek": {
|
30
30
|
"description": "DeepSeek es una empresa centrada en la investigación y aplicación de tecnologías de inteligencia artificial, cuyo modelo más reciente, DeepSeek-V2.5, combina capacidades de diálogo general y procesamiento de código, logrando mejoras significativas en alineación con preferencias humanas, tareas de escritura y seguimiento de instrucciones."
|
31
31
|
},
|
32
|
-
"doubao": {
|
33
|
-
"description": "Un modelo grande desarrollado internamente por ByteDance. Validado a través de más de 50 escenarios de negocio internos, con un uso diario de tokens en billones que se perfecciona continuamente, ofrece múltiples capacidades modales y crea experiencias comerciales ricas para las empresas con un rendimiento de modelo de alta calidad."
|
34
|
-
},
|
35
32
|
"fireworksai": {
|
36
33
|
"description": "Fireworks AI es un proveedor líder de servicios de modelos de lenguaje avanzados, enfocado en la llamada de funciones y el procesamiento multimodal. Su modelo más reciente, Firefunction V2, basado en Llama-3, está optimizado para llamadas de funciones, diálogos y seguimiento de instrucciones. El modelo de lenguaje visual FireLLaVA-13B admite entradas mixtas de imágenes y texto. Otros modelos notables incluyen la serie Llama y la serie Mixtral, que ofrecen un soporte eficiente para el seguimiento y generación de instrucciones multilingües."
|
37
34
|
},
|
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "فعال کردن جعبه جستجوی اصلی صفحه کنونی",
|
36
36
|
"title": "جستجو"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "باز کردن سریع پنجره اصلی برنامه",
|
40
|
+
"title": "نمایش پنجره اصلی"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "با نگه داشتن Ctrl و زدن عدد 0~9، دستیار ثابت در نوار کناری را تغییر دهید",
|
40
44
|
"title": "تغییر سریع دستیار"
|
@@ -71,6 +71,9 @@
|
|
71
71
|
"DeepSeek-V3": {
|
72
72
|
"description": "DeepSeek-V3 یک مدل MoE است که توسط شرکت DeepSeek توسعه یافته است. نتایج ارزیابیهای متعدد DeepSeek-V3 از مدلهای متن باز دیگر مانند Qwen2.5-72B و Llama-3.1-405B فراتر رفته و از نظر عملکرد با مدلهای بسته جهانی برتر مانند GPT-4o و Claude-3.5-Sonnet برابری میکند."
|
73
73
|
},
|
74
|
+
"Doubao-1.5-thinking-pro-m": {
|
75
|
+
"description": "Doubao-1.5 مدل جدید تفکر عمیق (نسخه m دارای قابلیت استدلال عمیق چندرسانهای بومی است) است که در زمینههای تخصصی مانند ریاضیات، برنامهنویسی، استدلال علمی و همچنین وظایف عمومی مانند نوشتن خلاقانه عملکرد برجستهای دارد و در چندین معیار معتبر مانند AIME 2024، Codeforces، GPQA به سطح اول صنعت دست یافته یا نزدیک شده است. این مدل از پنجره زمینه 128k و خروجی 16k پشتیبانی میکند."
|
76
|
+
},
|
74
77
|
"Doubao-1.5-vision-pro": {
|
75
78
|
"description": "Doubao-1.5-vision-pro مدل بزرگ چندرسانهای بهروز شده است که از شناسایی تصاویر با هر وضوح و نسبت ابعاد بسیار طولانی پشتیبانی میکند و تواناییهای استدلال بصری، شناسایی مستندات، درک اطلاعات جزئی و پیروی از دستورات را تقویت میکند."
|
76
79
|
},
|
@@ -293,6 +296,21 @@
|
|
293
296
|
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
294
297
|
"description": "Qwen2.5-VL مدل زبان و تصویر از سری Qwen2.5 است. این مدل در جنبههای مختلف بهبود یافته است: دارای توانایی تحلیل بصری قویتر، قادر به تشخیص اشیاء رایج، تحلیل متن، نمودارها و طرحبندی است؛ به عنوان یک عامل بصری میتواند استدلال کند و به طور پویا ابزارها را هدایت کند؛ از توانایی درک ویدیوهای طولانیتر از یک ساعت و شناسایی رویدادهای کلیدی برخوردار است؛ قادر به مکانیابی دقیق اشیاء در تصویر با تولید جعبههای مرزی یا نقاط است؛ و توانایی تولید خروجیهای ساختاریافته، به ویژه برای دادههای اسکن شده مانند فاکتورها و جداول را دارد."
|
295
298
|
},
|
299
|
+
"Qwen/Qwen3-14B": {
|
300
|
+
"description": "Qwen3 یک مدل بزرگ جدید با تواناییهای بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانی به سطح پیشرفته صنعت دست یافته و از تغییر حالت تفکر پشتیبانی میکند."
|
301
|
+
},
|
302
|
+
"Qwen/Qwen3-235B-A22B": {
|
303
|
+
"description": "Qwen3 یک مدل بزرگ جدید با تواناییهای بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانی به سطح پیشرفته صنعت دست یافته و از تغییر حالت تفکر پشتیبانی میکند."
|
304
|
+
},
|
305
|
+
"Qwen/Qwen3-30B-A3B": {
|
306
|
+
"description": "Qwen3 یک مدل بزرگ جدید با تواناییهای بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانی به سطح پیشرفته صنعت دست یافته و از تغییر حالت تفکر پشتیبانی میکند."
|
307
|
+
},
|
308
|
+
"Qwen/Qwen3-32B": {
|
309
|
+
"description": "Qwen3 یک مدل بزرگ جدید با تواناییهای بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانی به سطح پیشرفته صنعت دست یافته و از تغییر حالت تفکر پشتیبانی میکند."
|
310
|
+
},
|
311
|
+
"Qwen/Qwen3-8B": {
|
312
|
+
"description": "Qwen3 یک مدل بزرگ جدید با تواناییهای بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانی به سطح پیشرفته صنعت دست یافته و از تغییر حالت تفکر پشتیبانی میکند."
|
313
|
+
},
|
296
314
|
"Qwen2-72B-Instruct": {
|
297
315
|
"description": "Qwen2 جدیدترین سری مدلهای Qwen است که از 128k زمینه پشتیبانی میکند. در مقایسه با بهترین مدلهای متنباز فعلی، Qwen2-72B در درک زبان طبیعی، دانش، کد، ریاضی و چندزبانگی به طور قابل توجهی از مدلهای پیشرو فعلی فراتر رفته است."
|
298
316
|
},
|
@@ -398,9 +416,6 @@
|
|
398
416
|
"THUDM/glm-4-9b-chat": {
|
399
417
|
"description": "نسخه منبع باز GLM-4 9B، تجربه گفتگوی بهینهشده برای برنامههای مکالمه را ارائه میدهد."
|
400
418
|
},
|
401
|
-
"TeleAI/TeleChat2": {
|
402
|
-
"description": "مدل بزرگ TeleChat2 توسط China Telecom از صفر تا یک به طور مستقل توسعه یافته و یک مدل معنایی تولیدی است که از قابلیتهایی مانند پرسش و پاسخ دایرهالمعارف، تولید کد و تولید متن طولانی پشتیبانی میکند و خدمات مشاوره گفتگویی را به کاربران ارائه میدهد. این مدل قادر به تعامل گفتگویی با کاربران، پاسخ به سوالات و کمک به خلاقیت است و به طور کارآمد و راحت به کاربران در دستیابی به اطلاعات، دانش و الهام کمک میکند. این مدل در زمینههای مشکلات توهم، تولید متن طولانی و درک منطقی عملکرد خوبی دارد."
|
403
|
-
},
|
404
419
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
405
420
|
"description": "Qwen2.5-72B-Instruct یکی از جدیدترین سری مدلهای زبانی بزرگ منتشر شده توسط Alibaba Cloud است. این مدل 72B در زمینههای کدنویسی و ریاضی دارای تواناییهای بهبود یافته قابل توجهی است. این مدل همچنین از پشتیبانی چند زبانه برخوردار است و بیش از 29 زبان از جمله چینی و انگلیسی را پوشش میدهد. این مدل در پیروی از دستورات، درک دادههای ساختاری و تولید خروجیهای ساختاری (به ویژه JSON) به طور قابل توجهی بهبود یافته است."
|
406
421
|
},
|
@@ -800,6 +815,12 @@
|
|
800
815
|
"deepseek/deepseek-chat": {
|
801
816
|
"description": "مدل متنباز جدیدی که تواناییهای عمومی و کدنویسی را ترکیب میکند. این مدل نه تنها توانایی گفتگوی عمومی مدل Chat و قدرت پردازش کد مدل Coder را حفظ کرده است، بلکه به ترجیحات انسانی نیز بهتر همسو شده است. علاوه بر این، DeepSeek-V2.5 در وظایف نوشتاری، پیروی از دستورات و سایر جنبهها نیز بهبودهای قابل توجهی داشته است."
|
802
817
|
},
|
818
|
+
"deepseek/deepseek-chat-v3-0324": {
|
819
|
+
"description": "DeepSeek V3 یک مدل ترکیبی متخصص با 685B پارامتر است و جدیدترین نسخه از سری مدلهای چت پرچمدار تیم DeepSeek میباشد.\n\nاین مدل از [DeepSeek V3](/deepseek/deepseek-chat-v3) به ارث برده و در انواع وظایف عملکرد عالی از خود نشان میدهد."
|
820
|
+
},
|
821
|
+
"deepseek/deepseek-chat-v3-0324:free": {
|
822
|
+
"description": "DeepSeek V3 یک مدل ترکیبی متخصص با 685B پارامتر است و جدیدترین نسخه از سری مدلهای چت پرچمدار تیم DeepSeek میباشد.\n\nاین مدل از [DeepSeek V3](/deepseek/deepseek-chat-v3) به ارث برده و در انواع وظایف عملکرد عالی از خود نشان میدهد."
|
823
|
+
},
|
803
824
|
"deepseek/deepseek-r1": {
|
804
825
|
"description": "DeepSeek-R1 با وجود دادههای برچسبگذاری شده بسیار کم، توانایی استدلال مدل را به طرز چشمگیری افزایش میدهد. قبل از ارائه پاسخ نهایی، مدل ابتدا یک زنجیره تفکر را تولید میکند تا دقت پاسخ نهایی را افزایش دهد."
|
805
826
|
},
|
@@ -851,9 +872,6 @@
|
|
851
872
|
"doubao-1.5-thinking-pro": {
|
852
873
|
"description": "مدل تفکر عمیق جدید Doubao-1.5، در زمینههای تخصصی مانند ریاضیات، برنامهنویسی، استدلال علمی و همچنین در وظایف عمومی مانند نوشتن خلاقانه عملکرد برجستهای دارد و در معیارهای معتبر مانند AIME 2024، Codeforces و GPQA به سطح اول صنعت نزدیک یا در آن قرار دارد. از پنجره زمینه 128k و خروجی 16k پشتیبانی میکند."
|
853
874
|
},
|
854
|
-
"doubao-1.5-thinking-pro-vision": {
|
855
|
-
"description": "مدل تفکر عمیق جدید Doubao-1.5، در زمینههای تخصصی مانند ریاضیات، برنامهنویسی، استدلال علمی و همچنین در وظایف عمومی مانند نوشتن خلاقانه عملکرد برجستهای دارد و در معیارهای معتبر مانند AIME 2024، Codeforces و GPQA به سطح اول صنعت نزدیک یا در آن قرار دارد. از پنجره زمینه 128k و خروجی 16k پشتیبانی میکند."
|
856
|
-
},
|
857
875
|
"doubao-1.5-vision-lite": {
|
858
876
|
"description": "Doubao-1.5-vision-lite مدل بزرگ چندرسانهای بهروز شده است که از شناسایی تصاویر با هر وضوح و نسبت ابعاد بسیار طولانی پشتیبانی میکند و تواناییهای استدلال بصری، شناسایی مستندات، درک اطلاعات جزئی و پیروی از دستورات را تقویت میکند. از پنجره متن 128k و حداکثر طول خروجی 16k توکن پشتیبانی میکند."
|
859
877
|
},
|
@@ -995,9 +1013,6 @@
|
|
995
1013
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
996
1014
|
"description": "Gemini 2.0 Flash Exp جدیدترین مدل AI چندرسانهای آزمایشی گوگل است که دارای ویژگیهای نسل بعدی، سرعت فوقالعاده، فراخوانی ابزار بومی و تولید چندرسانهای است."
|
997
1015
|
},
|
998
|
-
"gemini-2.0-pro-exp-02-05": {
|
999
|
-
"description": "Gemini 2.0 Pro Experimental جدیدترین مدل AI چندرسانهای آزمایشی گوگل است که نسبت به نسخههای قبلی خود بهبود کیفیت قابل توجهی داشته است، به ویژه در زمینه دانش جهانی، کد و متنهای طولانی."
|
1000
|
-
},
|
1001
1016
|
"gemini-2.5-flash-preview-04-17": {
|
1002
1017
|
"description": "پیشنمایش فلش Gemini 2.5 مدل با بهترین قیمت و کیفیت گوگل است که امکانات جامع و کاملی را ارائه میدهد."
|
1003
1018
|
},
|
@@ -1007,6 +1022,9 @@
|
|
1007
1022
|
"gemini-2.5-pro-preview-03-25": {
|
1008
1023
|
"description": "پیشنمایش Gemini 2.5 Pro مدل پیشرفته تفکر گوگل است که قادر به استدلال در مورد کد، ریاضیات و مسائل پیچیده در زمینه STEM میباشد و همچنین میتواند با استفاده از تحلیل زمینهای طولانی، مجموعههای داده بزرگ، کتابخانههای کد و مستندات را بررسی کند."
|
1009
1024
|
},
|
1025
|
+
"gemini-2.5-pro-preview-05-06": {
|
1026
|
+
"description": "Gemini 2.5 Pro Preview مدل پیشرفته تفکر گوگل است که قادر به استدلال در مورد کد، ریاضیات و مسائل پیچیده در زمینه STEM میباشد و میتواند با استفاده از تحلیل زمینهای طولانی، مجموعههای داده بزرگ، کتابخانههای کد و مستندات را بررسی کند."
|
1027
|
+
},
|
1010
1028
|
"gemma-7b-it": {
|
1011
1029
|
"description": "Gemma 7B برای پردازش وظایف کوچک و متوسط مناسب است و از نظر هزینه مؤثر است."
|
1012
1030
|
},
|
@@ -1091,8 +1109,17 @@
|
|
1091
1109
|
"google/gemini-2.0-flash-001": {
|
1092
1110
|
"description": "Gemini 2.0 Flash ویژگیها و بهبودهای نسل بعدی را ارائه میدهد، از جمله سرعت عالی، استفاده از ابزارهای بومی، تولید چندرسانهای و پنجره متن 1M توکن."
|
1093
1111
|
},
|
1094
|
-
"google/gemini-2.0-
|
1095
|
-
"description": "Gemini 2.0
|
1112
|
+
"google/gemini-2.0-flash-exp:free": {
|
1113
|
+
"description": "Gemini 2.0 Flash Experimental جدیدترین مدل هوش مصنوعی چندرسانهای آزمایشی گوگل است که نسبت به نسخههای قبلی خود بهبود کیفیت قابل توجهی دارد، به ویژه در زمینه دانش جهانی، کد و زمینههای طولانی."
|
1114
|
+
},
|
1115
|
+
"google/gemini-2.5-flash-preview": {
|
1116
|
+
"description": "Gemini 2.5 Flash مدل اصلی پیشرفته گوگل است که به طور خاص برای استدلال پیشرفته، کدنویسی، ریاضیات و وظایف علمی طراحی شده است. این مدل دارای قابلیت «تفکر» داخلی است که به آن اجازه میدهد پاسخهایی با دقت بالاتر و پردازش زمینهای دقیقتری ارائه دهد.\n\nتوجه: این مدل دارای دو واریانت است: تفکر و غیرتفکر. قیمتگذاری خروجی بسته به فعال بودن قابلیت تفکر به طور قابل توجهی متفاوت است. اگر شما واریانت استاندارد (بدون پسوند «:thinking») را انتخاب کنید، مدل به وضوح از تولید توکنهای تفکر اجتناب خواهد کرد.\n\nبرای استفاده از قابلیت تفکر و دریافت توکنهای تفکر، شما باید واریانت «:thinking» را انتخاب کنید که منجر به قیمتگذاری بالاتر خروجی تفکر خواهد شد.\n\nعلاوه بر این، Gemini 2.5 Flash میتواند از طریق پارامتر «حداکثر تعداد توکنهای استدلال» پیکربندی شود، همانطور که در مستندات توضیح داده شده است (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1117
|
+
},
|
1118
|
+
"google/gemini-2.5-flash-preview:thinking": {
|
1119
|
+
"description": "Gemini 2.5 Flash مدل اصلی پیشرفته گوگل است که به طور خاص برای استدلال پیشرفته، کدنویسی، ریاضیات و وظایف علمی طراحی شده است. این مدل دارای قابلیت «تفکر» داخلی است که به آن اجازه میدهد پاسخهایی با دقت بالاتر و پردازش زمینهای دقیقتری ارائه دهد.\n\nتوجه: این مدل دارای دو واریانت است: تفکر و غیرتفکر. قیمتگذاری خروجی بسته به فعال بودن قابلیت تفکر به طور قابل توجهی متفاوت است. اگر شما واریانت استاندارد (بدون پسوند «:thinking») را انتخاب کنید، مدل به وضوح از تولید توکنهای تفکر اجتناب خواهد کرد.\n\nبرای استفاده از قابلیت تفکر و دریافت توکنهای تفکر، شما باید واریانت «:thinking» را انتخاب کنید که منجر به قیمتگذاری بالاتر خروجی تفکر خواهد شد.\n\nعلاوه بر این، Gemini 2.5 Flash میتواند از طریق پارامتر «حداکثر تعداد توکنهای استدلال» پیکربندی شود، همانطور که در مستندات توضیح داده شده است (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1120
|
+
},
|
1121
|
+
"google/gemini-2.5-pro-preview-03-25": {
|
1122
|
+
"description": "Gemini 2.5 Pro مدل هوش مصنوعی پیشرفته گوگل است که به طور خاص برای استدلال پیشرفته، کدنویسی، ریاضیات و وظایف علمی طراحی شده است. این مدل دارای قابلیت «تفکر» است که به آن اجازه میدهد پاسخها را با دقت بالاتر و پردازش زمینهای دقیقتری استدلال کند. Gemini 2.5 Pro در چندین آزمون معیار عملکرد برتر را به دست آورده است، از جمله رتبه اول در جدول LMArena، که نشاندهنده همراستایی برتر با ترجیحات انسانی و توانایی حل مسائل پیچیده است."
|
1096
1123
|
},
|
1097
1124
|
"google/gemini-flash-1.5": {
|
1098
1125
|
"description": "Gemini 1.5 Flash قابلیت پردازش چندوجهی بهینهشده را ارائه میدهد و برای انواع سناریوهای پیچیده مناسب است."
|
@@ -1592,6 +1619,9 @@
|
|
1592
1619
|
"mistral-large-latest": {
|
1593
1620
|
"description": "Mistral Large یک مدل بزرگ پرچمدار است که در انجام وظایف چندزبانه، استدلال پیچیده و تولید کد مهارت دارد و انتخابی ایدهآل برای کاربردهای سطح بالا است."
|
1594
1621
|
},
|
1622
|
+
"mistral-medium-latest": {
|
1623
|
+
"description": "Mistral Medium 3 با هزینه 8 برابری، عملکرد پیشرفتهای را ارائه میدهد و به طور اساسی استقرارهای شرکتی را سادهتر میکند."
|
1624
|
+
},
|
1595
1625
|
"mistral-nemo": {
|
1596
1626
|
"description": "Mistral Nemo توسط Mistral AI و NVIDIA بهطور مشترک عرضه شده است و یک مدل ۱۲ میلیاردی با کارایی بالا میباشد."
|
1597
1627
|
},
|
@@ -1763,8 +1793,8 @@
|
|
1763
1793
|
"qvq-72b-preview": {
|
1764
1794
|
"description": "مدل QVQ یک مدل تحقیقاتی تجربی است که توسط تیم Qwen توسعه یافته و بر بهبود توانایی استدلال بصری، بهویژه در زمینه استدلال ریاضی تمرکز دارد."
|
1765
1795
|
},
|
1766
|
-
"qvq-max": {
|
1767
|
-
"description": "مدل استدلال بصری QVQ
|
1796
|
+
"qvq-max-latest": {
|
1797
|
+
"description": "مدل استدلال بصری QVQ، ورودیهای بصری و خروجیهای زنجیره تفکر را پشتیبانی میکند و در ریاضیات، برنامهنویسی، تحلیل بصری، خلاقیت و وظایف عمومی عملکرد بهتری از خود نشان میدهد."
|
1768
1798
|
},
|
1769
1799
|
"qwen-coder-plus-latest": {
|
1770
1800
|
"description": "مدل کد Qwen با قابلیتهای جامع."
|
@@ -2075,12 +2105,24 @@
|
|
2075
2105
|
"text-embedding-3-small": {
|
2076
2106
|
"description": "مدل جدید و کارآمد Embedding، مناسب برای جستجوی دانش، کاربردهای RAG و سایر سناریوها."
|
2077
2107
|
},
|
2108
|
+
"thudm/glm-4-32b": {
|
2109
|
+
"description": "GLM-4-32B-0414 یک مدل زبان با وزنهای باز 32B دو زبانه (چینی و انگلیسی) است که برای تولید کد، فراخوانی توابع و وظایف نمایندگی بهینهسازی شده است. این مدل بر روی 15T دادههای با کیفیت بالا و دادههای استدلال مجدد پیشآموزش شده و با همراستایی ترجیحات انسانی، نمونهبرداری رد و یادگیری تقویتی بهبود یافته است. این مدل در استدلال پیچیده، تولید آثار و وظایف خروجی ساختاری عملکرد عالی از خود نشان میدهد و در چندین آزمون معیار به عملکردی معادل با GPT-4o و DeepSeek-V3-0324 دست یافته است."
|
2110
|
+
},
|
2111
|
+
"thudm/glm-4-32b:free": {
|
2112
|
+
"description": "GLM-4-32B-0414 یک مدل زبان با وزنهای باز 32B دو زبانه (چینی و انگلیسی) است که برای تولید کد، فراخوانی توابع و وظایف نمایندگی بهینهسازی شده است. این مدل بر روی 15T دادههای با کیفیت بالا و دادههای استدلال مجدد پیشآموزش شده و با همراستایی ترجیحات انسانی، نمونهبرداری رد و یادگیری تقویتی بهبود یافته است. این مدل در استدلال پیچیده، تولید آثار و وظایف خروجی ساختاری عملکرد عالی از خود نشان میدهد و در چندین آزمون معیار به عملکردی معادل با GPT-4o و DeepSeek-V3-0324 دست یافته است."
|
2113
|
+
},
|
2078
2114
|
"thudm/glm-4-9b-chat": {
|
2079
2115
|
"description": "نسخه متن باز جدیدترین نسل مدلهای پیشآموزش GLM-4 منتشر شده توسط Zhizhu AI."
|
2080
2116
|
},
|
2081
2117
|
"thudm/glm-4-9b:free": {
|
2082
2118
|
"description": "GLM-4-9B-0414 یک مدل زبان با ۹۰ میلیارد پارامتر در سری GLM-4 است که توسط THUDM توسعه یافته است. GLM-4-9B-0414 از همان استراتژیهای تقویت یادگیری و همراستایی که برای مدل بزرگتر ۳۲B خود استفاده میشود، استفاده میکند و نسبت به اندازه خود عملکرد بالایی را ارائه میدهد و برای استقرار در منابع محدود که هنوز به تواناییهای قوی در درک و تولید زبان نیاز دارند، مناسب است."
|
2083
2119
|
},
|
2120
|
+
"thudm/glm-z1-32b": {
|
2121
|
+
"description": "GLM-Z1-32B-0414 یک واریانت تقویتشده استدلال GLM-4-32B است که به طور خاص برای حل مسائل عمیق ریاضی، منطقی و کد محور طراحی شده است. این مدل از یادگیری تقویتی گسترشیافته (وظیفهمحور و مبتنی بر ترجیحات جفتی عمومی) برای بهبود عملکرد در وظایف پیچیده چند مرحلهای استفاده میکند. نسبت به مدل پایه GLM-4-32B، Z1 به طور قابل توجهی تواناییهای استدلال ساختاری و حوزههای رسمی را افزایش میدهد.\n\nاین مدل از طریق مهندسی نشانهگذاری، مراحل «تفکر» را تحمیل میکند و برای خروجیهای طولانی، انسجام بهبودیافتهای را فراهم میکند. این مدل برای جریانهای کاری نمایندگی بهینهسازی شده و از زمینههای طولانی (از طریق YaRN)، فراخوانی ابزار JSON و پیکربندی نمونهبرداری دقیق برای استدلال پایدار پشتیبانی میکند. این مدل برای مواردی که نیاز به تفکر عمیق، استدلال چند مرحلهای یا استنتاج رسمی دارند، بسیار مناسب است."
|
2122
|
+
},
|
2123
|
+
"thudm/glm-z1-32b:free": {
|
2124
|
+
"description": "GLM-Z1-32B-0414 یک واریانت تقویتشده استدلال GLM-4-32B است که به طور خاص برای حل مسائل عمیق ریاضی، منطقی و کد محور طراحی شده است. این مدل از یادگیری تقویتی گسترشیافته (وظیفهمحور و مبتنی بر ترجیحات جفتی عمومی) برای بهبود عملکرد در وظایف پیچیده چند مرحلهای استفاده میکند. نسبت به مدل پایه GLM-4-32B، Z1 به طور قابل توجهی تواناییهای استدلال ساختاری و حوزههای رسمی را افزایش میدهد.\n\nاین مدل از طریق مهندسی نشانهگذاری، مراحل «تفکر» را تحمیل میکند و برای خروجیهای طولانی، انسجام بهبودیافتهای را فراهم میکند. این مدل برای جریانهای کاری نمایندگی بهینهسازی شده و از زمینههای طولانی (از طریق YaRN)، فراخوانی ابزار JSON و پیکربندی نمونهبرداری دقیق برای استدلال پایدار پشتیبانی میکند. این مدل برای مواردی که نیاز به تفکر عمیق، استدلال چند مرحلهای یا استنتاج رسمی دارند، بسیار مناسب است."
|
2125
|
+
},
|
2084
2126
|
"thudm/glm-z1-9b:free": {
|
2085
2127
|
"description": "GLM-Z1-9B-0414 یک مدل زبان با ۹B پارامتر در سری GLM-4 است که توسط THUDM توسعه یافته است. این مدل از تکنیکهایی که در ابتدا برای مدل بزرگتر GLM-Z1 استفاده شده بود، شامل تقویت یادگیری گسترشیافته، همراستایی رتبهبندی جفت و آموزش برای وظایف استدلال فشرده مانند ریاضیات، کدنویسی و منطق استفاده میکند. با وجود اندازه کوچکتر، این مدل در وظایف استدلال عمومی عملکرد قوی دارد و در سطح وزن خود از بسیاری از مدلهای متنباز برتر است."
|
2086
2128
|
},
|
@@ -29,9 +29,6 @@
|
|
29
29
|
"deepseek": {
|
30
30
|
"description": "DeepSeek یک شرکت متمرکز بر تحقیق و کاربرد فناوری هوش مصنوعی است. مدل جدید آن، DeepSeek-V2.5، تواناییهای مکالمه عمومی و پردازش کد را ترکیب کرده و در زمینههایی مانند همترازی با ترجیحات انسانی، وظایف نوشتاری و پیروی از دستورات بهبود قابل توجهی داشته است."
|
31
31
|
},
|
32
|
-
"doubao": {
|
33
|
-
"description": "مدل بزرگ خودساخته شده توسط بایتدANCE. با تأیید در بیش از 50 سناریوی تجاری داخلی بایتدANCE، با استفاده روزانه از تریلیونها توکن، به طور مداوم بهبود یافته و تواناییهای چندگانهای را ارائه میدهد تا تجربههای تجاری غنی را با کیفیت مدل بالا برای شرکتها ایجاد کند."
|
34
|
-
},
|
35
32
|
"fireworksai": {
|
36
33
|
"description": "Fireworks AI یک ارائهدهنده پیشرو در خدمات مدلهای زبان پیشرفته است که بر فراخوانی توابع و پردازش چندوجهی تمرکز دارد. جدیدترین مدل آن، Firefunction V2، بر اساس Llama-3 ساخته شده و برای فراخوانی توابع، مکالمه و پیروی از دستورات بهینهسازی شده است. مدل زبان تصویری FireLLaVA-13B از ورودیهای ترکیبی تصویر و متن پشتیبانی میکند. سایر مدلهای قابل توجه شامل سری Llama و سری Mixtral هستند که پشتیبانی کارآمدی از پیروی دستورات چندزبانه و تولید ارائه میدهند."
|
37
34
|
},
|
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "Faire apparaître la barre de recherche principale de la page actuelle",
|
36
36
|
"title": "Rechercher"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "Ouvrir rapidement la fenêtre principale de l'application",
|
40
|
+
"title": "Afficher la fenêtre principale"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "Changer d'assistant fixé dans la barre latérale en maintenant Ctrl et en appuyant sur un chiffre de 0 à 9",
|
40
44
|
"title": "Changer rapidement d'assistant"
|
@@ -71,6 +71,9 @@
|
|
71
71
|
"DeepSeek-V3": {
|
72
72
|
"description": "DeepSeek-V3 est un modèle MoE développé en interne par la société DeepSeek. Les performances de DeepSeek-V3 surpassent celles d'autres modèles open source tels que Qwen2.5-72B et Llama-3.1-405B, et se mesurent à la performance des modèles fermés de pointe au monde comme GPT-4o et Claude-3.5-Sonnet."
|
73
73
|
},
|
74
|
+
"Doubao-1.5-thinking-pro-m": {
|
75
|
+
"description": "Doubao-1.5 est un nouveau modèle de pensée profonde (version m avec des capacités de raisonnement multimodal natif), qui excelle dans des domaines spécialisés tels que les mathématiques, la programmation, le raisonnement scientifique et des tâches générales comme l'écriture créative, atteignant ou se rapprochant des niveaux de pointe dans plusieurs benchmarks autorisés tels que AIME 2024, Codeforces, GPQA. Prend en charge une fenêtre de contexte de 128k et une sortie de 16k."
|
76
|
+
},
|
74
77
|
"Doubao-1.5-vision-pro": {
|
75
78
|
"description": "Doubao-1.5-vision-pro est un modèle multimodal de nouvelle génération, prenant en charge la reconnaissance d'images à n'importe quelle résolution et rapport d'aspect extrême, améliorant les capacités de raisonnement visuel, de reconnaissance de documents, de compréhension des informations détaillées et de respect des instructions."
|
76
79
|
},
|
@@ -293,6 +296,21 @@
|
|
293
296
|
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
294
297
|
"description": "Qwen2.5-VL est le modèle de langage visuel de la série Qwen2.5. Ce modèle présente des améliorations significatives à plusieurs égards : il possède une meilleure compréhension visuelle, capable de reconnaître des objets courants, d'analyser du texte, des graphiques et des mises en page ; en tant qu'agent visuel, il peut raisonner et guider dynamiquement l'utilisation d'outils ; il prend en charge la compréhension de vidéos longues de plus d'une heure et capture les événements clés ; il peut localiser avec précision des objets dans une image en générant des cadres de délimitation ou des points ; il prend en charge la génération de sorties structurées, particulièrement adaptée aux données scannées comme les factures et les tableaux."
|
295
298
|
},
|
299
|
+
"Qwen/Qwen3-14B": {
|
300
|
+
"description": "Qwen3 est un nouveau modèle de Tongyi Qianwen avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'agent et le multilingue, et prenant en charge le changement de mode de pensée."
|
301
|
+
},
|
302
|
+
"Qwen/Qwen3-235B-A22B": {
|
303
|
+
"description": "Qwen3 est un nouveau modèle de Tongyi Qianwen avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'agent et le multilingue, et prenant en charge le changement de mode de pensée."
|
304
|
+
},
|
305
|
+
"Qwen/Qwen3-30B-A3B": {
|
306
|
+
"description": "Qwen3 est un nouveau modèle de Tongyi Qianwen avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'agent et le multilingue, et prenant en charge le changement de mode de pensée."
|
307
|
+
},
|
308
|
+
"Qwen/Qwen3-32B": {
|
309
|
+
"description": "Qwen3 est un nouveau modèle de Tongyi Qianwen avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'agent et le multilingue, et prenant en charge le changement de mode de pensée."
|
310
|
+
},
|
311
|
+
"Qwen/Qwen3-8B": {
|
312
|
+
"description": "Qwen3 est un nouveau modèle de Tongyi Qianwen avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'agent et le multilingue, et prenant en charge le changement de mode de pensée."
|
313
|
+
},
|
296
314
|
"Qwen2-72B-Instruct": {
|
297
315
|
"description": "Qwen2 est la dernière série du modèle Qwen, prenant en charge un contexte de 128k. Comparé aux meilleurs modèles open source actuels, Qwen2-72B surpasse de manière significative les modèles leaders dans des domaines tels que la compréhension du langage naturel, les connaissances, le code, les mathématiques et le multilinguisme."
|
298
316
|
},
|
@@ -398,9 +416,6 @@
|
|
398
416
|
"THUDM/glm-4-9b-chat": {
|
399
417
|
"description": "GLM-4 9B est une version open source, offrant une expérience de dialogue optimisée pour les applications de conversation."
|
400
418
|
},
|
401
|
-
"TeleAI/TeleChat2": {
|
402
|
-
"description": "Le grand modèle TeleChat2 est un modèle sémantique génératif développé de manière autonome par China Telecom, prenant en charge des fonctionnalités telles que les questions-réponses encyclopédiques, la génération de code et la génération de longs textes, fournissant des services de consultation par dialogue aux utilisateurs, capable d'interagir avec les utilisateurs, de répondre à des questions, d'assister à la création, et d'aider efficacement et commodément les utilisateurs à obtenir des informations, des connaissances et de l'inspiration. Le modèle montre de bonnes performances sur des problèmes d'hallucination, la génération de longs textes et la compréhension logique."
|
403
|
-
},
|
404
419
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
405
420
|
"description": "Qwen2.5-72B-Instruct est l'un des derniers modèles de langage à grande échelle publiés par Alibaba Cloud. Ce modèle 72B présente des capacités considérablement améliorées dans des domaines tels que le codage et les mathématiques. Le modèle offre également un support multilingue, couvrant plus de 29 langues, y compris le chinois et l'anglais. Il a montré des améliorations significatives dans le suivi des instructions, la compréhension des données structurées et la génération de sorties structurées (en particulier JSON)."
|
406
421
|
},
|
@@ -800,6 +815,12 @@
|
|
800
815
|
"deepseek/deepseek-chat": {
|
801
816
|
"description": "Un nouveau modèle open source fusionnant des capacités générales et de codage, qui non seulement conserve les capacités de dialogue général du modèle Chat d'origine et la puissante capacité de traitement de code du modèle Coder, mais s'aligne également mieux sur les préférences humaines. De plus, DeepSeek-V2.5 a également réalisé des améliorations significatives dans plusieurs domaines tels que les tâches d'écriture et le suivi d'instructions."
|
802
817
|
},
|
818
|
+
"deepseek/deepseek-chat-v3-0324": {
|
819
|
+
"description": "DeepSeek V3 est un modèle hybride d'experts avec 685B de paramètres, représentant la dernière itération de la série de modèles de chat phare de l'équipe DeepSeek.\n\nIl hérite du modèle [DeepSeek V3](/deepseek/deepseek-chat-v3) et excelle dans diverses tâches."
|
820
|
+
},
|
821
|
+
"deepseek/deepseek-chat-v3-0324:free": {
|
822
|
+
"description": "DeepSeek V3 est un modèle hybride d'experts avec 685B de paramètres, représentant la dernière itération de la série de modèles de chat phare de l'équipe DeepSeek.\n\nIl hérite du modèle [DeepSeek V3](/deepseek/deepseek-chat-v3) et excelle dans diverses tâches."
|
823
|
+
},
|
803
824
|
"deepseek/deepseek-r1": {
|
804
825
|
"description": "DeepSeek-R1 améliore considérablement les capacités de raisonnement du modèle avec très peu de données annotées. Avant de fournir la réponse finale, le modèle génère d'abord une chaîne de pensée pour améliorer l'exactitude de la réponse finale."
|
805
826
|
},
|
@@ -851,9 +872,6 @@
|
|
851
872
|
"doubao-1.5-thinking-pro": {
|
852
873
|
"description": "Le modèle de réflexion approfondie Doubao-1.5, entièrement nouveau, se distingue dans des domaines spécialisés tels que les mathématiques, la programmation, le raisonnement scientifique, ainsi que dans des tâches générales comme l'écriture créative. Il atteint ou se rapproche du niveau de premier plan de l'industrie sur plusieurs références de renom telles que AIME 2024, Codeforces, GPQA. Il prend en charge une fenêtre de contexte de 128k et une sortie de 16k."
|
853
874
|
},
|
854
|
-
"doubao-1.5-thinking-pro-vision": {
|
855
|
-
"description": "Le modèle de réflexion approfondie Doubao-1.5, entièrement nouveau, se distingue dans des domaines spécialisés tels que les mathématiques, la programmation, le raisonnement scientifique, ainsi que dans des tâches générales comme l'écriture créative. Il atteint ou se rapproche du niveau de premier plan de l'industrie sur plusieurs références de renom telles que AIME 2024, Codeforces, GPQA. Il prend en charge une fenêtre de contexte de 128k et une sortie de 16k."
|
856
|
-
},
|
857
875
|
"doubao-1.5-vision-lite": {
|
858
876
|
"description": "Doubao-1.5-vision-lite est un modèle multimodal de nouvelle génération, prenant en charge la reconnaissance d'images à n'importe quelle résolution et rapport d'aspect extrême, améliorant les capacités de raisonnement visuel, de reconnaissance de documents, de compréhension des informations détaillées et de respect des instructions. Il prend en charge une fenêtre de contexte de 128k, avec une longueur de sortie maximale de 16k tokens."
|
859
877
|
},
|
@@ -995,9 +1013,6 @@
|
|
995
1013
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
996
1014
|
"description": "Gemini 2.0 Flash Exp est le dernier modèle d'IA multimodal expérimental de Google, doté de caractéristiques de nouvelle génération, d'une vitesse exceptionnelle, d'appels d'outils natifs et de génération multimodale."
|
997
1015
|
},
|
998
|
-
"gemini-2.0-pro-exp-02-05": {
|
999
|
-
"description": "Gemini 2.0 Pro Experimental est le dernier modèle AI multimodal expérimental de Google, offrant une amélioration de la qualité par rapport aux versions précédentes, en particulier pour les connaissances générales, le code et les longs contextes."
|
1000
|
-
},
|
1001
1016
|
"gemini-2.5-flash-preview-04-17": {
|
1002
1017
|
"description": "Gemini 2.5 Flash Preview est le modèle le plus rentable de Google, offrant des fonctionnalités complètes."
|
1003
1018
|
},
|
@@ -1007,6 +1022,9 @@
|
|
1007
1022
|
"gemini-2.5-pro-preview-03-25": {
|
1008
1023
|
"description": "Gemini 2.5 Pro Preview est le modèle de pensée le plus avancé de Google, capable de raisonner sur des problèmes complexes en code, mathématiques et domaines STEM, ainsi que d'analyser de grands ensembles de données, bibliothèques de code et documents en utilisant un long contexte."
|
1009
1024
|
},
|
1025
|
+
"gemini-2.5-pro-preview-05-06": {
|
1026
|
+
"description": "Gemini 2.5 Pro Preview est le modèle de pensée le plus avancé de Google, capable de raisonner sur des problèmes complexes dans les domaines du code, des mathématiques et des STEM, ainsi que d'analyser de grands ensembles de données, des bibliothèques de code et des documents en utilisant une analyse de long contexte."
|
1027
|
+
},
|
1010
1028
|
"gemma-7b-it": {
|
1011
1029
|
"description": "Gemma 7B est adapté au traitement de tâches de taille moyenne, alliant coût et efficacité."
|
1012
1030
|
},
|
@@ -1091,8 +1109,17 @@
|
|
1091
1109
|
"google/gemini-2.0-flash-001": {
|
1092
1110
|
"description": "Gemini 2.0 Flash propose des fonctionnalités et des améliorations de nouvelle génération, y compris une vitesse exceptionnelle, l'utilisation d'outils natifs, la génération multimodale et une fenêtre de contexte de 1M tokens."
|
1093
1111
|
},
|
1094
|
-
"google/gemini-2.0-
|
1095
|
-
"description": "Gemini 2.0
|
1112
|
+
"google/gemini-2.0-flash-exp:free": {
|
1113
|
+
"description": "Gemini 2.0 Flash Experimental est le dernier modèle d'IA multimodal expérimental de Google, offrant une amélioration de qualité par rapport aux versions précédentes, en particulier pour les connaissances générales, le code et les longs contextes."
|
1114
|
+
},
|
1115
|
+
"google/gemini-2.5-flash-preview": {
|
1116
|
+
"description": "Gemini 2.5 Flash est le modèle phare le plus avancé de Google, conçu pour des tâches de raisonnement avancé, de codage, de mathématiques et de sciences. Il comprend des capacités de 'pensée' intégrées, lui permettant de fournir des réponses avec une plus grande précision et un traitement contextuel détaillé.\n\nRemarque : ce modèle a deux variantes : pensée et non-pensée. La tarification de sortie varie considérablement en fonction de l'activation de la capacité de pensée. Si vous choisissez la variante standard (sans le suffixe ':thinking'), le modèle évitera explicitement de générer des jetons de pensée.\n\nPour tirer parti de la capacité de pensée et recevoir des jetons de pensée, vous devez choisir la variante ':thinking', ce qui entraînera une tarification de sortie de pensée plus élevée.\n\nDe plus, Gemini 2.5 Flash peut être configuré via le paramètre 'nombre maximal de jetons de raisonnement', comme décrit dans la documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1117
|
+
},
|
1118
|
+
"google/gemini-2.5-flash-preview:thinking": {
|
1119
|
+
"description": "Gemini 2.5 Flash est le modèle phare le plus avancé de Google, conçu pour des tâches de raisonnement avancé, de codage, de mathématiques et de sciences. Il comprend des capacités de 'pensée' intégrées, lui permettant de fournir des réponses avec une plus grande précision et un traitement contextuel détaillé.\n\nRemarque : ce modèle a deux variantes : pensée et non-pensée. La tarification de sortie varie considérablement en fonction de l'activation de la capacité de pensée. Si vous choisissez la variante standard (sans le suffixe ':thinking'), le modèle évitera explicitement de générer des jetons de pensée.\n\nPour tirer parti de la capacité de pensée et recevoir des jetons de pensée, vous devez choisir la variante ':thinking', ce qui entraînera une tarification de sortie de pensée plus élevée.\n\nDe plus, Gemini 2.5 Flash peut être configuré via le paramètre 'nombre maximal de jetons de raisonnement', comme décrit dans la documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1120
|
+
},
|
1121
|
+
"google/gemini-2.5-pro-preview-03-25": {
|
1122
|
+
"description": "Gemini 2.5 Pro est le modèle d'IA le plus avancé de Google, conçu pour des tâches de raisonnement avancé, de codage, de mathématiques et de sciences. Il utilise des capacités de 'pensée' qui lui permettent de raisonner avec une plus grande précision et un traitement contextuel détaillé. Gemini 2.5 Pro a obtenu des performances de premier plan dans plusieurs tests de référence, y compris la première place dans le classement LMArena, reflétant une excellente alignement des préférences humaines et des capacités de résolution de problèmes complexes."
|
1096
1123
|
},
|
1097
1124
|
"google/gemini-flash-1.5": {
|
1098
1125
|
"description": "Gemini 1.5 Flash propose des capacités de traitement multimodal optimisées, adaptées à divers scénarios de tâches complexes."
|
@@ -1592,6 +1619,9 @@
|
|
1592
1619
|
"mistral-large-latest": {
|
1593
1620
|
"description": "Mistral Large est le modèle phare, excellent pour les tâches multilingues, le raisonnement complexe et la génération de code, idéal pour des applications haut de gamme."
|
1594
1621
|
},
|
1622
|
+
"mistral-medium-latest": {
|
1623
|
+
"description": "Mistral Medium 3 offre des performances de pointe à un coût 8 fois inférieur et simplifie fondamentalement le déploiement en entreprise."
|
1624
|
+
},
|
1595
1625
|
"mistral-nemo": {
|
1596
1626
|
"description": "Mistral Nemo, développé en collaboration entre Mistral AI et NVIDIA, est un modèle de 12B à performance efficace."
|
1597
1627
|
},
|
@@ -1763,8 +1793,8 @@
|
|
1763
1793
|
"qvq-72b-preview": {
|
1764
1794
|
"description": "Le modèle QVQ est un modèle de recherche expérimental développé par l'équipe Qwen, axé sur l'amélioration des capacités de raisonnement visuel, en particulier dans le domaine du raisonnement mathématique."
|
1765
1795
|
},
|
1766
|
-
"qvq-max": {
|
1767
|
-
"description": "Le modèle de raisonnement visuel QVQ de Tongyi Qianwen prend en charge les entrées visuelles et les sorties de
|
1796
|
+
"qvq-max-latest": {
|
1797
|
+
"description": "Le modèle de raisonnement visuel QVQ de Tongyi Qianwen prend en charge les entrées visuelles et les sorties de chaîne de pensée, montrant des capacités renforcées dans les domaines des mathématiques, de la programmation, de l'analyse visuelle, de la création et des tâches générales."
|
1768
1798
|
},
|
1769
1799
|
"qwen-coder-plus-latest": {
|
1770
1800
|
"description": "Modèle de code Qwen universel."
|
@@ -2075,12 +2105,24 @@
|
|
2075
2105
|
"text-embedding-3-small": {
|
2076
2106
|
"description": "Un modèle d'Embedding de nouvelle génération, efficace et économique, adapté à la recherche de connaissances, aux applications RAG, etc."
|
2077
2107
|
},
|
2108
|
+
"thudm/glm-4-32b": {
|
2109
|
+
"description": "GLM-4-32B-0414 est un modèle de langage à poids ouvert de 32B bilingue (chinois-anglais), optimisé pour la génération de code, les appels de fonctions et les tâches d'agents. Il a été pré-entraîné sur 15T de données de haute qualité et de réinférence, et perfectionné par un alignement des préférences humaines, un échantillonnage de rejet et un apprentissage par renforcement. Ce modèle excelle dans le raisonnement complexe, la génération d'artefacts et les tâches de sortie structurée, atteignant des performances comparables à celles de GPT-4o et DeepSeek-V3-0324 dans plusieurs tests de référence."
|
2110
|
+
},
|
2111
|
+
"thudm/glm-4-32b:free": {
|
2112
|
+
"description": "GLM-4-32B-0414 est un modèle de langage à poids ouvert de 32B bilingue (chinois-anglais), optimisé pour la génération de code, les appels de fonctions et les tâches d'agents. Il a été pré-entraîné sur 15T de données de haute qualité et de réinférence, et perfectionné par un alignement des préférences humaines, un échantillonnage de rejet et un apprentissage par renforcement. Ce modèle excelle dans le raisonnement complexe, la génération d'artefacts et les tâches de sortie structurée, atteignant des performances comparables à celles de GPT-4o et DeepSeek-V3-0324 dans plusieurs tests de référence."
|
2113
|
+
},
|
2078
2114
|
"thudm/glm-4-9b-chat": {
|
2079
2115
|
"description": "Version open source de la dernière génération de modèles pré-entraînés de la série GLM-4 publiée par Zhizhu AI."
|
2080
2116
|
},
|
2081
2117
|
"thudm/glm-4-9b:free": {
|
2082
2118
|
"description": "GLM-4-9B-0414 est un modèle de langage de 9 milliards de paramètres dans la série GLM-4 développé par THUDM. GLM-4-9B-0414 utilise les mêmes stratégies d'apprentissage par renforcement et d'alignement que son modèle correspondant de 32B, réalisant des performances élevées par rapport à sa taille, ce qui le rend adapté à des déploiements à ressources limitées nécessitant encore de solides capacités de compréhension et de génération de langage."
|
2083
2119
|
},
|
2120
|
+
"thudm/glm-z1-32b": {
|
2121
|
+
"description": "GLM-Z1-32B-0414 est une variante de raisonnement améliorée de GLM-4-32B, construite pour résoudre des problèmes de mathématiques profondes, de logique et orientés code. Il applique un apprentissage par renforcement étendu (spécifique à la tâche et basé sur des préférences par paires générales) pour améliorer les performances sur des tâches complexes à plusieurs étapes. Par rapport au modèle de base GLM-4-32B, Z1 améliore considérablement les capacités de raisonnement structuré et de domaine formel.\n\nCe modèle prend en charge l'exécution des étapes de 'pensée' via l'ingénierie des invites et offre une cohérence améliorée pour les sorties au format long. Il est optimisé pour les flux de travail d'agents et prend en charge un long contexte (via YaRN), des appels d'outils JSON et une configuration d'échantillonnage de granularité fine pour un raisonnement stable. Idéal pour les cas d'utilisation nécessitant une réflexion approfondie, un raisonnement à plusieurs étapes ou une déduction formelle."
|
2122
|
+
},
|
2123
|
+
"thudm/glm-z1-32b:free": {
|
2124
|
+
"description": "GLM-Z1-32B-0414 est une variante de raisonnement améliorée de GLM-4-32B, construite pour résoudre des problèmes de mathématiques profondes, de logique et orientés code. Il applique un apprentissage par renforcement étendu (spécifique à la tâche et basé sur des préférences par paires générales) pour améliorer les performances sur des tâches complexes à plusieurs étapes. Par rapport au modèle de base GLM-4-32B, Z1 améliore considérablement les capacités de raisonnement structuré et de domaine formel.\n\nCe modèle prend en charge l'exécution des étapes de 'pensée' via l'ingénierie des invites et offre une cohérence améliorée pour les sorties au format long. Il est optimisé pour les flux de travail d'agents et prend en charge un long contexte (via YaRN), des appels d'outils JSON et une configuration d'échantillonnage de granularité fine pour un raisonnement stable. Idéal pour les cas d'utilisation nécessitant une réflexion approfondie, un raisonnement à plusieurs étapes ou une déduction formelle."
|
2125
|
+
},
|
2084
2126
|
"thudm/glm-z1-9b:free": {
|
2085
2127
|
"description": "GLM-Z1-9B-0414 est un modèle de langage de 9 milliards de paramètres dans la série GLM-4 développé par THUDM. Il utilise des techniques initialement appliquées à des modèles GLM-Z1 plus grands, y compris un apprentissage par renforcement étendu, un alignement par classement par paires et une formation pour des tâches intensives en raisonnement telles que les mathématiques, le codage et la logique. Bien que de taille plus petite, il montre de solides performances sur des tâches de raisonnement général et surpasse de nombreux modèles open source à son niveau de poids."
|
2086
2128
|
},
|
@@ -29,9 +29,6 @@
|
|
29
29
|
"deepseek": {
|
30
30
|
"description": "DeepSeek est une entreprise spécialisée dans la recherche et l'application des technologies d'intelligence artificielle, dont le dernier modèle, DeepSeek-V2.5, combine des capacités de dialogue général et de traitement de code, réalisant des améliorations significatives dans l'alignement des préférences humaines, les tâches d'écriture et le suivi des instructions."
|
31
31
|
},
|
32
|
-
"doubao": {
|
33
|
-
"description": "Un grand modèle développé en interne par ByteDance. Validé par la pratique dans plus de 50 scénarios d'affaires au sein de ByteDance, avec un volume d'utilisation quotidien de plusieurs trillions de tokens, il offre diverses capacités multimodales, créant ainsi une expérience commerciale riche grâce à des performances de modèle de haute qualité."
|
34
|
-
},
|
35
32
|
"fireworksai": {
|
36
33
|
"description": "Fireworks AI est un fournisseur de services de modèles linguistiques avancés, axé sur les appels de fonction et le traitement multimodal. Son dernier modèle, Firefunction V2, basé sur Llama-3, est optimisé pour les appels de fonction, les dialogues et le suivi des instructions. Le modèle de langage visuel FireLLaVA-13B prend en charge les entrées mixtes d'images et de texte. D'autres modèles notables incluent la série Llama et la série Mixtral, offrant un support efficace pour le suivi et la génération d'instructions multilingues."
|
37
34
|
},
|
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "Attiva la barra di ricerca principale della pagina corrente",
|
36
36
|
"title": "Cerca"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "Apri rapidamente la finestra principale dell'applicazione",
|
40
|
+
"title": "Mostra finestra principale"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "Cambia l'assistente fissato nella barra laterale tenendo premuto Ctrl e premendo un numero da 0 a 9",
|
40
44
|
"title": "Cambia assistente rapidamente"
|