@lobehub/chat 1.84.22 → 1.84.24
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/docker-compose/local/docker-compose.yml +2 -2
- package/docs/self-hosting/server-database/dokploy.mdx +2 -2
- package/docs/self-hosting/server-database/dokploy.zh-CN.mdx +98 -98
- package/locales/ar/hotkey.json +4 -0
- package/locales/ar/models.json +55 -13
- package/locales/ar/providers.json +0 -3
- package/locales/bg-BG/hotkey.json +4 -0
- package/locales/bg-BG/models.json +55 -13
- package/locales/bg-BG/providers.json +0 -3
- package/locales/de-DE/hotkey.json +4 -0
- package/locales/de-DE/models.json +55 -13
- package/locales/de-DE/providers.json +0 -3
- package/locales/en-US/hotkey.json +4 -0
- package/locales/en-US/models.json +55 -13
- package/locales/en-US/providers.json +0 -3
- package/locales/es-ES/hotkey.json +4 -0
- package/locales/es-ES/models.json +55 -13
- package/locales/es-ES/providers.json +0 -3
- package/locales/fa-IR/hotkey.json +4 -0
- package/locales/fa-IR/models.json +55 -13
- package/locales/fa-IR/providers.json +0 -3
- package/locales/fr-FR/hotkey.json +4 -0
- package/locales/fr-FR/models.json +55 -13
- package/locales/fr-FR/providers.json +0 -3
- package/locales/it-IT/hotkey.json +4 -0
- package/locales/it-IT/models.json +55 -13
- package/locales/it-IT/providers.json +0 -3
- package/locales/ja-JP/hotkey.json +4 -0
- package/locales/ja-JP/models.json +55 -13
- package/locales/ja-JP/providers.json +0 -3
- package/locales/ko-KR/hotkey.json +4 -0
- package/locales/ko-KR/models.json +55 -13
- package/locales/ko-KR/providers.json +0 -3
- package/locales/nl-NL/hotkey.json +4 -0
- package/locales/nl-NL/models.json +55 -13
- package/locales/nl-NL/providers.json +0 -3
- package/locales/pl-PL/hotkey.json +4 -0
- package/locales/pl-PL/models.json +55 -13
- package/locales/pl-PL/providers.json +0 -3
- package/locales/pt-BR/hotkey.json +4 -0
- package/locales/pt-BR/models.json +55 -13
- package/locales/pt-BR/providers.json +0 -3
- package/locales/ru-RU/hotkey.json +4 -0
- package/locales/ru-RU/models.json +55 -13
- package/locales/ru-RU/providers.json +0 -3
- package/locales/tr-TR/hotkey.json +4 -0
- package/locales/tr-TR/models.json +55 -13
- package/locales/tr-TR/providers.json +0 -3
- package/locales/vi-VN/hotkey.json +4 -0
- package/locales/vi-VN/models.json +55 -13
- package/locales/vi-VN/providers.json +0 -3
- package/locales/zh-CN/hotkey.json +4 -0
- package/locales/zh-CN/models.json +55 -13
- package/locales/zh-CN/providers.json +0 -3
- package/locales/zh-TW/hotkey.json +4 -0
- package/locales/zh-TW/models.json +55 -13
- package/locales/zh-TW/providers.json +0 -3
- package/package.json +1 -1
- package/src/config/aiModels/google.ts +37 -13
- package/src/config/aiModels/mistral.ts +22 -47
- package/src/config/aiModels/vertexai.ts +47 -74
- package/src/config/modelProviders/vertexai.ts +1 -1
- package/src/const/hotkeys.ts +7 -0
- package/src/const/url.ts +1 -1
- package/src/features/HotkeyHelperPanel/index.tsx +21 -17
- package/src/features/User/UserPanel/useMenu.tsx +2 -1
- package/src/locales/default/hotkey.ts +4 -0
- package/src/services/__tests__/_url.test.ts +23 -0
- package/src/types/hotkey.ts +1 -0
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,56 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.84.24](https://github.com/lobehub/lobe-chat/compare/v1.84.23...v1.84.24)
|
6
|
+
|
7
|
+
<sup>Released on **2025-05-08**</sup>
|
8
|
+
|
9
|
+
#### 🐛 Bug Fixes
|
10
|
+
|
11
|
+
- **misc**: Fix changelog issue on desktop app.
|
12
|
+
|
13
|
+
<br/>
|
14
|
+
|
15
|
+
<details>
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
17
|
+
|
18
|
+
#### What's fixed
|
19
|
+
|
20
|
+
- **misc**: Fix changelog issue on desktop app, closes [#7740](https://github.com/lobehub/lobe-chat/issues/7740) ([f0a12af](https://github.com/lobehub/lobe-chat/commit/f0a12af))
|
21
|
+
|
22
|
+
</details>
|
23
|
+
|
24
|
+
<div align="right">
|
25
|
+
|
26
|
+
[](#readme-top)
|
27
|
+
|
28
|
+
</div>
|
29
|
+
|
30
|
+
### [Version 1.84.23](https://github.com/lobehub/lobe-chat/compare/v1.84.22...v1.84.23)
|
31
|
+
|
32
|
+
<sup>Released on **2025-05-08**</sup>
|
33
|
+
|
34
|
+
#### 💄 Styles
|
35
|
+
|
36
|
+
- **misc**: Add new gemini & Mistral models.
|
37
|
+
|
38
|
+
<br/>
|
39
|
+
|
40
|
+
<details>
|
41
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
42
|
+
|
43
|
+
#### Styles
|
44
|
+
|
45
|
+
- **misc**: Add new gemini & Mistral models, closes [#7730](https://github.com/lobehub/lobe-chat/issues/7730) ([b7753e2](https://github.com/lobehub/lobe-chat/commit/b7753e2))
|
46
|
+
|
47
|
+
</details>
|
48
|
+
|
49
|
+
<div align="right">
|
50
|
+
|
51
|
+
[](#readme-top)
|
52
|
+
|
53
|
+
</div>
|
54
|
+
|
5
55
|
### [Version 1.84.22](https://github.com/lobehub/lobe-chat/compare/v1.84.21...v1.84.22)
|
6
56
|
|
7
57
|
<sup>Released on **2025-05-07**</sup>
|
package/changelog/v1.json
CHANGED
@@ -1,4 +1,22 @@
|
|
1
1
|
[
|
2
|
+
{
|
3
|
+
"children": {
|
4
|
+
"fixes": [
|
5
|
+
"Fix changelog issue on desktop app."
|
6
|
+
]
|
7
|
+
},
|
8
|
+
"date": "2025-05-08",
|
9
|
+
"version": "1.84.24"
|
10
|
+
},
|
11
|
+
{
|
12
|
+
"children": {
|
13
|
+
"improvements": [
|
14
|
+
"Add new gemini & Mistral models."
|
15
|
+
]
|
16
|
+
},
|
17
|
+
"date": "2025-05-08",
|
18
|
+
"version": "1.84.23"
|
19
|
+
},
|
2
20
|
{
|
3
21
|
"children": {
|
4
22
|
"fixes": [
|
@@ -127,7 +127,7 @@ services:
|
|
127
127
|
LOBE_PID=\$!
|
128
128
|
sleep 3
|
129
129
|
if [ $(wget --timeout=5 --spider --server-response ${AUTH_CASDOOR_ISSUER}/.well-known/openid-configuration 2>&1 | grep -c 'HTTP/1.1 200 OK') -eq 0 ]; then
|
130
|
-
echo '⚠️
|
130
|
+
echo '⚠️Warning: Unable to fetch OIDC configuration from Casdoor'
|
131
131
|
echo 'Request URL: ${AUTH_CASDOOR_ISSUER}/.well-known/openid-configuration'
|
132
132
|
echo 'Read more at: https://lobehub.com/docs/self-hosting/server-database/docker-compose#necessary-configuration'
|
133
133
|
echo ''
|
@@ -150,7 +150,7 @@ services:
|
|
150
150
|
fi
|
151
151
|
fi
|
152
152
|
if [ $(wget --timeout=5 --spider --server-response ${S3_ENDPOINT}/minio/health/live 2>&1 | grep -c 'HTTP/1.1 200 OK') -eq 0 ]; then
|
153
|
-
echo '⚠️
|
153
|
+
echo '⚠️Warning: Unable to fetch MinIO health status'
|
154
154
|
echo 'Request URL: ${S3_ENDPOINT}/minio/health/live'
|
155
155
|
echo 'Read more at: https://lobehub.com/docs/self-hosting/server-database/docker-compose#necessary-configuration'
|
156
156
|
echo ''
|
@@ -86,9 +86,9 @@ Switch to the Environment section, fill in the environment variables, and click
|
|
86
86
|
|
87
87
|
```shell
|
88
88
|
# Environment variables required for building
|
89
|
-
NIXPACKS_PKGS="
|
89
|
+
NIXPACKS_PKGS="bun"
|
90
90
|
NIXPACKS_INSTALL_CMD="pnpm install"
|
91
|
-
NIXPACKS_BUILD_CMD="pnpm run build"
|
91
|
+
NIXPACKS_BUILD_CMD="NODE_OPTIONS='--max-old-space-size=8192' pnpm run build"
|
92
92
|
NIXPACKS_START_CMD="pnpm start"
|
93
93
|
|
94
94
|
APP_URL=
|
@@ -1,95 +1,95 @@
|
|
1
|
-
---
|
2
|
-
title: 在 Dokploy 上部署 LobeChat 的服务端数据库版本
|
3
|
-
description: 本文详细介绍如何在 Dokploy 中部署服务端数据库版 LobeChat,包括数据库配置、身份验证服务配置的设置步骤。
|
4
|
-
tags:
|
5
|
-
- 服务端数据库
|
6
|
-
- Postgres
|
7
|
-
- Clerk
|
8
|
-
- Dokploy部署
|
9
|
-
- 数据库配置
|
10
|
-
- 身份验证服务
|
11
|
-
- 环境变量配置
|
12
|
-
---
|
13
|
-
|
14
|
-
# 在 Dokploy 上部署服务端数据库版
|
15
|
-
|
16
|
-
本文将详细介绍如何在 Dokploy 中部署服务端数据库版 LobeChat。
|
17
|
-
|
18
|
-
## 一、准备工作
|
19
|
-
|
20
|
-
### 部署 Dokploy 并进行相关设置
|
21
|
-
|
22
|
-
```shell
|
23
|
-
curl -sSL https://dokploy.com/install.sh | sh
|
24
|
-
```
|
25
|
-
|
26
|
-
1. 在 Dokploy 的 Settings / Git 处根据提示将 Github 绑定到 Dokploy
|
27
|
-
|
28
|
-

|
29
|
-
|
30
|
-
2. 进入 Projects 界面创建一个 Project
|
31
|
-
|
32
|
-

|
33
|
-
|
34
|
-
### 配置 S3 存储服务
|
35
|
-
|
36
|
-
在服务端数据库中我们需要配置 S3 存储服务来存储文件,详细配置教程请参考 使用 Vercel 部署中 [配置 S3 储存服务](https://lobehub.com/zh/docs/self-hosting/server-database/vercel#%E4%B8%89%E3%80%81-%E9%85%8D%E7%BD%AE-s-3-%E5%AD%98%E5%82%A8%E6%9C%8D%E5%8A%A1)。配置完成后你将获得以下环境变量:
|
37
|
-
|
38
|
-
```shell
|
1
|
+
---
|
2
|
+
title: 在 Dokploy 上部署 LobeChat 的服务端数据库版本
|
3
|
+
description: 本文详细介绍如何在 Dokploy 中部署服务端数据库版 LobeChat,包括数据库配置、身份验证服务配置的设置步骤。
|
4
|
+
tags:
|
5
|
+
- 服务端数据库
|
6
|
+
- Postgres
|
7
|
+
- Clerk
|
8
|
+
- Dokploy部署
|
9
|
+
- 数据库配置
|
10
|
+
- 身份验证服务
|
11
|
+
- 环境变量配置
|
12
|
+
---
|
13
|
+
|
14
|
+
# 在 Dokploy 上部署服务端数据库版
|
15
|
+
|
16
|
+
本文将详细介绍如何在 Dokploy 中部署服务端数据库版 LobeChat。
|
17
|
+
|
18
|
+
## 一、准备工作
|
19
|
+
|
20
|
+
### 部署 Dokploy 并进行相关设置
|
21
|
+
|
22
|
+
```shell
|
23
|
+
curl -sSL https://dokploy.com/install.sh | sh
|
24
|
+
```
|
25
|
+
|
26
|
+
1. 在 Dokploy 的 Settings / Git 处根据提示将 Github 绑定到 Dokploy
|
27
|
+
|
28
|
+

|
29
|
+
|
30
|
+
2. 进入 Projects 界面创建一个 Project
|
31
|
+
|
32
|
+

|
33
|
+
|
34
|
+
### 配置 S3 存储服务
|
35
|
+
|
36
|
+
在服务端数据库中我们需要配置 S3 存储服务来存储文件,详细配置教程请参考 使用 Vercel 部署中 [配置 S3 储存服务](https://lobehub.com/zh/docs/self-hosting/server-database/vercel#%E4%B8%89%E3%80%81-%E9%85%8D%E7%BD%AE-s-3-%E5%AD%98%E5%82%A8%E6%9C%8D%E5%8A%A1)。配置完成后你将获得以下环境变量:
|
37
|
+
|
38
|
+
```shell
|
39
39
|
S3_ACCESS_KEY_ID=
|
40
40
|
S3_SECRET_ACCESS_KEY=
|
41
41
|
S3_ENDPOINT=
|
42
42
|
S3_BUCKET=
|
43
43
|
S3_PUBLIC_DOMAIN=
|
44
|
-
S3_ENABLE_PATH_STYLE=
|
45
|
-
```
|
46
|
-
|
47
|
-
### 配置 Clerk 身份验证服务
|
48
|
-
|
49
|
-
获取 `NEXT_PUBLIC_CLERK_PUBLISHABLE_KEY` 、`CLERK_SECRET_KEY` 、`CLERK_WEBHOOK_SECRET` 这三个环境变量,Clerk 的详细配置流程请参考 使用 Vercel 部署中 [配置身份验证服务](https://lobehub.com/zh/docs/self-hosting/server-database/vercel#二、-配置身份验证服务)
|
50
|
-
|
51
|
-
```shell
|
44
|
+
S3_ENABLE_PATH_STYLE=
|
45
|
+
```
|
46
|
+
|
47
|
+
### 配置 Clerk 身份验证服务
|
48
|
+
|
49
|
+
获取 `NEXT_PUBLIC_CLERK_PUBLISHABLE_KEY` 、`CLERK_SECRET_KEY` 、`CLERK_WEBHOOK_SECRET` 这三个环境变量,Clerk 的详细配置流程请参考 使用 Vercel 部署中 [配置身份验证服务](https://lobehub.com/zh/docs/self-hosting/server-database/vercel#二、-配置身份验证服务)
|
50
|
+
|
51
|
+
```shell
|
52
52
|
NEXT_PUBLIC_CLERK_PUBLISHABLE_KEY=pk_live_xxxxxxxxxxx
|
53
53
|
CLERK_SECRET_KEY=sk_live_xxxxxxxxxxxxxxxxxxxxxx
|
54
|
-
CLERK_WEBHOOK_SECRET=whsec_xxxxxxxxxxxxxxxxxxxxxx
|
55
|
-
```
|
56
|
-
|
57
|
-
## 二、在 Dokploy 上部署数据库
|
58
|
-
|
59
|
-
进入前面创建的 Project,点击 Create Service 选择 Database,在 Database 界面选择 PostgreSQL ,然后设置数据库名、用户、密码,在 Docker image 中填入 `pgvector/pgvector:pg17` 最后点击 Create 创建数据库。
|
60
|
-
|
61
|
-

|
62
|
-
|
54
|
+
CLERK_WEBHOOK_SECRET=whsec_xxxxxxxxxxxxxxxxxxxxxx
|
55
|
+
```
|
56
|
+
|
57
|
+
## 二、在 Dokploy 上部署数据库
|
58
|
+
|
59
|
+
进入前面创建的 Project,点击 Create Service 选择 Database,在 Database 界面选择 PostgreSQL ,然后设置数据库名、用户、密码,在 Docker image 中填入 `pgvector/pgvector:pg17` 最后点击 Create 创建数据库。
|
60
|
+
|
61
|
+

|
62
|
+
|
63
63
|
进入创建的数据库,在 External Credentials 设置一个未被占用的端口,使其能能通过外部访问,否则 LobeChat 将无法连接到该数据库。
|
64
|
-
你可以在 External Host 查看 Postgres 数据库连接 URL ,如下:
|
65
|
-
|
66
|
-
```shell
|
67
|
-
postgresql://postgres:wAbLxfXSwkxxxxxx@45.577.281.48:5432/postgres
|
68
|
-
```
|
69
|
-
|
70
|
-
最后点击 Deploy 部署数据库
|
71
|
-
|
72
|
-

|
73
|
-
|
74
|
-
## 在 Dokploy 上部署 LobeChat
|
75
|
-
|
76
|
-
点击 Create Service 选择 Application,创建 LobeChat 应用
|
77
|
-
|
78
|
-

|
79
|
-
|
80
|
-
进入创建的 LobeChat 应用,选择你 fork 的 lobe-chat 项目及分支,点击 Save 保存
|
81
|
-
|
82
|
-

|
83
|
-
|
84
|
-
切换到 Environment ,在其中填入环境变量,点击保存。
|
85
|
-
|
86
|
-

|
87
|
-
|
88
|
-
```shell
|
64
|
+
你可以在 External Host 查看 Postgres 数据库连接 URL ,如下:
|
65
|
+
|
66
|
+
```shell
|
67
|
+
postgresql://postgres:wAbLxfXSwkxxxxxx@45.577.281.48:5432/postgres
|
68
|
+
```
|
69
|
+
|
70
|
+
最后点击 Deploy 部署数据库
|
71
|
+
|
72
|
+

|
73
|
+
|
74
|
+
## 在 Dokploy 上部署 LobeChat
|
75
|
+
|
76
|
+
点击 Create Service 选择 Application,创建 LobeChat 应用
|
77
|
+
|
78
|
+

|
79
|
+
|
80
|
+
进入创建的 LobeChat 应用,选择你 fork 的 lobe-chat 项目及分支,点击 Save 保存
|
81
|
+
|
82
|
+

|
83
|
+
|
84
|
+
切换到 Environment ,在其中填入环境变量,点击保存。
|
85
|
+
|
86
|
+

|
87
|
+
|
88
|
+
```shell
|
89
89
|
# 构建所必需的环境变量
|
90
|
-
NIXPACKS_PKGS="
|
90
|
+
NIXPACKS_PKGS="bun"
|
91
91
|
NIXPACKS_INSTALL_CMD="pnpm install"
|
92
|
-
NIXPACKS_BUILD_CMD="pnpm run build"
|
92
|
+
NIXPACKS_BUILD_CMD="NODE_OPTIONS='--max-old-space-size=8192' pnpm run build"
|
93
93
|
NIXPACKS_START_CMD="pnpm start"
|
94
94
|
|
95
95
|
APP_URL=
|
@@ -120,19 +120,19 @@ S3_ENABLE_PATH_STYLE=
|
|
120
120
|
# OpenAI 相关配置
|
121
121
|
OPENAI_API_KEY=
|
122
122
|
OPENAI_MODEL_LIST=
|
123
|
-
OPENAI_PROXY_URL=
|
124
|
-
```
|
125
|
-
|
126
|
-
添加完环境变量并保存后,点击 Deploy 进行部署,你可以在 Deployments 处查看部署进程及日志信息
|
127
|
-
|
128
|
-

|
129
|
-
|
130
|
-
部署成功后在 Domains 页面,为你的 LobeChat 应用绑定自己的域名并申请证书。
|
131
|
-
|
132
|
-

|
133
|
-
|
134
|
-
## 验证 LobeChat 是否正常工作
|
135
|
-
|
136
|
-
进入你的 LobeChat 网址,如果你点击左上角登录,可以正常显示登录弹窗,那么说明你已经配置成功了,尽情享用吧~
|
137
|
-
|
138
|
-

|
123
|
+
OPENAI_PROXY_URL=
|
124
|
+
```
|
125
|
+
|
126
|
+
添加完环境变量并保存后,点击 Deploy 进行部署,你可以在 Deployments 处查看部署进程及日志信息
|
127
|
+
|
128
|
+

|
129
|
+
|
130
|
+
部署成功后在 Domains 页面,为你的 LobeChat 应用绑定自己的域名并申请证书。
|
131
|
+
|
132
|
+

|
133
|
+
|
134
|
+
## 验证 LobeChat 是否正常工作
|
135
|
+
|
136
|
+
进入你的 LobeChat 网址,如果你点击左上角登录,可以正常显示登录弹窗,那么说明你已经配置成功了,尽情享用吧~
|
137
|
+
|
138
|
+

|
package/locales/ar/hotkey.json
CHANGED
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "استدعاء مربع البحث الرئيسي في الصفحة الحالية",
|
36
36
|
"title": "بحث"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "استدعاء نافذة التطبيق الرئيسية بسرعة",
|
40
|
+
"title": "عرض النافذة الرئيسية"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "تبديل المساعد المثبت في الشريط الجانبي عن طريق الضغط على Ctrl مع الأرقام من 0 إلى 9",
|
40
44
|
"title": "تبديل المساعد بسرعة"
|
package/locales/ar/models.json
CHANGED
@@ -71,6 +71,9 @@
|
|
71
71
|
"DeepSeek-V3": {
|
72
72
|
"description": "DeepSeek-V3 هو نموذج MoE تم تطويره ذاتيًا بواسطة شركة DeepSeek. حقق DeepSeek-V3 نتائج تقييم تفوقت على نماذج مفتوحة المصدر الأخرى مثل Qwen2.5-72B و Llama-3.1-405B، وفي الأداء ينافس النماذج المغلقة الرائدة عالميًا مثل GPT-4o و Claude-3.5-Sonnet."
|
73
73
|
},
|
74
|
+
"Doubao-1.5-thinking-pro-m": {
|
75
|
+
"description": "Doubao-1.5 هو نموذج تفكير عميق جديد (نسخة m تأتي مع قدرة استدلال عميق متعددة الوسائط أصلية)، يظهر أداءً بارزًا في مجالات الرياضيات، البرمجة، الاستدلال العلمي، والكتابة الإبداعية، حيث حقق أو اقترب من المستوى الأول في عدة معايير مرموقة مثل AIME 2024، Codeforces، وGPQA. يدعم نافذة سياق تصل إلى 128k، وإخراج يصل إلى 16k."
|
76
|
+
},
|
74
77
|
"Doubao-1.5-vision-pro": {
|
75
78
|
"description": "Doubao-1.5-vision-pro هو نموذج كبير متعدد الوسائط تم ترقيته حديثًا، يدعم التعرف على الصور بدقة غير محدودة ونسب عرض إلى ارتفاع متطرفة، ويعزز قدرات الاستدلال البصري، التعرف على الوثائق، فهم المعلومات التفصيلية، واتباع التعليمات."
|
76
79
|
},
|
@@ -293,6 +296,21 @@
|
|
293
296
|
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
294
297
|
"description": "Qwen2.5-VL هو نموذج اللغة البصرية في سلسلة Qwen2.5. يتميز هذا النموذج بتحسينات كبيرة في جوانب متعددة: قدرة أقوى على الفهم البصري، مع القدرة على التعرف على الأشياء الشائعة وتحليل النصوص والرسوم البيانية والتخطيطات؛ كوسيط بصري يمكنه التفكير وتوجيه استخدام الأدوات ديناميكيًا؛ يدعم فهم مقاطع الفيديو الطويلة التي تزيد عن ساعة واحدة مع القدرة على التقاط الأحداث الرئيسية؛ يمكنه تحديد موقع الأشياء في الصور بدقة من خلال إنشاء مربعات حدودية أو نقاط؛ يدعم إنشاء مخرجات منظمة، وهو مفيد بشكل خاص للبيانات الممسوحة ضوئيًا مثل الفواتير والجداول."
|
295
298
|
},
|
299
|
+
"Qwen/Qwen3-14B": {
|
300
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الاستدلال، المهام العامة، الوكلاء، واللغات المتعددة، ويدعم تبديل وضع التفكير."
|
301
|
+
},
|
302
|
+
"Qwen/Qwen3-235B-A22B": {
|
303
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الاستدلال، المهام العامة، الوكلاء، واللغات المتعددة، ويدعم تبديل وضع التفكير."
|
304
|
+
},
|
305
|
+
"Qwen/Qwen3-30B-A3B": {
|
306
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الاستدلال، المهام العامة، الوكلاء، واللغات المتعددة، ويدعم تبديل وضع التفكير."
|
307
|
+
},
|
308
|
+
"Qwen/Qwen3-32B": {
|
309
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الاستدلال، المهام العامة، الوكلاء، واللغات المتعددة، ويدعم تبديل وضع التفكير."
|
310
|
+
},
|
311
|
+
"Qwen/Qwen3-8B": {
|
312
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الاستدلال، المهام العامة، الوكلاء، واللغات المتعددة، ويدعم تبديل وضع التفكير."
|
313
|
+
},
|
296
314
|
"Qwen2-72B-Instruct": {
|
297
315
|
"description": "Qwen2 هو أحدث سلسلة من نموذج Qwen، ويدعم سياقًا يصل إلى 128 ألف، مقارنةً بأفضل النماذج مفتوحة المصدر الحالية، يتفوق Qwen2-72B بشكل ملحوظ في فهم اللغة الطبيعية والمعرفة والترميز والرياضيات والقدرات متعددة اللغات."
|
298
316
|
},
|
@@ -398,9 +416,6 @@
|
|
398
416
|
"THUDM/glm-4-9b-chat": {
|
399
417
|
"description": "GLM-4 9B هو إصدار مفتوح المصدر، يوفر تجربة حوار محسنة لتطبيقات الحوار."
|
400
418
|
},
|
401
|
-
"TeleAI/TeleChat2": {
|
402
|
-
"description": "نموذج TeleChat2 هو نموذج كبير تم تطويره ذاتيًا من قبل China Telecom، يدعم وظائف مثل الأسئلة والأجوبة الموسوعية، وتوليد الشيفرة، وتوليد النصوص الطويلة، ويقدم خدمات استشارية للمستخدمين، مما يمكنه من التفاعل مع المستخدمين، والإجابة على الأسئلة، والمساعدة في الإبداع، وتوفير المعلومات والمعرفة والإلهام بكفاءة وسهولة. أظهر النموذج أداءً ممتازًا في معالجة مشكلات الهلوسة، وتوليد النصوص الطويلة، وفهم المنطق."
|
403
|
-
},
|
404
419
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
405
420
|
"description": "Qwen2.5-72B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر دعمًا للغات متعددة، تغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. أظهر النموذج تحسينات ملحوظة في اتباع التعليمات، وفهم البيانات الهيكلية، وتوليد المخرجات الهيكلية (خاصة JSON)."
|
406
421
|
},
|
@@ -800,6 +815,12 @@
|
|
800
815
|
"deepseek/deepseek-chat": {
|
801
816
|
"description": "نموذج مفتوح المصدر جديد يجمع بين القدرات العامة وقدرات البرمجة، لا يحتفظ فقط بقدرات الحوار العامة لنموذج الدردشة الأصلي وقدرات معالجة الأكواد القوية لنموذج Coder، بل يتماشى أيضًا بشكل أفضل مع تفضيلات البشر. بالإضافة إلى ذلك، حقق DeepSeek-V2.5 تحسينات كبيرة في مهام الكتابة، واتباع التعليمات، وغيرها من المجالات."
|
802
817
|
},
|
818
|
+
"deepseek/deepseek-chat-v3-0324": {
|
819
|
+
"description": "DeepSeek V3 هو نموذج مختلط خبير يحتوي على 685B من المعلمات، وهو أحدث إصدار من سلسلة نماذج الدردشة الرائدة لفريق DeepSeek.\n\nيستفيد من نموذج [DeepSeek V3](/deepseek/deepseek-chat-v3) ويظهر أداءً ممتازًا في مجموعة متنوعة من المهام."
|
820
|
+
},
|
821
|
+
"deepseek/deepseek-chat-v3-0324:free": {
|
822
|
+
"description": "DeepSeek V3 هو نموذج مختلط خبير يحتوي على 685B من المعلمات، وهو أحدث إصدار من سلسلة نماذج الدردشة الرائدة لفريق DeepSeek.\n\nيستفيد من نموذج [DeepSeek V3](/deepseek/deepseek-chat-v3) ويظهر أداءً ممتازًا في مجموعة متنوعة من المهام."
|
823
|
+
},
|
803
824
|
"deepseek/deepseek-r1": {
|
804
825
|
"description": "DeepSeek-R1 يعزز بشكل كبير من قدرة النموذج على الاستدلال في ظل وجود بيانات محدودة جدًا. قبل تقديم الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
|
805
826
|
},
|
@@ -851,9 +872,6 @@
|
|
851
872
|
"doubao-1.5-thinking-pro": {
|
852
873
|
"description": "نموذج Doubao-1.5 الجديد للتفكير العميق، يتميز بأداء بارز في مجالات الرياضيات، البرمجة، الاستدلال العلمي، وكذلك في المهام العامة مثل الكتابة الإبداعية. حقق أو اقترب من المستوى الأول في العديد من المعايير المرموقة مثل AIME 2024 وCodeforces وGPQA. يدعم نافذة سياق بحجم 128k و16k للإخراج."
|
853
874
|
},
|
854
|
-
"doubao-1.5-thinking-pro-vision": {
|
855
|
-
"description": "نموذج Doubao-1.5 الجديد للتفكير العميق، يتميز بأداء بارز في مجالات الرياضيات، البرمجة، الاستدلال العلمي، وكذلك في المهام العامة مثل الكتابة الإبداعية. حقق أو اقترب من المستوى الأول في العديد من المعايير المرموقة مثل AIME 2024 وCodeforces وGPQA. يدعم نافذة سياق بحجم 128k و16k للإخراج."
|
856
|
-
},
|
857
875
|
"doubao-1.5-vision-lite": {
|
858
876
|
"description": "Doubao-1.5-vision-lite هو نموذج كبير متعدد الوسائط تم ترقيته حديثًا، يدعم التعرف على الصور بدقة غير محدودة ونسب عرض إلى ارتفاع متطرفة، ويعزز قدرات الاستدلال البصري، التعرف على الوثائق، فهم المعلومات التفصيلية، واتباع التعليمات. يدعم نافذة سياق 128k، وطول الإخراج يدعم حتى 16k توكن."
|
859
877
|
},
|
@@ -995,9 +1013,6 @@
|
|
995
1013
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
996
1014
|
"description": "Gemini 2.0 Flash Exp هو أحدث نموذج تجريبي متعدد الوسائط من Google، يتمتع بميزات الجيل التالي، وسرعة فائقة، واستدعاء أدوات أصلية، وتوليد متعدد الوسائط."
|
997
1015
|
},
|
998
|
-
"gemini-2.0-pro-exp-02-05": {
|
999
|
-
"description": "Gemini 2.0 Pro Experimental هو أحدث نموذج ذكاء اصطناعي متعدد الوسائط التجريبي من Google، مع تحسينات ملحوظة في الجودة مقارنة بالإصدارات السابقة، خاصة في المعرفة العالمية، والبرمجة، والسياقات الطويلة."
|
1000
|
-
},
|
1001
1016
|
"gemini-2.5-flash-preview-04-17": {
|
1002
1017
|
"description": "معاينة فلاش جمنّي 2.5 هي النموذج الأكثر كفاءة من جوجل، حيث تقدم مجموعة شاملة من الميزات."
|
1003
1018
|
},
|
@@ -1007,6 +1022,9 @@
|
|
1007
1022
|
"gemini-2.5-pro-preview-03-25": {
|
1008
1023
|
"description": "معاينة Gemini 2.5 Pro هي نموذج التفكير الأكثر تقدمًا من Google، قادر على الاستدلال حول الشيفرات، الرياضيات، والمشكلات المعقدة في مجالات STEM، بالإضافة إلى تحليل مجموعات البيانات الكبيرة، مكتبات الشيفرات، والمستندات باستخدام سياقات طويلة."
|
1009
1024
|
},
|
1025
|
+
"gemini-2.5-pro-preview-05-06": {
|
1026
|
+
"description": "Gemini 2.5 Pro Preview هو نموذج التفكير الأكثر تقدمًا من Google، قادر على الاستدلال حول الشيفرات، الرياضيات، والمشكلات المعقدة في مجالات STEM، بالإضافة إلى تحليل مجموعات البيانات الكبيرة، ومكتبات الشيفرات، والمستندات باستخدام سياقات طويلة."
|
1027
|
+
},
|
1010
1028
|
"gemma-7b-it": {
|
1011
1029
|
"description": "Gemma 7B مناسب لمعالجة المهام المتوسطة والصغيرة، ويجمع بين الكفاءة من حيث التكلفة."
|
1012
1030
|
},
|
@@ -1091,8 +1109,17 @@
|
|
1091
1109
|
"google/gemini-2.0-flash-001": {
|
1092
1110
|
"description": "Gemini 2.0 Flash يقدم ميزات وتحسينات من الجيل التالي، بما في ذلك سرعة فائقة، واستخدام أدوات أصلية، وتوليد متعدد الوسائط، ونافذة سياق تصل إلى 1M توكن."
|
1093
1111
|
},
|
1094
|
-
"google/gemini-2.0-
|
1095
|
-
"description": "Gemini 2.0
|
1112
|
+
"google/gemini-2.0-flash-exp:free": {
|
1113
|
+
"description": "Gemini 2.0 Flash Experimental هو أحدث نموذج ذكاء اصطناعي متعدد الوسائط من Google، مع تحسينات ملحوظة في الجودة مقارنة بالإصدارات السابقة، خاصة في المعرفة العالمية، الشيفرات، والسياقات الطويلة."
|
1114
|
+
},
|
1115
|
+
"google/gemini-2.5-flash-preview": {
|
1116
|
+
"description": "Gemini 2.5 Flash هو النموذج الرائد الأكثر تقدمًا من Google، مصمم للاستدلال المتقدم، الترميز، المهام الرياضية والعلمية. يحتوي على قدرة \"التفكير\" المدمجة، مما يمكّنه من تقديم استجابات بدقة أعلى ومعالجة سياقات أكثر تفصيلاً.\n\nملاحظة: يحتوي هذا النموذج على نوعين: التفكير وغير التفكير. تختلف تسعير الإخراج بشكل ملحوظ بناءً على ما إذا كانت قدرة التفكير مفعلة. إذا اخترت النوع القياسي (بدون لاحقة \" :thinking \")، سيتجنب النموذج بشكل صريح توليد رموز التفكير.\n\nلاستغلال قدرة التفكير واستقبال رموز التفكير، يجب عليك اختيار النوع \" :thinking \"، مما سيؤدي إلى تسعير إخراج تفكير أعلى.\n\nبالإضافة إلى ذلك، يمكن تكوين Gemini 2.5 Flash من خلال معلمة \"الحد الأقصى لعدد رموز الاستدلال\"، كما هو موضح في الوثائق (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1117
|
+
},
|
1118
|
+
"google/gemini-2.5-flash-preview:thinking": {
|
1119
|
+
"description": "Gemini 2.5 Flash هو النموذج الرائد الأكثر تقدمًا من Google، مصمم للاستدلال المتقدم، الترميز، المهام الرياضية والعلمية. يحتوي على قدرة \"التفكير\" المدمجة، مما يمكّنه من تقديم استجابات بدقة أعلى ومعالجة سياقات أكثر تفصيلاً.\n\nملاحظة: يحتوي هذا النموذج على نوعين: التفكير وغير التفكير. تختلف تسعير الإخراج بشكل ملحوظ بناءً على ما إذا كانت قدرة التفكير مفعلة. إذا اخترت النوع القياسي (بدون لاحقة \" :thinking \")، سيتجنب النموذج بشكل صريح توليد رموز التفكير.\n\nلاستغلال قدرة التفكير واستقبال رموز التفكير، يجب عليك اختيار النوع \" :thinking \"، مما سيؤدي إلى تسعير إخراج تفكير أعلى.\n\nبالإضافة إلى ذلك، يمكن تكوين Gemini 2.5 Flash من خلال معلمة \"الحد الأقصى لعدد رموز الاستدلال\"، كما هو موضح في الوثائق (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1120
|
+
},
|
1121
|
+
"google/gemini-2.5-pro-preview-03-25": {
|
1122
|
+
"description": "Gemini 2.5 Pro هو نموذج الذكاء الاصطناعي الأكثر تقدمًا من Google، مصمم للاستدلال المتقدم، الترميز، المهام الرياضية والعلمية. يتميز بقدرة \"التفكير\"، مما يمكّنه من الاستدلال بدقة أعلى ومعالجة سياقات أكثر تفصيلاً. حقق Gemini 2.5 Pro أداءً رائدًا في عدة اختبارات معيارية، بما في ذلك تصدره في تصنيف LMArena، مما يعكس تميز توافق تفضيلات البشر وقدرته على حل المشكلات المعقدة."
|
1096
1123
|
},
|
1097
1124
|
"google/gemini-flash-1.5": {
|
1098
1125
|
"description": "يقدم Gemini 1.5 Flash قدرات معالجة متعددة الوسائط محسّنة، مناسبة لمجموعة متنوعة من سيناريوهات المهام المعقدة."
|
@@ -1592,6 +1619,9 @@
|
|
1592
1619
|
"mistral-large-latest": {
|
1593
1620
|
"description": "Mistral Large هو النموذج الرائد، يتفوق في المهام متعددة اللغات، والاستدلال المعقد، وتوليد الشيفرة، وهو الخيار المثالي للتطبيقات الراقية."
|
1594
1621
|
},
|
1622
|
+
"mistral-medium-latest": {
|
1623
|
+
"description": "Mistral Medium 3 يقدم أداءً متقدمًا بتكلفة 8 مرات أقل، مما يبسط بشكل جذري نشر المؤسسات."
|
1624
|
+
},
|
1595
1625
|
"mistral-nemo": {
|
1596
1626
|
"description": "Mistral Nemo تم تطويره بالتعاون بين Mistral AI وNVIDIA، وهو نموذج 12B عالي الأداء."
|
1597
1627
|
},
|
@@ -1763,8 +1793,8 @@
|
|
1763
1793
|
"qvq-72b-preview": {
|
1764
1794
|
"description": "نموذج QVQ هو نموذج بحث تجريبي تم تطويره بواسطة فريق Qwen، يركز على تعزيز قدرات الاستدلال البصري، خاصة في مجال الاستدلال الرياضي."
|
1765
1795
|
},
|
1766
|
-
"qvq-max": {
|
1767
|
-
"description": "نموذج
|
1796
|
+
"qvq-max-latest": {
|
1797
|
+
"description": "نموذج QVQ للرؤية البصرية، يدعم الإدخال البصري وإخراج سلسلة التفكير، ويظهر قدرات أقوى في الرياضيات، البرمجة، التحليل البصري، الإبداع، والمهام العامة."
|
1768
1798
|
},
|
1769
1799
|
"qwen-coder-plus-latest": {
|
1770
1800
|
"description": "نموذج كود Qwen الشامل."
|
@@ -2075,12 +2105,24 @@
|
|
2075
2105
|
"text-embedding-3-small": {
|
2076
2106
|
"description": "نموذج التضمين من الجيل الجديد، فعال واقتصادي، مناسب لاسترجاع المعرفة وتطبيقات RAG وغيرها."
|
2077
2107
|
},
|
2108
|
+
"thudm/glm-4-32b": {
|
2109
|
+
"description": "GLM-4-32B-0414 هو نموذج لغوي مفتوح الوزن ثنائي اللغة (صيني وإنجليزي) بحجم 32B، تم تحسينه لتوليد الشيفرات، استدعاءات الوظائف، والمهام الوكيلة. تم تدريبه مسبقًا على 15T من البيانات عالية الجودة وإعادة الاستدلال، وتم تحسينه باستخدام توافق تفضيلات البشر، أخذ العينات الرفض، والتعلم المعزز. يظهر هذا النموذج أداءً ممتازًا في الاستدلال المعقد، توليد القطع، ومهام الإخراج الهيكلي، حيث حقق أداءً يعادل GPT-4o وDeepSeek-V3-0324 في عدة اختبارات معيارية."
|
2110
|
+
},
|
2111
|
+
"thudm/glm-4-32b:free": {
|
2112
|
+
"description": "GLM-4-32B-0414 هو نموذج لغوي مفتوح الوزن ثنائي اللغة (صيني وإنجليزي) بحجم 32B، تم تحسينه لتوليد الشيفرات، استدعاءات الوظائف، والمهام الوكيلة. تم تدريبه مسبقًا على 15T من البيانات عالية الجودة وإعادة الاستدلال، وتم تحسينه باستخدام توافق تفضيلات البشر، أخذ العينات الرفض، والتعلم المعزز. يظهر هذا النموذج أداءً ممتازًا في الاستدلال المعقد، توليد القطع، ومهام الإخراج الهيكلي، حيث حقق أداءً يعادل GPT-4o وDeepSeek-V3-0324 في عدة اختبارات معيارية."
|
2113
|
+
},
|
2078
2114
|
"thudm/glm-4-9b-chat": {
|
2079
2115
|
"description": "الإصدار المفتوح من الجيل الأحدث من نموذج GLM-4 الذي أطلقته Zhizhu AI."
|
2080
2116
|
},
|
2081
2117
|
"thudm/glm-4-9b:free": {
|
2082
2118
|
"description": "GLM-4-9B-0414 هو نموذج لغوي يحتوي على 9 مليار معلمة من سلسلة GLM-4 التي تم تطويرها بواسطة THUDM. يستخدم GLM-4-9B-0414 نفس استراتيجيات تعزيز التعلم والتوافق المستخدمة في النموذج المقابل الأكبر 32B، مما يحقق أداءً عاليًا بالنسبة لحجمه، مما يجعله مناسبًا للنشر في البيئات المحدودة الموارد التي لا تزال تتطلب قدرات قوية في فهم اللغة وتوليدها."
|
2083
2119
|
},
|
2120
|
+
"thudm/glm-z1-32b": {
|
2121
|
+
"description": "GLM-Z1-32B-0414 هو نسخة محسنة من GLM-4-32B، مصممة لحل المشكلات المعقدة في الرياضيات العميقة، المنطق، والشيفرات. يستخدم التعلم المعزز الموسع (المخصص للمهام والمبني على تفضيلات عامة) لتحسين الأداء في المهام المعقدة متعددة الخطوات. مقارنةً بنموذج GLM-4-32B الأساسي، زادت Z1 بشكل ملحوظ من قدرات الاستدلال الهيكلي والمجالات الرسمية.\n\nيدعم هذا النموذج تنفيذ خطوات \"التفكير\" من خلال هندسة التلميحات، ويقدم اتساقًا محسنًا للإخراج الطويل. تم تحسينه لعمليات سير العمل الخاصة بالوكيل، ويدعم السياقات الطويلة (عبر YaRN)، واستدعاءات أدوات JSON، وتكوينات أخذ العينات الدقيقة للاستدلال المستقر. مثالي للحالات التي تتطلب تفكيرًا عميقًا، استدلالًا متعدد الخطوات، أو استنتاجات رسمية."
|
2122
|
+
},
|
2123
|
+
"thudm/glm-z1-32b:free": {
|
2124
|
+
"description": "GLM-Z1-32B-0414 هو نسخة محسنة من GLM-4-32B، مصممة لحل المشكلات المعقدة في الرياضيات العميقة، المنطق، والشيفرات. يستخدم التعلم المعزز الموسع (المخصص للمهام والمبني على تفضيلات عامة) لتحسين الأداء في المهام المعقدة متعددة الخطوات. مقارنةً بنموذج GLM-4-32B الأساسي، زادت Z1 بشكل ملحوظ من قدرات الاستدلال الهيكلي والمجالات الرسمية.\n\nيدعم هذا النموذج تنفيذ خطوات \"التفكير\" من خلال هندسة التلميحات، ويقدم اتساقًا محسنًا للإخراج الطويل. تم تحسينه لعمليات سير العمل الخاصة بالوكيل، ويدعم السياقات الطويلة (عبر YaRN)، واستدعاءات أدوات JSON، وتكوينات أخذ العينات الدقيقة للاستدلال المستقر. مثالي للحالات التي تتطلب تفكيرًا عميقًا، استدلالًا متعدد الخطوات، أو استنتاجات رسمية."
|
2125
|
+
},
|
2084
2126
|
"thudm/glm-z1-9b:free": {
|
2085
2127
|
"description": "GLM-Z1-9B-0414 هو نموذج لغوي يحتوي على 9 مليار معلمة من سلسلة GLM-4 التي تم تطويرها بواسطة THUDM. يستخدم تقنيات تم تطبيقها في الأصل على نموذج GLM-Z1 الأكبر، بما في ذلك تعزيز التعلم الموسع، والتوافق القائم على الترتيب الثنائي، والتدريب على المهام التي تتطلب استدلالًا مكثفًا مثل الرياضيات، والترميز، والمنطق. على الرغم من حجمه الأصغر، إلا أنه يظهر أداءً قويًا في المهام العامة للاستدلال، ويتفوق على العديد من النماذج مفتوحة المصدر في مستوى وزنه."
|
2086
2128
|
},
|
@@ -29,9 +29,6 @@
|
|
29
29
|
"deepseek": {
|
30
30
|
"description": "DeepSeek هي شركة تركز على أبحاث وتطبيقات تقنيات الذكاء الاصطناعي، حيث يجمع نموذجها الأحدث DeepSeek-V2.5 بين قدرات الحوار العامة ومعالجة الشيفرات، وقد حقق تحسينات ملحوظة في محاذاة تفضيلات البشر، ومهام الكتابة، واتباع التعليمات."
|
31
31
|
},
|
32
|
-
"doubao": {
|
33
|
-
"description": "نموذج كبير تم تطويره داخليًا بواسطة بايت دانس. تم التحقق من صحته من خلال أكثر من 50 سيناريو عمل داخلي، مع استخدام يومي يتجاوز تريليون توكن، مما يتيح تقديم قدرات متعددة الأنماط، ويعمل على توفير تجربة عمل غنية للشركات من خلال نموذج عالي الجودة."
|
34
|
-
},
|
35
32
|
"fireworksai": {
|
36
33
|
"description": "Fireworks AI هي شركة رائدة في تقديم خدمات نماذج اللغة المتقدمة، تركز على استدعاء الوظائف والمعالجة متعددة الوسائط. نموذجها الأحدث Firefunction V2 مبني على Llama-3، مُحسّن لاستدعاء الوظائف، والحوار، واتباع التعليمات. يدعم نموذج اللغة البصرية FireLLaVA-13B إدخال الصور والنصوص المختلطة. تشمل النماذج البارزة الأخرى سلسلة Llama وسلسلة Mixtral، مما يوفر دعمًا فعالًا لاتباع التعليمات وتوليدها بلغات متعددة."
|
37
34
|
},
|
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "Активирайте основното поле за търсене на текущата страница",
|
36
36
|
"title": "Търсене"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "Бързо отваряне на основния прозорец на приложението",
|
40
|
+
"title": "Покажи основния прозорец"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "Сменете помощника, фиксиран в страничната лента, като задържите Ctrl и натиснете число от 0 до 9",
|
40
44
|
"title": "Бърза смяна на помощника"
|