@lobehub/chat 1.81.3 → 1.81.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (151) hide show
  1. package/CHANGELOG.md +33 -0
  2. package/changelog/v1.json +12 -0
  3. package/locales/ar/common.json +2 -0
  4. package/locales/ar/electron.json +32 -0
  5. package/locales/ar/models.json +126 -3
  6. package/locales/ar/plugin.json +1 -0
  7. package/locales/ar/tool.json +25 -0
  8. package/locales/bg-BG/common.json +2 -0
  9. package/locales/bg-BG/electron.json +32 -0
  10. package/locales/bg-BG/models.json +126 -3
  11. package/locales/bg-BG/plugin.json +1 -0
  12. package/locales/bg-BG/tool.json +25 -0
  13. package/locales/de-DE/common.json +2 -0
  14. package/locales/de-DE/electron.json +32 -0
  15. package/locales/de-DE/models.json +126 -3
  16. package/locales/de-DE/plugin.json +1 -0
  17. package/locales/de-DE/tool.json +25 -0
  18. package/locales/en-US/common.json +2 -0
  19. package/locales/en-US/electron.json +32 -0
  20. package/locales/en-US/models.json +126 -3
  21. package/locales/en-US/plugin.json +1 -0
  22. package/locales/en-US/tool.json +25 -0
  23. package/locales/es-ES/common.json +2 -0
  24. package/locales/es-ES/electron.json +32 -0
  25. package/locales/es-ES/models.json +126 -3
  26. package/locales/es-ES/plugin.json +1 -0
  27. package/locales/es-ES/tool.json +25 -0
  28. package/locales/fa-IR/common.json +2 -0
  29. package/locales/fa-IR/electron.json +32 -0
  30. package/locales/fa-IR/models.json +126 -3
  31. package/locales/fa-IR/plugin.json +1 -0
  32. package/locales/fa-IR/tool.json +25 -0
  33. package/locales/fr-FR/common.json +2 -0
  34. package/locales/fr-FR/electron.json +32 -0
  35. package/locales/fr-FR/models.json +126 -3
  36. package/locales/fr-FR/plugin.json +1 -0
  37. package/locales/fr-FR/tool.json +25 -0
  38. package/locales/it-IT/common.json +2 -0
  39. package/locales/it-IT/electron.json +32 -0
  40. package/locales/it-IT/models.json +126 -3
  41. package/locales/it-IT/plugin.json +1 -0
  42. package/locales/it-IT/tool.json +25 -0
  43. package/locales/ja-JP/common.json +2 -0
  44. package/locales/ja-JP/electron.json +32 -0
  45. package/locales/ja-JP/models.json +126 -3
  46. package/locales/ja-JP/plugin.json +1 -0
  47. package/locales/ja-JP/tool.json +25 -0
  48. package/locales/ko-KR/common.json +2 -0
  49. package/locales/ko-KR/electron.json +32 -0
  50. package/locales/ko-KR/models.json +126 -3
  51. package/locales/ko-KR/plugin.json +1 -0
  52. package/locales/ko-KR/tool.json +25 -0
  53. package/locales/nl-NL/common.json +2 -0
  54. package/locales/nl-NL/electron.json +32 -0
  55. package/locales/nl-NL/models.json +126 -3
  56. package/locales/nl-NL/plugin.json +1 -0
  57. package/locales/nl-NL/tool.json +25 -0
  58. package/locales/pl-PL/common.json +2 -0
  59. package/locales/pl-PL/electron.json +32 -0
  60. package/locales/pl-PL/models.json +126 -3
  61. package/locales/pl-PL/plugin.json +1 -0
  62. package/locales/pl-PL/tool.json +25 -0
  63. package/locales/pt-BR/common.json +2 -0
  64. package/locales/pt-BR/electron.json +32 -0
  65. package/locales/pt-BR/models.json +126 -3
  66. package/locales/pt-BR/plugin.json +1 -0
  67. package/locales/pt-BR/tool.json +25 -0
  68. package/locales/ru-RU/common.json +2 -0
  69. package/locales/ru-RU/electron.json +32 -0
  70. package/locales/ru-RU/models.json +126 -3
  71. package/locales/ru-RU/plugin.json +1 -0
  72. package/locales/ru-RU/tool.json +25 -0
  73. package/locales/tr-TR/common.json +2 -0
  74. package/locales/tr-TR/electron.json +32 -0
  75. package/locales/tr-TR/models.json +126 -3
  76. package/locales/tr-TR/plugin.json +1 -0
  77. package/locales/tr-TR/tool.json +25 -0
  78. package/locales/vi-VN/common.json +2 -0
  79. package/locales/vi-VN/electron.json +32 -0
  80. package/locales/vi-VN/models.json +126 -3
  81. package/locales/vi-VN/plugin.json +1 -0
  82. package/locales/vi-VN/tool.json +25 -0
  83. package/locales/zh-CN/common.json +2 -0
  84. package/locales/zh-CN/electron.json +32 -0
  85. package/locales/zh-CN/models.json +131 -8
  86. package/locales/zh-CN/plugin.json +1 -0
  87. package/locales/zh-CN/tool.json +25 -0
  88. package/locales/zh-TW/common.json +2 -0
  89. package/locales/zh-TW/electron.json +32 -0
  90. package/locales/zh-TW/models.json +126 -3
  91. package/locales/zh-TW/plugin.json +1 -0
  92. package/locales/zh-TW/tool.json +25 -0
  93. package/package.json +3 -2
  94. package/packages/electron-client-ipc/src/events/index.ts +5 -5
  95. package/packages/electron-client-ipc/src/events/localFile.ts +22 -0
  96. package/packages/electron-client-ipc/src/events/{file.ts → upload.ts} +1 -1
  97. package/packages/electron-client-ipc/src/types/index.ts +2 -1
  98. package/packages/electron-client-ipc/src/types/localFile.ts +52 -0
  99. package/scripts/prebuild.mts +5 -1
  100. package/src/app/(backend)/trpc/desktop/[trpc]/route.ts +26 -0
  101. package/src/features/Conversation/Messages/Assistant/Tool/Render/Arguments/ObjectEntity.tsx +81 -0
  102. package/src/features/Conversation/Messages/Assistant/Tool/Render/Arguments/ValueCell.tsx +43 -0
  103. package/src/features/Conversation/Messages/Assistant/Tool/Render/Arguments/index.tsx +120 -0
  104. package/src/features/Conversation/Messages/Assistant/Tool/Render/CustomRender.tsx +75 -2
  105. package/src/features/Conversation/Messages/Assistant/Tool/Render/KeyValueEditor.tsx +214 -0
  106. package/src/features/User/UserPanel/useMenu.tsx +8 -1
  107. package/src/libs/agent-runtime/google/index.ts +3 -0
  108. package/src/libs/trpc/client/desktop.ts +14 -0
  109. package/src/locales/default/common.ts +2 -0
  110. package/src/locales/default/electron.ts +34 -0
  111. package/src/locales/default/index.ts +2 -0
  112. package/src/locales/default/tool.ts +25 -0
  113. package/src/server/routers/desktop/index.ts +9 -0
  114. package/src/server/routers/desktop/pgTable.ts +43 -0
  115. package/src/services/electron/autoUpdate.ts +17 -0
  116. package/src/services/electron/file.ts +31 -0
  117. package/src/services/electron/localFileService.ts +39 -0
  118. package/src/services/electron/remoteServer.ts +40 -0
  119. package/src/store/chat/index.ts +1 -1
  120. package/src/store/chat/slices/builtinTool/actions/index.ts +3 -1
  121. package/src/store/chat/slices/builtinTool/actions/localFile.ts +129 -0
  122. package/src/store/chat/slices/builtinTool/initialState.ts +2 -0
  123. package/src/store/chat/slices/builtinTool/selectors.ts +2 -0
  124. package/src/store/chat/slices/plugin/action.ts +3 -3
  125. package/src/store/chat/store.ts +2 -0
  126. package/src/store/electron/actions/sync.ts +117 -0
  127. package/src/store/electron/index.ts +1 -0
  128. package/src/store/electron/initialState.ts +18 -0
  129. package/src/store/electron/selectors/index.ts +1 -0
  130. package/src/store/electron/selectors/sync.ts +9 -0
  131. package/src/store/electron/store.ts +29 -0
  132. package/src/tools/index.ts +8 -0
  133. package/src/tools/local-files/Render/ListFiles/Result.tsx +42 -0
  134. package/src/tools/local-files/Render/ListFiles/index.tsx +68 -0
  135. package/src/tools/local-files/Render/ReadLocalFile/ReadFileSkeleton.tsx +50 -0
  136. package/src/tools/local-files/Render/ReadLocalFile/ReadFileView.tsx +197 -0
  137. package/src/tools/local-files/Render/ReadLocalFile/index.tsx +31 -0
  138. package/src/tools/local-files/Render/ReadLocalFile/style.ts +37 -0
  139. package/src/tools/local-files/Render/SearchFiles/Result.tsx +42 -0
  140. package/src/tools/local-files/Render/SearchFiles/SearchQuery/SearchView.tsx +77 -0
  141. package/src/tools/local-files/Render/SearchFiles/SearchQuery/index.tsx +72 -0
  142. package/src/tools/local-files/Render/SearchFiles/index.tsx +32 -0
  143. package/src/tools/local-files/Render/index.tsx +36 -0
  144. package/src/tools/local-files/components/FileItem.tsx +117 -0
  145. package/src/tools/local-files/index.ts +149 -0
  146. package/src/tools/local-files/systemRole.ts +46 -0
  147. package/src/tools/local-files/type.ts +33 -0
  148. package/src/tools/renders.ts +3 -0
  149. package/packages/electron-client-ipc/src/events/search.ts +0 -4
  150. package/src/features/Conversation/Messages/Assistant/Tool/Render/Arguments.tsx +0 -165
  151. /package/packages/electron-client-ipc/src/types/{file.ts → upload.ts} +0 -0
@@ -5,9 +5,15 @@
5
5
  "01-ai/yi-1.5-9b-chat": {
6
6
  "description": "零一万物、最新のオープンソース微調整モデル、90億パラメータ、微調整は多様な対話シーンをサポートし、高品質なトレーニングデータで人間の好みに合わせています。"
7
7
  },
8
+ "360/deepseek-r1": {
9
+ "description": "【360デプロイ版】DeepSeek-R1は、後訓練段階で大規模に強化学習技術を使用し、わずかなラベル付きデータでモデルの推論能力を大幅に向上させました。数学、コード、自然言語推論などのタスクで、OpenAI o1正式版に匹敵する性能を持っています。"
10
+ },
8
11
  "360gpt-pro": {
9
12
  "description": "360GPT Proは360 AIモデルシリーズの重要なメンバーであり、高効率なテキスト処理能力を持ち、多様な自然言語アプリケーションシーンに対応し、長文理解や多輪対話などの機能をサポートします。"
10
13
  },
14
+ "360gpt-pro-trans": {
15
+ "description": "翻訳専用モデルで、深く微調整されており、翻訳効果が優れています。"
16
+ },
11
17
  "360gpt-turbo": {
12
18
  "description": "360GPT Turboは強力な計算と対話能力を提供し、優れた意味理解と生成効率を備え、企業や開発者にとって理想的なインテリジェントアシスタントソリューションです。"
13
19
  },
@@ -62,6 +68,18 @@
62
68
  "DeepSeek-R1-Distill-Qwen-7B": {
63
69
  "description": "Qwen2.5-Math-7Bに基づくDeepSeek-R1蒸留モデルで、強化学習とコールドスタートデータを通じて推論性能を最適化し、オープンソースモデルがマルチタスクの基準を刷新しました。"
64
70
  },
71
+ "DeepSeek-V3": {
72
+ "description": "DeepSeek-V3は、深度求索社が独自に開発したMoEモデルです。DeepSeek-V3は、Qwen2.5-72BやLlama-3.1-405Bなどの他のオープンソースモデルを超える評価成績を収め、性能面では世界トップクラスのクローズドソースモデルであるGPT-4oやClaude-3.5-Sonnetと肩を並べています。"
73
+ },
74
+ "Doubao-1.5-thinking-pro": {
75
+ "description": "Doubao-1.5は新しい深い思考モデルで、数学、プログラミング、科学推論などの専門分野や創造的な執筆などの一般的なタスクで優れたパフォーマンスを発揮し、AIME 2024、Codeforces、GPQAなどの複数の権威あるベンチマークで業界の第一線に達するか、近づいています。128kのコンテキストウィンドウと16kの出力をサポートします。"
76
+ },
77
+ "Doubao-1.5-thinking-pro-vision": {
78
+ "description": "Doubao-1.5は新しい深い思考モデルで、数学、プログラミング、科学推論などの専門分野や創造的な執筆などの一般的なタスクで優れたパフォーマンスを発揮し、AIME 2024、Codeforces、GPQAなどの複数の権威あるベンチマークで業界の第一線に達するか、近づいています。128kのコンテキストウィンドウと16kの出力をサポートします。"
79
+ },
80
+ "Doubao-1.5-vision-pro": {
81
+ "description": "Doubao-1.5-vision-proは新たにアップグレードされた多モーダル大モデルで、任意の解像度と極端なアスペクト比の画像認識をサポートし、視覚推論、文書認識、詳細情報の理解、指示の遵守能力を強化しています。"
82
+ },
65
83
  "Doubao-1.5-vision-pro-32k": {
66
84
  "description": "Doubao-1.5-vision-proは全く新しいアップグレード版のマルチモーダル大モデルで、任意の解像度と極端なアスペクト比の画像認識をサポートし、視覚推論、文書認識、詳細情報の理解、指示遵守能力を強化しています。"
67
85
  },
@@ -341,6 +359,15 @@
341
359
  "SenseChat-Vision": {
342
360
  "description": "最新バージョンモデル (V5.5) で、複数の画像入力をサポートし、モデルの基本能力の最適化を全面的に実現し、オブジェクト属性認識、空間関係、動作イベント認識、シーン理解、感情認識、論理常識推論、テキスト理解生成において大幅な向上を実現しました。"
343
361
  },
362
+ "SenseNova-V6-Pro": {
363
+ "description": "画像、テキスト、動画の能力をネイティブに統一し、従来のマルチモーダルの分立的制限を突破し、OpenCompassとSuperCLUEの評価でダブルチャンピオンを獲得しました。"
364
+ },
365
+ "SenseNova-V6-Reasoner": {
366
+ "description": "視覚と言語の深い推論を兼ね備え、ゆっくりとした思考と深い推論を実現し、完全な思考の連鎖過程を提示します。"
367
+ },
368
+ "SenseNova-V6-Turbo": {
369
+ "description": "画像、テキスト、動画の能力をネイティブに統一し、従来のマルチモーダルの分立的制限を突破し、マルチモーダルの基礎能力や言語の基礎能力などのコア次元で全面的にリードし、文理を兼ね備え、複数の評価で国内外の第一梯隊レベルに何度もランクインしています。"
370
+ },
344
371
  "Skylark2-lite-8k": {
345
372
  "description": "雲雀(Skylark)第2世代モデル、Skylark2-liteモデルは高い応答速度を持ち、リアルタイム性が求められ、コストに敏感で、モデルの精度要求がそれほど高くないシーンに適しています。コンテキストウィンドウ長は8kです。"
346
373
  },
@@ -356,6 +383,21 @@
356
383
  "Skylark2-pro-turbo-8k": {
357
384
  "description": "雲雀(Skylark)第2世代モデル、Skylark2-pro-turbo-8kは、推論がより速く、コストが低く、コンテキストウィンドウ長は8kです。"
358
385
  },
386
+ "THUDM/GLM-4-32B-0414": {
387
+ "description": "GLM-4-32B-0414はGLMシリーズの新世代オープンソースモデルで、320億パラメータを持ちます。このモデルはOpenAIのGPTシリーズやDeepSeekのV3/R1シリーズと同等の性能を持っています。"
388
+ },
389
+ "THUDM/GLM-4-9B-0414": {
390
+ "description": "GLM-4-9B-0414はGLMシリーズの小型モデルで、90億パラメータを持ちます。このモデルはGLM-4-32Bシリーズの技術的特徴を継承しつつ、より軽量なデプロイメントオプションを提供します。規模は小さいものの、GLM-4-9B-0414はコード生成、ウェブデザイン、SVGグラフィック生成、検索ベースの執筆などのタスクで優れた能力を示しています。"
391
+ },
392
+ "THUDM/GLM-Z1-32B-0414": {
393
+ "description": "GLM-Z1-32B-0414は深い思考能力を持つ推論モデルです。このモデルはGLM-4-32B-0414に基づき、コールドスタートと拡張強化学習を通じて開発され、数学、コード、論理タスクにおいてさらに訓練されています。基礎モデルと比較して、GLM-Z1-32B-0414は数学能力と複雑なタスクの解決能力を大幅に向上させています。"
394
+ },
395
+ "THUDM/GLM-Z1-9B-0414": {
396
+ "description": "GLM-Z1-9B-0414はGLMシリーズの小型モデルで、90億パラメータを持ち、オープンソースの伝統を維持しつつ驚くべき能力を示しています。規模は小さいものの、このモデルは数学推論や一般的なタスクで優れたパフォーマンスを発揮し、同等の規模のオープンソースモデルの中でリーダーシップを発揮しています。"
397
+ },
398
+ "THUDM/GLM-Z1-Rumination-32B-0414": {
399
+ "description": "GLM-Z1-Rumination-32B-0414は深い推論能力を持つモデルで(OpenAIのDeep Researchに対抗)、典型的な深い思考モデルとは異なり、より長い時間の深い思考を用いてよりオープンで複雑な問題を解決します。"
400
+ },
359
401
  "THUDM/chatglm3-6b": {
360
402
  "description": "ChatGLM3-6BはChatGLMシリーズのオープンモデルで、智譜AIによって開発されました。このモデルは前の世代の優れた特性を保持し、対話の流暢さとデプロイのハードルの低さを維持しつつ、新しい特性を導入しています。より多様な訓練データ、より十分な訓練ステップ、より合理的な訓練戦略を採用し、10B未満の事前訓練モデルの中で優れたパフォーマンスを示しています。ChatGLM3-6Bは多輪対話、ツール呼び出し、コード実行、エージェントタスクなどの複雑なシーンをサポートしています。対話モデルの他に、基礎モデルChatGLM-6B-Baseと長文対話モデルChatGLM3-6B-32Kもオープンソースとして提供されています。このモデルは学術研究に完全にオープンで、登録後は無料の商業利用も許可されています。"
361
403
  },
@@ -521,6 +563,9 @@
521
563
  "charglm-3": {
522
564
  "description": "CharGLM-3はキャラクター演技と感情的な伴侶のために設計されており、超長期の多段階記憶と個別化された対話をサポートし、幅広い用途に適しています。"
523
565
  },
566
+ "charglm-4": {
567
+ "description": "CharGLM-4はキャラクター演技と感情的な伴侶のために設計されており、超長期の多回記憶と個別化された対話をサポートし、幅広い応用があります。"
568
+ },
524
569
  "chatglm3": {
525
570
  "description": "ChatGLM3は、智譜AIと清華KEGラボが公開したクローズドソースモデルで、大量の中国語と英語の識別子の事前学習と人間の好みの調整学習を経ています。1世代目のモデルと比較して、MMLU、C-Eval、GSM8Kでそれぞれ16%、36%、280%の向上を達成し、中国語タスクランキングC-Evalで1位を獲得しました。知識量、推論能力、創造性が求められる場面、例えば広告文の作成、小説の執筆、知識系の執筆、コードの生成などに適しています。"
526
571
  },
@@ -632,9 +677,18 @@
632
677
  "command-r-plus-04-2024": {
633
678
  "description": "Command R+は、指示に従う対話モデルで、言語タスクにおいてより高い品質と信頼性を提供し、従来のモデルよりも長いコンテキスト長を持っています。複雑なRAGワークフローや多段階ツール使用に最適です。"
634
679
  },
680
+ "command-r-plus-08-2024": {
681
+ "description": "Command R+は指示に従う対話モデルで、言語タスクにおいてより高い品質と信頼性を示し、従来のモデルに比べてより長いコンテキスト長を持っています。複雑なRAGワークフローや多段階のツール使用に最適です。"
682
+ },
635
683
  "command-r7b-12-2024": {
636
684
  "description": "command-r7b-12-2024は、小型で効率的な更新版で、2024年12月にリリースされました。RAG、ツール使用、エージェントなど、複雑な推論と多段階処理を必要とするタスクで優れたパフォーマンスを発揮します。"
637
685
  },
686
+ "compound-beta": {
687
+ "description": "Compound-betaは複合AIシステムで、GroqCloudでサポートされている複数のオープン利用可能なモデルによって支えられ、ユーザーのクエリに応じてツールを賢く選択的に使用します。"
688
+ },
689
+ "compound-beta-mini": {
690
+ "description": "Compound-beta-miniは複合AIシステムで、GroqCloudでサポートされている公開利用可能なモデルによって支えられ、ユーザーのクエリに応じてツールを賢く選択的に使用します。"
691
+ },
638
692
  "dall-e-2": {
639
693
  "description": "第二世代DALL·Eモデル、よりリアルで正確な画像生成をサポートし、解像度は第一世代の4倍です"
640
694
  },
@@ -779,6 +833,18 @@
779
833
  "deepseek/deepseek-v3/community": {
780
834
  "description": "DeepSeek-V3は推論速度において前のモデルに比べて大きなブレークスルーを達成しました。オープンソースモデルの中で1位にランクインし、世界の最先端のクローズドモデルと肩を並べることができます。DeepSeek-V3はマルチヘッド潜在注意(MLA)とDeepSeekMoEアーキテクチャを採用しており、これらのアーキテクチャはDeepSeek-V2で完全に検証されています。さらに、DeepSeek-V3は負荷分散のための補助的な非損失戦略を開発し、より強力な性能を得るためにマルチラベル予測トレーニング目標を設定しました。"
781
835
  },
836
+ "deepseek_r1": {
837
+ "description": "DeepSeek-R1は強化学習(RL)駆動の推論モデルで、モデル内の繰り返しと可読性の問題を解決しました。RLの前に、DeepSeek-R1はコールドスタートデータを導入し、推論性能をさらに最適化しました。数学、コード、推論タスクにおいてOpenAI-o1と同等のパフォーマンスを示し、精巧に設計された訓練方法によって全体的な効果を向上させました。"
838
+ },
839
+ "deepseek_r1_distill_llama_70b": {
840
+ "description": "DeepSeek-R1-Distill-Llama-70BはLlama-3.3-70B-Instructに基づき、蒸留訓練を通じて得られたモデルです。このモデルはDeepSeek-R1シリーズの一部であり、DeepSeek-R1が生成したサンプルを使用して微調整され、数学、プログラミング、推論などの複数の分野で優れた性能を示しています。"
841
+ },
842
+ "deepseek_r1_distill_qwen_14b": {
843
+ "description": "DeepSeek-R1-Distill-Qwen-14BはQwen2.5-14Bに基づき、知識蒸留を通じて得られたモデルです。このモデルはDeepSeek-R1が生成した80万の選りすぐりのサンプルを使用して微調整され、優れた推論能力を示しています。"
844
+ },
845
+ "deepseek_r1_distill_qwen_32b": {
846
+ "description": "DeepSeek-R1-Distill-Qwen-32BはQwen2.5-32Bに基づき、知識蒸留を通じて得られたモデルです。このモデルはDeepSeek-R1が生成した80万の選りすぐりのサンプルを使用して微調整され、数学、プログラミング、推論などの複数の分野で卓越した性能を示しています。"
847
+ },
782
848
  "doubao-1.5-lite-32k": {
783
849
  "description": "Doubao-1.5-liteは全く新しい世代の軽量版モデルで、極限の応答速度を実現し、効果と遅延の両方で世界トップレベルに達しています。"
784
850
  },
@@ -788,6 +854,9 @@
788
854
  "doubao-1.5-pro-32k": {
789
855
  "description": "Doubao-1.5-proは全く新しい世代の主力モデルで、性能が全面的にアップグレードされ、知識、コード、推論などの面で卓越したパフォーマンスを発揮します。"
790
856
  },
857
+ "doubao-1.5-vision-lite": {
858
+ "description": "Doubao-1.5-vision-liteは新たにアップグレードされた多モーダル大モデルで、任意の解像度と極端なアスペクト比の画像認識をサポートし、視覚推論、文書認識、詳細情報の理解、指示の遵守能力を強化しています。128kのコンテキストウィンドウをサポートし、出力長は最大16kトークンをサポートします。"
859
+ },
791
860
  "emohaa": {
792
861
  "description": "Emohaaは心理モデルで、専門的な相談能力を持ち、ユーザーが感情問題を理解するのを助けます。"
793
862
  },
@@ -953,6 +1022,9 @@
953
1022
  "glm-4-air": {
954
1023
  "description": "GLM-4-Airはコストパフォーマンスが高いバージョンで、GLM-4に近い性能を提供し、高速かつ手頃な価格です。"
955
1024
  },
1025
+ "glm-4-air-250414": {
1026
+ "description": "GLM-4-Airはコストパフォーマンスの高いバージョンで、性能はGLM-4に近く、速さと手頃な価格を提供します。"
1027
+ },
956
1028
  "glm-4-airx": {
957
1029
  "description": "GLM-4-AirXはGLM-4-Airの効率的なバージョンで、推論速度はその2.6倍に達します。"
958
1030
  },
@@ -962,6 +1034,9 @@
962
1034
  "glm-4-flash": {
963
1035
  "description": "GLM-4-Flashはシンプルなタスクを処理するのに理想的な選択肢で、最も速く、最も手頃な価格です。"
964
1036
  },
1037
+ "glm-4-flash-250414": {
1038
+ "description": "GLM-4-Flashは簡単なタスクを処理するのに理想的な選択肢で、最も速く、無料です。"
1039
+ },
965
1040
  "glm-4-flashx": {
966
1041
  "description": "GLM-4-FlashXはFlashの強化版で、超高速の推論速度を誇ります。"
967
1042
  },
@@ -980,6 +1055,18 @@
980
1055
  "glm-4v-plus": {
981
1056
  "description": "GLM-4V-Plusは動画コンテンツや複数の画像を理解する能力を持ち、マルチモーダルタスクに適しています。"
982
1057
  },
1058
+ "glm-4v-plus-0111": {
1059
+ "description": "GLM-4V-Plusは動画コンテンツや複数の画像の理解能力を持ち、多モーダルタスクに適しています。"
1060
+ },
1061
+ "glm-z1-air": {
1062
+ "description": "推論モデル:強力な推論能力を持ち、深い推論が必要なタスクに適しています。"
1063
+ },
1064
+ "glm-z1-airx": {
1065
+ "description": "超高速推論:非常に速い推論速度と強力な推論効果を持っています。"
1066
+ },
1067
+ "glm-z1-flash": {
1068
+ "description": "GLM-Z1シリーズは強力な複雑推論能力を持ち、論理推論、数学、プログラミングなどの分野で優れたパフォーマンスを発揮します。最大コンテキスト長は32Kです。"
1069
+ },
983
1070
  "glm-zero-preview": {
984
1071
  "description": "GLM-Zero-Previewは、強力な複雑な推論能力を備え、論理推論、数学、プログラミングなどの分野で優れたパフォーマンスを発揮します。"
985
1072
  },
@@ -1199,12 +1286,15 @@
1199
1286
  "hunyuan-turbos-20250226": {
1200
1287
  "description": "hunyuan-TurboS pv2.1.2固定バージョンの事前トレーニングベースのトークン数がアップグレードされました。数学、論理、コードなどの思考能力が向上し、中国語と英語の一般的な体験効果が向上しました。テキスト作成、テキスト理解、知識質問、雑談などが含まれます。"
1201
1288
  },
1202
- "hunyuan-turbos-20250313": {
1203
- "description": "統一された数学問題解決手順のスタイルを強化し、数学の多段階質問応答を強化します。テキスト作成の回答スタイルを最適化し、AIの特徴を排除し、文才を増加させます。"
1204
- },
1205
1289
  "hunyuan-turbos-latest": {
1206
1290
  "description": "hunyuan-TurboS混元フラッグシップ大モデルの最新バージョンで、より強力な思考能力と優れた体験効果を備えています。"
1207
1291
  },
1292
+ "hunyuan-turbos-longtext-128k-20250325": {
1293
+ "description": "文書要約や文書質問応答などの長文タスクを得意とし、一般的なテキスト生成タスクにも対応可能です。長文の分析と生成に優れ、複雑で詳細な長文内容の処理ニーズに効果的に対応します。"
1294
+ },
1295
+ "hunyuan-turbos-vision": {
1296
+ "description": "このモデルは画像とテキストの理解シーンに適しており、混元の最新のturbosに基づく次世代の視覚言語フラッグシップモデルで、画像に基づくエンティティ認識、知識質問応答、コピーライティング、写真解決などのタスクに焦点を当てており、前の世代のモデルに比べて全体的に向上しています。"
1297
+ },
1208
1298
  "hunyuan-vision": {
1209
1299
  "description": "混元の最新のマルチモーダルモデルで、画像とテキストの入力をサポートし、テキストコンテンツを生成します。"
1210
1300
  },
@@ -1223,6 +1313,12 @@
1223
1313
  "internlm3-latest": {
1224
1314
  "description": "私たちの最新のモデルシリーズは、卓越した推論性能を持ち、同等のオープンソースモデルの中でリーダーシップを発揮しています。デフォルトで最新のInternLM3シリーズモデルを指します。"
1225
1315
  },
1316
+ "jamba-large": {
1317
+ "description": "私たちの最も強力で先進的なモデルで、企業レベルの複雑なタスクを処理するために設計されており、卓越した性能を備えています。"
1318
+ },
1319
+ "jamba-mini": {
1320
+ "description": "同クラスで最も効率的なモデルで、速度と品質のバランスが取れ、より小型です。"
1321
+ },
1226
1322
  "jina-deepsearch-v1": {
1227
1323
  "description": "深層検索は、ウェブ検索、読解、推論を組み合わせて、包括的な調査を行います。これは、あなたの研究タスクを受け入れる代理人として考えることができ、広範な検索を行い、何度も反復してから答えを提供します。このプロセスには、継続的な研究、推論、さまざまな視点からの問題解決が含まれます。これは、事前に訓練されたデータから直接答えを生成する標準的な大規模モデルや、一度きりの表面的な検索に依存する従来のRAGシステムとは根本的に異なります。"
1228
1324
  },
@@ -1568,9 +1664,18 @@
1568
1664
  "o1-preview": {
1569
1665
  "description": "o1はOpenAIの新しい推論モデルで、広範な一般知識を必要とする複雑なタスクに適しています。このモデルは128Kのコンテキストを持ち、2023年10月の知識のカットオフがあります。"
1570
1666
  },
1667
+ "o3": {
1668
+ "description": "o3は全能で強力なモデルで、複数の分野で優れたパフォーマンスを発揮します。数学、科学、プログラミング、視覚推論タスクの新たな基準を設定しました。また、技術的な執筆や指示の遵守にも優れています。ユーザーはこれを利用して、テキスト、コード、画像を分析し、複雑な多段階の問題を解決できます。"
1669
+ },
1571
1670
  "o3-mini": {
1572
1671
  "description": "o3-miniは、o1-miniと同じコストと遅延目標で高い知能を提供する最新の小型推論モデルです。"
1573
1672
  },
1673
+ "o3-mini-high": {
1674
+ "description": "o3-mini高推論レベル版で、o1-miniと同じコストと遅延目標の下で高い知能を提供します。"
1675
+ },
1676
+ "o4-mini": {
1677
+ "description": "o4-miniは私たちの最新の小型oシリーズモデルです。迅速かつ効果的な推論のために最適化されており、コーディングや視覚タスクで非常に高い効率と性能を発揮します。"
1678
+ },
1574
1679
  "open-codestral-mamba": {
1575
1680
  "description": "Codestral Mambaは、コード生成に特化したMamba 2言語モデルであり、高度なコードおよび推論タスクを強力にサポートします。"
1576
1681
  },
@@ -1598,6 +1703,12 @@
1598
1703
  "openai/o1-preview": {
1599
1704
  "description": "o1はOpenAIの新しい推論モデルで、広範な一般知識を必要とする複雑なタスクに適しています。このモデルは128Kのコンテキストを持ち、2023年10月の知識のカットオフがあります。"
1600
1705
  },
1706
+ "openai/o4-mini": {
1707
+ "description": "o4-miniは迅速かつ効果的な推論のために最適化されており、コーディングや視覚タスクで非常に高い効率と性能を発揮します。"
1708
+ },
1709
+ "openai/o4-mini-high": {
1710
+ "description": "o4-mini高推論レベル版で、迅速かつ効果的な推論のために最適化されており、コーディングや視覚タスクで非常に高い効率と性能を発揮します。"
1711
+ },
1601
1712
  "openrouter/auto": {
1602
1713
  "description": "コンテキストの長さ、テーマ、複雑さに応じて、あなたのリクエストはLlama 3 70B Instruct、Claude 3.5 Sonnet(自己調整)、またはGPT-4oに送信されます。"
1603
1714
  },
@@ -1793,6 +1904,9 @@
1793
1904
  "qwq-plus-latest": {
1794
1905
  "description": "Qwen2.5モデルに基づいて訓練されたQwQ推論モデルは、強化学習を通じてモデルの推論能力を大幅に向上させました。モデルの数学コードなどのコア指標(AIME 24/25、LiveCodeBench)および一部の一般的な指標(IFEval、LiveBenchなど)は、DeepSeek-R1のフルバージョンに達しています。"
1795
1906
  },
1907
+ "qwq_32b": {
1908
+ "description": "Qwenシリーズの中規模推論モデルです。従来の指示調整モデルと比較して、思考と推論能力を持つQwQは、特に難題を解決する際に下流タスクの性能を大幅に向上させることができます。"
1909
+ },
1796
1910
  "r1-1776": {
1797
1911
  "description": "R1-1776は、DeepSeek R1モデルの一つのバージョンで、後処理を経て、検閲されていない偏りのない事実情報を提供します。"
1798
1912
  },
@@ -1853,12 +1967,21 @@
1853
1967
  "step-2-16k": {
1854
1968
  "description": "大規模なコンテキストインタラクションをサポートし、複雑な対話シナリオに適しています。"
1855
1969
  },
1970
+ "step-2-16k-exp": {
1971
+ "description": "step-2モデルの実験版で、最新の機能を含み、継続的に更新されています。正式な生産環境での使用は推奨されません。"
1972
+ },
1856
1973
  "step-2-mini": {
1857
1974
  "description": "新世代の自社開発のAttentionアーキテクチャMFAに基づく超高速大モデルで、非常に低コストでstep1と同様の効果を達成しつつ、より高いスループットと迅速な応答遅延を維持しています。一般的なタスクを処理でき、コード能力において特長を持っています。"
1858
1975
  },
1976
+ "step-r1-v-mini": {
1977
+ "description": "このモデルは強力な画像理解能力を持つ推論大モデルで、画像とテキスト情報を処理し、深い思考の後にテキストを生成します。このモデルは視覚推論分野で優れたパフォーマンスを発揮し、数学、コード、テキスト推論能力も第一級です。コンテキスト長は100kです。"
1978
+ },
1859
1979
  "taichu_llm": {
1860
1980
  "description": "紫東太初言語大モデルは、強力な言語理解能力とテキスト創作、知識問答、コードプログラミング、数学計算、論理推論、感情分析、テキスト要約などの能力を備えています。革新的に大データの事前学習と多源の豊富な知識を組み合わせ、アルゴリズム技術を継続的に磨き、膨大なテキストデータから語彙、構造、文法、意味などの新しい知識を吸収し、モデルの効果を進化させています。ユーザーにより便利な情報とサービス、よりインテリジェントな体験を提供します。"
1861
1981
  },
1982
+ "taichu_o1": {
1983
+ "description": "taichu_o1は新世代の推論大モデルで、多モーダルインタラクションと強化学習を通じて人間の思考チェーンを実現し、複雑な意思決定推論をサポートします。高精度の出力を維持しつつ、モデル推論の思考経路を示し、戦略分析や深い思考などのシーンに適しています。"
1984
+ },
1862
1985
  "taichu_vl": {
1863
1986
  "description": "画像理解、知識移転、論理帰納などの能力を融合し、画像とテキストの質問応答分野で優れたパフォーマンスを発揮します。"
1864
1987
  },
@@ -5,6 +5,7 @@
5
5
  "off": "デバッグをオフにする",
6
6
  "on": "プラグイン呼び出し情報を表示する",
7
7
  "payload": "ペイロード",
8
+ "pluginState": "プラグインの状態",
8
9
  "response": "レスポンス",
9
10
  "tool_call": "ツール呼び出し"
10
11
  },
@@ -7,6 +7,20 @@
7
7
  "images": "画像:",
8
8
  "prompt": "プロンプト"
9
9
  },
10
+ "localFiles": {
11
+ "file": "ファイル",
12
+ "folder": "フォルダー",
13
+ "open": "開く",
14
+ "openFile": "ファイルを開く",
15
+ "openFolder": "フォルダーを開く",
16
+ "read": {
17
+ "more": "もっと見る"
18
+ },
19
+ "readFile": "ファイルを読み込む",
20
+ "readFileError": "ファイルの読み込みに失敗しました。ファイルパスが正しいか確認してください。",
21
+ "readFiles": "ファイルを読み込む",
22
+ "readFilesError": "ファイルの読み込みに失敗しました。ファイルパスが正しいか確認してください。"
23
+ },
10
24
  "search": {
11
25
  "createNewSearch": "新しい検索記録を作成",
12
26
  "emptyResult": "結果が見つかりませんでした。キーワードを変更して再試行してください",
@@ -44,5 +58,16 @@
44
58
  "summary": "要約",
45
59
  "summaryTooltip": "現在の内容を要約",
46
60
  "viewMoreResults": "さらに {{results}} 件の結果を見る"
61
+ },
62
+ "updateArgs": {
63
+ "duplicateKeyError": "フィールドキーは一意でなければなりません。",
64
+ "form": {
65
+ "add": "項目を追加",
66
+ "key": "フィールドキー",
67
+ "value": "フィールド値"
68
+ },
69
+ "formValidationFailed": "フォームの検証に失敗しました。パラメータの形式を確認してください。",
70
+ "keyRequired": "フィールドキーは空にできません。",
71
+ "stringifyError": "パラメータをシリアライズできません。パラメータの形式を確認してください。"
47
72
  }
48
73
  }
@@ -284,6 +284,8 @@
284
284
  "rename": "이름 바꾸기",
285
285
  "reset": "재설정",
286
286
  "retry": "재시도",
287
+ "run": "실행",
288
+ "save": "저장",
287
289
  "send": "보내기",
288
290
  "setting": "설정",
289
291
  "share": "공유",
@@ -0,0 +1,32 @@
1
+ {
2
+ "remoteServer": {
3
+ "authError": "인증 실패: {{error}}",
4
+ "authPending": "브라우저에서 인증을 완료하세요",
5
+ "configDesc": "원격 LobeChat 서버에 연결하여 데이터 동기화를 활성화합니다",
6
+ "configError": "구성 오류",
7
+ "configTitle": "클라우드 동기화 구성",
8
+ "connect": "연결 및 인증",
9
+ "connected": "연결됨",
10
+ "disconnect": "연결 끊기",
11
+ "disconnectError": "연결 끊기 실패",
12
+ "disconnected": "연결되지 않음",
13
+ "fetchError": "구성 가져오기 실패",
14
+ "invalidUrl": "유효한 URL 주소를 입력하세요",
15
+ "serverUrl": "서버 주소",
16
+ "statusConnected": "연결됨",
17
+ "statusDisconnected": "연결되지 않음",
18
+ "urlRequired": "서버 주소를 입력하세요"
19
+ },
20
+ "updater": {
21
+ "downloadingUpdate": "업데이트 다운로드 중",
22
+ "downloadingUpdateDesc": "업데이트가 다운로드 중입니다. 잠시 기다려 주세요...",
23
+ "later": "나중에 업데이트",
24
+ "newVersionAvailable": "새 버전 사용 가능",
25
+ "newVersionAvailableDesc": "새 버전 {{version}}이 발견되었습니다. 지금 다운로드 하시겠습니까?",
26
+ "restartAndInstall": "재시작 및 설치",
27
+ "updateError": "업데이트 오류",
28
+ "updateReady": "업데이트 준비 완료",
29
+ "updateReadyDesc": "Lobe Chat {{version}}이 다운로드 완료되었습니다. 앱을 재시작하면 설치가 완료됩니다.",
30
+ "upgradeNow": "지금 업데이트"
31
+ }
32
+ }