@lobehub/chat 1.81.3 → 1.81.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (151) hide show
  1. package/CHANGELOG.md +33 -0
  2. package/changelog/v1.json +12 -0
  3. package/locales/ar/common.json +2 -0
  4. package/locales/ar/electron.json +32 -0
  5. package/locales/ar/models.json +126 -3
  6. package/locales/ar/plugin.json +1 -0
  7. package/locales/ar/tool.json +25 -0
  8. package/locales/bg-BG/common.json +2 -0
  9. package/locales/bg-BG/electron.json +32 -0
  10. package/locales/bg-BG/models.json +126 -3
  11. package/locales/bg-BG/plugin.json +1 -0
  12. package/locales/bg-BG/tool.json +25 -0
  13. package/locales/de-DE/common.json +2 -0
  14. package/locales/de-DE/electron.json +32 -0
  15. package/locales/de-DE/models.json +126 -3
  16. package/locales/de-DE/plugin.json +1 -0
  17. package/locales/de-DE/tool.json +25 -0
  18. package/locales/en-US/common.json +2 -0
  19. package/locales/en-US/electron.json +32 -0
  20. package/locales/en-US/models.json +126 -3
  21. package/locales/en-US/plugin.json +1 -0
  22. package/locales/en-US/tool.json +25 -0
  23. package/locales/es-ES/common.json +2 -0
  24. package/locales/es-ES/electron.json +32 -0
  25. package/locales/es-ES/models.json +126 -3
  26. package/locales/es-ES/plugin.json +1 -0
  27. package/locales/es-ES/tool.json +25 -0
  28. package/locales/fa-IR/common.json +2 -0
  29. package/locales/fa-IR/electron.json +32 -0
  30. package/locales/fa-IR/models.json +126 -3
  31. package/locales/fa-IR/plugin.json +1 -0
  32. package/locales/fa-IR/tool.json +25 -0
  33. package/locales/fr-FR/common.json +2 -0
  34. package/locales/fr-FR/electron.json +32 -0
  35. package/locales/fr-FR/models.json +126 -3
  36. package/locales/fr-FR/plugin.json +1 -0
  37. package/locales/fr-FR/tool.json +25 -0
  38. package/locales/it-IT/common.json +2 -0
  39. package/locales/it-IT/electron.json +32 -0
  40. package/locales/it-IT/models.json +126 -3
  41. package/locales/it-IT/plugin.json +1 -0
  42. package/locales/it-IT/tool.json +25 -0
  43. package/locales/ja-JP/common.json +2 -0
  44. package/locales/ja-JP/electron.json +32 -0
  45. package/locales/ja-JP/models.json +126 -3
  46. package/locales/ja-JP/plugin.json +1 -0
  47. package/locales/ja-JP/tool.json +25 -0
  48. package/locales/ko-KR/common.json +2 -0
  49. package/locales/ko-KR/electron.json +32 -0
  50. package/locales/ko-KR/models.json +126 -3
  51. package/locales/ko-KR/plugin.json +1 -0
  52. package/locales/ko-KR/tool.json +25 -0
  53. package/locales/nl-NL/common.json +2 -0
  54. package/locales/nl-NL/electron.json +32 -0
  55. package/locales/nl-NL/models.json +126 -3
  56. package/locales/nl-NL/plugin.json +1 -0
  57. package/locales/nl-NL/tool.json +25 -0
  58. package/locales/pl-PL/common.json +2 -0
  59. package/locales/pl-PL/electron.json +32 -0
  60. package/locales/pl-PL/models.json +126 -3
  61. package/locales/pl-PL/plugin.json +1 -0
  62. package/locales/pl-PL/tool.json +25 -0
  63. package/locales/pt-BR/common.json +2 -0
  64. package/locales/pt-BR/electron.json +32 -0
  65. package/locales/pt-BR/models.json +126 -3
  66. package/locales/pt-BR/plugin.json +1 -0
  67. package/locales/pt-BR/tool.json +25 -0
  68. package/locales/ru-RU/common.json +2 -0
  69. package/locales/ru-RU/electron.json +32 -0
  70. package/locales/ru-RU/models.json +126 -3
  71. package/locales/ru-RU/plugin.json +1 -0
  72. package/locales/ru-RU/tool.json +25 -0
  73. package/locales/tr-TR/common.json +2 -0
  74. package/locales/tr-TR/electron.json +32 -0
  75. package/locales/tr-TR/models.json +126 -3
  76. package/locales/tr-TR/plugin.json +1 -0
  77. package/locales/tr-TR/tool.json +25 -0
  78. package/locales/vi-VN/common.json +2 -0
  79. package/locales/vi-VN/electron.json +32 -0
  80. package/locales/vi-VN/models.json +126 -3
  81. package/locales/vi-VN/plugin.json +1 -0
  82. package/locales/vi-VN/tool.json +25 -0
  83. package/locales/zh-CN/common.json +2 -0
  84. package/locales/zh-CN/electron.json +32 -0
  85. package/locales/zh-CN/models.json +131 -8
  86. package/locales/zh-CN/plugin.json +1 -0
  87. package/locales/zh-CN/tool.json +25 -0
  88. package/locales/zh-TW/common.json +2 -0
  89. package/locales/zh-TW/electron.json +32 -0
  90. package/locales/zh-TW/models.json +126 -3
  91. package/locales/zh-TW/plugin.json +1 -0
  92. package/locales/zh-TW/tool.json +25 -0
  93. package/package.json +3 -2
  94. package/packages/electron-client-ipc/src/events/index.ts +5 -5
  95. package/packages/electron-client-ipc/src/events/localFile.ts +22 -0
  96. package/packages/electron-client-ipc/src/events/{file.ts → upload.ts} +1 -1
  97. package/packages/electron-client-ipc/src/types/index.ts +2 -1
  98. package/packages/electron-client-ipc/src/types/localFile.ts +52 -0
  99. package/scripts/prebuild.mts +5 -1
  100. package/src/app/(backend)/trpc/desktop/[trpc]/route.ts +26 -0
  101. package/src/features/Conversation/Messages/Assistant/Tool/Render/Arguments/ObjectEntity.tsx +81 -0
  102. package/src/features/Conversation/Messages/Assistant/Tool/Render/Arguments/ValueCell.tsx +43 -0
  103. package/src/features/Conversation/Messages/Assistant/Tool/Render/Arguments/index.tsx +120 -0
  104. package/src/features/Conversation/Messages/Assistant/Tool/Render/CustomRender.tsx +75 -2
  105. package/src/features/Conversation/Messages/Assistant/Tool/Render/KeyValueEditor.tsx +214 -0
  106. package/src/features/User/UserPanel/useMenu.tsx +8 -1
  107. package/src/libs/agent-runtime/google/index.ts +3 -0
  108. package/src/libs/trpc/client/desktop.ts +14 -0
  109. package/src/locales/default/common.ts +2 -0
  110. package/src/locales/default/electron.ts +34 -0
  111. package/src/locales/default/index.ts +2 -0
  112. package/src/locales/default/tool.ts +25 -0
  113. package/src/server/routers/desktop/index.ts +9 -0
  114. package/src/server/routers/desktop/pgTable.ts +43 -0
  115. package/src/services/electron/autoUpdate.ts +17 -0
  116. package/src/services/electron/file.ts +31 -0
  117. package/src/services/electron/localFileService.ts +39 -0
  118. package/src/services/electron/remoteServer.ts +40 -0
  119. package/src/store/chat/index.ts +1 -1
  120. package/src/store/chat/slices/builtinTool/actions/index.ts +3 -1
  121. package/src/store/chat/slices/builtinTool/actions/localFile.ts +129 -0
  122. package/src/store/chat/slices/builtinTool/initialState.ts +2 -0
  123. package/src/store/chat/slices/builtinTool/selectors.ts +2 -0
  124. package/src/store/chat/slices/plugin/action.ts +3 -3
  125. package/src/store/chat/store.ts +2 -0
  126. package/src/store/electron/actions/sync.ts +117 -0
  127. package/src/store/electron/index.ts +1 -0
  128. package/src/store/electron/initialState.ts +18 -0
  129. package/src/store/electron/selectors/index.ts +1 -0
  130. package/src/store/electron/selectors/sync.ts +9 -0
  131. package/src/store/electron/store.ts +29 -0
  132. package/src/tools/index.ts +8 -0
  133. package/src/tools/local-files/Render/ListFiles/Result.tsx +42 -0
  134. package/src/tools/local-files/Render/ListFiles/index.tsx +68 -0
  135. package/src/tools/local-files/Render/ReadLocalFile/ReadFileSkeleton.tsx +50 -0
  136. package/src/tools/local-files/Render/ReadLocalFile/ReadFileView.tsx +197 -0
  137. package/src/tools/local-files/Render/ReadLocalFile/index.tsx +31 -0
  138. package/src/tools/local-files/Render/ReadLocalFile/style.ts +37 -0
  139. package/src/tools/local-files/Render/SearchFiles/Result.tsx +42 -0
  140. package/src/tools/local-files/Render/SearchFiles/SearchQuery/SearchView.tsx +77 -0
  141. package/src/tools/local-files/Render/SearchFiles/SearchQuery/index.tsx +72 -0
  142. package/src/tools/local-files/Render/SearchFiles/index.tsx +32 -0
  143. package/src/tools/local-files/Render/index.tsx +36 -0
  144. package/src/tools/local-files/components/FileItem.tsx +117 -0
  145. package/src/tools/local-files/index.ts +149 -0
  146. package/src/tools/local-files/systemRole.ts +46 -0
  147. package/src/tools/local-files/type.ts +33 -0
  148. package/src/tools/renders.ts +3 -0
  149. package/packages/electron-client-ipc/src/events/search.ts +0 -4
  150. package/src/features/Conversation/Messages/Assistant/Tool/Render/Arguments.tsx +0 -165
  151. /package/packages/electron-client-ipc/src/types/{file.ts → upload.ts} +0 -0
@@ -5,9 +5,15 @@
5
5
  "01-ai/yi-1.5-9b-chat": {
6
6
  "description": "Cero Uno, el último modelo de ajuste fino de código abierto, cuenta con 9 mil millones de parámetros, con ajuste fino que admite múltiples escenarios de conversación y datos de entrenamiento de alta calidad, alineados con las preferencias humanas."
7
7
  },
8
+ "360/deepseek-r1": {
9
+ "description": "【Versión desplegada de 360】DeepSeek-R1 utiliza técnicas de aprendizaje por refuerzo a gran escala en la fase de post-entrenamiento, mejorando enormemente la capacidad de inferencia del modelo con muy pocos datos etiquetados. En tareas de matemáticas, código y razonamiento en lenguaje natural, su rendimiento es comparable al de la versión oficial de OpenAI o1."
10
+ },
8
11
  "360gpt-pro": {
9
12
  "description": "360GPT Pro, como un miembro importante de la serie de modelos de IA de 360, satisface diversas aplicaciones de procesamiento de lenguaje natural con su eficiente capacidad de manejo de textos, soportando la comprensión de textos largos y funciones de diálogo en múltiples turnos."
10
13
  },
14
+ "360gpt-pro-trans": {
15
+ "description": "Modelo especializado en traducción, optimizado con un ajuste fino profundo, con resultados de traducción líderes."
16
+ },
11
17
  "360gpt-turbo": {
12
18
  "description": "360GPT Turbo ofrece potentes capacidades de cálculo y diálogo, con una excelente comprensión semántica y eficiencia de generación, siendo la solución ideal para empresas y desarrolladores como asistente inteligente."
13
19
  },
@@ -62,6 +68,18 @@
62
68
  "DeepSeek-R1-Distill-Qwen-7B": {
63
69
  "description": "El modelo de destilación DeepSeek-R1 basado en Qwen2.5-Math-7B optimiza el rendimiento de inferencia mediante aprendizaje por refuerzo y datos de arranque en frío, actualizando el estándar de múltiples tareas en modelos de código abierto."
64
70
  },
71
+ "DeepSeek-V3": {
72
+ "description": "DeepSeek-V3 es un modelo MoE desarrollado internamente por la empresa DeepSeek. Los resultados de DeepSeek-V3 en múltiples evaluaciones superan a otros modelos de código abierto como Qwen2.5-72B y Llama-3.1-405B, y su rendimiento es comparable al de los modelos cerrados de primer nivel mundial como GPT-4o y Claude-3.5-Sonnet."
73
+ },
74
+ "Doubao-1.5-thinking-pro": {
75
+ "description": "Doubao-1.5 es un nuevo modelo de pensamiento profundo, que destaca en campos profesionales como matemáticas, programación y razonamiento científico, así como en tareas generales de redacción creativa, alcanzando o acercándose a los niveles de la primera fila de la industria en múltiples benchmarks de prestigio como AIME 2024, Codeforces y GPQA. Soporta una ventana de contexto de 128k y una salida de 16k."
76
+ },
77
+ "Doubao-1.5-thinking-pro-vision": {
78
+ "description": "Doubao-1.5 es un nuevo modelo de pensamiento profundo, que destaca en campos profesionales como matemáticas, programación y razonamiento científico, así como en tareas generales de redacción creativa, alcanzando o acercándose a los niveles de la primera fila de la industria en múltiples benchmarks de prestigio como AIME 2024, Codeforces y GPQA. Soporta una ventana de contexto de 128k y una salida de 16k."
79
+ },
80
+ "Doubao-1.5-vision-pro": {
81
+ "description": "Doubao-1.5-vision-pro es un modelo multimodal de gran escala actualizado, que soporta el reconocimiento de imágenes de cualquier resolución y proporciones extremas, mejorando la capacidad de razonamiento visual, reconocimiento de documentos, comprensión de información detallada y seguimiento de instrucciones."
82
+ },
65
83
  "Doubao-1.5-vision-pro-32k": {
66
84
  "description": "Doubao-1.5-vision-pro es un modelo multimodal de gran tamaño, actualizado, que soporta el reconocimiento de imágenes de cualquier resolución y proporciones extremas, mejorando la capacidad de razonamiento visual, reconocimiento de documentos, comprensión de información detallada y cumplimiento de instrucciones."
67
85
  },
@@ -341,6 +359,15 @@
341
359
  "SenseChat-Vision": {
342
360
  "description": "La última versión del modelo (V5.5) admite la entrada de múltiples imágenes, logrando una optimización completa de las capacidades básicas del modelo, con mejoras significativas en el reconocimiento de atributos de objetos, relaciones espaciales, reconocimiento de eventos de acción, comprensión de escenas, reconocimiento de emociones, razonamiento lógico y comprensión y generación de texto."
343
361
  },
362
+ "SenseNova-V6-Pro": {
363
+ "description": "Logra una unificación nativa de capacidades de imagen, texto y video, superando las limitaciones tradicionales de la multimodalidad discreta, y ha ganado el doble campeonato en las evaluaciones de OpenCompass y SuperCLUE."
364
+ },
365
+ "SenseNova-V6-Reasoner": {
366
+ "description": "Equilibra el razonamiento profundo visual y lingüístico, logrando un pensamiento lento y un razonamiento profundo, presentando un proceso completo de cadena de pensamiento."
367
+ },
368
+ "SenseNova-V6-Turbo": {
369
+ "description": "Logra una unificación nativa de capacidades de imagen, texto y video, superando las limitaciones tradicionales de la multimodalidad discreta, liderando en dimensiones clave como capacidades multimodales y lingüísticas, combinando literatura y ciencia, y ocupando repetidamente el nivel de la primera división en múltiples evaluaciones tanto nacionales como internacionales."
370
+ },
344
371
  "Skylark2-lite-8k": {
345
372
  "description": "El modelo de segunda generación Skaylark (Skylark), el modelo Skylark2-lite, tiene una alta velocidad de respuesta, adecuado para escenarios donde se requiere alta inmediatez, sensibilidad de costos y baja necesidad de precisión del modelo, con una longitud de ventana de contexto de 8k."
346
373
  },
@@ -356,6 +383,21 @@
356
383
  "Skylark2-pro-turbo-8k": {
357
384
  "description": "El modelo de segunda generación Skaylark (Skylark), Skylark2-pro-turbo-8k, ofrece una inferencia más rápida y costos más bajos, con una longitud de ventana de contexto de 8k."
358
385
  },
386
+ "THUDM/GLM-4-32B-0414": {
387
+ "description": "GLM-4-32B-0414 es el nuevo modelo de código abierto de la serie GLM, con 32 mil millones de parámetros. Su rendimiento es comparable a las series GPT de OpenAI y V3/R1 de DeepSeek."
388
+ },
389
+ "THUDM/GLM-4-9B-0414": {
390
+ "description": "GLM-4-9B-0414 es un modelo pequeño de la serie GLM, con 9 mil millones de parámetros. Este modelo hereda las características técnicas de la serie GLM-4-32B, pero ofrece opciones de implementación más ligeras. A pesar de su menor tamaño, GLM-4-9B-0414 sigue mostrando habilidades sobresalientes en tareas de generación de código, diseño web, generación de gráficos SVG y redacción basada en búsqueda."
391
+ },
392
+ "THUDM/GLM-Z1-32B-0414": {
393
+ "description": "GLM-Z1-32B-0414 es un modelo de inferencia con capacidad de pensamiento profundo. Este modelo se desarrolló a partir de GLM-4-32B-0414 mediante un arranque en frío y aprendizaje por refuerzo ampliado, y se entrenó adicionalmente en tareas de matemáticas, código y lógica. En comparación con el modelo base, GLM-Z1-32B-0414 mejora significativamente la capacidad matemática y la habilidad para resolver tareas complejas."
394
+ },
395
+ "THUDM/GLM-Z1-9B-0414": {
396
+ "description": "GLM-Z1-9B-0414 es un modelo pequeño de la serie GLM, con solo 9 mil millones de parámetros, pero que muestra una capacidad sorprendente manteniendo la tradición de código abierto. A pesar de su menor tamaño, este modelo sigue destacando en razonamiento matemático y tareas generales, con un rendimiento general que se encuentra entre los mejores en modelos de código abierto de tamaño similar."
397
+ },
398
+ "THUDM/GLM-Z1-Rumination-32B-0414": {
399
+ "description": "GLM-Z1-Rumination-32B-0414 es un modelo de inferencia profunda con capacidad de reflexión (en comparación con la investigación profunda de OpenAI). A diferencia de los modelos típicos de pensamiento profundo, el modelo de reflexión utiliza un tiempo de reflexión más prolongado para resolver problemas más abiertos y complejos."
400
+ },
359
401
  "THUDM/chatglm3-6b": {
360
402
  "description": "ChatGLM3-6B es un modelo de código abierto de la serie ChatGLM, desarrollado por Zhipu AI. Este modelo conserva las excelentes características de su predecesor, como la fluidez en el diálogo y un bajo umbral de implementación, al tiempo que introduce nuevas características. Utiliza datos de entrenamiento más diversos, un mayor número de pasos de entrenamiento y estrategias de entrenamiento más razonables, destacando entre los modelos preentrenados de menos de 10B. ChatGLM3-6B admite diálogos de múltiples turnos, llamadas a herramientas, ejecución de código y tareas de agente en escenarios complejos. Además del modelo de diálogo, también se han lanzado el modelo base ChatGLM-6B-Base y el modelo de diálogo de texto largo ChatGLM3-6B-32K. Este modelo está completamente abierto para la investigación académica y permite el uso comercial gratuito tras el registro."
361
403
  },
@@ -521,6 +563,9 @@
521
563
  "charglm-3": {
522
564
  "description": "CharGLM-3 está diseñado para juegos de rol y acompañamiento emocional, soportando memoria de múltiples rondas y diálogos personalizados, con aplicaciones amplias."
523
565
  },
566
+ "charglm-4": {
567
+ "description": "CharGLM-4 está diseñado para el juego de roles y la compañía emocional, soportando memoria de múltiples turnos de larga duración y diálogos personalizados, con aplicaciones amplias."
568
+ },
524
569
  "chatglm3": {
525
570
  "description": "ChatGLM3 es un modelo de código cerrado desarrollado por Zhipu AI y el Laboratorio KEG de Tsinghua. Ha sido preentrenado con una gran cantidad de identificadores en chino e inglés y ajustado a las preferencias humanas. En comparación con el modelo de primera generación, ha logrado mejoras del 16%, 36% y 280% en MMLU, C-Eval y GSM8K, respectivamente, y ha alcanzado el primer lugar en el ranking de tareas en chino C-Eval. Es adecuado para escenarios que requieren un alto nivel de conocimiento, capacidad de razonamiento y creatividad, como la redacción de anuncios, la escritura de novelas, la redacción de contenido de conocimiento y la generación de código."
526
571
  },
@@ -632,9 +677,18 @@
632
677
  "command-r-plus-04-2024": {
633
678
  "description": "Command R+ es un modelo de conversación que sigue instrucciones, ofreciendo una mayor calidad y fiabilidad en tareas lingüísticas, además de tener una longitud de contexto más larga que los modelos anteriores. Es ideal para flujos de trabajo complejos de RAG y uso de herramientas en múltiples pasos."
634
679
  },
680
+ "command-r-plus-08-2024": {
681
+ "description": "Command R+ es un modelo de conversación que sigue instrucciones, mostrando una mayor calidad y fiabilidad en tareas lingüísticas, con una longitud de contexto más larga en comparación con modelos anteriores. Es más adecuado para flujos de trabajo RAG complejos y el uso de herramientas en múltiples pasos."
682
+ },
635
683
  "command-r7b-12-2024": {
636
684
  "description": "command-r7b-12-2024 es una versión pequeña y eficiente, lanzada en diciembre de 2024. Destaca en tareas que requieren razonamiento complejo y procesamiento en múltiples pasos, como RAG, uso de herramientas y agentes."
637
685
  },
686
+ "compound-beta": {
687
+ "description": "Compound-beta es un sistema de IA compuesto, respaldado por múltiples modelos de acceso abierto ya soportados en GroqCloud, que puede utilizar herramientas de manera inteligente y selectiva para responder a consultas de los usuarios."
688
+ },
689
+ "compound-beta-mini": {
690
+ "description": "Compound-beta-mini es un sistema de IA compuesto, respaldado por modelos de acceso abierto ya soportados en GroqCloud, que puede utilizar herramientas de manera inteligente y selectiva para responder a consultas de los usuarios."
691
+ },
638
692
  "dall-e-2": {
639
693
  "description": "El segundo modelo DALL·E, que admite generación de imágenes más realistas y precisas, con una resolución cuatro veces mayor que la de la primera generación."
640
694
  },
@@ -779,6 +833,18 @@
779
833
  "deepseek/deepseek-v3/community": {
780
834
  "description": "DeepSeek-V3 ha logrado un avance significativo en la velocidad de inferencia en comparación con modelos anteriores. Se clasifica como el número uno entre los modelos de código abierto y puede competir con los modelos cerrados más avanzados del mundo. DeepSeek-V3 utiliza la arquitectura de atención multi-cabeza (MLA) y DeepSeekMoE, que han sido completamente validadas en DeepSeek-V2. Además, DeepSeek-V3 ha introducido una estrategia auxiliar sin pérdidas para el balanceo de carga y ha establecido objetivos de entrenamiento de predicción de múltiples etiquetas para lograr un rendimiento más robusto."
781
835
  },
836
+ "deepseek_r1": {
837
+ "description": "DeepSeek-R1 es un modelo de inferencia impulsado por aprendizaje por refuerzo (RL), que resuelve problemas de repetitividad y legibilidad en el modelo. Antes de RL, DeepSeek-R1 introdujo datos de arranque en frío, optimizando aún más el rendimiento de inferencia. Su rendimiento en tareas de matemáticas, código y razonamiento es comparable al de OpenAI-o1, y mediante un método de entrenamiento cuidadosamente diseñado, se ha mejorado el efecto general."
838
+ },
839
+ "deepseek_r1_distill_llama_70b": {
840
+ "description": "DeepSeek-R1-Distill-Llama-70B es un modelo obtenido a partir de Llama-3.3-70B-Instruct mediante entrenamiento de destilación. Este modelo es parte de la serie DeepSeek-R1, mostrando un rendimiento sobresaliente en matemáticas, programación y razonamiento mediante el ajuste con muestras generadas por DeepSeek-R1."
841
+ },
842
+ "deepseek_r1_distill_qwen_14b": {
843
+ "description": "DeepSeek-R1-Distill-Qwen-14B es un modelo obtenido a partir de Qwen2.5-14B mediante destilación de conocimiento. Este modelo se ajustó utilizando 800,000 muestras seleccionadas generadas por DeepSeek-R1, mostrando una excelente capacidad de inferencia."
844
+ },
845
+ "deepseek_r1_distill_qwen_32b": {
846
+ "description": "DeepSeek-R1-Distill-Qwen-32B es un modelo obtenido a partir de Qwen2.5-32B mediante destilación de conocimiento. Este modelo se ajustó utilizando 800,000 muestras seleccionadas generadas por DeepSeek-R1, mostrando un rendimiento excepcional en múltiples campos como matemáticas, programación y razonamiento."
847
+ },
782
848
  "doubao-1.5-lite-32k": {
783
849
  "description": "Doubao-1.5-lite es un modelo ligero de nueva generación, con una velocidad de respuesta extrema, alcanzando niveles de rendimiento y latencia de clase mundial."
784
850
  },
@@ -788,6 +854,9 @@
788
854
  "doubao-1.5-pro-32k": {
789
855
  "description": "Doubao-1.5-pro es un modelo de nueva generación, con un rendimiento completamente mejorado, destacando en conocimientos, código, razonamiento, entre otros."
790
856
  },
857
+ "doubao-1.5-vision-lite": {
858
+ "description": "Doubao-1.5-vision-lite es un modelo multimodal de gran escala actualizado, que soporta el reconocimiento de imágenes de cualquier resolución y proporciones extremas, mejorando la capacidad de razonamiento visual, reconocimiento de documentos, comprensión de información detallada y seguimiento de instrucciones. Soporta una ventana de contexto de 128k, con una longitud de salida que admite hasta 16k tokens."
859
+ },
791
860
  "emohaa": {
792
861
  "description": "Emohaa es un modelo psicológico con capacidades de consulta profesional, ayudando a los usuarios a comprender problemas emocionales."
793
862
  },
@@ -953,6 +1022,9 @@
953
1022
  "glm-4-air": {
954
1023
  "description": "GLM-4-Air es una versión de alto costo-beneficio, con un rendimiento cercano al GLM-4, ofreciendo velocidad y precios asequibles."
955
1024
  },
1025
+ "glm-4-air-250414": {
1026
+ "description": "GLM-4-Air es una versión de buena relación calidad-precio, con un rendimiento cercano al de GLM-4, ofreciendo velocidad rápida y un precio asequible."
1027
+ },
956
1028
  "glm-4-airx": {
957
1029
  "description": "GLM-4-AirX ofrece una versión eficiente de GLM-4-Air, con velocidades de inferencia de hasta 2.6 veces."
958
1030
  },
@@ -962,6 +1034,9 @@
962
1034
  "glm-4-flash": {
963
1035
  "description": "GLM-4-Flash es la opción ideal para tareas simples, con la velocidad más rápida y el precio más bajo."
964
1036
  },
1037
+ "glm-4-flash-250414": {
1038
+ "description": "GLM-4-Flash es la opción ideal para tareas simples, siendo la más rápida y gratuita."
1039
+ },
965
1040
  "glm-4-flashx": {
966
1041
  "description": "GLM-4-FlashX es una versión mejorada de Flash, con una velocidad de inferencia ultrarrápida."
967
1042
  },
@@ -980,6 +1055,18 @@
980
1055
  "glm-4v-plus": {
981
1056
  "description": "GLM-4V-Plus tiene la capacidad de entender contenido de video y múltiples imágenes, adecuado para tareas multimodales."
982
1057
  },
1058
+ "glm-4v-plus-0111": {
1059
+ "description": "GLM-4V-Plus tiene la capacidad de comprender contenido de video y múltiples imágenes, adecuado para tareas multimodales."
1060
+ },
1061
+ "glm-z1-air": {
1062
+ "description": "Modelo de inferencia: posee una poderosa capacidad de inferencia, adecuado para tareas que requieren razonamiento profundo."
1063
+ },
1064
+ "glm-z1-airx": {
1065
+ "description": "Inferencia ultrarrápida: con una velocidad de inferencia extremadamente rápida y un potente efecto de razonamiento."
1066
+ },
1067
+ "glm-z1-flash": {
1068
+ "description": "La serie GLM-Z1 posee una poderosa capacidad de razonamiento complejo, destacando en áreas como razonamiento lógico, matemáticas y programación. La longitud máxima del contexto es de 32K."
1069
+ },
983
1070
  "glm-zero-preview": {
984
1071
  "description": "GLM-Zero-Preview posee una poderosa capacidad de razonamiento complejo, destacándose en áreas como razonamiento lógico, matemáticas y programación."
985
1072
  },
@@ -1199,12 +1286,15 @@
1199
1286
  "hunyuan-turbos-20250226": {
1200
1287
  "description": "hunyuan-TurboS pv2.1.2 es una versión fija con un aumento en el número de tokens de entrenamiento; mejora en las capacidades de pensamiento en matemáticas/lógica/código; mejora en la experiencia general en chino e inglés, incluyendo creación de textos, comprensión de textos, preguntas y respuestas de conocimiento, y charlas informales."
1201
1288
  },
1202
- "hunyuan-turbos-20250313": {
1203
- "description": "Unificación del estilo de pasos de resolución matemática, mejorando las preguntas y respuestas matemáticas en múltiples rondas. Optimización del estilo de respuesta en la creación de textos, eliminando el sabor a IA y aumentando la elegancia."
1204
- },
1205
1289
  "hunyuan-turbos-latest": {
1206
1290
  "description": "hunyuan-TurboS es la última versión del modelo insignia Hunyuan, con una mayor capacidad de pensamiento y una mejor experiencia."
1207
1291
  },
1292
+ "hunyuan-turbos-longtext-128k-20250325": {
1293
+ "description": "Especializado en tareas de texto largo como resúmenes de documentos y preguntas sobre documentos, también tiene la capacidad de manejar tareas generales de generación de texto. Destaca en el análisis y generación de textos largos, capaz de abordar eficazmente las necesidades complejas y detalladas de procesamiento de contenido extenso."
1294
+ },
1295
+ "hunyuan-turbos-vision": {
1296
+ "description": "Este modelo es adecuado para escenarios de comprensión de texto e imagen, es un nuevo modelo de lenguaje visual de última generación basado en los turbos de Hunyuan, enfocado en tareas relacionadas con la comprensión de texto e imagen, incluyendo reconocimiento de entidades basado en imágenes, preguntas y respuestas de conocimiento, creación de contenido, resolución de problemas a partir de fotos, etc., con mejoras generales en comparación con la generación anterior."
1297
+ },
1208
1298
  "hunyuan-vision": {
1209
1299
  "description": "El último modelo multimodal de Hunyuan, que admite la entrada de imágenes y texto para generar contenido textual."
1210
1300
  },
@@ -1223,6 +1313,12 @@
1223
1313
  "internlm3-latest": {
1224
1314
  "description": "Nuestra última serie de modelos, con un rendimiento de inferencia excepcional, lidera el mercado de modelos de código abierto de tamaño similar. Apunta por defecto a nuestra serie de modelos InternLM3 más reciente."
1225
1315
  },
1316
+ "jamba-large": {
1317
+ "description": "Nuestro modelo más potente y avanzado, diseñado para manejar tareas complejas a nivel empresarial, con un rendimiento excepcional."
1318
+ },
1319
+ "jamba-mini": {
1320
+ "description": "El modelo más eficiente de su categoría, que combina velocidad y calidad, con un tamaño más pequeño."
1321
+ },
1226
1322
  "jina-deepsearch-v1": {
1227
1323
  "description": "La búsqueda profunda combina la búsqueda en la web, la lectura y el razonamiento para realizar investigaciones exhaustivas. Puedes considerarlo como un agente que acepta tus tareas de investigación: realiza una búsqueda amplia y pasa por múltiples iteraciones antes de proporcionar una respuesta. Este proceso implica una investigación continua, razonamiento y resolución de problemas desde diferentes ángulos. Esto es fundamentalmente diferente de los grandes modelos estándar que generan respuestas directamente a partir de datos preentrenados y de los sistemas RAG tradicionales que dependen de búsquedas superficiales únicas."
1228
1324
  },
@@ -1568,9 +1664,18 @@
1568
1664
  "o1-preview": {
1569
1665
  "description": "o1 es el nuevo modelo de inferencia de OpenAI, adecuado para tareas complejas que requieren un amplio conocimiento general. Este modelo tiene un contexto de 128K y una fecha de corte de conocimiento en octubre de 2023."
1570
1666
  },
1667
+ "o3": {
1668
+ "description": "o3 es un modelo versátil y potente, que destaca en múltiples campos. Establece un nuevo estándar para tareas de matemáticas, ciencia, programación y razonamiento visual. También es hábil en redacción técnica y seguimiento de instrucciones. Los usuarios pueden utilizarlo para analizar texto, código e imágenes, resolviendo problemas complejos de múltiples pasos."
1669
+ },
1571
1670
  "o3-mini": {
1572
1671
  "description": "o3-mini es nuestro último modelo de inferencia de tamaño pequeño, que ofrece alta inteligencia con los mismos objetivos de costo y latencia que o1-mini."
1573
1672
  },
1673
+ "o3-mini-high": {
1674
+ "description": "Versión de alto nivel de inferencia de o3-mini, que ofrece alta inteligencia bajo los mismos objetivos de costo y latencia que o1-mini."
1675
+ },
1676
+ "o4-mini": {
1677
+ "description": "o4-mini es nuestro último modelo de la serie o en formato pequeño. Está optimizado para una inferencia rápida y efectiva, mostrando una alta eficiencia y rendimiento en tareas de codificación y visuales."
1678
+ },
1574
1679
  "open-codestral-mamba": {
1575
1680
  "description": "Codestral Mamba es un modelo de lenguaje Mamba 2 enfocado en la generación de código, que proporciona un fuerte apoyo para tareas avanzadas de codificación y razonamiento."
1576
1681
  },
@@ -1598,6 +1703,12 @@
1598
1703
  "openai/o1-preview": {
1599
1704
  "description": "o1 es el nuevo modelo de inferencia de OpenAI, adecuado para tareas complejas que requieren un amplio conocimiento general. Este modelo tiene un contexto de 128K y una fecha de corte de conocimiento en octubre de 2023."
1600
1705
  },
1706
+ "openai/o4-mini": {
1707
+ "description": "o4-mini está optimizado para una inferencia rápida y efectiva, mostrando una alta eficiencia y rendimiento en tareas de codificación y visuales."
1708
+ },
1709
+ "openai/o4-mini-high": {
1710
+ "description": "Versión de alto nivel de inferencia de o4-mini, optimizada para una inferencia rápida y efectiva, mostrando una alta eficiencia y rendimiento en tareas de codificación y visuales."
1711
+ },
1601
1712
  "openrouter/auto": {
1602
1713
  "description": "Según la longitud del contexto, el tema y la complejidad, tu solicitud se enviará a Llama 3 70B Instruct, Claude 3.5 Sonnet (autoajuste) o GPT-4o."
1603
1714
  },
@@ -1793,6 +1904,9 @@
1793
1904
  "qwq-plus-latest": {
1794
1905
  "description": "El modelo de inferencia QwQ, entrenado con el modelo Qwen2.5, ha mejorado significativamente su capacidad de inferencia a través del aprendizaje por refuerzo. Los indicadores clave del modelo, como el código matemático y otros indicadores centrales (AIME 24/25, LiveCodeBench), así como algunos indicadores generales (IFEval, LiveBench, etc.), han alcanzado el nivel del modelo DeepSeek-R1 en su versión completa."
1795
1906
  },
1907
+ "qwq_32b": {
1908
+ "description": "Modelo de inferencia de tamaño mediano de la serie Qwen. En comparación con los modelos tradicionales de ajuste por instrucciones, QwQ, que posee capacidades de pensamiento y razonamiento, puede mejorar significativamente el rendimiento en tareas de resolución de problemas, especialmente en tareas difíciles."
1909
+ },
1796
1910
  "r1-1776": {
1797
1911
  "description": "R1-1776 es una versión del modelo DeepSeek R1, que ha sido entrenada posteriormente para proporcionar información factual sin censura y sin sesgos."
1798
1912
  },
@@ -1853,12 +1967,21 @@
1853
1967
  "step-2-16k": {
1854
1968
  "description": "Soporta interacciones de contexto a gran escala, adecuado para escenarios de diálogo complejos."
1855
1969
  },
1970
+ "step-2-16k-exp": {
1971
+ "description": "Versión experimental del modelo step-2, que incluye las características más recientes y se actualiza continuamente. No se recomienda su uso en entornos de producción formales."
1972
+ },
1856
1973
  "step-2-mini": {
1857
1974
  "description": "Un modelo de gran velocidad basado en la nueva arquitectura de atención autogestionada MFA, que logra efectos similares a los de step1 a un costo muy bajo, manteniendo al mismo tiempo un mayor rendimiento y tiempos de respuesta más rápidos. Capaz de manejar tareas generales, con habilidades destacadas en programación."
1858
1975
  },
1976
+ "step-r1-v-mini": {
1977
+ "description": "Este modelo es un gran modelo de inferencia con una poderosa capacidad de comprensión de imágenes, capaz de procesar información de imágenes y texto, generando contenido textual tras un profundo razonamiento. Este modelo destaca en el campo del razonamiento visual, además de poseer capacidades de razonamiento matemático, de código y textual de primer nivel. La longitud del contexto es de 100k."
1978
+ },
1859
1979
  "taichu_llm": {
1860
1980
  "description": "El modelo de lenguaje Taichu de Zīdōng tiene una poderosa capacidad de comprensión del lenguaje, así como habilidades en creación de textos, preguntas y respuestas, programación de código, cálculos matemáticos, razonamiento lógico, análisis de sentimientos y resúmenes de texto. Combina de manera innovadora el preentrenamiento con grandes datos y un conocimiento rico de múltiples fuentes, perfeccionando continuamente la tecnología algorítmica y absorbiendo nuevos conocimientos en vocabulario, estructura, gramática y semántica de grandes volúmenes de datos textuales, logrando una evolución constante del modelo. Proporciona a los usuarios información y servicios más convenientes, así como una experiencia más inteligente."
1861
1981
  },
1982
+ "taichu_o1": {
1983
+ "description": "taichu_o1 es un nuevo modelo de inferencia de gran escala, que logra un razonamiento similar al humano a través de interacciones multimodales y aprendizaje por refuerzo, apoyando la deducción de decisiones complejas, mostrando rutas de pensamiento modeladas mientras mantiene una alta precisión en la salida, adecuado para análisis de estrategias y razonamiento profundo."
1984
+ },
1862
1985
  "taichu_vl": {
1863
1986
  "description": "Integra capacidades de comprensión de imágenes, transferencia de conocimiento y atribución lógica, destacándose en el campo de preguntas y respuestas basadas en texto e imagen."
1864
1987
  },
@@ -5,6 +5,7 @@
5
5
  "off": "Desactivado",
6
6
  "on": "Ver información de llamada de complemento",
7
7
  "payload": "carga del complemento",
8
+ "pluginState": "Estado del plugin",
8
9
  "response": "Respuesta",
9
10
  "tool_call": "solicitud de llamada de herramienta"
10
11
  },
@@ -7,6 +7,20 @@
7
7
  "images": "Imágenes:",
8
8
  "prompt": "Palabra de aviso"
9
9
  },
10
+ "localFiles": {
11
+ "file": "Archivo",
12
+ "folder": "Carpeta",
13
+ "open": "Abrir",
14
+ "openFile": "Abrir archivo",
15
+ "openFolder": "Abrir carpeta",
16
+ "read": {
17
+ "more": "Ver más"
18
+ },
19
+ "readFile": "Leer archivo",
20
+ "readFileError": "Error al leer el archivo, por favor verifica si la ruta del archivo es correcta",
21
+ "readFiles": "Leer archivos",
22
+ "readFilesError": "Error al leer los archivos, por favor verifica si la ruta del archivo es correcta"
23
+ },
10
24
  "search": {
11
25
  "createNewSearch": "Crear un nuevo registro de búsqueda",
12
26
  "emptyResult": "No se encontraron resultados, por favor modifica las palabras clave y vuelve a intentarlo",
@@ -44,5 +58,16 @@
44
58
  "summary": "Resumen",
45
59
  "summaryTooltip": "Resumir el contenido actual",
46
60
  "viewMoreResults": "Ver más {{results}} resultados"
61
+ },
62
+ "updateArgs": {
63
+ "duplicateKeyError": "La clave del campo debe ser única",
64
+ "form": {
65
+ "add": "Agregar un elemento",
66
+ "key": "Clave del campo",
67
+ "value": "Valor del campo"
68
+ },
69
+ "formValidationFailed": "La validación del formulario falló, por favor verifica el formato de los parámetros",
70
+ "keyRequired": "La clave del campo no puede estar vacía",
71
+ "stringifyError": "No se puede serializar el parámetro, por favor verifica el formato de los parámetros"
47
72
  }
48
73
  }
@@ -284,6 +284,8 @@
284
284
  "rename": "تغییر نام",
285
285
  "reset": "بازنشانی",
286
286
  "retry": "تلاش مجدد",
287
+ "run": "اجرا",
288
+ "save": "ذخیره",
287
289
  "send": "ارسال",
288
290
  "setting": "تنظیمات",
289
291
  "share": "اشتراک‌گذاری",
@@ -0,0 +1,32 @@
1
+ {
2
+ "remoteServer": {
3
+ "authError": "خطای مجوز: {{error}}",
4
+ "authPending": "لطفاً مجوز را در مرورگر کامل کنید",
5
+ "configDesc": "اتصال به سرور LobeChat از راه دور، فعال‌سازی همگام‌سازی داده‌ها",
6
+ "configError": "خطا در پیکربندی",
7
+ "configTitle": "پیکربندی همگام‌سازی ابری",
8
+ "connect": "اتصال و مجوز",
9
+ "connected": "متصل شده",
10
+ "disconnect": "قطع اتصال",
11
+ "disconnectError": "خطا در قطع اتصال",
12
+ "disconnected": "قطع شده",
13
+ "fetchError": "خطا در دریافت پیکربندی",
14
+ "invalidUrl": "لطفاً یک آدرس URL معتبر وارد کنید",
15
+ "serverUrl": "آدرس سرور",
16
+ "statusConnected": "متصل شده",
17
+ "statusDisconnected": "قطع شده",
18
+ "urlRequired": "لطفاً آدرس سرور را وارد کنید"
19
+ },
20
+ "updater": {
21
+ "downloadingUpdate": "در حال دانلود به‌روزرسانی",
22
+ "downloadingUpdateDesc": "به‌روزرسانی در حال دانلود است، لطفاً صبر کنید...",
23
+ "later": "به‌روزرسانی بعداً",
24
+ "newVersionAvailable": "نسخه جدید در دسترس است",
25
+ "newVersionAvailableDesc": "نسخه جدید {{version}} شناسایی شد، آیا می‌خواهید بلافاصله دانلود کنید؟",
26
+ "restartAndInstall": "راه‌اندازی مجدد و نصب",
27
+ "updateError": "خطا در به‌روزرسانی",
28
+ "updateReady": "به‌روزرسانی آماده است",
29
+ "updateReadyDesc": "Lobe Chat {{version}} دانلود شده است، با راه‌اندازی مجدد برنامه می‌توانید نصب را کامل کنید.",
30
+ "upgradeNow": "همین حالا به‌روزرسانی کنید"
31
+ }
32
+ }