@lobehub/chat 1.75.4 → 1.75.5
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +27 -0
- package/README.md +1 -1
- package/README.zh-CN.md +1 -1
- package/changelog/v1.json +9 -0
- package/docs/self-hosting/advanced/model-list.mdx +5 -3
- package/docs/self-hosting/advanced/model-list.zh-CN.mdx +5 -3
- package/docs/usage/providers/infiniai.zh-CN.mdx +4 -0
- package/locales/ar/models.json +51 -54
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/models.json +51 -54
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/models.json +51 -54
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/models.json +51 -54
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/models.json +51 -54
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/models.json +51 -54
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/models.json +51 -54
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/models.json +51 -54
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/models.json +51 -54
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/models.json +51 -54
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/models.json +51 -54
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/models.json +51 -54
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/models.json +51 -54
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/models.json +51 -54
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/models.json +51 -54
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/models.json +51 -54
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/models.json +55 -58
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/models.json +51 -54
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/src/config/aiModels/infiniai.ts +52 -55
- package/src/config/aiModels/siliconcloud.ts +17 -1
- package/src/config/aiModels/tencentcloud.ts +17 -0
- package/src/libs/agent-runtime/infiniai/index.ts +38 -3
- package/src/utils/format.ts +1 -1
- package/src/utils/parseModels.test.ts +14 -0
- package/src/utils/parseModels.ts +4 -0
@@ -146,6 +146,9 @@
|
|
146
146
|
"xai": {
|
147
147
|
"description": "xAIは、人類の科学的発見を加速するための人工知能を構築することに専念している企業です。私たちの使命は、宇宙に対する共通の理解を促進することです。"
|
148
148
|
},
|
149
|
+
"xinference": {
|
150
|
+
"description": "Xorbits Inference(Xinference)は、様々なAIモデルの実行と統合を簡素化するためのオープンソースプラットフォームです。Xinferenceを利用することで、オープンソースのLLM、埋め込みモデル、マルチモーダルモデルをクラウドまたはオンプレミス環境で実行し、強力なAIアプリケーションを構築することができます。"
|
151
|
+
},
|
149
152
|
"zeroone": {
|
150
153
|
"description": "01.AIは、AI 2.0時代の人工知能技術に特化し、「人+人工知能」の革新と応用を推進し、超強力なモデルと先進的なAI技術を用いて人類の生産性を向上させ、技術の力を実現します。"
|
151
154
|
},
|
@@ -1,13 +1,4 @@
|
|
1
1
|
{
|
2
|
-
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
|
-
"description": "Yi-1.5 34B는 풍부한 훈련 샘플을 통해 산업 응용에서 우수한 성능을 제공합니다."
|
4
|
-
},
|
5
|
-
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
-
"description": "Yi-1.5-6B-Chat은 Yi-1.5 시리즈의 변형으로, 오픈 소스 채팅 모델에 속합니다. Yi-1.5는 Yi의 업그레이드 버전으로, 500B 개의 고품질 코퍼스에서 지속적으로 사전 훈련되었으며, 3M의 다양한 미세 조정 샘플에서 미세 조정되었습니다. Yi에 비해 Yi-1.5는 코딩, 수학, 추론 및 지침 준수 능력에서 더 강력한 성능을 보이며, 뛰어난 언어 이해, 상식 추론 및 독해 능력을 유지합니다. 이 모델은 4K, 16K 및 32K의 컨텍스트 길이 버전을 제공하며, 총 3.6T 개의 토큰으로 사전 훈련되었습니다."
|
7
|
-
},
|
8
|
-
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
|
-
"description": "Yi-1.5 9B는 16K 토큰을 지원하며, 효율적이고 매끄러운 언어 생성 능력을 제공합니다."
|
10
|
-
},
|
11
2
|
"01-ai/yi-1.5-34b-chat": {
|
12
3
|
"description": "제로일 만물, 최신 오픈 소스 미세 조정 모델로, 340억 개의 매개변수를 가지고 있으며, 다양한 대화 시나리오를 지원하는 미세 조정, 고품질 훈련 데이터, 인간의 선호에 맞춘 조정을 제공합니다."
|
13
4
|
},
|
@@ -149,12 +140,6 @@
|
|
149
140
|
"Llama-3.2-90B-Vision-Instruct\t": {
|
150
141
|
"description": "시각적 이해 에이전트 응용 프로그램에 적합한 고급 이미지 추론 능력입니다."
|
151
142
|
},
|
152
|
-
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
153
|
-
"description": "Qwen2.5-72B-Instruct는 Alibaba Cloud에서 발표한 최신 대규모 언어 모델 시리즈 중 하나입니다. 이 72B 모델은 코딩 및 수학 분야에서 상당한 개선된 능력을 가지고 있습니다. 이 모델은 또한 29개 이상의 언어를 포함한 다국어 지원을 제공합니다. 모델은 지침 준수, 구조화된 데이터 이해 및 구조화된 출력 생성(특히 JSON)에서 상당한 향상을 보입니다."
|
154
|
-
},
|
155
|
-
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
156
|
-
"description": "Qwen2.5-7B-Instruct는 Alibaba Cloud에서 발표한 최신 대규모 언어 모델 시리즈 중 하나입니다. 이 7B 모델은 코딩 및 수학 분야에서 상당한 개선된 능력을 가지고 있습니다. 이 모델은 또한 29개 이상의 언어를 포함한 다국어 지원을 제공합니다. 모델은 지침 준수, 구조화된 데이터 이해 및 구조화된 출력 생성(특히 JSON)에서 상당한 향상을 보입니다."
|
157
|
-
},
|
158
143
|
"Meta-Llama-3.1-405B-Instruct": {
|
159
144
|
"description": "Llama 3.1 지시 조정 텍스트 모델로, 다국어 대화 사용 사례에 최적화되어 있으며, 많은 오픈 소스 및 폐쇄형 채팅 모델 중에서 일반 산업 기준에서 우수한 성능을 보입니다."
|
160
145
|
},
|
@@ -179,9 +164,6 @@
|
|
179
164
|
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
180
165
|
"description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B)는 고정밀 지시 모델로, 복잡한 계산에 적합합니다."
|
181
166
|
},
|
182
|
-
"OpenGVLab/InternVL2-26B": {
|
183
|
-
"description": "InternVL2는 문서 및 차트 이해, 장면 텍스트 이해, OCR, 과학 및 수학 문제 해결을 포함한 다양한 시각 언어 작업에서 뛰어난 성능을 보여줍니다."
|
184
|
-
},
|
185
167
|
"Phi-3-medium-128k-instruct": {
|
186
168
|
"description": "같은 Phi-3-medium 모델이지만 RAG 또는 몇 가지 샷 프롬프트를 위한 더 큰 컨텍스트 크기를 가지고 있습니다."
|
187
169
|
},
|
@@ -206,9 +188,6 @@
|
|
206
188
|
"Phi-3.5-vision-instrust": {
|
207
189
|
"description": "Phi-3-vision 모델의 업데이트된 버전입니다."
|
208
190
|
},
|
209
|
-
"Pro/OpenGVLab/InternVL2-8B": {
|
210
|
-
"description": "InternVL2는 문서 및 차트 이해, 장면 텍스트 이해, OCR, 과학 및 수학 문제 해결을 포함한 다양한 시각 언어 작업에서 뛰어난 성능을 보여줍니다."
|
211
|
-
},
|
212
191
|
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
213
192
|
"description": "Qwen2-1.5B-Instruct는 Qwen2 시리즈의 지침 미세 조정 대규모 언어 모델로, 파라미터 규모는 1.5B입니다. 이 모델은 Transformer 아키텍처를 기반으로 하며, SwiGLU 활성화 함수, 주의 QKV 편향 및 그룹 쿼리 주의와 같은 기술을 사용합니다. 이 모델은 언어 이해, 생성, 다국어 능력, 코딩, 수학 및 추론 등 여러 벤치마크 테스트에서 뛰어난 성능을 보이며, 대부분의 오픈 소스 모델을 초월합니다. Qwen1.5-1.8B-Chat과 비교할 때, Qwen2-1.5B-Instruct는 MMLU, HumanEval, GSM8K, C-Eval 및 IFEval 등의 테스트에서 상당한 성능 향상을 보였습니다."
|
214
193
|
},
|
@@ -224,20 +203,23 @@
|
|
224
203
|
"Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
|
225
204
|
"description": "Qwen2.5-Coder-7B-Instruct는 Alibaba Cloud에서 발표한 코드 특화 대규모 언어 모델 시리즈의 최신 버전입니다. 이 모델은 Qwen2.5를 기반으로 하여 55조 개의 토큰으로 훈련되어 코드 생성, 추론 및 수정 능력을 크게 향상시켰습니다. 이 모델은 코딩 능력을 강화할 뿐만 아니라 수학 및 일반 능력의 장점도 유지합니다. 모델은 코드 에이전트와 같은 실제 응용 프로그램에 더 포괄적인 기반을 제공합니다."
|
226
205
|
},
|
206
|
+
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
207
|
+
"description": "Qwen2.5-VL은 Qwen 시리즈의 새로운 멤버로, 강력한 시각 이해 능력을 갖추고 있습니다. 이미지 내 텍스트, 차트, 레이아웃을 분석할 수 있으며, 긴 동영상을 이해하고 이벤트를 포착할 수 있습니다. 추론을 수행하고 도구를 조작할 수 있으며, 다중 형식 객체 위치 지정과 구조화된 출력 생성을 지원합니다. 동영상 이해를 위한 동적 해상도 및 프레임 속도 훈련이 최적화되었으며, 시각 인코더 효율성이 향상되었습니다."
|
208
|
+
},
|
227
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
228
210
|
"description": "GLM-4-9B-Chat은 Zhizhu AI가 출시한 GLM-4 시리즈의 사전 훈련 모델 중 오픈 소스 버전입니다. 이 모델은 의미, 수학, 추론, 코드 및 지식 등 여러 측면에서 뛰어난 성능을 보입니다. GLM-4-9B-Chat은 다중 회전 대화를 지원할 뿐만 아니라 웹 브라우징, 코드 실행, 사용자 정의 도구 호출(Function Call) 및 긴 텍스트 추론과 같은 고급 기능도 갖추고 있습니다. 이 모델은 중국어, 영어, 일본어, 한국어 및 독일어를 포함한 26개 언어를 지원합니다. 여러 벤치마크 테스트에서 GLM-4-9B-Chat은 AlignBench-v2, MT-Bench, MMLU 및 C-Eval 등에서 뛰어난 성능을 보였습니다. 이 모델은 최대 128K의 컨텍스트 길이를 지원하며, 학술 연구 및 상업적 응용에 적합합니다."
|
229
211
|
},
|
230
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
231
213
|
"description": "DeepSeek-R1은 강화 학습(RL) 기반의 추론 모델로, 모델 내의 반복성과 가독성 문제를 해결합니다. RL 이전에 DeepSeek-R1은 콜드 스타트 데이터를 도입하여 추론 성능을 더욱 최적화했습니다. 수학, 코드 및 추론 작업에서 OpenAI-o1과 유사한 성능을 보이며, 정교하게 설계된 훈련 방법을 통해 전체적인 효과를 향상시켰습니다."
|
232
214
|
},
|
233
|
-
"Pro/deepseek-ai/DeepSeek-
|
234
|
-
"description": "DeepSeek-
|
215
|
+
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
216
|
+
"description": "DeepSeek-R1-Distill-Qwen-1.5B는 Qwen2.5-Math-1.5B를 기반으로 지식 증류를 통해 개발된 모델입니다. 이 모델은 DeepSeek-R1에서 생성된 80만 개의 선별된 샘플을 사용하여 미세 조정되었으며, 여러 벤치마크에서 우수한 성능을 보여주었습니다. 경량 모델임에도 불구하고 MATH-500에서 83.9%의 정확도, AIME 2024에서 28.9%의 통과율, CodeForces에서 954점을 기록하여 매개변수 규모를 뛰어넘는 추론 능력을 입증했습니다."
|
235
217
|
},
|
236
|
-
"Pro/
|
237
|
-
"description": "
|
218
|
+
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
219
|
+
"description": "DeepSeek-R1-Distill-Qwen-7B는 Qwen2.5-Math-7B를 기반으로 지식 증류를 통해 개발된 모델입니다. 이 모델은 DeepSeek-R1에서 생성된 80만 개의 선별된 샘플을 사용하여 미세 조정되었으며, 우수한 추론 능력을 보여줍니다. 다양한 벤치마크에서 뛰어난 성능을 발휘하며, MATH-500에서 92.8%의 정확도, AIME 2024에서 55.5%의 통과율, CodeForces에서 1189점을 기록하여 7B 규모 모델로서 강력한 수학 및 프로그래밍 능력을 입증했습니다."
|
238
220
|
},
|
239
|
-
"Pro/
|
240
|
-
"description": "
|
221
|
+
"Pro/deepseek-ai/DeepSeek-V3": {
|
222
|
+
"description": "DeepSeek-V3는 6710억 개의 매개변수를 가진 혼합 전문가(MoE) 언어 모델로, 다중 헤드 잠재 주의(MLA) 및 DeepSeekMoE 아키텍처를 사용하여 보조 손실 없는 부하 균형 전략을 결합하여 추론 및 훈련 효율성을 최적화합니다. 14.8조 개의 고품질 토큰에서 사전 훈련을 수행하고 감독 미세 조정 및 강화 학습을 통해 DeepSeek-V3는 성능 면에서 다른 오픈 소스 모델을 초월하며, 선도적인 폐쇄형 모델에 근접합니다."
|
241
223
|
},
|
242
224
|
"QwQ-32B-Preview": {
|
243
225
|
"description": "QwQ-32B-Preview는 복잡한 대화 생성 및 맥락 이해 작업을 효율적으로 처리할 수 있는 혁신적인 자연어 처리 모델입니다."
|
@@ -290,6 +272,12 @@
|
|
290
272
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
291
273
|
"description": "Qwen2.5-Coder-7B-Instruct는 Alibaba Cloud에서 발표한 코드 특화 대규모 언어 모델 시리즈의 최신 버전입니다. 이 모델은 Qwen2.5를 기반으로 하여 55조 개의 토큰으로 훈련되어 코드 생성, 추론 및 수정 능력을 크게 향상시켰습니다. 이 모델은 코딩 능력을 강화할 뿐만 아니라 수학 및 일반 능력의 장점도 유지합니다. 모델은 코드 에이전트와 같은 실제 응용 프로그램에 더 포괄적인 기반을 제공합니다."
|
292
274
|
},
|
275
|
+
"Qwen/Qwen2.5-VL-32B-Instruct": {
|
276
|
+
"description": "Qwen2.5-VL-32B-Instruct는 통의천문(Qwen) 팀이 개발한 멀티모달 대형 언어 모델로, Qwen2.5-VL 시리즈의 일부입니다. 이 모델은 일반적인 물체 인식에 능할 뿐만 아니라 이미지 내의 텍스트, 차트, 아이콘, 그래픽 및 레이아웃 분석이 가능합니다. 시각적 지능 에이전트로 작동하여 도구를 동적으로 조작하고 컴퓨터 및 스마트폰 사용 능력을 보유하고 있습니다. 또한 이 모델은 이미지 내 객체를 정밀하게 위치 지정할 수 있으며, 청구서나 표 등의 구조화된 출력을 생성할 수 있습니다. 이전 버전인 Qwen2-VL 대비 강화 학습을 통해 수학 및 문제 해결 능력이 향상되었으며, 응답 스타일도 인간의 선호에 더 부합하도록 개선되었습니다."
|
277
|
+
},
|
278
|
+
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
279
|
+
"description": "Qwen2.5-VL은 Qwen2.5 시리즈의 시각 언어 모델입니다. 이 모델은 여러 측면에서 뛰어난 성능을 보입니다: 일반적인 물체 인식, 텍스트/차트/레이아웃 분석 등 향상된 시각 이해 능력을 갖추었으며, 시각 에이전트로서 도구 사용을 동적으로 추론하고 안내할 수 있습니다. 1시간 이상의 장편 동영상 이해가 가능하며 주요 이벤트를 포착할 수 있고, 이미지 내 객체의 정확한 위치를 경계 상자 또는 점으로 표시할 수 있습니다. 특히 인보이스, 표 등 스캔 데이터에 적합한 구조화된 출력 생성이 가능합니다."
|
280
|
+
},
|
293
281
|
"Qwen2-72B-Instruct": {
|
294
282
|
"description": "Qwen2는 Qwen 모델의 최신 시리즈로, 128k 컨텍스트를 지원합니다. 현재 최상의 오픈 소스 모델과 비교할 때, Qwen2-72B는 자연어 이해, 지식, 코드, 수학 및 다국어 등 여러 능력에서 현재 선도하는 모델을 현저히 초월합니다."
|
295
283
|
},
|
@@ -374,9 +362,6 @@
|
|
374
362
|
"TeleAI/TeleChat2": {
|
375
363
|
"description": "TeleChat2 대모델은 중국 전신이 0에서 1까지 독자적으로 개발한 생성적 의미 대모델로, 백과사전 질문 응답, 코드 생성, 긴 문서 생성 등의 기능을 지원하여 사용자에게 대화 상담 서비스를 제공합니다. 사용자가 질문에 답하고 창작을 도와주며, 효율적이고 편리하게 정보, 지식 및 영감을 얻을 수 있도록 돕습니다. 이 모델은 환각 문제, 긴 문서 생성, 논리 이해 등에서 뛰어난 성능을 보입니다."
|
376
364
|
},
|
377
|
-
"TeleAI/TeleMM": {
|
378
|
-
"description": "TeleMM 다중 모달 대모델은 중국 전신이 독자적으로 개발한 다중 모달 이해 대모델로, 텍스트, 이미지 등 다양한 모달 입력을 처리할 수 있으며, 이미지 이해, 차트 분석 등의 기능을 지원하여 사용자에게 교차 모달 이해 서비스를 제공합니다. 이 모델은 사용자와 다중 모달 상호작용을 통해 입력 내용을 정확하게 이해하고 질문에 답하며 창작을 도와주고, 효율적으로 다중 모달 정보와 영감을 제공합니다. 세밀한 인식, 논리 추론 등 다중 모달 작업에서 뛰어난 성능을 보입니다."
|
379
|
-
},
|
380
365
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
381
366
|
"description": "Qwen2.5-72B-Instruct는 Alibaba Cloud에서 발표한 최신 대규모 언어 모델 시리즈 중 하나입니다. 이 72B 모델은 코딩 및 수학 분야에서 상당한 개선된 능력을 가지고 있습니다. 이 모델은 또한 29개 이상의 언어를 포함한 다국어 지원을 제공합니다. 모델은 지침 준수, 구조화된 데이터 이해 및 구조화된 출력 생성(특히 JSON)에서 상당한 향상을 보입니다."
|
382
367
|
},
|
@@ -662,9 +647,6 @@
|
|
662
647
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
663
648
|
"description": "DeepSeek-R1 증류 모델로, 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신합니다."
|
664
649
|
},
|
665
|
-
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
|
666
|
-
"description": "DeepSeek-R1-Distill-Llama-8B는 Llama-3.1-8B를 기반으로 개발된 증류 모델입니다. 이 모델은 DeepSeek-R1이 생성한 샘플을 사용하여 미세 조정되었으며, 뛰어난 추론 능력을 보여줍니다. 여러 기준 테스트에서 좋은 성적을 거두었으며, MATH-500에서 89.1%의 정확도를 달성하고, AIME 2024에서 50.4%의 통과율을 기록했으며, CodeForces에서 1205의 점수를 얻어 8B 규모의 모델로서 강력한 수학 및 프로그래밍 능력을 보여줍니다."
|
667
|
-
},
|
668
650
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
669
651
|
"description": "DeepSeek-R1 증류 모델로, 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신합니다."
|
670
652
|
},
|
@@ -713,6 +695,9 @@
|
|
713
695
|
"deepseek-r1-70b-online": {
|
714
696
|
"description": "DeepSeek R1 70B 표준 버전으로, 실시간 온라인 검색을 지원하며 최신 정보가 필요한 대화 및 텍스트 처리 작업에 적합합니다."
|
715
697
|
},
|
698
|
+
"deepseek-r1-distill-llama": {
|
699
|
+
"description": "deepseek-r1-distill-llama는 DeepSeek-R1에서 추출한 Llama 기반 모델입니다."
|
700
|
+
},
|
716
701
|
"deepseek-r1-distill-llama-70b": {
|
717
702
|
"description": "DeepSeek R1 - DeepSeek 패키지에서 더 크고 더 스마트한 모델이 Llama 70B 아키텍처로 증류되었습니다. 기준 테스트와 인공지능 평가에 따르면, 이 모델은 원래 Llama 70B보다 더 스마트하며, 특히 수학 및 사실 정확성이 필요한 작업에서 뛰어난 성능을 보입니다."
|
718
703
|
},
|
@@ -725,6 +710,9 @@
|
|
725
710
|
"deepseek-r1-distill-qianfan-llama-8b": {
|
726
711
|
"description": "2025년 2월 14일 최초 출시된 이 모델은 천범 대모델 연구팀이 Llama3_8B를 기반 모델로 하여(메타 라마로 구축) 증류한 것입니다. 증류 데이터에는 천범의 말뭉치도 동기화되어 추가되었습니다."
|
727
712
|
},
|
713
|
+
"deepseek-r1-distill-qwen": {
|
714
|
+
"description": "deepseek-r1-distill-qwen은 DeepSeek-R1에서 Qwen을 기반으로 증류된 모델입니다."
|
715
|
+
},
|
728
716
|
"deepseek-r1-distill-qwen-1.5b": {
|
729
717
|
"description": "DeepSeek-R1-Distill 시리즈 모델은 지식 증류 기술을 통해 DeepSeek-R1이 생성한 샘플을 Qwen, Llama 등 오픈 소스 모델에 미세 조정하여 얻은 것입니다."
|
730
718
|
},
|
@@ -872,6 +860,9 @@
|
|
872
860
|
"gemini-1.5-flash-8b-exp-0924": {
|
873
861
|
"description": "Gemini 1.5 Flash 8B 0924는 최신 실험 모델로, 텍스트 및 다중 모달 사용 사례에서 상당한 성능 향상을 보여줍니다."
|
874
862
|
},
|
863
|
+
"gemini-1.5-flash-8b-latest": {
|
864
|
+
"description": "Gemini 1.5 Flash 8B는 광범위한 애플리케이션을 지원하는 효율적인 멀티모달 모델입니다."
|
865
|
+
},
|
875
866
|
"gemini-1.5-flash-exp-0827": {
|
876
867
|
"description": "Gemini 1.5 Flash 0827은 다양한 복잡한 작업에 적합한 최적화된 다중 모달 처리 능력을 제공합니다."
|
877
868
|
},
|
@@ -914,9 +905,6 @@
|
|
914
905
|
"gemini-2.0-flash-lite-preview-02-05": {
|
915
906
|
"description": "비용 효율성과 낮은 지연 시간 등을 목표로 최적화된 Gemini 2.0 Flash 모델입니다."
|
916
907
|
},
|
917
|
-
"gemini-2.0-flash-thinking-exp": {
|
918
|
-
"description": "Gemini 2.0 Flash Exp는 Google의 최신 실험적 다중 모드 AI 모델로, 차세대 기능, 뛰어난 속도, 네이티브 도구 호출 및 다중 모드 생성을 제공합니다."
|
919
|
-
},
|
920
908
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
921
909
|
"description": "Gemini 2.0 Flash Exp는 Google의 최신 실험적 다중 모드 AI 모델로, 차세대 기능, 뛰어난 속도, 네이티브 도구 호출 및 다중 모드 생성을 제공합니다."
|
922
910
|
},
|
@@ -1223,6 +1211,9 @@
|
|
1223
1211
|
"llama-3.1-8b-instant": {
|
1224
1212
|
"description": "Llama 3.1 8B는 효율적인 모델로, 빠른 텍스트 생성 능력을 제공하며, 대규모 효율성과 비용 효과성이 필요한 응용 프로그램에 매우 적합합니다."
|
1225
1213
|
},
|
1214
|
+
"llama-3.1-instruct": {
|
1215
|
+
"description": "Llama 3.1 지침 미세 조정 모델은 대화 시나리오에 최적화되어 있으며, 일반적인 업계 벤치마크 테스트에서 기존의 많은 오픈소스 채팅 모델을 능가합니다."
|
1216
|
+
},
|
1226
1217
|
"llama-3.2-11b-vision-instruct": {
|
1227
1218
|
"description": "고해상도 이미지에서 탁월한 이미지 추론 능력을 발휘하며, 시각 이해 응용 프로그램에 적합합니다."
|
1228
1219
|
},
|
@@ -1235,12 +1226,18 @@
|
|
1235
1226
|
"llama-3.2-90b-vision-preview": {
|
1236
1227
|
"description": "Llama 3.2는 시각 및 텍스트 데이터를 결합한 작업을 처리하기 위해 설계되었습니다. 이미지 설명 및 시각적 질문 응답과 같은 작업에서 뛰어난 성능을 보이며, 언어 생성과 시각적 추론 간의 간극을 넘습니다."
|
1237
1228
|
},
|
1229
|
+
"llama-3.2-vision-instruct": {
|
1230
|
+
"description": "Llama 3.2-Vision 지시 미세 조정 모델은 시각 인식, 이미지 추론, 이미지 설명 및 이미지 관련 일반 질문 답변에 최적화되었습니다."
|
1231
|
+
},
|
1238
1232
|
"llama-3.3-70b-instruct": {
|
1239
1233
|
"description": "Llama 3.3은 Llama 시리즈에서 가장 진보된 다국어 오픈 소스 대형 언어 모델로, 매우 낮은 비용으로 405B 모델의 성능을 경험할 수 있습니다. Transformer 구조를 기반으로 하며, 감독 미세 조정(SFT)과 인간 피드백 강화 학습(RLHF)을 통해 유용성과 안전성을 향상시켰습니다. 이 지시 조정 버전은 다국어 대화를 위해 최적화되어 있으며, 여러 산업 벤치마크에서 많은 오픈 소스 및 폐쇄형 채팅 모델보다 우수한 성능을 보입니다. 지식 마감일은 2023년 12월입니다."
|
1240
1234
|
},
|
1241
1235
|
"llama-3.3-70b-versatile": {
|
1242
1236
|
"description": "Meta Llama 3.3 다국어 대형 언어 모델(LLM)은 70B(텍스트 입력/텍스트 출력)에서 사전 학습 및 지침 조정 생성 모델입니다. Llama 3.3의 지침 조정 순수 텍스트 모델은 다국어 대화 사용 사례에 최적화되어 있으며, 많은 오픈 소스 및 폐쇄형 채팅 모델보다 일반 산업 기준에서 우수한 성능을 보입니다."
|
1243
1237
|
},
|
1238
|
+
"llama-3.3-instruct": {
|
1239
|
+
"description": "Llama 3.3 지침 미세 조정 모델은 대화 시나리오에 최적화되어 있으며, 일반적인 업계 벤치마크 테스트에서 기존의 많은 오픈소스 채팅 모델을 능가합니다."
|
1240
|
+
},
|
1244
1241
|
"llama3-70b-8192": {
|
1245
1242
|
"description": "Meta Llama 3 70B는 비할 데 없는 복잡성 처리 능력을 제공하며, 높은 요구 사항을 가진 프로젝트에 맞춤형으로 설계되었습니다."
|
1246
1243
|
},
|
@@ -1319,9 +1316,6 @@
|
|
1319
1316
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
1320
1317
|
"description": "LLaMA 3.2는 시각 및 텍스트 데이터를 결합한 작업을 처리하도록 설계되었습니다. 이미지 설명 및 시각적 질문 응답과 같은 작업에서 뛰어난 성능을 발휘하며, 언어 생성과 시각 추론 간의 간극을 메웁니다."
|
1321
1318
|
},
|
1322
|
-
"meta-llama/Llama-3.3-70B-Instruct": {
|
1323
|
-
"description": "Llama 3.3은 Llama 시리즈에서 가장 진보된 다국어 오픈 소스 대형 언어 모델로, 매우 낮은 비용으로 405B 모델의 성능을 경험할 수 있습니다. Transformer 구조를 기반으로 하며, 감독 미세 조정(SFT) 및 인간 피드백 강화 학습(RLHF)을 통해 유용성과 안전성을 향상시켰습니다. 그 지시 조정 버전은 다국어 대화를 최적화하여 여러 산업 벤치마크에서 많은 오픈 소스 및 폐쇄형 채팅 모델보다 우수한 성능을 보입니다. 지식 마감일은 2023년 12월입니다."
|
1324
|
-
},
|
1325
1319
|
"meta-llama/Llama-3.3-70B-Instruct-Turbo": {
|
1326
1320
|
"description": "Meta Llama 3.3 다국어 대형 언어 모델(LLM)은 70B(텍스트 입력/텍스트 출력)에서 사전 훈련 및 지시 조정 생성 모델입니다. Llama 3.3 지시 조정의 순수 텍스트 모델은 다국어 대화 사용 사례에 최적화되어 있으며, 일반 산업 기준에서 많은 사용 가능한 오픈 소스 및 폐쇄형 채팅 모델보다 우수한 성능을 보입니다."
|
1327
1321
|
},
|
@@ -1349,15 +1343,9 @@
|
|
1349
1343
|
"meta-llama/Meta-Llama-3.1-70B": {
|
1350
1344
|
"description": "Llama 3.1은 Meta에서 출시한 선도적인 모델로, 최대 405B 매개변수를 지원하며 복잡한 대화, 다국어 번역 및 데이터 분석 분야에 적용됩니다."
|
1351
1345
|
},
|
1352
|
-
"meta-llama/Meta-Llama-3.1-70B-Instruct": {
|
1353
|
-
"description": "LLaMA 3.1 70B는 다국어의 효율적인 대화 지원을 제공합니다."
|
1354
|
-
},
|
1355
1346
|
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": {
|
1356
1347
|
"description": "Llama 3.1 70B 모델은 정밀 조정되어 고부하 애플리케이션에 적합하며, FP8로 양자화되어 더 높은 효율의 계산 능력과 정확성을 제공합니다."
|
1357
1348
|
},
|
1358
|
-
"meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
1359
|
-
"description": "LLaMA 3.1은 다국어 지원을 제공하며, 업계에서 선도하는 생성 모델 중 하나입니다."
|
1360
|
-
},
|
1361
1349
|
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": {
|
1362
1350
|
"description": "Llama 3.1 8B 모델은 FP8 양자화를 사용하여 최대 131,072개의 컨텍스트 토큰을 지원하며, 오픈 소스 모델 중에서 뛰어난 성능을 발휘하여 복잡한 작업에 적합합니다."
|
1363
1351
|
},
|
@@ -1451,12 +1439,18 @@
|
|
1451
1439
|
"mistral-large": {
|
1452
1440
|
"description": "Mixtral Large는 Mistral의 플래그십 모델로, 코드 생성, 수학 및 추론 능력을 결합하여 128k 컨텍스트 창을 지원합니다."
|
1453
1441
|
},
|
1442
|
+
"mistral-large-instruct": {
|
1443
|
+
"description": "Mistral-Large-Instruct-2407은 1230억 개의 매개변수를 가진 첨단 고밀도 대형 언어 모델(LLM)로, 최첨단 추론 능력, 지식 및 코딩 능력을 갖추고 있습니다."
|
1444
|
+
},
|
1454
1445
|
"mistral-large-latest": {
|
1455
1446
|
"description": "Mistral Large는 플래그십 대형 모델로, 다국어 작업, 복잡한 추론 및 코드 생성에 능숙하여 고급 응용 프로그램에 이상적인 선택입니다."
|
1456
1447
|
},
|
1457
1448
|
"mistral-nemo": {
|
1458
1449
|
"description": "Mistral Nemo는 Mistral AI와 NVIDIA가 협력하여 출시한 고효율 12B 모델입니다."
|
1459
1450
|
},
|
1451
|
+
"mistral-nemo-instruct": {
|
1452
|
+
"description": "Mistral-Nemo-Instruct-2407 대형 언어 모델(LLM)은 Mistral-Nemo-Base-2407의 지시 미세 조정 버전입니다."
|
1453
|
+
},
|
1460
1454
|
"mistral-small": {
|
1461
1455
|
"description": "Mistral Small은 높은 효율성과 낮은 대기 시간이 필요한 모든 언어 기반 작업에 사용할 수 있습니다."
|
1462
1456
|
},
|
@@ -1670,15 +1664,6 @@
|
|
1670
1664
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1671
1665
|
"description": "32K 컨텍스트 길이를 지원하는 강력한 중형 코드 모델로, 다국어 프로그래밍에 능숙합니다."
|
1672
1666
|
},
|
1673
|
-
"qwen1.5-14b-chat": {
|
1674
|
-
"description": "Qwen1.5 시리즈는 Qwen2의 베타 버전으로, 트랜스포머 기반의 디코더 전용 언어 모델로 대규모 데이터에서 사전 학습되었습니다. 이전에 출시된 Qwen 시리즈 버전과 비교하여, Qwen1.5 시리즈의 base 및 chat 모델은 여러 언어를 지원하며, 전체 대화 및 기본 기능이 향상되었습니다. Qwen1.5-14b-chat은 140억 개의 매개변수를 가진 채팅 전용 주요 모델입니다."
|
1675
|
-
},
|
1676
|
-
"qwen1.5-32b-chat": {
|
1677
|
-
"description": "Qwen1.5 시리즈는 Qwen2의 베타 버전으로, 트랜스포머 기반의 디코더 전용 언어 모델로 대규모 데이터에서 사전 학습되었습니다. 이전에 출시된 Qwen 시리즈 버전과 비교하여, Qwen1.5 시리즈의 base 및 chat 모델은 여러 언어를 지원하며, 전체적인 대화와 기본 기능이 향상되었습니다. Qwen1.5-32b-chat은 320억 개의 매개변수를 가진 채팅 전용 대형 모델로, 14b 모델보다는 스마트 에이전트 시나리오에서 더 강하고, 72b 모델보다는 추론 비용이 낮습니다."
|
1678
|
-
},
|
1679
|
-
"qwen1.5-72b-chat": {
|
1680
|
-
"description": "Qwen1.5 시리즈는 Qwen2의 베타 버전으로, 트랜스포머 기반의 디코더 전용 언어 모델로 대규모 데이터에서 사전 학습되었습니다. 이전에 출시된 Qwen 시리즈 버전과 비교하여, Qwen1.5 시리즈의 base 및 chat 모델은 여러 언어를 지원하며, 전체적인 대화와 기본 기능이 향상되었습니다. Qwen1.5-72b-chat은 720억 개의 매개변수를 가진 채팅 전용 대형 모델입니다."
|
1681
|
-
},
|
1682
1667
|
"qwen2": {
|
1683
1668
|
"description": "Qwen2는 Alibaba의 차세대 대규모 언어 모델로, 뛰어난 성능으로 다양한 응용 요구를 지원합니다."
|
1684
1669
|
},
|
@@ -1715,6 +1700,12 @@
|
|
1715
1700
|
"qwen2.5-coder-7b-instruct": {
|
1716
1701
|
"description": "통의 천문 코드 모델 오픈 소스 버전입니다."
|
1717
1702
|
},
|
1703
|
+
"qwen2.5-coder-instruct": {
|
1704
|
+
"description": "Qwen2.5-Coder는 Qwen 시리즈의 최신 코드 전용 대규모 언어 모델입니다(이전 명칭: CodeQwen)."
|
1705
|
+
},
|
1706
|
+
"qwen2.5-instruct": {
|
1707
|
+
"description": "Qwen2.5은 Qwen 대형 언어 모델의 최신 시리즈입니다. Qwen2.5을 위해 우리는 5억에서 72억에 이르는 다양한 파라미터 범위의 기본 언어 모델과 지침 미세 조정 언어 모델을 출시했습니다."
|
1708
|
+
},
|
1718
1709
|
"qwen2.5-math-1.5b-instruct": {
|
1719
1710
|
"description": "Qwen-Math 모델은 강력한 수학 문제 해결 능력을 갖추고 있습니다."
|
1720
1711
|
},
|
@@ -1724,12 +1715,18 @@
|
|
1724
1715
|
"qwen2.5-math-7b-instruct": {
|
1725
1716
|
"description": "Qwen-Math 모델은 강력한 수학 문제 해결 능력을 가지고 있습니다."
|
1726
1717
|
},
|
1718
|
+
"qwen2.5-vl-32b-instruct": {
|
1719
|
+
"description": "Qwen2.5-VL 시리즈 모델은 모델의 지능 수준, 실용성 및 적용성을 향상시켜 자연스러운 대화, 콘텐츠 제작, 전문 지식 서비스 및 코드 개발 등 다양한 시나리오에서 더 나은 성능을 발휘합니다. 32B 버전은 강화 학습 기술을 활용하여 최적화되었으며, Qwen2.5 VL 시리즈의 다른 모델들과 비교하여 인간의 선호도에 더 부합하는 출력 스타일, 복잡한 수학 문제의 추론 능력, 그리고 이미지의 세밀한 이해와 추론 능력을 제공합니다."
|
1720
|
+
},
|
1727
1721
|
"qwen2.5-vl-72b-instruct": {
|
1728
1722
|
"description": "지시 따르기, 수학, 문제 해결, 코드 전반적인 향상, 모든 사물 인식 능력 향상, 다양한 형식의 시각적 요소를 직접 정확하게 위치 지정할 수 있으며, 최대 10분 길이의 긴 비디오 파일을 이해하고 초 단위의 사건 시점을 위치 지정할 수 있습니다. 시간의 선후와 속도를 이해할 수 있으며, 분석 및 위치 지정 능력을 기반으로 OS 또는 모바일 에이전트를 조작할 수 있습니다. 주요 정보 추출 능력과 Json 형식 출력 능력이 뛰어나며, 이 버전은 72B 버전으로, 이 시리즈에서 가장 강력한 버전입니다."
|
1729
1723
|
},
|
1730
1724
|
"qwen2.5-vl-7b-instruct": {
|
1731
1725
|
"description": "지시 따르기, 수학, 문제 해결, 코드 전반적인 향상, 모든 사물 인식 능력 향상, 다양한 형식의 시각적 요소를 직접 정확하게 위치 지정할 수 있으며, 최대 10분 길이의 긴 비디오 파일을 이해하고 초 단위의 사건 시점을 위치 지정할 수 있습니다. 시간의 선후와 속도를 이해할 수 있으며, 분석 및 위치 지정 능력을 기반으로 OS 또는 모바일 에이전트를 조작할 수 있습니다. 주요 정보 추출 능력과 Json 형식 출력 능력이 뛰어나며, 이 버전은 72B 버전으로, 이 시리즈에서 가장 강력한 버전입니다."
|
1732
1726
|
},
|
1727
|
+
"qwen2.5-vl-instruct": {
|
1728
|
+
"description": "Qwen2.5-VL은 Qwen 모델 패밀리의 최신 버전 시각 언어 모델입니다."
|
1729
|
+
},
|
1733
1730
|
"qwen2.5:0.5b": {
|
1734
1731
|
"description": "Qwen2.5는 Alibaba의 차세대 대규모 언어 모델로, 뛰어난 성능으로 다양한 응용 요구를 지원합니다."
|
1735
1732
|
},
|
@@ -146,6 +146,9 @@
|
|
146
146
|
"xai": {
|
147
147
|
"description": "xAI는 인류의 과학적 발견을 가속화하기 위해 인공지능을 구축하는 데 전념하는 회사입니다. 우리의 사명은 우주에 대한 공동의 이해를 증진하는 것입니다."
|
148
148
|
},
|
149
|
+
"xinference": {
|
150
|
+
"description": "Xorbits 추론(Xinference)은 다양한 AI 모델의 실행 및 통합을 단순화하기 위한 오픈소스 플랫폼입니다. Xinference를 사용하면 클라우드 또는 로컬 환경에서 오픈소스 LLM, 임베딩 모델 및 멀티모달 모델을 활용하여 추론을 실행하고 강력한 AI 애플리케이션을 구축할 수 있습니다."
|
151
|
+
},
|
149
152
|
"zeroone": {
|
150
153
|
"description": "01.AI는 AI 2.0 시대의 인공지능 기술에 집중하며, '인간 + 인공지능'의 혁신과 응용을 적극적으로 추진하고, 초강력 모델과 고급 AI 기술을 활용하여 인간의 생산성을 향상시키고 기술의 힘을 실현합니다."
|
151
154
|
},
|