@lobehub/chat 1.75.4 → 1.75.5
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +27 -0
- package/README.md +1 -1
- package/README.zh-CN.md +1 -1
- package/changelog/v1.json +9 -0
- package/docs/self-hosting/advanced/model-list.mdx +5 -3
- package/docs/self-hosting/advanced/model-list.zh-CN.mdx +5 -3
- package/docs/usage/providers/infiniai.zh-CN.mdx +4 -0
- package/locales/ar/models.json +51 -54
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/models.json +51 -54
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/models.json +51 -54
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/models.json +51 -54
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/models.json +51 -54
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/models.json +51 -54
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/models.json +51 -54
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/models.json +51 -54
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/models.json +51 -54
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/models.json +51 -54
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/models.json +51 -54
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/models.json +51 -54
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/models.json +51 -54
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/models.json +51 -54
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/models.json +51 -54
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/models.json +51 -54
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/models.json +55 -58
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/models.json +51 -54
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/src/config/aiModels/infiniai.ts +52 -55
- package/src/config/aiModels/siliconcloud.ts +17 -1
- package/src/config/aiModels/tencentcloud.ts +17 -0
- package/src/libs/agent-runtime/infiniai/index.ts +38 -3
- package/src/utils/format.ts +1 -1
- package/src/utils/parseModels.test.ts +14 -0
- package/src/utils/parseModels.ts +4 -0
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,33 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.75.5](https://github.com/lobehub/lobe-chat/compare/v1.75.4...v1.75.5)
|
6
|
+
|
7
|
+
<sup>Released on **2025-03-28**</sup>
|
8
|
+
|
9
|
+
#### 💄 Styles
|
10
|
+
|
11
|
+
- **misc**: Add tencentcloud deepseek-v3-0324, support for parsing `imageOutput`, update models for siliconcloud & infiniai.
|
12
|
+
|
13
|
+
<br/>
|
14
|
+
|
15
|
+
<details>
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
17
|
+
|
18
|
+
#### Styles
|
19
|
+
|
20
|
+
- **misc**: Add tencentcloud deepseek-v3-0324, closes [#7182](https://github.com/lobehub/lobe-chat/issues/7182) ([c67af99](https://github.com/lobehub/lobe-chat/commit/c67af99))
|
21
|
+
- **misc**: Support for parsing `imageOutput`, closes [#7140](https://github.com/lobehub/lobe-chat/issues/7140) ([05bae9d](https://github.com/lobehub/lobe-chat/commit/05bae9d))
|
22
|
+
- **misc**: Update models for siliconcloud & infiniai, closes [#7197](https://github.com/lobehub/lobe-chat/issues/7197) ([1c1f693](https://github.com/lobehub/lobe-chat/commit/1c1f693))
|
23
|
+
|
24
|
+
</details>
|
25
|
+
|
26
|
+
<div align="right">
|
27
|
+
|
28
|
+
[](#readme-top)
|
29
|
+
|
30
|
+
</div>
|
31
|
+
|
5
32
|
### [Version 1.75.4](https://github.com/lobehub/lobe-chat/compare/v1.75.3...v1.75.4)
|
6
33
|
|
7
34
|
<sup>Released on **2025-03-27**</sup>
|
package/README.md
CHANGED
@@ -762,7 +762,7 @@ Every bit counts and your one-time donation sparkles in our galaxy of support! Y
|
|
762
762
|
|
763
763
|
</details>
|
764
764
|
|
765
|
-
Copyright ©
|
765
|
+
Copyright © 2025 [LobeHub][profile-link]. <br />
|
766
766
|
This project is [Apache 2.0](./LICENSE) licensed.
|
767
767
|
|
768
768
|
<!-- LINK GROUP -->
|
package/README.zh-CN.md
CHANGED
package/changelog/v1.json
CHANGED
@@ -1,4 +1,13 @@
|
|
1
1
|
[
|
2
|
+
{
|
3
|
+
"children": {
|
4
|
+
"improvements": [
|
5
|
+
"Add tencentcloud deepseek-v3-0324, support for parsing imageOutput, update models for siliconcloud & infiniai."
|
6
|
+
]
|
7
|
+
},
|
8
|
+
"date": "2025-03-28",
|
9
|
+
"version": "1.75.5"
|
10
|
+
},
|
2
11
|
{
|
3
12
|
"children": {
|
4
13
|
"improvements": [
|
@@ -17,7 +17,7 @@ LobeChat supports customizing the model list during deployment. This configurati
|
|
17
17
|
You can use `+` to add a model, `-` to hide a model, and use `model name->deploymentName=display name<extension configuration>` to customize the display name of a model, separated by English commas. The basic syntax is as follows:
|
18
18
|
|
19
19
|
```text
|
20
|
-
id->deploymentName=displayName<maxToken:vision:reasoning:search:fc:file>,model2,model3
|
20
|
+
id->deploymentName=displayName<maxToken:vision:reasoning:search:fc:file:imageOutput>,model2,model3
|
21
21
|
```
|
22
22
|
|
23
23
|
For example: `+qwen-7b-chat,+glm-6b,-gpt-3.5-turbo,gpt-4-0125-preview=gpt-4-turbo`
|
@@ -29,7 +29,7 @@ In the above example, it adds `qwen-7b-chat` and `glm-6b` to the model list, rem
|
|
29
29
|
Considering the diversity of model capabilities, we started to add extension configuration in version `0.147.8`, with the following rules:
|
30
30
|
|
31
31
|
```shell
|
32
|
-
id->deploymentName=displayName<maxToken:vision:reasoning:search:fc:file>
|
32
|
+
id->deploymentName=displayName<maxToken:vision:reasoning:search:fc:file:imageOutput>
|
33
33
|
```
|
34
34
|
|
35
35
|
The first value in angle brackets is designated as the `maxToken` for this model. The second value and beyond are the model's extension capabilities, separated by colons `:`, and the order is not important.
|
@@ -41,7 +41,8 @@ Examples are as follows:
|
|
41
41
|
- `gemini-1.5-flash-latest=Gemini 1.5 Flash<16000:vision>`: Google Vision model, maximum context of 16k, supports image recognition;
|
42
42
|
- `o3-mini=OpenAI o3-mini<200000:reasoning:fc>`: OpenAI o3-mini model, maximum context of 200k, supports reasoning and Function Call;
|
43
43
|
- `qwen-max-latest=Qwen Max<32768:search:fc>`: Qwen 2.5 Max model, maximum context of 32k, supports web search and Function Call;
|
44
|
-
- `gpt-4-all=ChatGPT Plus<128000:fc:vision:file>`, hacked version of ChatGPT Plus web, context of 128k, supports image recognition, Function Call, file upload
|
44
|
+
- `gpt-4-all=ChatGPT Plus<128000:fc:vision:file>`, hacked version of ChatGPT Plus web, context of 128k, supports image recognition, Function Call, file upload;
|
45
|
+
- `gemini-2.0-flash-exp-image-generation=Gemini 2.0 Flash (Image Generation) Experimental<32768:imageOutput:vision>`, Gemini 2.0 Flash Experimental model for image generation, maximum context of 32k, supports image generation and recognition.
|
45
46
|
|
46
47
|
Currently supported extension capabilities are:
|
47
48
|
|
@@ -49,6 +50,7 @@ Currently supported extension capabilities are:
|
|
49
50
|
| ----------- | -------------------------------------------------------- |
|
50
51
|
| `fc` | Function Calling |
|
51
52
|
| `vision` | Image Recognition |
|
53
|
+
| `imageOutput` | Image Generation |
|
52
54
|
| `reasoning` | Support Reasoning |
|
53
55
|
| `search` | Support Web Search |
|
54
56
|
| `file` | File Upload (a bit hacky, not recommended for daily use) |
|
@@ -16,7 +16,7 @@ LobeChat 支持在部署时自定义模型列表,详情请参考 [模型提供
|
|
16
16
|
你可以使用 `+` 增加一个模型,使用 `-` 来隐藏一个模型,使用 `模型名->部署名=展示名<扩展配置>` 来自定义模型的展示名,用英文逗号隔开。通过 `<>` 来添加扩展配置。基本语法如下:
|
17
17
|
|
18
18
|
```text
|
19
|
-
id->deploymentName=displayName<maxToken:vision:reasoning:search:fc:file>,model2,model3
|
19
|
+
id->deploymentName=displayName<maxToken:vision:reasoning:search:fc:file:imageOutput>,model2,model3
|
20
20
|
```
|
21
21
|
|
22
22
|
例如: `+qwen-7b-chat,+glm-6b,-gpt-3.5-turbo,gpt-4-0125-preview=gpt-4-turbo`
|
@@ -28,7 +28,7 @@ id->deploymentName=displayName<maxToken:vision:reasoning:search:fc:file>,model2,
|
|
28
28
|
考虑到模型的能力多样性,我们在 `0.147.8` 版本开始增加扩展性配置,它的规则如下:
|
29
29
|
|
30
30
|
```shell
|
31
|
-
id->deploymentName=displayName<maxToken:vision:reasoning:search:fc:file>
|
31
|
+
id->deploymentName=displayName<maxToken:vision:reasoning:search:fc:file:imageOutput>
|
32
32
|
```
|
33
33
|
|
34
34
|
尖括号第一个值约定为这个模型的 `maxToken` 。第二个及以后作为模型的扩展能力,能力与能力之间用冒号 `:` 作为分隔符,顺序不重要。
|
@@ -40,7 +40,8 @@ id->deploymentName=displayName<maxToken:vision:reasoning:search:fc:file>
|
|
40
40
|
- `gemini-1.5-flash-latest=Gemini 1.5 Flash<16000:vision>`:Google 视觉模型,最大上下文 16k,支持图像识别;
|
41
41
|
- `o3-mini=OpenAI o3-mini<200000:reasoning:fc>`:OpenAI o3-mini 模型,最大上下文 200k,支持推理及 Function Call;
|
42
42
|
- `qwen-max-latest=Qwen Max<32768:search:fc>`:通义千问 2.5 Max 模型,最大上下文 32k,支持联网搜索及 Function Call;
|
43
|
-
- `gpt-4-all=ChatGPT Plus<128000:fc:vision:file>`,hack 的 ChatGPT Plus 网页版,上下 128k ,支持图像识别、Function Call
|
43
|
+
- `gpt-4-all=ChatGPT Plus<128000:fc:vision:file>`,hack 的 ChatGPT Plus 网页版,上下 128k ,支持图像识别、Function Call、文件上传;
|
44
|
+
- `gemini-2.0-flash-exp-image-generation=Gemini 2.0 Flash (Image Generation) Experimental<32768:imageOutput:vision>`,Gemini 2.0 Flash 实验模型,最大上下文 32k,支持图像生成和识别
|
44
45
|
|
45
46
|
目前支持的扩展能力有:
|
46
47
|
|
@@ -48,6 +49,7 @@ id->deploymentName=displayName<maxToken:vision:reasoning:search:fc:file>
|
|
48
49
|
| ----------- | ---------------------- |
|
49
50
|
| `fc` | 函数调用(function calling) |
|
50
51
|
| `vision` | 视觉识别 |
|
52
|
+
| `imageOutput` | 图像生成 |
|
51
53
|
| `reasoning` | 支持推理 |
|
52
54
|
| `search` | 支持联网搜索 |
|
53
55
|
| `file` | 文件上传(比较 hack,不建议日常使用) |
|
@@ -14,6 +14,10 @@ tags:
|
|
14
14
|
|
15
15
|
本文将指导你如何在 LobeChat 中快速接入无问芯穹的 AI 能力。
|
16
16
|
|
17
|
+
<Callout type="info">
|
18
|
+
无问芯穹的图片链接输入有白名单机制,目前已知支持阿里云 OSS / AWS S3 等服务的图片链接。如果您在使用图片对话时遇到 400 报错,请尝试[使用 base64 编码上传图片](/docs/self-hosting/environment-variables/s3#llm-vision-image-use-base-64)。
|
19
|
+
</Callout>
|
20
|
+
|
17
21
|
<Steps>
|
18
22
|
### 步骤一:获取无问芯穹 API Key
|
19
23
|
|
package/locales/ar/models.json
CHANGED
@@ -1,13 +1,4 @@
|
|
1
1
|
{
|
2
|
-
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
|
-
"description": "Yi-1.5 34B، يقدم أداءً ممتازًا في التطبيقات الصناعية بفضل مجموعة التدريب الغنية."
|
4
|
-
},
|
5
|
-
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
-
"description": "Yi-1.5-6B-Chat هو متغير من سلسلة Yi-1.5، وهو نموذج دردشة مفتوح المصدر. Yi-1.5 هو إصدار مطور من Yi، تم تدريبه على 500B من البيانات عالية الجودة، وتم تحسينه على 3M من عينات التعديل المتنوعة. مقارنةً بـ Yi، يظهر Yi-1.5 أداءً أقوى في الترميز، والرياضيات، والاستدلال، والامتثال للتعليمات، مع الحفاظ على قدرة ممتازة في فهم اللغة، والاستدلال العام، وفهم القراءة. يتوفر هذا النموذج بإصدارات بطول سياق 4K و16K و32K، مع إجمالي تدريب يصل إلى 3.6T توكن."
|
7
|
-
},
|
8
|
-
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
|
-
"description": "Yi-1.5 9B يدعم 16K توكن، ويوفر قدرة توليد لغوية فعالة وسلسة."
|
10
|
-
},
|
11
2
|
"01-ai/yi-1.5-34b-chat": {
|
12
3
|
"description": "Zero One Everything، أحدث نموذج مفتوح المصدر تم تعديله، يحتوي على 34 مليار معلمة، ويدعم تعديلات متعددة لمشاهد الحوار، مع بيانات تدريب عالية الجودة تتماشى مع تفضيلات البشر."
|
13
4
|
},
|
@@ -149,12 +140,6 @@
|
|
149
140
|
"Llama-3.2-90B-Vision-Instruct\t": {
|
150
141
|
"description": "قدرات استدلال الصور المتقدمة المناسبة لتطبيقات الوكلاء في الفهم البصري."
|
151
142
|
},
|
152
|
-
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
153
|
-
"description": "Qwen2.5-72B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر دعمًا للغات متعددة، تغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. أظهر النموذج تحسينات ملحوظة في اتباع التعليمات، وفهم البيانات الهيكلية، وتوليد المخرجات الهيكلية (خاصة JSON)."
|
154
|
-
},
|
155
|
-
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
156
|
-
"description": "Qwen2.5-7B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر دعمًا للغات متعددة، تغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. أظهر النموذج تحسينات ملحوظة في اتباع التعليمات، وفهم البيانات الهيكلية، وتوليد المخرجات الهيكلية (خاصة JSON)."
|
157
|
-
},
|
158
143
|
"Meta-Llama-3.1-405B-Instruct": {
|
159
144
|
"description": "نموذج نصي تم تعديله تحت الإشراف من Llama 3.1، تم تحسينه لحالات الحوار متعددة اللغات، حيث يتفوق في العديد من نماذج الدردشة مفتوحة ومغلقة المصدر المتاحة في المعايير الصناعية الشائعة."
|
160
145
|
},
|
@@ -179,9 +164,6 @@
|
|
179
164
|
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
180
165
|
"description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) هو نموذج تعليمات عالي الدقة، مناسب للحسابات المعقدة."
|
181
166
|
},
|
182
|
-
"OpenGVLab/InternVL2-26B": {
|
183
|
-
"description": "أظهر InternVL2 أداءً رائعًا في مجموعة متنوعة من مهام اللغة البصرية، بما في ذلك فهم الوثائق والرسوم البيانية، وفهم النصوص في المشاهد، وOCR، وحل المشكلات العلمية والرياضية."
|
184
|
-
},
|
185
167
|
"Phi-3-medium-128k-instruct": {
|
186
168
|
"description": "نموذج Phi-3-medium نفسه، ولكن مع حجم سياق أكبر لـ RAG أو التوجيه القليل."
|
187
169
|
},
|
@@ -206,9 +188,6 @@
|
|
206
188
|
"Phi-3.5-vision-instrust": {
|
207
189
|
"description": "النسخة المحدثة من نموذج Phi-3-vision."
|
208
190
|
},
|
209
|
-
"Pro/OpenGVLab/InternVL2-8B": {
|
210
|
-
"description": "أظهر InternVL2 أداءً رائعًا في مجموعة متنوعة من مهام اللغة البصرية، بما في ذلك فهم الوثائق والرسوم البيانية، وفهم النصوص في المشاهد، وOCR، وحل المشكلات العلمية والرياضية."
|
211
|
-
},
|
212
191
|
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
213
192
|
"description": "Qwen2-1.5B-Instruct هو نموذج لغوي كبير تم تعديله وفقًا للتعليمات في سلسلة Qwen2، بحجم 1.5B. يعتمد هذا النموذج على بنية Transformer، ويستخدم تقنيات مثل دالة تنشيط SwiGLU، وتحويل QKV، والانتباه الجماعي. أظهر أداءً ممتازًا في فهم اللغة، والتوليد، والقدرات متعددة اللغات، والترميز، والرياضيات، والاستدلال في العديد من اختبارات المعايير، متجاوزًا معظم النماذج مفتوحة المصدر."
|
214
193
|
},
|
@@ -224,20 +203,23 @@
|
|
224
203
|
"Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
|
225
204
|
"description": "Qwen2.5-Coder-7B-Instruct هو أحدث إصدار من سلسلة نماذج اللغة الكبيرة المحددة للشيفرة التي أصدرتها Alibaba Cloud. تم تحسين هذا النموذج بشكل كبير في توليد الشيفرة، والاستدلال، وإصلاح الأخطاء، من خلال تدريب على 55 تريليون توكن."
|
226
205
|
},
|
206
|
+
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
207
|
+
"description": "Qwen2.5-VL هو العضو الجديد في سلسلة Qwen، يتمتع بقدرات فهم بصري قوية، يمكنه تحليل النصوص والرسوم البيانية والتخطيطات في الصور، وفهم مقاطع الفيديو الطويلة واستيعاب الأحداث. بإمكانه القيام بالاستدلال والتعامل مع الأدوات، يدعم تحديد الكائنات متعددة التنسيقات وإنشاء مخرجات منظمة، كما تم تحسين ديناميكية الدقة ومعدل الإطارات في التدريب لفهم الفيديو، مع تعزيز كفاءة مشفر الرؤية."
|
208
|
+
},
|
227
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
228
210
|
"description": "GLM-4-9B-Chat هو الإصدار مفتوح المصدر من نموذج GLM-4 الذي أطلقته Zhizhu AI. أظهر هذا النموذج أداءً ممتازًا في مجالات الدلالات، والرياضيات، والاستدلال، والشيفرة، والمعرفة. بالإضافة إلى دعم المحادثات متعددة الجولات، يتمتع GLM-4-9B-Chat أيضًا بميزات متقدمة مثل تصفح الويب، وتنفيذ الشيفرة، واستدعاء الأدوات المخصصة (Function Call)، والاستدلال على النصوص الطويلة. يدعم النموذج 26 لغة، بما في ذلك الصينية، والإنجليزية، واليابانية، والكورية، والألمانية. أظهر GLM-4-9B-Chat أداءً ممتازًا في العديد من اختبارات المعايير مثل AlignBench-v2 وMT-Bench وMMLU وC-Eval. يدعم النموذج طول سياق يصل إلى 128K، مما يجعله مناسبًا للأبحاث الأكاديمية والتطبيقات التجارية."
|
229
211
|
},
|
230
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
231
213
|
"description": "DeepSeek-R1 هو نموذج استدلال مدفوع بالتعلم المعزز (RL)، يعالج مشكلات التكرار وقابلية القراءة في النموذج. قبل التعلم المعزز، أدخل DeepSeek-R1 بيانات بدء التشغيل الباردة، مما أدى إلى تحسين أداء الاستدلال. إنه يتفوق في المهام الرياضية، والبرمجة، والاستدلال مقارنةً بـ OpenAI-o1، وقد حسّن الأداء العام من خلال طرق تدريب مصممة بعناية."
|
232
214
|
},
|
233
|
-
"Pro/deepseek-ai/DeepSeek-
|
234
|
-
"description": "DeepSeek-
|
215
|
+
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
216
|
+
"description": "DeepSeek-R1-Distill-Qwen-1.5B هو نموذج تم الحصول عليه من خلال تقطير المعرفة بناءً على Qwen2.5-Math-1.5B. تم ضبط هذا النموذج باستخدام 800 ألف عينة مختارة تم إنشاؤها بواسطة DeepSeek-R1، حيث أظهر أداءً جيدًا في معايير متعددة. كنموذج خفيف الوزن، حقق دقة 83.9٪ في MATH-500، ومعدل نجاح 28.9٪ في AIME 2024، وحصل على تقييم 954 في CodeForces، مما يظهر قدرة استدلالية تتجاوز حجم معلماته."
|
235
217
|
},
|
236
|
-
"Pro/
|
237
|
-
"description": "
|
218
|
+
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
219
|
+
"description": "DeepSeek-R1-Distill-Qwen-7B هو نموذج تم الحصول عليه من خلال تقطير المعرفة بناءً على Qwen2.5-Math-7B. تم ضبط هذا النموذج باستخدام 800 ألف عينة مختارة تم إنشاؤها بواسطة DeepSeek-R1، مما يظهر قدرات استدلالية ممتازة. أظهر أداءً متميزًا في العديد من الاختبارات المعيارية، حيث حقق دقة 92.8٪ في MATH-500، ومعدل نجاح 55.5٪ في AIME 2024، ودرجة 1189 في CodeForces، مما يظهر قدرات قوية في الرياضيات والبرمجة كنموذج بحجم 7B."
|
238
220
|
},
|
239
|
-
"Pro/
|
240
|
-
"description": "
|
221
|
+
"Pro/deepseek-ai/DeepSeek-V3": {
|
222
|
+
"description": "DeepSeek-V3 هو نموذج لغوي مختلط الخبراء (MoE) يحتوي على 6710 مليار معلمة، يستخدم الانتباه المتعدد الرؤوس (MLA) وهيكل DeepSeekMoE، ويجمع بين استراتيجيات توازن الحمل بدون خسائر مساعدة، مما يحسن كفاءة الاستدلال والتدريب. تم تدريبه مسبقًا على 14.8 تريليون توكن عالية الجودة، وتم إجراء تعديل دقيق تحت الإشراف والتعلم المعزز، مما يجعل DeepSeek-V3 يتفوق على نماذج مفتوحة المصدر الأخرى، ويقترب من النماذج المغلقة الرائدة."
|
241
223
|
},
|
242
224
|
"QwQ-32B-Preview": {
|
243
225
|
"description": "QwQ-32B-Preview هو نموذج معالجة اللغة الطبيعية المبتكر، قادر على معالجة مهام توليد الحوار وفهم السياق بشكل فعال."
|
@@ -290,6 +272,12 @@
|
|
290
272
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
291
273
|
"description": "Qwen2.5-Coder-7B-Instruct هو أحدث إصدار من سلسلة نماذج اللغة الكبيرة المحددة للشيفرة التي أصدرتها Alibaba Cloud. تم تحسين هذا النموذج بشكل كبير في توليد الشيفرة، والاستدلال، وإصلاح الأخطاء، من خلال تدريب على 55 تريليون توكن."
|
292
274
|
},
|
275
|
+
"Qwen/Qwen2.5-VL-32B-Instruct": {
|
276
|
+
"description": "Qwen2.5-VL-32B-Instruct هو نموذج متعدد الوسائط تم تطويره بواسطة فريق Tongyi Qianwen، وهو جزء من سلسلة Qwen2.5-VL. لا يتقن هذا النموذج فقط التعرف على الأشياء الشائعة، بل يمكنه أيضًا تحليل النصوص والرسوم البيانية والرموز والأشكال والتخطيطات في الصور. يعمل كعامل ذكي بصري قادر على التفكير والتعامل الديناميكي مع الأدوات، مع امتلاك القدرة على استخدام الحاسوب والهاتف المحمول. بالإضافة إلى ذلك، يمكن لهذا النموذج تحديد مواقع الكائنات في الصور بدقة وإنتاج مخرجات منظمة للفواتير والجداول وغيرها. مقارنةً بالنموذج السابق Qwen2-VL، فقد تم تحسين هذه النسخة بشكل أكبر في القدرات الرياضية وحل المشكلات من خلال التعلم المعزز، كما أن أسلوب الاستجابة أصبح أكثر توافقًا مع تفضيلات البشر."
|
277
|
+
},
|
278
|
+
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
279
|
+
"description": "Qwen2.5-VL هو نموذج اللغة البصرية في سلسلة Qwen2.5. يتميز هذا النموذج بتحسينات كبيرة في جوانب متعددة: قدرة أقوى على الفهم البصري، مع القدرة على التعرف على الأشياء الشائعة وتحليل النصوص والرسوم البيانية والتخطيطات؛ كوسيط بصري يمكنه التفكير وتوجيه استخدام الأدوات ديناميكيًا؛ يدعم فهم مقاطع الفيديو الطويلة التي تزيد عن ساعة واحدة مع القدرة على التقاط الأحداث الرئيسية؛ يمكنه تحديد موقع الأشياء في الصور بدقة من خلال إنشاء مربعات حدودية أو نقاط؛ يدعم إنشاء مخرجات منظمة، وهو مفيد بشكل خاص للبيانات الممسوحة ضوئيًا مثل الفواتير والجداول."
|
280
|
+
},
|
293
281
|
"Qwen2-72B-Instruct": {
|
294
282
|
"description": "Qwen2 هو أحدث سلسلة من نموذج Qwen، ويدعم سياقًا يصل إلى 128 ألف، مقارنةً بأفضل النماذج مفتوحة المصدر الحالية، يتفوق Qwen2-72B بشكل ملحوظ في فهم اللغة الطبيعية والمعرفة والترميز والرياضيات والقدرات متعددة اللغات."
|
295
283
|
},
|
@@ -374,9 +362,6 @@
|
|
374
362
|
"TeleAI/TeleChat2": {
|
375
363
|
"description": "نموذج TeleChat2 هو نموذج كبير تم تطويره ذاتيًا من قبل China Telecom، يدعم وظائف مثل الأسئلة والأجوبة الموسوعية، وتوليد الشيفرة، وتوليد النصوص الطويلة، ويقدم خدمات استشارية للمستخدمين، مما يمكنه من التفاعل مع المستخدمين، والإجابة على الأسئلة، والمساعدة في الإبداع، وتوفير المعلومات والمعرفة والإلهام بكفاءة وسهولة. أظهر النموذج أداءً ممتازًا في معالجة مشكلات الهلوسة، وتوليد النصوص الطويلة، وفهم المنطق."
|
376
364
|
},
|
377
|
-
"TeleAI/TeleMM": {
|
378
|
-
"description": "نموذج TeleMM هو نموذج كبير لفهم متعدد الوسائط تم تطويره ذاتيًا من قبل China Telecom، يمكنه معالجة مدخلات متعددة الوسائط مثل النصوص والصور، ويدعم وظائف مثل فهم الصور، وتحليل الرسوم البيانية، مما يوفر خدمات فهم متعددة الوسائط للمستخدمين. يمكن للنموذج التفاعل مع المستخدمين بطرق متعددة الوسائط، وفهم المحتوى المدخل بدقة، والإجابة على الأسئلة، والمساعدة في الإبداع، وتوفير معلومات متعددة الوسائط ودعم الإلهام بكفاءة. أظهر أداءً ممتازًا في المهام متعددة الوسائط مثل الإدراك الدقيق، والاستدلال المنطقي."
|
379
|
-
},
|
380
365
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
381
366
|
"description": "Qwen2.5-72B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر دعمًا للغات متعددة، تغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. أظهر النموذج تحسينات ملحوظة في اتباع التعليمات، وفهم البيانات الهيكلية، وتوليد المخرجات الهيكلية (خاصة JSON)."
|
382
367
|
},
|
@@ -662,9 +647,6 @@
|
|
662
647
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
663
648
|
"description": "نموذج التقطير DeepSeek-R1، تم تحسين أداء الاستدلال من خلال التعلم المعزز وبيانات البداية الباردة، ويعيد نموذج المصدر فتح معايير المهام المتعددة."
|
664
649
|
},
|
665
|
-
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
|
666
|
-
"description": "DeepSeek-R1-Distill-Llama-8B هو نموذج تم تطويره بناءً على Llama-3.1-8B. تم ضبط هذا النموذج باستخدام عينات تم إنشاؤها بواسطة DeepSeek-R1، ويظهر قدرة استدلال ممتازة. حقق أداءً جيدًا في اختبارات المعايير، حيث حقق دقة 89.1% في MATH-500، وحقق معدل نجاح 50.4% في AIME 2024، وحصل على تقييم 1205 في CodeForces، مما يظهر قدرة قوية في الرياضيات والبرمجة كنموذج بحجم 8B."
|
667
|
-
},
|
668
650
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
669
651
|
"description": "نموذج التقطير DeepSeek-R1، تم تحسين أداء الاستدلال من خلال التعلم المعزز وبيانات البداية الباردة، ويعيد نموذج المصدر فتح معايير المهام المتعددة."
|
670
652
|
},
|
@@ -713,6 +695,9 @@
|
|
713
695
|
"deepseek-r1-70b-online": {
|
714
696
|
"description": "DeepSeek R1 70B النسخة القياسية، تدعم البحث المتصل في الوقت الحقيقي، مناسبة للمحادثات والمهام النصية التي تتطلب معلومات حديثة."
|
715
697
|
},
|
698
|
+
"deepseek-r1-distill-llama": {
|
699
|
+
"description": "deepseek-r1-distill-llama هو نموذج مستخلص من DeepSeek-R1 بناءً على Llama."
|
700
|
+
},
|
716
701
|
"deepseek-r1-distill-llama-70b": {
|
717
702
|
"description": "DeepSeek R1 - النموذج الأكبر والأذكى في مجموعة DeepSeek - تم تقطيره إلى بنية Llama 70B. بناءً على اختبارات المعايير والتقييمات البشرية، يظهر هذا النموذج ذكاءً أكبر من Llama 70B الأصلي، خاصة في المهام التي تتطلب دقة رياضية وحقائق."
|
718
703
|
},
|
@@ -725,6 +710,9 @@
|
|
725
710
|
"deepseek-r1-distill-qianfan-llama-8b": {
|
726
711
|
"description": "تم إصداره لأول مرة في 14 فبراير 2025، تم استخلاصه بواسطة فريق تطوير نموذج Qianfan باستخدام Llama3_8B كنموذج أساسي (مبني على Meta Llama)، وتم إضافة نصوص Qianfan إلى بيانات الاستخلاص."
|
727
712
|
},
|
713
|
+
"deepseek-r1-distill-qwen": {
|
714
|
+
"description": "deepseek-r1-distill-qwen هو نموذج مستخلص من DeepSeek-R1 بناءً على Qwen."
|
715
|
+
},
|
728
716
|
"deepseek-r1-distill-qwen-1.5b": {
|
729
717
|
"description": "نموذج DeepSeek-R1-Distill تم تطويره من خلال تقنية تقطير المعرفة، حيث تم تعديل عينات تم إنشاؤها بواسطة DeepSeek-R1 على نماذج مفتوحة المصدر مثل Qwen وLlama."
|
730
718
|
},
|
@@ -872,6 +860,9 @@
|
|
872
860
|
"gemini-1.5-flash-8b-exp-0924": {
|
873
861
|
"description": "جمني 1.5 فلاش 8B 0924 هو النموذج التجريبي الأحدث، حيث حقق تحسينات ملحوظة في الأداء في حالات الاستخدام النصية ومتعددة الوسائط."
|
874
862
|
},
|
863
|
+
"gemini-1.5-flash-8b-latest": {
|
864
|
+
"description": "Gemini 1.5 Flash 8B هو نموذج متعدد الوسائط فعال يدعم التوسع في مجموعة واسعة من التطبيقات."
|
865
|
+
},
|
875
866
|
"gemini-1.5-flash-exp-0827": {
|
876
867
|
"description": "جيميني 1.5 فلاش 0827 يقدم قدرة معالجة متعددة الوسائط محسنة، مناسب لمجموعة متنوعة من سيناريوهات المهام المعقدة."
|
877
868
|
},
|
@@ -914,9 +905,6 @@
|
|
914
905
|
"gemini-2.0-flash-lite-preview-02-05": {
|
915
906
|
"description": "نموذج Gemini 2.0 Flash، تم تحسينه لأهداف التكلفة المنخفضة والكمون المنخفض."
|
916
907
|
},
|
917
|
-
"gemini-2.0-flash-thinking-exp": {
|
918
|
-
"description": "Gemini 2.0 Flash Exp هو أحدث نموذج تجريبي متعدد الوسائط من Google، يتمتع بميزات الجيل التالي، وسرعة فائقة، واستدعاء أدوات أصلية، وتوليد متعدد الوسائط."
|
919
|
-
},
|
920
908
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
921
909
|
"description": "Gemini 2.0 Flash Exp هو أحدث نموذج تجريبي متعدد الوسائط من Google، يتمتع بميزات الجيل التالي، وسرعة فائقة، واستدعاء أدوات أصلية، وتوليد متعدد الوسائط."
|
922
910
|
},
|
@@ -1223,6 +1211,9 @@
|
|
1223
1211
|
"llama-3.1-8b-instant": {
|
1224
1212
|
"description": "Llama 3.1 8B هو نموذج عالي الأداء، يوفر قدرة سريعة على توليد النصوص، مما يجعله مثاليًا لمجموعة من التطبيقات التي تتطلب كفاءة كبيرة وتكلفة فعالة."
|
1225
1213
|
},
|
1214
|
+
"llama-3.1-instruct": {
|
1215
|
+
"description": "تم تحسين نموذج Llama 3.1 المعدل للتعليمات خصيصًا لسيناريوهات الحوار، حيث يتفوق على العديد من نماذج الدردشة مفتوحة المصدر الحالية في معايير الصناعة الشائعة."
|
1216
|
+
},
|
1226
1217
|
"llama-3.2-11b-vision-instruct": {
|
1227
1218
|
"description": "قدرة استدلال الصور التي تبرز في الصور عالية الدقة، مناسبة لتطبيقات الفهم البصري."
|
1228
1219
|
},
|
@@ -1235,12 +1226,18 @@
|
|
1235
1226
|
"llama-3.2-90b-vision-preview": {
|
1236
1227
|
"description": "Llama 3.2 مصمم للتعامل مع المهام التي تجمع بين البيانات البصرية والنصية. يظهر أداءً ممتازًا في مهام وصف الصور والأسئلة البصرية، متجاوزًا الفجوة بين توليد اللغة والاستدلال البصري."
|
1237
1228
|
},
|
1229
|
+
"llama-3.2-vision-instruct": {
|
1230
|
+
"description": "تم تحسين نموذج Llama 3.2-Vision المعدل للتعليمات للتعرف البصري، والاستدلال على الصور، ووصف الصور، والإجابة على الأسئلة العامة المتعلقة بالصور."
|
1231
|
+
},
|
1238
1232
|
"llama-3.3-70b-instruct": {
|
1239
1233
|
"description": "Llama 3.3 هو النموذج الأكثر تقدمًا في سلسلة Llama، وهو نموذج لغوي مفتوح المصدر متعدد اللغات، يوفر تجربة أداء تنافس نموذج 405B بتكلفة منخفضة للغاية. يعتمد على هيكل Transformer، وتم تحسين فائدته وأمانه من خلال التعديل الدقيق تحت الإشراف (SFT) والتعلم المعزز من خلال التغذية الراجعة البشرية (RLHF). تم تحسين نسخة التعديل الخاصة به لتكون مثالية للحوار متعدد اللغات، حيث يتفوق في العديد من المعايير الصناعية على العديد من نماذج الدردشة المفتوحة والمغلقة. تاريخ انتهاء المعرفة هو ديسمبر 2023."
|
1240
1234
|
},
|
1241
1235
|
"llama-3.3-70b-versatile": {
|
1242
1236
|
"description": "ميتّا لاما 3.3 هو نموذج لغة كبير متعدد اللغات (LLM) يضم 70 مليار (إدخال نص/إخراج نص) من النموذج المدرب مسبقًا والمعدل وفقًا للتعليمات. تم تحسين نموذج لاما 3.3 المعدل وفقًا للتعليمات للاستخدامات الحوارية متعددة اللغات ويتفوق على العديد من النماذج المتاحة مفتوحة المصدر والمغلقة في المعايير الصناعية الشائعة."
|
1243
1237
|
},
|
1238
|
+
"llama-3.3-instruct": {
|
1239
|
+
"description": "تم تحسين نموذج Llama 3.3 المعدل للتعليمات خصيصًا لسيناريوهات المحادثة، حيث تفوق على العديد من نماذج الدردشة مفتوحة المصدر الحالية في اختبارات المعايير الصناعية الشائعة."
|
1240
|
+
},
|
1244
1241
|
"llama3-70b-8192": {
|
1245
1242
|
"description": "Meta Llama 3 70B يوفر قدرة معالجة معقدة لا مثيل لها، مصمم خصيصًا للمشاريع ذات المتطلبات العالية."
|
1246
1243
|
},
|
@@ -1319,9 +1316,6 @@
|
|
1319
1316
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
1320
1317
|
"description": "تم تصميم LLaMA 3.2 لمعالجة المهام التي تجمع بين البيانات البصرية والنصية. إنه يبرز في مهام وصف الصور والأسئلة البصرية، متجاوزًا الفجوة بين توليد اللغة واستدلال الرؤية."
|
1321
1318
|
},
|
1322
|
-
"meta-llama/Llama-3.3-70B-Instruct": {
|
1323
|
-
"description": "Llama 3.3 هو أحدث نموذج لغوي مفتوح المصدر متعدد اللغات من سلسلة Llama، يقدم تجربة مشابهة لأداء نموذج 405B بتكلفة منخفضة للغاية. يعتمد على هيكل Transformer، وتم تحسينه من خلال التعديل الإشرافي (SFT) والتعلم المعزز من خلال ردود الفعل البشرية (RLHF) لتعزيز الفائدة والأمان. تم تحسين نسخة التعديل الخاصة به للحوار متعدد اللغات، حيث يتفوق في العديد من المعايير الصناعية على العديد من نماذج الدردشة المفتوحة والمغلقة. تاريخ انتهاء المعرفة هو ديسمبر 2023."
|
1324
|
-
},
|
1325
1319
|
"meta-llama/Llama-3.3-70B-Instruct-Turbo": {
|
1326
1320
|
"description": "نموذج Meta Llama 3.3 متعدد اللغات (LLM) هو نموذج توليد تم تدريبه مسبقًا وضبطه على التعليمات في 70B (إدخال نص/إخراج نص). تم تحسين نموذج Llama 3.3 المعدل على التعليمات لحالات استخدام الحوار متعدد اللغات، ويتفوق على العديد من نماذج الدردشة المفتوحة والمغلقة المتاحة في المعايير الصناعية الشائعة."
|
1327
1321
|
},
|
@@ -1349,15 +1343,9 @@
|
|
1349
1343
|
"meta-llama/Meta-Llama-3.1-70B": {
|
1350
1344
|
"description": "Llama 3.1 هو نموذج رائد أطلقته Meta، يدعم ما يصل إلى 405B من المعلمات، ويمكن تطبيقه في مجالات المحادثات المعقدة، والترجمة متعددة اللغات، وتحليل البيانات."
|
1351
1345
|
},
|
1352
|
-
"meta-llama/Meta-Llama-3.1-70B-Instruct": {
|
1353
|
-
"description": "LLaMA 3.1 70B يوفر دعمًا فعالًا للحوار متعدد اللغات."
|
1354
|
-
},
|
1355
1346
|
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": {
|
1356
1347
|
"description": "نموذج Llama 3.1 70B تم ضبطه بدقة، مناسب للتطبيقات ذات الحمل العالي، تم تكميمه إلى FP8 لتوفير قدرة حسابية ودقة أعلى، مما يضمن أداءً ممتازًا في السيناريوهات المعقدة."
|
1357
1348
|
},
|
1358
|
-
"meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
1359
|
-
"description": "LLaMA 3.1 يوفر دعمًا متعدد اللغات، وهو واحد من النماذج الرائدة في الصناعة."
|
1360
|
-
},
|
1361
1349
|
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": {
|
1362
1350
|
"description": "نموذج Llama 3.1 8B يستخدم FP8 للتكميم، يدعم ما يصل إلى 131,072 علامة سياق، وهو من بين الأفضل في النماذج المفتوحة المصدر، مناسب للمهام المعقدة، ويظهر أداءً ممتازًا في العديد من المعايير الصناعية."
|
1363
1351
|
},
|
@@ -1451,12 +1439,18 @@
|
|
1451
1439
|
"mistral-large": {
|
1452
1440
|
"description": "Mixtral Large هو النموذج الرائد من Mistral، يجمع بين قدرات توليد الشيفرة، والرياضيات، والاستدلال، ويدعم نافذة سياق تصل إلى 128k."
|
1453
1441
|
},
|
1442
|
+
"mistral-large-instruct": {
|
1443
|
+
"description": "Mistral-Large-Instruct-2407 هو نموذج لغوي كبير متقدم (LLM) بكثافة عالية، يضم 123 مليار معلمة، ويتمتع بقدرات استدلالية ومعرفية وبرمجية متطورة."
|
1444
|
+
},
|
1454
1445
|
"mistral-large-latest": {
|
1455
1446
|
"description": "Mistral Large هو النموذج الرائد، يتفوق في المهام متعددة اللغات، والاستدلال المعقد، وتوليد الشيفرة، وهو الخيار المثالي للتطبيقات الراقية."
|
1456
1447
|
},
|
1457
1448
|
"mistral-nemo": {
|
1458
1449
|
"description": "Mistral Nemo تم تطويره بالتعاون بين Mistral AI وNVIDIA، وهو نموذج 12B عالي الأداء."
|
1459
1450
|
},
|
1451
|
+
"mistral-nemo-instruct": {
|
1452
|
+
"description": "Mistral-Nemo-Instruct-2407 هو نموذج لغوي كبير (LLM) وهو نسخة معدلة بالتعليمات من Mistral-Nemo-Base-2407."
|
1453
|
+
},
|
1460
1454
|
"mistral-small": {
|
1461
1455
|
"description": "يمكن استخدام Mistral Small في أي مهمة تعتمد على اللغة تتطلب كفاءة عالية وزمن استجابة منخفض."
|
1462
1456
|
},
|
@@ -1670,15 +1664,6 @@
|
|
1670
1664
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1671
1665
|
"description": "نموذج قوي للبرمجة متوسطة الحجم، يدعم طول سياق يصل إلى 32K، بارع في البرمجة متعددة اللغات."
|
1672
1666
|
},
|
1673
|
-
"qwen1.5-14b-chat": {
|
1674
|
-
"description": "سلسلة Qwen1.5 هي نسخة تجريبية من Qwen2، وهي نموذج لغة قائم على Transformer يتميز بالتفكيك فقط، وقد تم تدريبه مسبقًا على كميات هائلة من البيانات. مقارنة بالإصدارات السابقة من سلسلة Qwen، تدعم سلسلة Qwen1.5 النماذج الأساسية والدردشة بعدة لغات، وقد تحسنت قدراتها في الدردشة والأساسية بشكل عام. Qwen1.5-14b-chat هو النموذج الرئيسي المخصص لسituات الدردشة، ويحتوي على 14 مليار معلمة."
|
1675
|
-
},
|
1676
|
-
"qwen1.5-32b-chat": {
|
1677
|
-
"description": "سلسلة Qwen1.5 هي نسخة تجريبية من Qwen2، وهي نموذج لغة قائم على Transformer مصمم للتفكيك فقط، وقد تم تدريبه مسبقًا على كميات هائلة من البيانات. مقارنة بالإصدارات السابقة من سلسلة Qwen، تدعم سلسلة Qwen1.5 النماذج الأساسية والدردشة بعدة لغات، وقد تحسنت قدراتها في الدردشة والأساسية بشكل عام. Qwen1.5-32b-chat هو نموذج كبير بحجم 32 مليار معلمة مخصص لسituات الدردشة، وهو أقوى في سituات الذكاء الاصطناعي مقارنة بنموذج 14 مليار معلمة، وأقل تكلفة في الاستدلال مقارنة بنموذج 72 مليار معلمة."
|
1678
|
-
},
|
1679
|
-
"qwen1.5-72b-chat": {
|
1680
|
-
"description": "سلسلة Qwen1.5 هي نسخة تجريبية من Qwen2، وهي نموذج لغة قائم على Transformer مصمم للتفكيك فقط، وقد تم تدريبه مسبقًا على كميات هائلة من البيانات. مقارنة بالإصدارات السابقة من سلسلة Qwen، تدعم سلسلة Qwen1.5 النماذج الأساسية والدردشة بعدة لغات، وقد تحسنت قدراتها في الدردشة والأساسية بشكل عام. Qwen1.5-72b-chat هو النموذج الكبير المخصص لسituات الدردشة، ويحتوي على 72 مليار معلمة."
|
1681
|
-
},
|
1682
1667
|
"qwen2": {
|
1683
1668
|
"description": "Qwen2 هو نموذج لغوي كبير من الجيل الجديد من Alibaba، يدعم أداءً ممتازًا لتلبية احتياجات التطبيقات المتنوعة."
|
1684
1669
|
},
|
@@ -1715,6 +1700,12 @@
|
|
1715
1700
|
"qwen2.5-coder-7b-instruct": {
|
1716
1701
|
"description": "نسخة مفتوحة المصدر من نموذج Qwen للبرمجة."
|
1717
1702
|
},
|
1703
|
+
"qwen2.5-coder-instruct": {
|
1704
|
+
"description": "Qwen2.5-Coder هو أحدث نموذج لغوي كبير مخصص للبرمجة في سلسلة Qwen (المعروف سابقًا باسم CodeQwen)."
|
1705
|
+
},
|
1706
|
+
"qwen2.5-instruct": {
|
1707
|
+
"description": "Qwen2.5 هي أحدث سلسلة من نماذج Qwen للغة الكبيرة. بالنسبة لـ Qwen2.5، قمنا بإصدار نماذج لغة أساسية متعددة ونماذج لغة مضبوطة بالتعليمات، مع نطاق معلمات يتراوح من 0.5 مليار إلى 72 مليار."
|
1708
|
+
},
|
1718
1709
|
"qwen2.5-math-1.5b-instruct": {
|
1719
1710
|
"description": "نموذج Qwen-Math لديه قدرة قوية على حل المسائل الرياضية."
|
1720
1711
|
},
|
@@ -1724,12 +1715,18 @@
|
|
1724
1715
|
"qwen2.5-math-7b-instruct": {
|
1725
1716
|
"description": "نموذج Qwen-Math يتمتع بقدرات قوية في حل المسائل الرياضية."
|
1726
1717
|
},
|
1718
|
+
"qwen2.5-vl-32b-instruct": {
|
1719
|
+
"description": "سلسلة نماذج Qwen2.5-VL تعزز مستوى الذكاء والفعّالية والملاءمة للنماذج، مما يجعل أداءها أفضل في سيناريوهات مثل المحادثات الطبيعية، وإنشاء المحتوى، وتقديم الخدمات المتخصصة، وتطوير الأكواد. يستخدم الإصدار 32B تقنية التعلم المعزز لتحسين النموذج، مقارنةً بنماذج سلسلة Qwen2.5 VL الأخرى، حيث يقدم أسلوب إخراج أكثر توافقًا مع تفضيلات البشر، وقدرة على استنتاج المسائل الرياضية المعقدة، بالإضافة إلى فهم واستدلال دقيق للصور."
|
1720
|
+
},
|
1727
1721
|
"qwen2.5-vl-72b-instruct": {
|
1728
1722
|
"description": "تحسين شامل في اتباع التعليمات، الرياضيات، حل المشكلات، والبرمجة، وزيادة قدرة التعرف على العناصر البصرية، يدعم تنسيقات متعددة لتحديد العناصر البصرية بدقة، ويدعم فهم ملفات الفيديو الطويلة (حتى 10 دقائق) وتحديد اللحظات الزمنية بدقة، قادر على فهم التسلسل الزمني والسرعة، يدعم التحكم في أنظمة التشغيل أو الوكلاء المحمولة بناءً على قدرات التحليل والتحديد، قوي في استخراج المعلومات الرئيسية وإخراج البيانات بتنسيق Json، هذه النسخة هي النسخة 72B، وهي الأقوى في هذه السلسلة."
|
1729
1723
|
},
|
1730
1724
|
"qwen2.5-vl-7b-instruct": {
|
1731
1725
|
"description": "تحسين شامل في اتباع التعليمات، الرياضيات، حل المشكلات، والبرمجة، وزيادة قدرة التعرف على العناصر البصرية، يدعم تنسيقات متعددة لتحديد العناصر البصرية بدقة، ويدعم فهم ملفات الفيديو الطويلة (حتى 10 دقائق) وتحديد اللحظات الزمنية بدقة، قادر على فهم التسلسل الزمني والسرعة، يدعم التحكم في أنظمة التشغيل أو الوكلاء المحمولة بناءً على قدرات التحليل والتحديد، قوي في استخراج المعلومات الرئيسية وإخراج البيانات بتنسيق Json، هذه النسخة هي النسخة 72B، وهي الأقوى في هذه السلسلة."
|
1732
1726
|
},
|
1727
|
+
"qwen2.5-vl-instruct": {
|
1728
|
+
"description": "Qwen2.5-VL هو أحدث إصدار من نماذج الرؤية واللغة في عائلة نماذج Qwen."
|
1729
|
+
},
|
1733
1730
|
"qwen2.5:0.5b": {
|
1734
1731
|
"description": "Qwen2.5 هو الجيل الجديد من نماذج اللغة الكبيرة من Alibaba، يدعم احتياجات التطبيقات المتنوعة بأداء ممتاز."
|
1735
1732
|
},
|
@@ -146,6 +146,9 @@
|
|
146
146
|
"xai": {
|
147
147
|
"description": "xAI هي شركة تكرّس جهودها لبناء الذكاء الاصطناعي لتسريع الاكتشافات العلمية البشرية. مهمتنا هي تعزيز فهمنا المشترك للكون."
|
148
148
|
},
|
149
|
+
"xinference": {
|
150
|
+
"description": "Xorbits Inference (Xinference) هو منصة مفتوحة المصدر مصممة لتبسيط تشغيل ودمج نماذج الذكاء الاصطناعي المتنوعة. باستخدام Xinference، يمكنك تشغيل الاستدلال على نماذج LLM مفتوحة المصدر، ونماذج التضمين، والنماذج متعددة الوسائط سواء في السحابة أو في البيئات المحلية، وإنشاء تطبيقات ذكاء اصطناعي قوية."
|
151
|
+
},
|
149
152
|
"zeroone": {
|
150
153
|
"description": "01.AI تركز على تقنيات الذكاء الاصطناعي في عصر الذكاء الاصطناعي 2.0، وتعزز الابتكار والتطبيقات \"الإنسان + الذكاء الاصطناعي\"، باستخدام نماذج قوية وتقنيات ذكاء اصطناعي متقدمة لتعزيز إنتاجية البشر وتحقيق تمكين التكنولوجيا."
|
151
154
|
},
|