@lobehub/chat 1.75.3 → 1.75.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (55) hide show
  1. package/CHANGELOG.md +52 -0
  2. package/README.md +1 -1
  3. package/README.zh-CN.md +1 -1
  4. package/changelog/v1.json +18 -0
  5. package/docs/self-hosting/advanced/model-list.mdx +5 -3
  6. package/docs/self-hosting/advanced/model-list.zh-CN.mdx +5 -3
  7. package/docs/usage/providers/infiniai.zh-CN.mdx +4 -0
  8. package/locales/ar/models.json +51 -54
  9. package/locales/ar/providers.json +3 -0
  10. package/locales/bg-BG/models.json +51 -54
  11. package/locales/bg-BG/providers.json +3 -0
  12. package/locales/de-DE/models.json +51 -54
  13. package/locales/de-DE/providers.json +3 -0
  14. package/locales/en-US/models.json +51 -54
  15. package/locales/en-US/providers.json +3 -0
  16. package/locales/es-ES/models.json +51 -54
  17. package/locales/es-ES/providers.json +3 -0
  18. package/locales/fa-IR/models.json +51 -54
  19. package/locales/fa-IR/providers.json +3 -0
  20. package/locales/fr-FR/models.json +51 -54
  21. package/locales/fr-FR/providers.json +3 -0
  22. package/locales/it-IT/models.json +51 -54
  23. package/locales/it-IT/providers.json +3 -0
  24. package/locales/ja-JP/models.json +51 -54
  25. package/locales/ja-JP/providers.json +3 -0
  26. package/locales/ko-KR/models.json +51 -54
  27. package/locales/ko-KR/providers.json +3 -0
  28. package/locales/nl-NL/models.json +51 -54
  29. package/locales/nl-NL/providers.json +3 -0
  30. package/locales/pl-PL/models.json +51 -54
  31. package/locales/pl-PL/providers.json +3 -0
  32. package/locales/pt-BR/models.json +51 -54
  33. package/locales/pt-BR/providers.json +3 -0
  34. package/locales/ru-RU/models.json +51 -54
  35. package/locales/ru-RU/providers.json +3 -0
  36. package/locales/tr-TR/models.json +51 -54
  37. package/locales/tr-TR/providers.json +3 -0
  38. package/locales/vi-VN/models.json +51 -54
  39. package/locales/vi-VN/providers.json +3 -0
  40. package/locales/zh-CN/models.json +55 -58
  41. package/locales/zh-CN/providers.json +3 -0
  42. package/locales/zh-TW/models.json +51 -54
  43. package/locales/zh-TW/providers.json +3 -0
  44. package/package.json +1 -1
  45. package/src/config/aiModels/google.ts +17 -43
  46. package/src/config/aiModels/infiniai.ts +52 -55
  47. package/src/config/aiModels/qwen.ts +17 -1
  48. package/src/config/aiModels/siliconcloud.ts +33 -1
  49. package/src/config/aiModels/tencentcloud.ts +17 -0
  50. package/src/config/aiModels/vertexai.ts +1 -53
  51. package/src/config/aiModels/volcengine.ts +1 -1
  52. package/src/libs/agent-runtime/infiniai/index.ts +38 -3
  53. package/src/utils/format.ts +1 -1
  54. package/src/utils/parseModels.test.ts +14 -0
  55. package/src/utils/parseModels.ts +4 -0
@@ -146,6 +146,9 @@
146
146
  "xai": {
147
147
  "description": "xAI is a company dedicated to building artificial intelligence to accelerate human scientific discovery. Our mission is to advance our collective understanding of the universe."
148
148
  },
149
+ "xinference": {
150
+ "description": "Xorbits Inference (Xinference) is an open-source platform designed to simplify the deployment and integration of diverse AI models. With Xinference, you can leverage any open-source LLM, embedding model, or multimodal model to perform inference in cloud or on-premises environments, enabling the creation of powerful AI applications."
151
+ },
149
152
  "zeroone": {
150
153
  "description": "01.AI focuses on AI 2.0 era technologies, vigorously promoting the innovation and application of 'human + artificial intelligence', using powerful models and advanced AI technologies to enhance human productivity and achieve technological empowerment."
151
154
  },
@@ -1,13 +1,4 @@
1
1
  {
2
- "01-ai/Yi-1.5-34B-Chat-16K": {
3
- "description": "Yi-1.5 34B, con un rico conjunto de muestras de entrenamiento, ofrece un rendimiento superior en aplicaciones industriales."
4
- },
5
- "01-ai/Yi-1.5-6B-Chat": {
6
- "description": "Yi-1.5-6B-Chat es una variante de la serie Yi-1.5, que pertenece a los modelos de chat de código abierto. Yi-1.5 es una versión mejorada de Yi, que ha sido preentrenada de manera continua en 500B de corpus de alta calidad y ajustada en más de 3M de muestras de ajuste diversificadas. En comparación con Yi, Yi-1.5 muestra un rendimiento superior en codificación, matemáticas, razonamiento y capacidad de seguimiento de instrucciones, manteniendo al mismo tiempo una excelente comprensión del lenguaje, razonamiento de sentido común y comprensión de lectura. Este modelo tiene versiones con longitudes de contexto de 4K, 16K y 32K, con un total de preentrenamiento de 3.6T de tokens."
7
- },
8
- "01-ai/Yi-1.5-9B-Chat-16K": {
9
- "description": "Yi-1.5 9B soporta 16K Tokens, proporcionando una capacidad de generación de lenguaje eficiente y fluida."
10
- },
11
2
  "01-ai/yi-1.5-34b-chat": {
12
3
  "description": "Cero Uno, el último modelo de ajuste fino de código abierto, cuenta con 34 mil millones de parámetros, con ajuste fino que admite múltiples escenarios de conversación y datos de entrenamiento de alta calidad, alineados con las preferencias humanas."
13
4
  },
@@ -149,12 +140,6 @@
149
140
  "Llama-3.2-90B-Vision-Instruct\t": {
150
141
  "description": "Capacidad avanzada de razonamiento de imágenes para aplicaciones de agentes de comprensión visual."
151
142
  },
152
- "LoRA/Qwen/Qwen2.5-72B-Instruct": {
153
- "description": "Qwen2.5-72B-Instruct es uno de los últimos modelos de lenguaje a gran escala lanzados por Alibaba Cloud. Este modelo de 72B ha mejorado significativamente en áreas como codificación y matemáticas. También ofrece soporte multilingüe, abarcando más de 29 idiomas, incluidos chino e inglés. El modelo ha mostrado mejoras significativas en el seguimiento de instrucciones, comprensión de datos estructurados y generación de salidas estructuradas (especialmente JSON)."
154
- },
155
- "LoRA/Qwen/Qwen2.5-7B-Instruct": {
156
- "description": "Qwen2.5-7B-Instruct es uno de los últimos modelos de lenguaje a gran escala lanzados por Alibaba Cloud. Este modelo de 7B ha mejorado significativamente en áreas como codificación y matemáticas. También ofrece soporte multilingüe, abarcando más de 29 idiomas, incluidos chino e inglés. El modelo ha mostrado mejoras significativas en el seguimiento de instrucciones, comprensión de datos estructurados y generación de salidas estructuradas (especialmente JSON)."
157
- },
158
143
  "Meta-Llama-3.1-405B-Instruct": {
159
144
  "description": "Modelo de texto ajustado por instrucciones de Llama 3.1, optimizado para casos de uso de diálogos multilingües, que se destaca en muchos modelos de chat de código abierto y cerrados en benchmarks de la industria comunes."
160
145
  },
@@ -179,9 +164,6 @@
179
164
  "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
180
165
  "description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) es un modelo de instrucciones de alta precisión, adecuado para cálculos complejos."
181
166
  },
182
- "OpenGVLab/InternVL2-26B": {
183
- "description": "InternVL2 ha demostrado un rendimiento sobresaliente en diversas tareas de lenguaje visual, incluidas la comprensión de documentos y gráficos, comprensión de texto en escenas, OCR, resolución de problemas científicos y matemáticos."
184
- },
185
167
  "Phi-3-medium-128k-instruct": {
186
168
  "description": "El mismo modelo Phi-3-medium, pero con un tamaño de contexto más grande para RAG o indicaciones de pocos disparos."
187
169
  },
@@ -206,9 +188,6 @@
206
188
  "Phi-3.5-vision-instrust": {
207
189
  "description": "Versión actualizada del modelo Phi-3-vision."
208
190
  },
209
- "Pro/OpenGVLab/InternVL2-8B": {
210
- "description": "InternVL2 ha demostrado un rendimiento sobresaliente en diversas tareas de lenguaje visual, incluidas la comprensión de documentos y gráficos, comprensión de texto en escenas, OCR, resolución de problemas científicos y matemáticos."
211
- },
212
191
  "Pro/Qwen/Qwen2-1.5B-Instruct": {
213
192
  "description": "Qwen2-1.5B-Instruct es un modelo de lenguaje a gran escala de ajuste fino por instrucciones dentro de la serie Qwen2, con un tamaño de parámetros de 1.5B. Este modelo se basa en la arquitectura Transformer, utilizando funciones de activación SwiGLU, sesgos de atención QKV y atención de consulta agrupada, entre otras técnicas. Ha destacado en múltiples pruebas de referencia en comprensión del lenguaje, generación, capacidad multilingüe, codificación, matemáticas y razonamiento, superando a la mayoría de los modelos de código abierto. En comparación con Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct ha mostrado mejoras significativas en pruebas como MMLU, HumanEval, GSM8K, C-Eval e IFEval, a pesar de tener un número de parámetros ligeramente menor."
214
193
  },
@@ -224,20 +203,23 @@
224
203
  "Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
225
204
  "description": "Qwen2.5-Coder-7B-Instruct es la última versión de la serie de modelos de lenguaje a gran escala específicos para código lanzada por Alibaba Cloud. Este modelo, basado en Qwen2.5, ha mejorado significativamente la generación, razonamiento y reparación de código a través de un entrenamiento con 55 billones de tokens. No solo ha mejorado la capacidad de codificación, sino que también ha mantenido ventajas en habilidades matemáticas y generales. El modelo proporciona una base más completa para aplicaciones prácticas como agentes de código."
226
205
  },
206
+ "Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
207
+ "description": "Qwen2.5-VL es el nuevo miembro de la serie Qwen, con potentes capacidades de comprensión visual. Puede analizar texto, gráficos y diseños en imágenes, comprender videos largos y capturar eventos. Es capaz de razonar, manipular herramientas, admitir el posicionamiento de objetos en múltiples formatos y generar salidas estructuradas. Optimiza la resolución dinámica y la tasa de cuadros para la comprensión de videos, además de mejorar la eficiencia del codificador visual."
208
+ },
227
209
  "Pro/THUDM/glm-4-9b-chat": {
228
210
  "description": "GLM-4-9B-Chat es la versión de código abierto de la serie de modelos preentrenados GLM-4 lanzada por Zhipu AI. Este modelo destaca en semántica, matemáticas, razonamiento, código y conocimiento. Además de soportar diálogos de múltiples turnos, GLM-4-9B-Chat también cuenta con funciones avanzadas como navegación web, ejecución de código, llamadas a herramientas personalizadas (Function Call) y razonamiento de textos largos. El modelo admite 26 idiomas, incluidos chino, inglés, japonés, coreano y alemán. En múltiples pruebas de referencia, GLM-4-9B-Chat ha demostrado un rendimiento excepcional, como AlignBench-v2, MT-Bench, MMLU y C-Eval. Este modelo admite una longitud de contexto máxima de 128K, adecuado para investigación académica y aplicaciones comerciales."
229
211
  },
230
212
  "Pro/deepseek-ai/DeepSeek-R1": {
231
213
  "description": "DeepSeek-R1 es un modelo de inferencia impulsado por aprendizaje por refuerzo (RL) que aborda problemas de repetitividad y legibilidad en el modelo. Antes del RL, DeepSeek-R1 introdujo datos de arranque en frío, optimizando aún más el rendimiento de inferencia. Se desempeña de manera comparable a OpenAI-o1 en tareas matemáticas, de código e inferencia, y mejora el rendimiento general a través de métodos de entrenamiento cuidadosamente diseñados."
232
214
  },
233
- "Pro/deepseek-ai/DeepSeek-V3": {
234
- "description": "DeepSeek-V3 es un modelo de lenguaje de expertos mixtos (MoE) con 671 mil millones de parámetros, que utiliza atención potencial de múltiples cabezas (MLA) y la arquitectura DeepSeekMoE, combinando estrategias de balanceo de carga sin pérdidas auxiliares para optimizar la eficiencia de inferencia y entrenamiento. Preentrenado en 14.8 billones de tokens de alta calidad, y ajustado mediante supervisión y aprendizaje por refuerzo, DeepSeek-V3 supera a otros modelos de código abierto y se acerca a los modelos cerrados líderes."
215
+ "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
216
+ "description": "DeepSeek-R1-Distill-Qwen-1.5B es un modelo obtenido mediante destilación de conocimiento basado en Qwen2.5-Math-1.5B. Este modelo fue ajustado utilizando 800,000 muestras seleccionadas generadas por DeepSeek-R1, demostrando un rendimiento notable en múltiples benchmarks. Como modelo ligero, alcanzó una precisión del 83.9% en MATH-500, una tasa de aprobación del 28.9% en AIME 2024 y una puntuación de 954 en CodeForces, mostrando capacidades de razonamiento que superan su escala de parámetros."
235
217
  },
236
- "Pro/google/gemma-2-9b-it": {
237
- "description": "Gemma es una de las series de modelos abiertos más avanzados y ligeros desarrollados por Google. Es un modelo de lenguaje a gran escala solo de decodificación, que admite inglés y proporciona pesos abiertos, variantes preentrenadas y variantes de ajuste fino por instrucciones. El modelo Gemma es adecuado para diversas tareas de generación de texto, incluyendo preguntas y respuestas, resúmenes y razonamiento. Este modelo de 9B se ha entrenado con 80 billones de tokens. Su tamaño relativamente pequeño permite su implementación en entornos con recursos limitados, como computadoras portátiles, de escritorio o su propia infraestructura en la nube, lo que permite a más personas acceder a modelos de IA de vanguardia y fomentar la innovación."
218
+ "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
219
+ "description": "DeepSeek-R1-Distill-Qwen-7B es un modelo obtenido mediante destilación de conocimiento basado en Qwen2.5-Math-7B. Este modelo se ha ajustado utilizando 800.000 muestras seleccionadas generadas por DeepSeek-R1, demostrando una excelente capacidad de razonamiento. Ha mostrado un rendimiento sobresaliente en múltiples pruebas de referencia, alcanzando un 92,8% de precisión en MATH-500, un 55,5% de tasa de aprobación en AIME 2024 y una puntuación de 1189 en CodeForces, lo que demuestra una fuerte capacidad matemática y de programación para un modelo de escala 7B."
238
220
  },
239
- "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
240
- "description": "Meta Llama 3.1 es parte de la familia de modelos de lenguaje a gran escala multilingües desarrollados por Meta, que incluye variantes preentrenadas y de ajuste fino por instrucciones con tamaños de parámetros de 8B, 70B y 405B. Este modelo de 8B ha sido optimizado para escenarios de diálogo multilingüe y ha destacado en múltiples pruebas de referencia de la industria. El entrenamiento del modelo utilizó más de 150 billones de tokens de datos públicos y empleó técnicas como ajuste fino supervisado y aprendizaje por refuerzo con retroalimentación humana para mejorar la utilidad y seguridad del modelo. Llama 3.1 admite generación de texto y generación de código, con una fecha límite de conocimiento hasta diciembre de 2023."
221
+ "Pro/deepseek-ai/DeepSeek-V3": {
222
+ "description": "DeepSeek-V3 es un modelo de lenguaje de expertos mixtos (MoE) con 671 mil millones de parámetros, que utiliza atención potencial de múltiples cabezas (MLA) y la arquitectura DeepSeekMoE, combinando estrategias de balanceo de carga sin pérdidas auxiliares para optimizar la eficiencia de inferencia y entrenamiento. Preentrenado en 14.8 billones de tokens de alta calidad, y ajustado mediante supervisión y aprendizaje por refuerzo, DeepSeek-V3 supera a otros modelos de código abierto y se acerca a los modelos cerrados líderes."
241
223
  },
242
224
  "QwQ-32B-Preview": {
243
225
  "description": "QwQ-32B-Preview es un modelo de procesamiento de lenguaje natural innovador, capaz de manejar de manera eficiente tareas complejas de generación de diálogos y comprensión del contexto."
@@ -290,6 +272,12 @@
290
272
  "Qwen/Qwen2.5-Coder-7B-Instruct": {
291
273
  "description": "Qwen2.5-Coder-7B-Instruct es la última versión de la serie de modelos de lenguaje a gran escala específicos para código lanzada por Alibaba Cloud. Este modelo, basado en Qwen2.5, ha mejorado significativamente la generación, razonamiento y reparación de código a través de un entrenamiento con 55 billones de tokens. No solo ha mejorado la capacidad de codificación, sino que también ha mantenido ventajas en habilidades matemáticas y generales. El modelo proporciona una base más completa para aplicaciones prácticas como agentes de código."
292
274
  },
275
+ "Qwen/Qwen2.5-VL-32B-Instruct": {
276
+ "description": "Qwen2.5-VL-32B-Instruct es un modelo multimodal avanzado desarrollado por el equipo Tongyi Qianwen, que forma parte de la serie Qwen2.5-VL. Este modelo no solo domina el reconocimiento de objetos comunes, sino que también puede analizar texto, gráficos, iconos, diagramas y diseños en imágenes. Funciona como un agente visual inteligente capaz de razonar y manipular herramientas dinámicamente, con habilidades para operar computadoras y dispositivos móviles. Además, el modelo puede localizar con precisión objetos en imágenes y generar salidas estructuradas para documentos como facturas y tablas. En comparación con su predecesor Qwen2-VL, esta versión ha mejorado significativamente sus capacidades matemáticas y de resolución de problemas mediante aprendizaje por refuerzo, y su estilo de respuesta se ha optimizado para adaptarse mejor a las preferencias humanas."
277
+ },
278
+ "Qwen/Qwen2.5-VL-72B-Instruct": {
279
+ "description": "Qwen2.5-VL es el modelo de lenguaje visual de la serie Qwen2.5. Este modelo presenta mejoras significativas en múltiples aspectos: posee una mayor capacidad de comprensión visual, pudiendo reconocer objetos comunes, analizar texto, gráficos y diseños; como agente visual puede razonar y guiar dinámicamente el uso de herramientas; soporta la comprensión de videos largos de más de 1 hora capturando eventos clave; es capaz de localizar objetos en imágenes con precisión generando cuadros delimitadores o puntos; y admite la generación de salidas estructuradas, especialmente útil para datos escaneados como facturas o tablas."
280
+ },
293
281
  "Qwen2-72B-Instruct": {
294
282
  "description": "Qwen2 es la última serie del modelo Qwen, que admite un contexto de 128k. En comparación con los modelos de código abierto más óptimos actuales, Qwen2-72B supera significativamente a los modelos líderes actuales en comprensión del lenguaje natural, conocimiento, código, matemáticas y capacidades multilingües."
295
283
  },
@@ -374,9 +362,6 @@
374
362
  "TeleAI/TeleChat2": {
375
363
  "description": "El modelo grande TeleChat2 ha sido desarrollado de manera independiente por China Telecom desde cero, siendo un modelo semántico generativo que admite funciones como preguntas y respuestas enciclopédicas, generación de código y generación de textos largos, proporcionando servicios de consulta conversacional a los usuarios, permitiendo interacciones de diálogo, respondiendo preguntas y asistiendo en la creación, ayudando a los usuarios a obtener información, conocimiento e inspiración de manera eficiente y conveniente. El modelo ha mostrado un rendimiento destacado en problemas de alucinación, generación de textos largos y comprensión lógica."
376
364
  },
377
- "TeleAI/TeleMM": {
378
- "description": "El modelo multimodal TeleMM ha sido desarrollado de manera independiente por China Telecom, siendo un modelo de comprensión multimodal que puede manejar entradas de múltiples modalidades como texto e imágenes, apoyando funciones como comprensión de imágenes y análisis de gráficos, proporcionando servicios de comprensión cruzada para los usuarios. El modelo puede interactuar con los usuarios de manera multimodal, entendiendo con precisión el contenido de entrada, respondiendo preguntas, asistiendo en la creación y proporcionando de manera eficiente información y apoyo inspirador multimodal. Ha mostrado un rendimiento excepcional en tareas multimodales como percepción de alta resolución y razonamiento lógico."
379
- },
380
365
  "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
381
366
  "description": "Qwen2.5-72B-Instruct es uno de los últimos modelos de lenguaje a gran escala lanzados por Alibaba Cloud. Este modelo de 72B ha mejorado significativamente en áreas como codificación y matemáticas. También ofrece soporte multilingüe, abarcando más de 29 idiomas, incluidos chino e inglés. El modelo ha mostrado mejoras significativas en el seguimiento de instrucciones, comprensión de datos estructurados y generación de salidas estructuradas (especialmente JSON)."
382
367
  },
@@ -662,9 +647,6 @@
662
647
  "deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
663
648
  "description": "El modelo de destilación DeepSeek-R1 optimiza el rendimiento de inferencia mediante aprendizaje por refuerzo y datos de arranque en frío, actualizando el estándar de múltiples tareas en modelos de código abierto."
664
649
  },
665
- "deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
666
- "description": "DeepSeek-R1-Distill-Llama-8B es un modelo de destilación desarrollado a partir de Llama-3.1-8B. Este modelo se ajustó utilizando muestras generadas por DeepSeek-R1, mostrando una excelente capacidad de inferencia. Ha tenido un buen desempeño en múltiples pruebas de referencia, alcanzando una precisión del 89.1% en MATH-500, una tasa de aprobación del 50.4% en AIME 2024, y una puntuación de 1205 en CodeForces, demostrando una fuerte capacidad matemática y de programación como modelo de 8B."
667
- },
668
650
  "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
669
651
  "description": "El modelo de destilación DeepSeek-R1 optimiza el rendimiento de inferencia mediante aprendizaje por refuerzo y datos de arranque en frío, actualizando el estándar de múltiples tareas en modelos de código abierto."
670
652
  },
@@ -713,6 +695,9 @@
713
695
  "deepseek-r1-70b-online": {
714
696
  "description": "DeepSeek R1 70B versión estándar, que soporta búsqueda en línea en tiempo real, adecuada para tareas de conversación y procesamiento de textos que requieren información actualizada."
715
697
  },
698
+ "deepseek-r1-distill-llama": {
699
+ "description": "deepseek-r1-distill-llama es un modelo basado en Llama destilado a partir de DeepSeek-R1."
700
+ },
716
701
  "deepseek-r1-distill-llama-70b": {
717
702
  "description": "DeepSeek R1, el modelo más grande e inteligente del conjunto DeepSeek, ha sido destilado en la arquitectura Llama 70B. Basado en pruebas de referencia y evaluaciones humanas, este modelo es más inteligente que el Llama 70B original, destacándose especialmente en tareas que requieren precisión matemática y factual."
718
703
  },
@@ -725,6 +710,9 @@
725
710
  "deepseek-r1-distill-qianfan-llama-8b": {
726
711
  "description": "Lanzado por primera vez el 14 de febrero de 2025, destilado por el equipo de desarrollo del modelo Qianfan a partir del modelo base Llama3_8B (Construido con Meta Llama), con datos de destilación que también incluyen el corpus de Qianfan."
727
712
  },
713
+ "deepseek-r1-distill-qwen": {
714
+ "description": "deepseek-r1-distill-qwen es un modelo basado en Qwen destilado a partir de DeepSeek-R1."
715
+ },
728
716
  "deepseek-r1-distill-qwen-1.5b": {
729
717
  "description": "El modelo de la serie DeepSeek-R1-Distill se obtiene mediante la técnica de destilación de conocimiento, ajustando muestras generadas por DeepSeek-R1 a modelos de código abierto como Qwen y Llama."
730
718
  },
@@ -872,6 +860,9 @@
872
860
  "gemini-1.5-flash-8b-exp-0924": {
873
861
  "description": "Gemini 1.5 Flash 8B 0924 es el último modelo experimental, con mejoras significativas en el rendimiento tanto en casos de uso de texto como multimodal."
874
862
  },
863
+ "gemini-1.5-flash-8b-latest": {
864
+ "description": "Gemini 1.5 Flash 8B es un modelo multimodal eficiente que admite una amplia gama de aplicaciones escalables."
865
+ },
875
866
  "gemini-1.5-flash-exp-0827": {
876
867
  "description": "Gemini 1.5 Flash 0827 ofrece capacidades de procesamiento multimodal optimizadas, adecuadas para diversas tareas complejas."
877
868
  },
@@ -914,9 +905,6 @@
914
905
  "gemini-2.0-flash-lite-preview-02-05": {
915
906
  "description": "Un modelo Gemini 2.0 Flash optimizado para objetivos de costo-efectividad y baja latencia."
916
907
  },
917
- "gemini-2.0-flash-thinking-exp": {
918
- "description": "Gemini 2.0 Flash Exp es el último modelo experimental de IA multimodal de Google, con características de próxima generación, velocidad excepcional, llamadas nativas a herramientas y generación multimodal."
919
- },
920
908
  "gemini-2.0-flash-thinking-exp-01-21": {
921
909
  "description": "Gemini 2.0 Flash Exp es el último modelo experimental de IA multimodal de Google, con características de próxima generación, velocidad excepcional, llamadas nativas a herramientas y generación multimodal."
922
910
  },
@@ -1223,6 +1211,9 @@
1223
1211
  "llama-3.1-8b-instant": {
1224
1212
  "description": "Llama 3.1 8B es un modelo de alto rendimiento que ofrece una rápida capacidad de generación de texto, ideal para aplicaciones que requieren eficiencia a gran escala y rentabilidad."
1225
1213
  },
1214
+ "llama-3.1-instruct": {
1215
+ "description": "El modelo Llama 3.1 ajustado para instrucciones está optimizado para escenarios de conversación, superando a muchos modelos de chat de código abierto existentes en pruebas de referencia comunes de la industria."
1216
+ },
1226
1217
  "llama-3.2-11b-vision-instruct": {
1227
1218
  "description": "Capacidad excepcional de razonamiento visual en imágenes de alta resolución, adecuada para aplicaciones de comprensión visual."
1228
1219
  },
@@ -1235,12 +1226,18 @@
1235
1226
  "llama-3.2-90b-vision-preview": {
1236
1227
  "description": "Llama 3.2 está diseñado para manejar tareas que combinan datos visuales y textuales. Destaca en tareas como la descripción de imágenes y preguntas visuales, cruzando la brecha entre la generación de lenguaje y el razonamiento visual."
1237
1228
  },
1229
+ "llama-3.2-vision-instruct": {
1230
+ "description": "El modelo Llama 3.2-Vision con ajuste fino de instrucciones está optimizado para reconocimiento visual, razonamiento sobre imágenes, descripción de imágenes y respuesta a preguntas generales relacionadas con imágenes."
1231
+ },
1238
1232
  "llama-3.3-70b-instruct": {
1239
1233
  "description": "Llama 3.3 es el modelo de lenguaje de código abierto multilingüe más avanzado de la serie Llama, que ofrece un rendimiento comparable al modelo de 405B a un costo extremadamente bajo. Basado en la estructura Transformer, y mejorado en utilidad y seguridad a través de ajuste fino supervisado (SFT) y aprendizaje por refuerzo con retroalimentación humana (RLHF). Su versión ajustada para instrucciones está optimizada para diálogos multilingües, superando a muchos modelos de chat de código abierto y cerrado en múltiples benchmarks de la industria. La fecha límite de conocimiento es diciembre de 2023."
1240
1234
  },
1241
1235
  "llama-3.3-70b-versatile": {
1242
1236
  "description": "El modelo de lenguaje multilingüe Meta Llama 3.3 (LLM) es un modelo generativo preentrenado y ajustado para instrucciones de 70B (entrada/salida de texto). El modelo de texto puro ajustado para instrucciones de Llama 3.3 está optimizado para casos de uso de conversación multilingüe y supera a muchos modelos de chat de código abierto y cerrado en benchmarks industriales comunes."
1243
1237
  },
1238
+ "llama-3.3-instruct": {
1239
+ "description": "El modelo de instrucción Llama 3.3, optimizado para escenarios de diálogo, supera a muchos modelos de chat de código abierto existentes en pruebas de referencia comunes de la industria."
1240
+ },
1244
1241
  "llama3-70b-8192": {
1245
1242
  "description": "Meta Llama 3 70B proporciona una capacidad de procesamiento de complejidad inigualable, diseñado a medida para proyectos de alta demanda."
1246
1243
  },
@@ -1319,9 +1316,6 @@
1319
1316
  "meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
1320
1317
  "description": "LLaMA 3.2 está diseñado para manejar tareas que combinan datos visuales y textuales. Se destaca en tareas como descripción de imágenes y preguntas visuales, cruzando la brecha entre la generación de lenguaje y el razonamiento visual."
1321
1318
  },
1322
- "meta-llama/Llama-3.3-70B-Instruct": {
1323
- "description": "Llama 3.3 es el modelo de lenguaje de código abierto multilingüe más avanzado de la serie Llama, que ofrece un rendimiento comparable al modelo de 405B a un costo muy bajo. Basado en la estructura Transformer, y mejorado en utilidad y seguridad a través de ajuste fino supervisado (SFT) y aprendizaje por refuerzo con retroalimentación humana (RLHF). Su versión ajustada por instrucciones está optimizada para diálogos multilingües, superando a muchos modelos de chat de código abierto y cerrado en múltiples benchmarks de la industria. La fecha de corte de conocimiento es diciembre de 2023."
1324
- },
1325
1319
  "meta-llama/Llama-3.3-70B-Instruct-Turbo": {
1326
1320
  "description": "El modelo de lenguaje grande multilingüe Meta Llama 3.3 (LLM) es un modelo generativo preentrenado y ajustado por instrucciones de 70B (entrada de texto/salida de texto). El modelo de texto puro ajustado por instrucciones de Llama 3.3 está optimizado para casos de uso de diálogo multilingüe y supera a muchos modelos de chat de código abierto y cerrados en benchmarks de la industria."
1327
1321
  },
@@ -1349,15 +1343,9 @@
1349
1343
  "meta-llama/Meta-Llama-3.1-70B": {
1350
1344
  "description": "Llama 3.1 es el modelo líder lanzado por Meta, que soporta hasta 405B de parámetros, aplicable en diálogos complejos, traducción multilingüe y análisis de datos."
1351
1345
  },
1352
- "meta-llama/Meta-Llama-3.1-70B-Instruct": {
1353
- "description": "LLaMA 3.1 70B proporciona soporte de conversación eficiente en múltiples idiomas."
1354
- },
1355
1346
  "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": {
1356
1347
  "description": "El modelo Llama 3.1 70B está finamente ajustado para aplicaciones de alta carga, cuantificado a FP8 para ofrecer una capacidad de cálculo y precisión más eficientes, asegurando un rendimiento excepcional en escenarios complejos."
1357
1348
  },
1358
- "meta-llama/Meta-Llama-3.1-8B-Instruct": {
1359
- "description": "LLaMA 3.1 ofrece soporte multilingüe y es uno de los modelos generativos líderes en la industria."
1360
- },
1361
1349
  "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": {
1362
1350
  "description": "El modelo Llama 3.1 8B utiliza cuantificación FP8, soportando hasta 131,072 tokens de contexto, destacándose entre los modelos de código abierto, ideal para tareas complejas y superando muchos estándares de la industria."
1363
1351
  },
@@ -1451,12 +1439,18 @@
1451
1439
  "mistral-large": {
1452
1440
  "description": "Mixtral Large es el modelo insignia de Mistral, combinando capacidades de generación de código, matemáticas y razonamiento, soportando una ventana de contexto de 128k."
1453
1441
  },
1442
+ "mistral-large-instruct": {
1443
+ "description": "Mistral-Large-Instruct-2407 es un modelo avanzado de lenguaje denso (LLM) con 123 mil millones de parámetros, que posee capacidades de razonamiento, conocimiento y codificación de última generación."
1444
+ },
1454
1445
  "mistral-large-latest": {
1455
1446
  "description": "Mistral Large es el modelo insignia, especializado en tareas multilingües, razonamiento complejo y generación de código, ideal para aplicaciones de alta gama."
1456
1447
  },
1457
1448
  "mistral-nemo": {
1458
1449
  "description": "Mistral Nemo, desarrollado en colaboración entre Mistral AI y NVIDIA, es un modelo de 12B de alto rendimiento."
1459
1450
  },
1451
+ "mistral-nemo-instruct": {
1452
+ "description": "Mistral-Nemo-Instruct-2407 es un modelo de lenguaje grande (LLM) que es una versión ajustada por instrucciones de Mistral-Nemo-Base-2407."
1453
+ },
1460
1454
  "mistral-small": {
1461
1455
  "description": "Mistral Small se puede utilizar en cualquier tarea basada en lenguaje que requiera alta eficiencia y baja latencia."
1462
1456
  },
@@ -1670,15 +1664,6 @@
1670
1664
  "qwen/qwen2.5-coder-7b-instruct": {
1671
1665
  "description": "Poderoso modelo de código de tamaño mediano, que soporta longitudes de contexto de 32K, experto en programación multilingüe."
1672
1666
  },
1673
- "qwen1.5-14b-chat": {
1674
- "description": "La serie Qwen1.5 es la versión Beta de Qwen2, un modelo de lenguaje de solo decodificación basado en Transformer, preentrenado en una gran cantidad de datos. En comparación con las versiones anteriores de la serie Qwen, tanto el modelo base como el modelo de chat de la serie Qwen1.5 admiten múltiples idiomas y han mejorado en términos de chat general y capacidades básicas. Qwen1.5-14b-chat es el modelo de 14 mil millones de parámetros diseñado específicamente para escenarios de chat, considerado como un tamaño de modelo principal."
1675
- },
1676
- "qwen1.5-32b-chat": {
1677
- "description": "Qwen1.5 es la versión Beta de Qwen2, un modelo de lenguaje de solo decodificación basado en Transformer, preentrenado en una gran cantidad de datos. En comparación con las versiones anteriores de la serie Qwen, tanto el modelo base como el modelo de chat de Qwen1.5 admiten múltiples idiomas y han mejorado tanto en chat general como en capacidades básicas. Qwen1.5-32b-chat es un modelo de 320 mil millones de parámetros diseñado específicamente para escenarios de chat, que ofrece un mejor rendimiento en escenarios de agentes inteligentes en comparación con el modelo de 14 mil millones de parámetros y un menor costo de inferencia en comparación con el modelo de 72 mil millones de parámetros."
1678
- },
1679
- "qwen1.5-72b-chat": {
1680
- "description": "La serie Qwen1.5 es la versión Beta de Qwen2, un modelo de lenguaje de solo decodificación basado en Transformer, preentrenado en una gran cantidad de datos. En comparación con las versiones anteriores de la serie Qwen, tanto el modelo base como el modelo de chat de la serie Qwen1.5 pueden soportar múltiples idiomas, mejorando tanto en el chat general como en las capacidades básicas. Qwen1.5-72b-chat es el modelo de 72 mil millones de parámetros dedicado a escenarios de chat."
1681
- },
1682
1667
  "qwen2": {
1683
1668
  "description": "Qwen2 es el nuevo modelo de lenguaje a gran escala de Alibaba, que ofrece un rendimiento excepcional para satisfacer diversas necesidades de aplicación."
1684
1669
  },
@@ -1715,6 +1700,12 @@
1715
1700
  "qwen2.5-coder-7b-instruct": {
1716
1701
  "description": "La versión de código abierto del modelo de código Tongyi Qwen."
1717
1702
  },
1703
+ "qwen2.5-coder-instruct": {
1704
+ "description": "Qwen2.5-Coder es el modelo de lenguaje de gran tamaño más reciente de la serie Qwen especializado en código (anteriormente conocido como CodeQwen)."
1705
+ },
1706
+ "qwen2.5-instruct": {
1707
+ "description": "Qwen2.5 es la última serie de modelos de lenguaje extenso Qwen. Para Qwen2.5, hemos lanzado varios modelos de lenguaje base y modelos de lenguaje ajustados por instrucciones, con parámetros que van desde 500 millones hasta 7.2 mil millones."
1708
+ },
1718
1709
  "qwen2.5-math-1.5b-instruct": {
1719
1710
  "description": "El modelo Qwen-Math tiene habilidades poderosas para resolver problemas matemáticos."
1720
1711
  },
@@ -1724,12 +1715,18 @@
1724
1715
  "qwen2.5-math-7b-instruct": {
1725
1716
  "description": "El modelo Qwen-Math tiene una poderosa capacidad para resolver problemas matemáticos."
1726
1717
  },
1718
+ "qwen2.5-vl-32b-instruct": {
1719
+ "description": "La serie de modelos Qwen2.5-VL ha mejorado el nivel de inteligencia, utilidad y aplicabilidad del modelo, optimizando su rendimiento en escenarios como conversaciones naturales, creación de contenido, servicios de conocimiento especializado y desarrollo de código. La versión 32B utiliza técnicas de aprendizaje por refuerzo para optimizar el modelo, ofreciendo en comparación con otros modelos de la serie Qwen2.5 VL, un estilo de salida más acorde con las preferencias humanas, capacidad de razonamiento para problemas matemáticos complejos, así como comprensión y razonamiento detallado de imágenes."
1720
+ },
1727
1721
  "qwen2.5-vl-72b-instruct": {
1728
1722
  "description": "Mejora general en seguimiento de instrucciones, matemáticas, resolución de problemas y código, con capacidades de reconocimiento de objetos mejoradas, soporta formatos diversos para localizar elementos visuales con precisión, y puede entender archivos de video largos (hasta 10 minutos) y localizar eventos en segundos, comprendiendo la secuencia y velocidad del tiempo, soportando el control de agentes en OS o móviles, con fuerte capacidad de extracción de información clave y salida en formato Json. Esta versión es la de 72B, la más potente de la serie."
1729
1723
  },
1730
1724
  "qwen2.5-vl-7b-instruct": {
1731
1725
  "description": "Mejora general en seguimiento de instrucciones, matemáticas, resolución de problemas y código, con capacidades de reconocimiento de objetos mejoradas, soporta formatos diversos para localizar elementos visuales con precisión, y puede entender archivos de video largos (hasta 10 minutos) y localizar eventos en segundos, comprendiendo la secuencia y velocidad del tiempo, soportando el control de agentes en OS o móviles, con fuerte capacidad de extracción de información clave y salida en formato Json. Esta versión es la de 72B, la más potente de la serie."
1732
1726
  },
1727
+ "qwen2.5-vl-instruct": {
1728
+ "description": "Qwen2.5-VL es la última versión del modelo de lenguaje visual de la familia de modelos Qwen."
1729
+ },
1733
1730
  "qwen2.5:0.5b": {
1734
1731
  "description": "Qwen2.5 es la nueva generación de modelos de lenguaje a gran escala de Alibaba, que ofrece un rendimiento excepcional para satisfacer diversas necesidades de aplicación."
1735
1732
  },
@@ -146,6 +146,9 @@
146
146
  "xai": {
147
147
  "description": "xAI es una empresa dedicada a construir inteligencia artificial para acelerar los descubrimientos científicos humanos. Nuestra misión es promover nuestra comprensión compartida del universo."
148
148
  },
149
+ "xinference": {
150
+ "description": "Xorbits Inference (Xinference) es una plataforma de código abierto diseñada para simplificar la ejecución e integración de diversos modelos de IA. Con Xinference, puedes utilizar cualquier modelo LLM de código abierto, modelos de incrustación y modelos multimodales para ejecutar inferencias en entornos locales o en la nube, y crear potentes aplicaciones de IA."
151
+ },
149
152
  "zeroone": {
150
153
  "description": "01.AI se centra en la tecnología de inteligencia artificial de la era 2.0, promoviendo enérgicamente la innovación y aplicación de 'humano + inteligencia artificial', utilizando modelos extremadamente potentes y tecnologías de IA avanzadas para mejorar la productividad humana y lograr el empoderamiento tecnológico."
151
154
  },