@lobehub/chat 1.75.3 → 1.75.5
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +52 -0
- package/README.md +1 -1
- package/README.zh-CN.md +1 -1
- package/changelog/v1.json +18 -0
- package/docs/self-hosting/advanced/model-list.mdx +5 -3
- package/docs/self-hosting/advanced/model-list.zh-CN.mdx +5 -3
- package/docs/usage/providers/infiniai.zh-CN.mdx +4 -0
- package/locales/ar/models.json +51 -54
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/models.json +51 -54
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/models.json +51 -54
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/models.json +51 -54
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/models.json +51 -54
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/models.json +51 -54
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/models.json +51 -54
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/models.json +51 -54
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/models.json +51 -54
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/models.json +51 -54
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/models.json +51 -54
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/models.json +51 -54
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/models.json +51 -54
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/models.json +51 -54
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/models.json +51 -54
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/models.json +51 -54
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/models.json +55 -58
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/models.json +51 -54
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/src/config/aiModels/google.ts +17 -43
- package/src/config/aiModels/infiniai.ts +52 -55
- package/src/config/aiModels/qwen.ts +17 -1
- package/src/config/aiModels/siliconcloud.ts +33 -1
- package/src/config/aiModels/tencentcloud.ts +17 -0
- package/src/config/aiModels/vertexai.ts +1 -53
- package/src/config/aiModels/volcengine.ts +1 -1
- package/src/libs/agent-runtime/infiniai/index.ts +38 -3
- package/src/utils/format.ts +1 -1
- package/src/utils/parseModels.test.ts +14 -0
- package/src/utils/parseModels.ts +4 -0
@@ -1,13 +1,4 @@
|
|
1
1
|
{
|
2
|
-
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
|
-
"description": "Yi-1.5 34B, с богатым набором обучающих образцов, демонстрирует превосходные результаты в отраслевых приложениях."
|
4
|
-
},
|
5
|
-
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
-
"description": "Yi-1.5-6B-Chat — это вариант серии Yi-1.5, относящийся к открытым моделям для чата. Yi-1.5 является обновленной версией Yi, которая была непрерывно предобучена на 500B высококачественных корпусах и дообучена на более чем 3M разнообразных образцах. По сравнению с Yi, Yi-1.5 демонстрирует более сильные способности в кодировании, математике, выводах и соблюдении инструкций, сохраняя при этом отличные навыки понимания языка, логического вывода и понимания прочитанного. Эта модель имеет версии с длиной контекста 4K, 16K и 32K, с общим объемом предобучения 3.6T токенов."
|
7
|
-
},
|
8
|
-
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
|
-
"description": "Yi-1.5 9B поддерживает 16K токенов, обеспечивая эффективные и плавные возможности генерации языка."
|
10
|
-
},
|
11
2
|
"01-ai/yi-1.5-34b-chat": {
|
12
3
|
"description": "零一万物 — это последняя версия открытой доработанной модели с 34 миллиардами параметров, которая поддерживает различные сценарии диалога, используя высококачественные обучающие данные, соответствующие человеческим предпочтениям."
|
13
4
|
},
|
@@ -149,12 +140,6 @@
|
|
149
140
|
"Llama-3.2-90B-Vision-Instruct\t": {
|
150
141
|
"description": "Передовые способности к визуальному выводу, подходящие для приложений визуального понимания."
|
151
142
|
},
|
152
|
-
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
153
|
-
"description": "Qwen2.5-72B-Instruct — это одна из последних языковых моделей, выпущенных Alibaba Cloud. Эта 72B модель значительно улучшила способности в области кодирования и математики. Модель также поддерживает множество языков, охватывающих более 29 языков, включая китайский и английский. Она значительно улучшила выполнение инструкций, понимание структурированных данных и генерацию структурированных выходных данных (особенно JSON)."
|
154
|
-
},
|
155
|
-
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
156
|
-
"description": "Qwen2.5-7B-Instruct — это одна из последних языковых моделей, выпущенных Alibaba Cloud. Эта 7B модель значительно улучшила способности в области кодирования и математики. Модель также поддерживает множество языков, охватывающих более 29 языков, включая китайский и английский. Она значительно улучшила выполнение инструкций, понимание структурированных данных и генерацию структурированных выходных данных (особенно JSON)."
|
157
|
-
},
|
158
143
|
"Meta-Llama-3.1-405B-Instruct": {
|
159
144
|
"description": "Текстовая модель Llama 3.1 с оптимизацией под инструкции, разработанная для многоязычных диалоговых случаев, показывает отличные результаты по сравнению с многими доступными открытыми и закрытыми чат-моделями на общепринятых отраслевых бенчмарках."
|
160
145
|
},
|
@@ -179,9 +164,6 @@
|
|
179
164
|
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
180
165
|
"description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) — это высокоточная модель команд, подходящая для сложных вычислений."
|
181
166
|
},
|
182
|
-
"OpenGVLab/InternVL2-26B": {
|
183
|
-
"description": "InternVL2 демонстрирует превосходные результаты в различных визуально-языковых задачах, включая понимание документов и графиков, понимание текстов сцены, OCR, решение научных и математических задач."
|
184
|
-
},
|
185
167
|
"Phi-3-medium-128k-instruct": {
|
186
168
|
"description": "Та же модель Phi-3-medium, но с большим размером контекста для RAG или нескольких подсказок."
|
187
169
|
},
|
@@ -206,9 +188,6 @@
|
|
206
188
|
"Phi-3.5-vision-instrust": {
|
207
189
|
"description": "Обновленная версия модели Phi-3-vision."
|
208
190
|
},
|
209
|
-
"Pro/OpenGVLab/InternVL2-8B": {
|
210
|
-
"description": "InternVL2 демонстрирует превосходные результаты в различных визуально-языковых задачах, включая понимание документов и графиков, понимание текстов сцены, OCR, решение научных и математических задач."
|
211
|
-
},
|
212
191
|
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
213
192
|
"description": "Qwen2-1.5B-Instruct — это языковая модель с дообучением на инструкциях в серии Qwen2, с параметрами 1.5B. Эта модель основана на архитектуре Transformer и использует такие технологии, как активационная функция SwiGLU, смещение внимания QKV и групповой запрос внимания. Она показывает отличные результаты в понимании языка, генерации, многоязычных способностях, кодировании, математике и выводах в различных бенчмарках, превосходя большинство открытых моделей. По сравнению с Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct демонстрирует значительное улучшение производительности в тестах MMLU, HumanEval, GSM8K, C-Eval и IFEval, несмотря на немного меньшее количество параметров."
|
214
193
|
},
|
@@ -224,20 +203,23 @@
|
|
224
203
|
"Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
|
225
204
|
"description": "Qwen2.5-Coder-7B-Instruct — это последняя версия серии языковых моделей, специфичных для кода, выпущенная Alibaba Cloud. Эта модель значительно улучшила способности генерации кода, вывода и исправления на основе Qwen2.5, обучаясь на 5.5 триллионах токенов. Она не только усилила кодирование, но и сохранила преимущества в математике и общих способностях. Модель предоставляет более полную основу для практических приложений, таких как интеллектуальные агенты кода."
|
226
205
|
},
|
206
|
+
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
207
|
+
"description": "Qwen2.5-VL — это новый член семейства Qwen, обладающий мощными возможностями визуального понимания. Может анализировать текст, диаграммы и компоновку в изображениях, понимать длинные видео и фиксировать события. Способен к логическим рассуждениям, работе с инструментами, поддерживает локализацию объектов в различных форматах и генерацию структурированных выводов. Оптимизирован для понимания видео с динамическим разрешением и частотой кадров, а также улучшена эффективность визуального кодировщика."
|
208
|
+
},
|
227
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
228
210
|
"description": "GLM-4-9B-Chat — это открытая версия предобученной модели из серии GLM-4, выпущенная Zhizhu AI. Эта модель показывает отличные результаты в семантике, математике, выводах, коде и знаниях. Кроме поддержки многократных диалогов, GLM-4-9B-Chat также обладает продвинутыми функциями, такими как веб-браузинг, выполнение кода, вызов пользовательских инструментов (Function Call) и вывод длинных текстов. Модель поддерживает 26 языков, включая китайский, английский, японский, корейский и немецкий. В нескольких бенчмарках GLM-4-9B-Chat демонстрирует отличные результаты, такие как AlignBench-v2, MT-Bench, MMLU и C-Eval. Эта модель поддерживает максимальную длину контекста 128K и подходит для академических исследований и коммерческих приложений."
|
229
211
|
},
|
230
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
231
213
|
"description": "DeepSeek-R1 — это модель вывода, управляемая обучением с подкреплением (RL), которая решает проблемы повторяемости и читаемости в модели. Перед RL DeepSeek-R1 вводит данные холодного старта, что дополнительно оптимизирует производительность вывода. Она показывает сопоставимые результаты с OpenAI-o1 в математических, кодовых и задачах вывода и улучшает общую эффективность благодаря тщательно продуманным методам обучения."
|
232
214
|
},
|
233
|
-
"Pro/deepseek-ai/DeepSeek-
|
234
|
-
"description": "DeepSeek-
|
215
|
+
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
216
|
+
"description": "DeepSeek-R1-Distill-Qwen-1.5B — это модель, полученная методом дистилляции знаний на основе Qwen2.5-Math-1.5B. Модель была дообучена на 800 тысячах тщательно отобранных образцов, сгенерированных DeepSeek-R1, и демонстрирует хорошую производительность в различных тестах. Будучи компактной моделью, она достигает точности 83,9% на MATH-500, уровня прохождения 28,9% на AIME 2024 и оценки 954 на CodeForces, что свидетельствует о её способностях к логическому выводу, превосходящих ожидания для её размера."
|
235
217
|
},
|
236
|
-
"Pro/
|
237
|
-
"description": "
|
218
|
+
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
219
|
+
"description": "DeepSeek-R1-Distill-Qwen-7B — это модель, полученная методом дистилляции знаний на основе Qwen2.5-Math-7B. Модель была доработана с использованием 800 тысяч отобранных образцов, сгенерированных DeepSeek-R1, и демонстрирует выдающиеся способности к логическому рассуждению. Показывает отличные результаты в различных тестах: точность 92,8% на MATH-500, проходной балл 55,5% на AIME 2024 и оценку 1189 на CodeForces, что подтверждает её высокие математические и программистские возможности для модели масштаба 7B."
|
238
220
|
},
|
239
|
-
"Pro/
|
240
|
-
"description": "
|
221
|
+
"Pro/deepseek-ai/DeepSeek-V3": {
|
222
|
+
"description": "DeepSeek-V3 — это языковая модель с 6710 миллиардами параметров, использующая архитектуру смешанных экспертов (MoE) и многофункциональное внимание (MLA), в сочетании с стратегией балансировки нагрузки без вспомогательных потерь, оптимизирующая эффективность вывода и обучения. После предобучения на 14.8 триллионах высококачественных токенов и последующей контролируемой донастройки и обучения с подкреплением, DeepSeek-V3 превосходит другие открытые модели и приближается к ведущим закрытым моделям."
|
241
223
|
},
|
242
224
|
"QwQ-32B-Preview": {
|
243
225
|
"description": "QwQ-32B-Preview — это инновационная модель обработки естественного языка, способная эффективно обрабатывать сложные задачи генерации диалогов и понимания контекста."
|
@@ -290,6 +272,12 @@
|
|
290
272
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
291
273
|
"description": "Qwen2.5-Coder-7B-Instruct — это последняя версия серии языковых моделей, специфичных для кода, выпущенная Alibaba Cloud. Эта модель значительно улучшила способности генерации кода, вывода и исправления на основе Qwen2.5, обучаясь на 5.5 триллионах токенов. Она не только усилила кодирование, но и сохранила преимущества в математике и общих способностях. Модель предоставляет более полную основу для практических приложений, таких как интеллектуальные агенты кода."
|
292
274
|
},
|
275
|
+
"Qwen/Qwen2.5-VL-32B-Instruct": {
|
276
|
+
"description": "Qwen2.5-VL-32B-Instruct — это мультимодальная языковая модель, разработанная командой Tongyi Qianwen, являющаяся частью серии Qwen2.5-VL. Модель не только превосходно распознаёт обычные объекты, но и анализирует текст, диаграммы, иконки, графики и композицию в изображениях. Она может функционировать как визуальный агент, способный к логическим рассуждениям и динамическому управлению инструментами, включая работу с компьютерами и мобильными устройствами. Кроме того, модель точно определяет местоположение объектов на изображениях и генерирует структурированные выводы для документов, таких как счета и таблицы. По сравнению с предыдущей версией Qwen2-VL, данная модель демонстрирует улучшенные математические способности и навыки решения задач благодаря обучению с подкреплением, а также более естественный стиль ответов, соответствующий человеческим предпочтениям."
|
277
|
+
},
|
278
|
+
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
279
|
+
"description": "Qwen2.5-VL — это визуально-языковая модель из серии Qwen2.5. Модель демонстрирует значительные улучшения в различных аспектах: обладает более сильными способностями к визуальному пониманию, может распознавать обычные объекты, анализировать текст, диаграммы и макеты; как визуальный агент способна рассуждать и динамически направлять использование инструментов; поддерживает понимание длинных видео продолжительностью более 1 часа с возможностью выделения ключевых событий; может точно локализовать объекты на изображении, генерируя ограничивающие рамки или точки; поддерживает генерацию структурированного вывода, что особенно полезно для сканированных данных, таких как счета-фактуры и таблицы."
|
280
|
+
},
|
293
281
|
"Qwen2-72B-Instruct": {
|
294
282
|
"description": "Qwen2 — это последняя серия моделей Qwen, поддерживающая контекст до 128k. По сравнению с текущими лучшими открытыми моделями, Qwen2-72B значительно превосходит ведущие модели по многим аспектам, включая понимание естественного языка, знания, код, математику и многоязычность."
|
295
283
|
},
|
@@ -374,9 +362,6 @@
|
|
374
362
|
"TeleAI/TeleChat2": {
|
375
363
|
"description": "Модель TeleChat2 была разработана China Telecom с нуля и представляет собой генеративную семантическую модель, поддерживающую функции вопросов и ответов, генерации кода, генерации длинных текстов и т.д., предоставляя пользователям услуги консультаций в диалоговом формате, способную взаимодействовать с пользователями, отвечать на вопросы, помогать в творчестве и эффективно помогать пользователям получать информацию, знания и вдохновение. Модель показывает отличные результаты в решении проблем с галлюцинациями, генерацией длинных текстов и логическим пониманием."
|
376
364
|
},
|
377
|
-
"TeleAI/TeleMM": {
|
378
|
-
"description": "Модель TeleMM — это многомодальная модель, разработанная China Telecom, способная обрабатывать текстовые, графические и другие виды входных данных, поддерживающая функции понимания изображений, анализа графиков и т.д., предоставляя пользователям услуги понимания на разных модальностях. Модель может взаимодействовать с пользователями в многомодальном формате, точно понимая входной контент, отвечая на вопросы, помогая в творчестве и эффективно предоставляя многомодальную информацию и поддержку вдохновения. Она показывает отличные результаты в задачах многомодального восприятия и логического вывода."
|
379
|
-
},
|
380
365
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
381
366
|
"description": "Qwen2.5-72B-Instruct — это одна из последних языковых моделей, выпущенных Alibaba Cloud. Эта 72B модель значительно улучшила способности в области кодирования и математики. Модель также поддерживает множество языков, охватывающих более 29 языков, включая китайский и английский. Она значительно улучшила выполнение инструкций, понимание структурированных данных и генерацию структурированных выходных данных (особенно JSON)."
|
382
367
|
},
|
@@ -662,9 +647,6 @@
|
|
662
647
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
663
648
|
"description": "Модель DeepSeek-R1, дистиллированная с помощью усиленного обучения и данных холодного старта, оптимизирует производительность вывода, обновляя стандарт многозадачности в открытых моделях."
|
664
649
|
},
|
665
|
-
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
|
666
|
-
"description": "DeepSeek-R1-Distill-Llama-8B — это дистиллированная модель, основанная на Llama-3.1-8B. Эта модель была дообучена на образцах, сгенерированных DeepSeek-R1, и демонстрирует отличные способности вывода. Она показала хорошие результаты в нескольких бенчмарках, включая 89.1% точности на MATH-500, 50.4% проходной уровень на AIME 2024 и 1205 баллов на CodeForces, демонстрируя сильные математические и программные способности для модели объемом 8B."
|
667
|
-
},
|
668
650
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
669
651
|
"description": "Модель DeepSeek-R1, дистиллированная с помощью усиленного обучения и данных холодного старта, оптимизирует производительность вывода, обновляя стандарт многозадачности в открытых моделях."
|
670
652
|
},
|
@@ -713,6 +695,9 @@
|
|
713
695
|
"deepseek-r1-70b-online": {
|
714
696
|
"description": "DeepSeek R1 70B стандартная версия, поддерживающая онлайн-поиск в реальном времени, подходит для диалогов и текстовых задач, требующих актуальной информации."
|
715
697
|
},
|
698
|
+
"deepseek-r1-distill-llama": {
|
699
|
+
"description": "deepseek-r1-distill-llama — это модель, полученная путём дистилляции из DeepSeek-R1 на основе Llama."
|
700
|
+
},
|
716
701
|
"deepseek-r1-distill-llama-70b": {
|
717
702
|
"description": "DeepSeek R1 — более крупная и умная модель в наборе DeepSeek, была дистиллирована в архитектуру Llama 70B. На основе бенчмарков и ручной оценки эта модель более умная, особенно в задачах, требующих математической и фактической точности."
|
718
703
|
},
|
@@ -725,6 +710,9 @@
|
|
725
710
|
"deepseek-r1-distill-qianfan-llama-8b": {
|
726
711
|
"description": "Выпущена 14 февраля 2025 года, дистиллированная модель, разработанная командой Qianfan на основе Llama3_8B (создана с использованием Meta Llama), в дистиллированные данные также были добавлены материалы Qianfan."
|
727
712
|
},
|
713
|
+
"deepseek-r1-distill-qwen": {
|
714
|
+
"description": "deepseek-r1-distill-qwen — это модель, полученная методом дистилляции из DeepSeek-R1 на основе Qwen."
|
715
|
+
},
|
728
716
|
"deepseek-r1-distill-qwen-1.5b": {
|
729
717
|
"description": "Модели серии DeepSeek-R1-Distill были получены с помощью технологии дистилляции знаний, донастраивая образцы, сгенерированные DeepSeek-R1, на открытых моделях, таких как Qwen и Llama."
|
730
718
|
},
|
@@ -872,6 +860,9 @@
|
|
872
860
|
"gemini-1.5-flash-8b-exp-0924": {
|
873
861
|
"description": "Gemini 1.5 Flash 8B 0924 — это последняя экспериментальная модель, которая демонстрирует значительное улучшение производительности как в текстовых, так и в мультимодальных задачах."
|
874
862
|
},
|
863
|
+
"gemini-1.5-flash-8b-latest": {
|
864
|
+
"description": "Gemini 1.5 Flash 8B — это эффективная мультимодальная модель, поддерживающая широкий спектр приложений."
|
865
|
+
},
|
875
866
|
"gemini-1.5-flash-exp-0827": {
|
876
867
|
"description": "Gemini 1.5 Flash 0827 предлагает оптимизированные многомодальные возможности обработки, подходящие для различных сложных задач."
|
877
868
|
},
|
@@ -914,9 +905,6 @@
|
|
914
905
|
"gemini-2.0-flash-lite-preview-02-05": {
|
915
906
|
"description": "Модель Gemini 2.0 Flash, оптимизированная для экономической эффективности и низкой задержки."
|
916
907
|
},
|
917
|
-
"gemini-2.0-flash-thinking-exp": {
|
918
|
-
"description": "Gemini 2.0 Flash Exp — это последняя экспериментальная многомодальная AI модель от Google, обладающая следующими поколениями характеристик, выдающейся скоростью, нативным вызовом инструментов и многомодальной генерацией."
|
919
|
-
},
|
920
908
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
921
909
|
"description": "Gemini 2.0 Flash Exp — это последняя экспериментальная многомодальная AI модель от Google, обладающая следующими поколениями характеристик, выдающейся скоростью, нативным вызовом инструментов и многомодальной генерацией."
|
922
910
|
},
|
@@ -1223,6 +1211,9 @@
|
|
1223
1211
|
"llama-3.1-8b-instant": {
|
1224
1212
|
"description": "Llama 3.1 8B — это высокоэффективная модель, обеспечивающая быструю генерацию текста, идеально подходящая для приложений, требующих масштабной эффективности и экономичности."
|
1225
1213
|
},
|
1214
|
+
"llama-3.1-instruct": {
|
1215
|
+
"description": "Модель Llama 3.1 с тонкой настройкой инструкций оптимизирована для диалоговых сценариев и превосходит многие существующие открытые чат-модели по стандартным отраслевым тестам."
|
1216
|
+
},
|
1226
1217
|
"llama-3.2-11b-vision-instruct": {
|
1227
1218
|
"description": "Отличные способности к визуальному пониманию изображений на высоком разрешении, предназначенные для приложений визуального понимания."
|
1228
1219
|
},
|
@@ -1235,12 +1226,18 @@
|
|
1235
1226
|
"llama-3.2-90b-vision-preview": {
|
1236
1227
|
"description": "Llama 3.2 предназначена для обработки задач, сочетающих визуальные и текстовые данные. Она демонстрирует отличные результаты в задачах описания изображений и визуального вопросно-ответного взаимодействия, преодолевая разрыв между генерацией языка и визуальным выводом."
|
1237
1228
|
},
|
1229
|
+
"llama-3.2-vision-instruct": {
|
1230
|
+
"description": "Модель Llama 3.2-Vision с тонкой настройкой команд оптимизирована для визуального распознавания, анализа изображений, описания изображений и ответов на общие вопросы, связанные с изображениями."
|
1231
|
+
},
|
1238
1232
|
"llama-3.3-70b-instruct": {
|
1239
1233
|
"description": "Llama 3.3 — это самая современная многоязычная открытая языковая модель из серии Llama, которая позволяет получить производительность, сопоставимую с 405B моделями, по очень низкой цене. Основана на структуре Transformer и улучшена с помощью контролируемой донастройки (SFT) и обучения с подкреплением на основе человеческой обратной связи (RLHF) для повышения полезности и безопасности. Ее версия с оптимизацией под инструкции специально разработана для многоязычных диалогов и показывает лучшие результаты по сравнению с множеством открытых и закрытых моделей чата на различных отраслевых бенчмарках. Дата окончания знаний — декабрь 2023 года."
|
1240
1234
|
},
|
1241
1235
|
"llama-3.3-70b-versatile": {
|
1242
1236
|
"description": "Многоязычная большая языковая модель Meta Llama 3.3 (LLM) — это предобученная и откорректированная модель генерации на 70B (текстовый ввод/текстовый вывод). Откорректированная на чистом тексте модель Llama 3.3 оптимизирована для многоязычных диалоговых задач и превосходит многие доступные открытые и закрытые модели чата по общим промышленным стандартам."
|
1243
1237
|
},
|
1238
|
+
"llama-3.3-instruct": {
|
1239
|
+
"description": "Модель Llama 3.3 с тонкой настройкой инструкций оптимизирована для диалоговых сценариев и превосходит многие существующие модели с открытым исходным кодом в стандартных отраслевых тестах."
|
1240
|
+
},
|
1244
1241
|
"llama3-70b-8192": {
|
1245
1242
|
"description": "Meta Llama 3 70B предлагает непревзойдённые возможности обработки сложности, специально разработанные для высоких требований проектов."
|
1246
1243
|
},
|
@@ -1319,9 +1316,6 @@
|
|
1319
1316
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
1320
1317
|
"description": "LLaMA 3.2 предназначена для выполнения задач, объединяющих визуальные и текстовые данные. Она отлично справляется с задачами по описанию изображений и визуальному вопросу-ответу, преодолевая разрыв между генерацией языка и визуальным пониманием."
|
1321
1318
|
},
|
1322
|
-
"meta-llama/Llama-3.3-70B-Instruct": {
|
1323
|
-
"description": "Llama 3.3 — это самая современная многоязычная открытая языковая модель серии Llama, позволяющая получить производительность, сопоставимую с 405B моделью, по очень низкой цене. Основана на структуре Transformer и улучшена с помощью контролируемой донастройки (SFT) и обучения с подкреплением на основе человеческой обратной связи (RLHF) для повышения полезности и безопасности. Ее версия с оптимизацией под инструкции специально разработана для многоязычного диалога и показывает лучшие результаты по сравнению с многими открытыми и закрытыми чат-моделями на нескольких отраслевых бенчмарках. Дата окончания знаний — декабрь 2023 года."
|
1324
|
-
},
|
1325
1319
|
"meta-llama/Llama-3.3-70B-Instruct-Turbo": {
|
1326
1320
|
"description": "Многоязычная большая языковая модель Meta Llama 3.3 (LLM) — это предобученная и настроенная на инструкции генеративная модель объемом 70B (входной/выходной текст). Модель Llama 3.3, настроенная на инструкции, оптимизирована для многоязычных диалоговых случаев и превосходит многие доступные открытые и закрытые модели чата по общим отраслевым бенчмаркам."
|
1327
1321
|
},
|
@@ -1349,15 +1343,9 @@
|
|
1349
1343
|
"meta-llama/Meta-Llama-3.1-70B": {
|
1350
1344
|
"description": "Llama 3.1 — это передовая модель, представленная Meta, поддерживающая до 405B параметров, применимая в сложных диалогах, многоязычном переводе и анализе данных."
|
1351
1345
|
},
|
1352
|
-
"meta-llama/Meta-Llama-3.1-70B-Instruct": {
|
1353
|
-
"description": "LLaMA 3.1 70B предлагает эффективную поддержку диалогов на нескольких языках."
|
1354
|
-
},
|
1355
1346
|
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": {
|
1356
1347
|
"description": "Модель Llama 3.1 70B была тщательно настроена для высоконагруженных приложений, квантованная до FP8 для повышения вычислительной мощности и точности, обеспечивая выдающиеся результаты в сложных сценариях."
|
1357
1348
|
},
|
1358
|
-
"meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
1359
|
-
"description": "LLaMA 3.1 предлагает поддержку нескольких языков и является одной из ведущих генеративных моделей в отрасли."
|
1360
|
-
},
|
1361
1349
|
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": {
|
1362
1350
|
"description": "Модель Llama 3.1 8B использует FP8-квантование и поддерживает до 131,072 контекстных токенов, являясь выдающейся среди открытых моделей, подходящей для сложных задач и превосходящей многие отраслевые стандарты."
|
1363
1351
|
},
|
@@ -1451,12 +1439,18 @@
|
|
1451
1439
|
"mistral-large": {
|
1452
1440
|
"description": "Mixtral Large — это флагманская модель от Mistral, объединяющая возможности генерации кода, математики и вывода, поддерживающая контекстное окно 128k."
|
1453
1441
|
},
|
1442
|
+
"mistral-large-instruct": {
|
1443
|
+
"description": "Mistral-Large-Instruct-2407 — это передовая плотная большая языковая модель (LLM) с 123 миллиардами параметров, обладающая современными возможностями логического вывода, обработки знаний и программирования."
|
1444
|
+
},
|
1454
1445
|
"mistral-large-latest": {
|
1455
1446
|
"description": "Mistral Large — это флагманская большая модель, хорошо подходящая для многоязычных задач, сложного вывода и генерации кода, идеальный выбор для высококлассных приложений."
|
1456
1447
|
},
|
1457
1448
|
"mistral-nemo": {
|
1458
1449
|
"description": "Mistral Nemo, разработанный в сотрудничестве между Mistral AI и NVIDIA, является высокоэффективной 12B моделью."
|
1459
1450
|
},
|
1451
|
+
"mistral-nemo-instruct": {
|
1452
|
+
"description": "Mistral-Nemo-Instruct-2407 — это крупная языковая модель (LLM), представляющая собой версию Mistral-Nemo-Base-2407 с тонкой настройкой для выполнения инструкций."
|
1453
|
+
},
|
1460
1454
|
"mistral-small": {
|
1461
1455
|
"description": "Mistral Small может использоваться для любых языковых задач, требующих высокой эффективности и низкой задержки."
|
1462
1456
|
},
|
@@ -1670,15 +1664,6 @@
|
|
1670
1664
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1671
1665
|
"description": "Мощная средняя модель кода, поддерживающая контекст длиной 32K, специализирующаяся на многоязычном программировании."
|
1672
1666
|
},
|
1673
|
-
"qwen1.5-14b-chat": {
|
1674
|
-
"description": "Qwen1.5 — это бета-версия Qwen2, основанная на архитектуре Transformer, которая является моделью только для декодирования, предобученной на огромном объеме данных. По сравнению с ранее выпущенными версиями Qwen, модели Qwen1.5 base и chat поддерживают несколько языков и демонстрируют улучшенные возможности в общении и базовых задачах. Qwen1.5-14b-chat — это специализированная модель для чат-сценариев с 14 миллиардами параметров, что является стандартным размером для таких моделей."
|
1675
|
-
},
|
1676
|
-
"qwen1.5-32b-chat": {
|
1677
|
-
"description": "Qwen1.5 — это бета-версия Qwen2, основанная на архитектуре Transformer, которая является моделью только для декодирования, предобученной на огромном объеме данных. По сравнению с ранее выпущенными версиями Qwen, модели base и chat в серии Qwen1.5 поддерживают несколько языков и демонстрируют улучшенные возможности в общении и базовых навыках. Qwen1.5-32b-chat — это специализированная модель для чат-сценариев с 32 миллиардами параметров, которая превосходит 14-миллиардную модель в сценариях с агентами и имеет более низкую стоимость вычислений по сравнению с 72-миллиардной моделью."
|
1678
|
-
},
|
1679
|
-
"qwen1.5-72b-chat": {
|
1680
|
-
"description": "Qwen1.5 — это бета-версия Qwen2, основанная на архитектуре Transformer, которая является моделью только для декодирования, предобученной на огромном объеме данных. По сравнению с ранее выпущенными версиями Qwen, модели base и chat в серии Qwen1.5 поддерживают несколько языков и демонстрируют улучшения в общении и базовых возможностях. Qwen1.5-72b-chat — это специализированная модель для чат-сценариев с 72 миллиардами параметров."
|
1681
|
-
},
|
1682
1667
|
"qwen2": {
|
1683
1668
|
"description": "Qwen2 — это новое поколение крупномасштабной языковой модели от Alibaba, обеспечивающее отличные результаты для разнообразных приложений."
|
1684
1669
|
},
|
@@ -1715,6 +1700,12 @@
|
|
1715
1700
|
"qwen2.5-coder-7b-instruct": {
|
1716
1701
|
"description": "Открытая версия модели кода Tongyi Qwen."
|
1717
1702
|
},
|
1703
|
+
"qwen2.5-coder-instruct": {
|
1704
|
+
"description": "Qwen2.5-Coder — это новейшая специализированная большая языковая модель для работы с кодом в серии Qwen (ранее известная как CodeQwen)."
|
1705
|
+
},
|
1706
|
+
"qwen2.5-instruct": {
|
1707
|
+
"description": "Qwen2.5 — это новейшая серия больших языковых моделей Qwen. Для Qwen2.5 мы выпустили несколько базовых языковых моделей и моделей с тонкой настройкой инструкций, с диапазоном параметров от 500 миллионов до 7,2 миллиарда."
|
1708
|
+
},
|
1718
1709
|
"qwen2.5-math-1.5b-instruct": {
|
1719
1710
|
"description": "Модель Qwen-Math обладает выдающимися способностями к решению математических задач."
|
1720
1711
|
},
|
@@ -1724,12 +1715,18 @@
|
|
1724
1715
|
"qwen2.5-math-7b-instruct": {
|
1725
1716
|
"description": "Модель Qwen-Math с мощными способностями решения математических задач."
|
1726
1717
|
},
|
1718
|
+
"qwen2.5-vl-32b-instruct": {
|
1719
|
+
"description": "Модели серии Qwen2.5-VL демонстрируют повышенный уровень интеллекта, практичности и адаптивности, что обеспечивает их превосходную производительность в таких сценариях, как естественные диалоги, создание контента, предоставление экспертных знаний и разработка кода. Версия 32B оптимизирована с использованием технологий обучения с подкреплением, что по сравнению с другими моделями серии Qwen2.5 VL обеспечивает более соответствующий человеческим предпочтениям стиль вывода, способность к решению сложных математических задач, а также детальное понимание и анализ изображений."
|
1720
|
+
},
|
1727
1721
|
"qwen2.5-vl-72b-instruct": {
|
1728
1722
|
"description": "Улучшение следования инструкциям, математики, решения задач и кода, улучшение способности распознавания объектов, поддержка точного позиционирования визуальных элементов в различных форматах, поддержка понимания длинных видеофайлов (максимум 10 минут) и локализация событий на уровне секунд, способность понимать последовательность времени и скорость, поддержка управления агентами ОС или мобильными устройствами на основе аналитических и позиционных возможностей, высокая способность извлечения ключевой информации и вывода в формате Json. Эта версия является 72B, самой мощной в серии."
|
1729
1723
|
},
|
1730
1724
|
"qwen2.5-vl-7b-instruct": {
|
1731
1725
|
"description": "Улучшение следования инструкциям, математики, решения задач и кода, улучшение способности распознавания объектов, поддержка точного позиционирования визуальных элементов в различных форматах, поддержка понимания длинных видеофайлов (максимум 10 минут) и локализация событий на уровне секунд, способность понимать последовательность времени и скорость, поддержка управления агентами ОС или мобильными устройствами на основе аналитических и позиционных возможностей, высокая способность извлечения ключевой информации и вывода в формате Json. Эта версия является 72B, самой мощной в серии."
|
1732
1726
|
},
|
1727
|
+
"qwen2.5-vl-instruct": {
|
1728
|
+
"description": "Qwen2.5-VL - это последняя версия визуально-языковой модели в семействе моделей Qwen."
|
1729
|
+
},
|
1733
1730
|
"qwen2.5:0.5b": {
|
1734
1731
|
"description": "Qwen2.5 — это новое поколение масштабной языковой модели от Alibaba, обеспечивающее отличные результаты для разнообразных потребностей приложений."
|
1735
1732
|
},
|
@@ -146,6 +146,9 @@
|
|
146
146
|
"xai": {
|
147
147
|
"description": "xAI — это компания, занимающаяся разработкой искусственного интеллекта для ускорения научных открытий человечества. Наша миссия — способствовать общему пониманию Вселенной."
|
148
148
|
},
|
149
|
+
"xinference": {
|
150
|
+
"description": "Xorbits Inference (Xinference) — это открытая платформа, предназначенная для упрощения запуска и интеграции различных моделей искусственного интеллекта. С помощью Xinference вы можете использовать любые открытые LLM, модели эмбеддингов и мультимодальные модели для выполнения логического вывода в облаке или локальной среде, а также создавать мощные приложения на основе ИИ."
|
151
|
+
},
|
149
152
|
"zeroone": {
|
150
153
|
"description": "01.AI сосредоточен на технологиях искусственного интеллекта 2.0, активно продвигая инновации и применение \"человек + искусственный интеллект\", используя мощные модели и передовые AI-технологии для повышения производительности человека и реализации технологического потенциала."
|
151
154
|
},
|