@lobehub/chat 1.51.8 → 1.51.10
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/common.json +1 -1
- package/locales/ar/modelProvider.json +0 -20
- package/locales/ar/models.json +108 -3
- package/locales/bg-BG/common.json +1 -1
- package/locales/bg-BG/modelProvider.json +0 -20
- package/locales/bg-BG/models.json +108 -3
- package/locales/de-DE/common.json +1 -1
- package/locales/de-DE/modelProvider.json +0 -20
- package/locales/de-DE/models.json +108 -3
- package/locales/en-US/common.json +1 -1
- package/locales/en-US/modelProvider.json +0 -20
- package/locales/en-US/models.json +108 -3
- package/locales/es-ES/common.json +1 -1
- package/locales/es-ES/modelProvider.json +0 -20
- package/locales/es-ES/models.json +108 -3
- package/locales/fa-IR/common.json +1 -1
- package/locales/fa-IR/modelProvider.json +0 -20
- package/locales/fa-IR/models.json +108 -3
- package/locales/fr-FR/common.json +1 -1
- package/locales/fr-FR/modelProvider.json +0 -20
- package/locales/fr-FR/models.json +108 -3
- package/locales/it-IT/common.json +1 -1
- package/locales/it-IT/modelProvider.json +0 -20
- package/locales/it-IT/models.json +108 -3
- package/locales/ja-JP/common.json +1 -1
- package/locales/ja-JP/modelProvider.json +0 -20
- package/locales/ja-JP/models.json +108 -3
- package/locales/ko-KR/common.json +1 -1
- package/locales/ko-KR/modelProvider.json +0 -20
- package/locales/ko-KR/models.json +108 -3
- package/locales/nl-NL/common.json +1 -1
- package/locales/nl-NL/modelProvider.json +0 -20
- package/locales/nl-NL/models.json +108 -3
- package/locales/pl-PL/common.json +1 -1
- package/locales/pl-PL/modelProvider.json +0 -20
- package/locales/pl-PL/models.json +108 -3
- package/locales/pt-BR/common.json +1 -1
- package/locales/pt-BR/modelProvider.json +0 -20
- package/locales/pt-BR/models.json +108 -3
- package/locales/ru-RU/common.json +1 -1
- package/locales/ru-RU/modelProvider.json +0 -20
- package/locales/ru-RU/models.json +108 -3
- package/locales/tr-TR/common.json +1 -1
- package/locales/tr-TR/modelProvider.json +0 -20
- package/locales/tr-TR/models.json +108 -3
- package/locales/vi-VN/common.json +1 -1
- package/locales/vi-VN/modelProvider.json +0 -20
- package/locales/vi-VN/models.json +108 -3
- package/locales/zh-CN/common.json +1 -1
- package/locales/zh-CN/modelProvider.json +0 -20
- package/locales/zh-CN/models.json +113 -8
- package/locales/zh-TW/common.json +1 -1
- package/locales/zh-TW/modelProvider.json +0 -20
- package/locales/zh-TW/models.json +108 -3
- package/package.json +1 -1
- package/src/app/[variants]/(main)/chat/_layout/Desktop/SessionPanel.tsx +2 -1
- package/src/app/[variants]/(main)/chat/_layout/Mobile.tsx +2 -1
- package/src/app/[variants]/(main)/chat/layout.ts +0 -2
- package/src/app/[variants]/(main)/settings/provider/(detail)/[id]/page.tsx +30 -28
- package/src/features/User/PlanTag.tsx +2 -2
- package/src/locales/default/common.ts +1 -1
@@ -23,6 +23,9 @@
|
|
23
23
|
"360gpt2-pro": {
|
24
24
|
"description": "360GPT2 Pro to zaawansowany model przetwarzania języka naturalnego wydany przez firmę 360, charakteryzujący się doskonałymi zdolnościami generowania i rozumienia tekstu, szczególnie w obszarze generowania i tworzenia treści, zdolny do obsługi skomplikowanych zadań związanych z konwersją językową i odgrywaniem ról."
|
25
25
|
},
|
26
|
+
"360zhinao2-o1": {
|
27
|
+
"description": "Model 360zhinao2-o1 wykorzystuje wyszukiwanie drzewne do budowy łańcucha myślowego i wprowadza mechanizm refleksji, wykorzystując uczenie przez wzmocnienie do treningu, co pozwala modelowi na samorefleksję i korekcję błędów."
|
28
|
+
},
|
26
29
|
"4.0Ultra": {
|
27
30
|
"description": "Spark4.0 Ultra to najsilniejsza wersja w serii modeli Spark, która, oprócz ulepszonego łącza wyszukiwania w sieci, zwiększa zdolność rozumienia i podsumowywania treści tekstowych. Jest to kompleksowe rozwiązanie mające na celu zwiększenie wydajności biurowej i dokładne odpowiadanie na potrzeby, stanowiące inteligentny produkt wiodący w branży."
|
28
31
|
},
|
@@ -44,6 +47,18 @@
|
|
44
47
|
"Baichuan4-Turbo": {
|
45
48
|
"description": "Model o najlepszych możliwościach w kraju, przewyższający zagraniczne modele w zadaniach związanych z wiedzą encyklopedyczną, długimi tekstami i twórczością w języku chińskim. Posiada również wiodące w branży możliwości multimodalne, osiągając doskonałe wyniki w wielu autorytatywnych testach."
|
46
49
|
},
|
50
|
+
"DeepSeek-R1-Distill-Qwen-1.5B": {
|
51
|
+
"description": "Model destylacyjny DeepSeek-R1 oparty na Qwen2.5-Math-1.5B, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
|
52
|
+
},
|
53
|
+
"DeepSeek-R1-Distill-Qwen-14B": {
|
54
|
+
"description": "Model destylacyjny DeepSeek-R1 oparty na Qwen2.5-14B, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
|
55
|
+
},
|
56
|
+
"DeepSeek-R1-Distill-Qwen-32B": {
|
57
|
+
"description": "Seria DeepSeek-R1 optymalizuje wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach, przewyższający poziom OpenAI-o1-mini."
|
58
|
+
},
|
59
|
+
"DeepSeek-R1-Distill-Qwen-7B": {
|
60
|
+
"description": "Model destylacyjny DeepSeek-R1 oparty na Qwen2.5-Math-7B, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
|
61
|
+
},
|
47
62
|
"Doubao-lite-128k": {
|
48
63
|
"description": "Doubao-lite cechuje się ekstremalną szybkością reakcji i lepszym stosunkiem jakości do ceny, oferując klientom elastyczność w różnych scenariuszach. Obsługuje wnioskowanie i dostosowywanie z kontekstem 128k."
|
49
64
|
},
|
@@ -77,9 +92,6 @@
|
|
77
92
|
"ERNIE-4.0-8K-Preview": {
|
78
93
|
"description": "Flagowy model ultra dużego języka opracowany przez Baidu, w porównaniu do ERNIE 3.5, oferujący kompleksową aktualizację możliwości modelu, szeroko stosowany w złożonych scenariuszach w różnych dziedzinach; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji."
|
79
94
|
},
|
80
|
-
"ERNIE-4.0-Turbo-128K": {
|
81
|
-
"description": "Flagowy model językowy opracowany przez Baidu, o dużej skali, wykazujący doskonałe wyniki w złożonych zadaniach w różnych dziedzinach; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji w odpowiedziach. W porównaniu do ERNIE 4.0, wykazuje lepsze osiągi."
|
82
|
-
},
|
83
95
|
"ERNIE-4.0-Turbo-8K-Latest": {
|
84
96
|
"description": "Opracowany przez Baidu flagowy, ultra-duży model językowy, który wykazuje doskonałe ogólne rezultaty i jest szeroko stosowany w złożonych zadaniach w różnych dziedzinach; obsługuje automatyczne łączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji odpowiadających na pytania. W porównaniu do ERNIE 4.0 wykazuje lepszą wydajność."
|
85
97
|
},
|
@@ -176,6 +188,9 @@
|
|
176
188
|
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
177
189
|
"description": "Meta Llama 3.1 to rodzina dużych modeli językowych opracowanych przez Meta, obejmująca pretrenowane i dostosowane do instrukcji warianty o rozmiarach parametrów 8B, 70B i 405B. Model 8B dostosowany do instrukcji został zoptymalizowany do scenariuszy rozmów wielojęzycznych, osiągając doskonałe wyniki w wielu branżowych testach benchmarkowych. Trening modelu wykorzystał ponad 150 bilionów tokenów danych publicznych oraz zastosował techniki takie jak nadzorowane dostrajanie i uczenie przez wzmacnianie z ludzkim feedbackiem, aby zwiększyć użyteczność i bezpieczeństwo modelu. Llama 3.1 wspiera generowanie tekstu i kodu, a data graniczna wiedzy to grudzień 2023 roku."
|
178
190
|
},
|
191
|
+
"QwQ-32B-Preview": {
|
192
|
+
"description": "QwQ-32B-Preview to innowacyjny model przetwarzania języka naturalnego, który efektywnie radzi sobie z złożonymi zadaniami generowania dialogów i rozumienia kontekstu."
|
193
|
+
},
|
179
194
|
"Qwen/QVQ-72B-Preview": {
|
180
195
|
"description": "QVQ-72B-Preview to model badawczy opracowany przez zespół Qwen, skoncentrowany na zdolnościach wnioskowania wizualnego, który ma unikalne zalety w zrozumieniu złożonych scenariuszy i rozwiązywaniu wizualnie związanych problemów matematycznych."
|
181
196
|
},
|
@@ -527,6 +542,24 @@
|
|
527
542
|
"deepseek-ai/DeepSeek-R1": {
|
528
543
|
"description": "DeepSeek-R1 to model wnioskowania napędzany uczeniem przez wzmacnianie (RL), który rozwiązuje problemy z powtarzalnością i czytelnością modelu. Przed RL, DeepSeek-R1 wprowadził dane z zimnego startu, co dodatkowo zoptymalizowało wydajność wnioskowania. W zadaniach matematycznych, kodowania i wnioskowania osiąga wyniki porównywalne z OpenAI-o1, a dzięki starannie zaprojektowanym metodom treningowym poprawia ogólne efekty."
|
529
544
|
},
|
545
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
546
|
+
"description": "Model destylacyjny DeepSeek-R1, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
|
547
|
+
},
|
548
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
|
549
|
+
"description": "DeepSeek-R1-Distill-Llama-8B to model destylacyjny oparty na Llama-3.1-8B. Model ten został dostosowany przy użyciu próbek wygenerowanych przez DeepSeek-R1, wykazując doskonałe zdolności wnioskowania. Osiągnął dobre wyniki w wielu testach referencyjnych, w tym 89,1% dokładności w MATH-500, 50,4% wskaźnika zdawalności w AIME 2024 oraz 1205 punktów w CodeForces, demonstrując silne zdolności matematyczne i programistyczne jako model o skali 8B."
|
550
|
+
},
|
551
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
552
|
+
"description": "Model destylacyjny DeepSeek-R1, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
|
553
|
+
},
|
554
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B": {
|
555
|
+
"description": "Model destylacyjny DeepSeek-R1, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
|
556
|
+
},
|
557
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
|
558
|
+
"description": "DeepSeek-R1-Distill-Qwen-32B to model uzyskany przez destylację Qwen2.5-32B. Model ten został dostosowany przy użyciu 800 000 starannie wybranych próbek wygenerowanych przez DeepSeek-R1, wykazując doskonałe osiągi w wielu dziedzinach, takich jak matematyka, programowanie i wnioskowanie. Osiągnął znakomite wyniki w wielu testach referencyjnych, w tym 94,3% dokładności w MATH-500, co pokazuje jego silne zdolności wnioskowania matematycznego."
|
559
|
+
},
|
560
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
561
|
+
"description": "DeepSeek-R1-Distill-Qwen-7B to model uzyskany przez destylację Qwen2.5-Math-7B. Model ten został dostosowany przy użyciu 800 000 starannie wybranych próbek wygenerowanych przez DeepSeek-R1, wykazując doskonałe zdolności wnioskowania. Osiągnął znakomite wyniki w wielu testach referencyjnych, w tym 92,8% dokładności w MATH-500, 55,5% wskaźnika zdawalności w AIME 2024 oraz 1189 punktów w CodeForces, demonstrując silne zdolności matematyczne i programistyczne jako model o skali 7B."
|
562
|
+
},
|
530
563
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
564
|
"description": "DeepSeek V2.5 łączy doskonałe cechy wcześniejszych wersji, wzmacniając zdolności ogólne i kodowania."
|
532
565
|
},
|
@@ -554,6 +587,9 @@
|
|
554
587
|
"deepseek-r1": {
|
555
588
|
"description": "DeepSeek-R1 to model wnioskowania napędzany uczeniem przez wzmacnianie (RL), który rozwiązuje problemy z powtarzalnością i czytelnością modelu. Przed RL, DeepSeek-R1 wprowadził dane z zimnego startu, co dodatkowo zoptymalizowało wydajność wnioskowania. W zadaniach matematycznych, kodowania i wnioskowania osiąga wyniki porównywalne z OpenAI-o1, a dzięki starannie zaprojektowanym metodom treningowym poprawia ogólne efekty."
|
556
589
|
},
|
590
|
+
"deepseek-r1-distill-llama-70b": {
|
591
|
+
"description": "DeepSeek R1 — większy i inteligentniejszy model w zestawie DeepSeek — został destylowany do architektury Llama 70B. Na podstawie testów referencyjnych i ocen ręcznych, model ten jest bardziej inteligentny niż oryginalna Llama 70B, szczególnie w zadaniach wymagających precyzji matematycznej i faktograficznej."
|
592
|
+
},
|
557
593
|
"deepseek-reasoner": {
|
558
594
|
"description": "Model inferency wprowadzony przez DeepSeek. Przed wygenerowaniem ostatecznej odpowiedzi, model najpierw przedstawia fragment łańcucha myślowego, aby zwiększyć dokładność końcowej odpowiedzi."
|
559
595
|
},
|
@@ -563,12 +599,63 @@
|
|
563
599
|
"deepseek-v2:236b": {
|
564
600
|
"description": "DeepSeek V2 236B to model kodowy zaprojektowany przez DeepSeek, oferujący potężne możliwości generowania kodu."
|
565
601
|
},
|
602
|
+
"deepseek-v3": {
|
603
|
+
"description": "DeepSeek-V3 to model MoE opracowany przez Hangzhou DeepSeek AI Technology Research Co., Ltd., który osiągnął znakomite wyniki w wielu testach, zajmując pierwsze miejsce wśród modeli open-source na głównych listach. W porównaniu do modelu V2.5, prędkość generowania wzrosła trzykrotnie, co zapewnia użytkownikom szybsze i płynniejsze doświadczenia."
|
604
|
+
},
|
566
605
|
"deepseek/deepseek-chat": {
|
567
606
|
"description": "Nowy, otwarty model łączący zdolności ogólne i kodowe, który nie tylko zachowuje ogólne zdolności dialogowe oryginalnego modelu Chat, ale także potężne zdolności przetwarzania kodu modelu Coder, lepiej dostosowując się do ludzkich preferencji. Ponadto, DeepSeek-V2.5 osiągnął znaczne poprawy w zadaniach pisarskich, przestrzeganiu instrukcji i wielu innych obszarach."
|
568
607
|
},
|
569
608
|
"emohaa": {
|
570
609
|
"description": "Emohaa to model psychologiczny, posiadający profesjonalne umiejętności doradcze, pomagający użytkownikom zrozumieć problemy emocjonalne."
|
571
610
|
},
|
611
|
+
"ernie-3.5-128k": {
|
612
|
+
"description": "Flagowy model językowy opracowany przez Baidu, obejmujący ogromne zbiory danych w języku chińskim i angielskim, charakteryzujący się silnymi zdolnościami ogólnymi, spełniającym wymagania większości zastosowań w dialogach, generowaniu treści i aplikacjach wtyczek; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji."
|
613
|
+
},
|
614
|
+
"ernie-3.5-8k": {
|
615
|
+
"description": "Flagowy model językowy opracowany przez Baidu, obejmujący ogromne zbiory danych w języku chińskim i angielskim, charakteryzujący się silnymi zdolnościami ogólnymi, spełniającym wymagania większości zastosowań w dialogach, generowaniu treści i aplikacjach wtyczek; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji."
|
616
|
+
},
|
617
|
+
"ernie-3.5-8k-preview": {
|
618
|
+
"description": "Flagowy model językowy opracowany przez Baidu, obejmujący ogromne zbiory danych w języku chińskim i angielskim, charakteryzujący się silnymi zdolnościami ogólnymi, spełniającym wymagania większości zastosowań w dialogach, generowaniu treści i aplikacjach wtyczek; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji."
|
619
|
+
},
|
620
|
+
"ernie-4.0-8k-latest": {
|
621
|
+
"description": "Flagowy model językowy Baidu o ultra dużej skali, w porównaniu do ERNIE 3.5, oferujący kompleksową aktualizację zdolności modelu, szeroko stosowany w złożonych zadaniach w różnych dziedzinach; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji."
|
622
|
+
},
|
623
|
+
"ernie-4.0-8k-preview": {
|
624
|
+
"description": "Flagowy model językowy Baidu o ultra dużej skali, w porównaniu do ERNIE 3.5, oferujący kompleksową aktualizację zdolności modelu, szeroko stosowany w złożonych zadaniach w różnych dziedzinach; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji."
|
625
|
+
},
|
626
|
+
"ernie-4.0-turbo-128k": {
|
627
|
+
"description": "Flagowy model językowy Baidu o ultra dużej skali, charakteryzujący się doskonałymi wynikami ogólnymi, szeroko stosowany w złożonych zadaniach w różnych dziedzinach; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji. W porównaniu do ERNIE 4.0, oferuje lepsze wyniki wydajności."
|
628
|
+
},
|
629
|
+
"ernie-4.0-turbo-8k-latest": {
|
630
|
+
"description": "Flagowy model językowy Baidu o ultra dużej skali, charakteryzujący się doskonałymi wynikami ogólnymi, szeroko stosowany w złożonych zadaniach w różnych dziedzinach; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji. W porównaniu do ERNIE 4.0, oferuje lepsze wyniki wydajności."
|
631
|
+
},
|
632
|
+
"ernie-4.0-turbo-8k-preview": {
|
633
|
+
"description": "Flagowy model językowy Baidu o ultra dużej skali, charakteryzujący się doskonałymi wynikami ogólnymi, szeroko stosowany w złożonych zadaniach w różnych dziedzinach; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji. W porównaniu do ERNIE 4.0, oferuje lepsze wyniki wydajności."
|
634
|
+
},
|
635
|
+
"ernie-char-8k": {
|
636
|
+
"description": "Model językowy opracowany przez Baidu, skoncentrowany na specyficznych scenariuszach, odpowiedni do zastosowań w grach NPC, dialogach obsługi klienta, odgrywaniu ról w dialogach, charakteryzujący się wyraźnym i spójnym stylem postaci, silniejszą zdolnością do podążania za instrukcjami oraz lepszą wydajnością wnioskowania."
|
637
|
+
},
|
638
|
+
"ernie-char-fiction-8k": {
|
639
|
+
"description": "Model językowy opracowany przez Baidu, skoncentrowany na specyficznych scenariuszach, odpowiedni do zastosowań w grach NPC, dialogach obsługi klienta, odgrywaniu ról w dialogach, charakteryzujący się wyraźnym i spójnym stylem postaci, silniejszą zdolnością do podążania za instrukcjami oraz lepszą wydajnością wnioskowania."
|
640
|
+
},
|
641
|
+
"ernie-lite-8k": {
|
642
|
+
"description": "ERNIE Lite to lekki model językowy opracowany przez Baidu, łączący doskonałe wyniki modelu z wydajnością wnioskowania, odpowiedni do użycia na kartach przyspieszających AI o niskiej mocy obliczeniowej."
|
643
|
+
},
|
644
|
+
"ernie-lite-pro-128k": {
|
645
|
+
"description": "Lekki model językowy opracowany przez Baidu, łączący doskonałe wyniki modelu z wydajnością wnioskowania, oferujący lepsze wyniki niż ERNIE Lite, odpowiedni do użycia na kartach przyspieszających AI o niskiej mocy obliczeniowej."
|
646
|
+
},
|
647
|
+
"ernie-novel-8k": {
|
648
|
+
"description": "Ogólny model językowy opracowany przez Baidu, który wykazuje wyraźne przewagi w zakresie kontynuacji powieści, może być również stosowany w scenariuszach krótkich dramatów i filmów."
|
649
|
+
},
|
650
|
+
"ernie-speed-128k": {
|
651
|
+
"description": "Najnowszy model językowy o wysokiej wydajności opracowany przez Baidu w 2024 roku, charakteryzujący się doskonałymi zdolnościami ogólnymi, odpowiedni jako model bazowy do dalszego dostosowania, lepiej radzący sobie z problemami w specyficznych scenariuszach, a także oferujący doskonałą wydajność wnioskowania."
|
652
|
+
},
|
653
|
+
"ernie-speed-pro-128k": {
|
654
|
+
"description": "Najnowszy model językowy o wysokiej wydajności opracowany przez Baidu w 2024 roku, charakteryzujący się doskonałymi zdolnościami ogólnymi, oferujący lepsze wyniki niż ERNIE Speed, odpowiedni jako model bazowy do dalszego dostosowania, lepiej radzący sobie z problemami w specyficznych scenariuszach, a także oferujący doskonałą wydajność wnioskowania."
|
655
|
+
},
|
656
|
+
"ernie-tiny-8k": {
|
657
|
+
"description": "ERNIE Tiny to model językowy o ultra wysokiej wydajności opracowany przez Baidu, charakteryzujący się najniższymi kosztami wdrożenia i dostosowania w serii modeli Wenxin."
|
658
|
+
},
|
572
659
|
"gemini-1.0-pro-001": {
|
573
660
|
"description": "Gemini 1.0 Pro 001 (Tuning) oferuje stabilną i dostosowywalną wydajność, co czyni go idealnym wyborem dla rozwiązań złożonych zadań."
|
574
661
|
},
|
@@ -872,6 +959,9 @@
|
|
872
959
|
"internlm2.5-latest": {
|
873
960
|
"description": "Nasza najnowsza seria modeli, charakteryzująca się doskonałymi osiągami wnioskowania, obsługująca długość kontekstu do 1M oraz lepsze możliwości śledzenia instrukcji i wywoływania narzędzi."
|
874
961
|
},
|
962
|
+
"internlm3-latest": {
|
963
|
+
"description": "Nasza najnowsza seria modeli, charakteryzująca się doskonałą wydajnością wnioskowania, prowadzi wśród modeli open-source o podobnej skali. Domyślnie wskazuje na naszą najnowszą wersję modelu InternLM3."
|
964
|
+
},
|
875
965
|
"learnlm-1.5-pro-experimental": {
|
876
966
|
"description": "LearnLM to eksperymentalny model językowy, specyficzny dla zadań, przeszkolony zgodnie z zasadami nauki o uczeniu się, który może przestrzegać systemowych instrukcji w scenariuszach nauczania i uczenia się, pełniąc rolę eksperta mentora."
|
877
967
|
},
|
@@ -986,6 +1076,9 @@
|
|
986
1076
|
"meta-llama/Llama-3.3-70B-Instruct": {
|
987
1077
|
"description": "Llama 3.3 to najnowocześniejszy wielojęzyczny model językowy open-source z serii Llama, oferujący wydajność porównywalną z modelem 405B przy bardzo niskich kosztach. Oparty na strukturze Transformer, poprawiony dzięki nadzorowanemu dostrajaniu (SFT) oraz uczeniu się z ludzkiego feedbacku (RLHF), co zwiększa użyteczność i bezpieczeństwo. Jego wersja dostosowana do instrukcji jest zoptymalizowana do wielojęzycznych rozmów, osiągając lepsze wyniki w wielu branżowych benchmarkach niż wiele modeli czatu open-source i zamkniętych. Data graniczna wiedzy to grudzień 2023 roku."
|
988
1078
|
},
|
1079
|
+
"meta-llama/Llama-3.3-70B-Instruct-Turbo": {
|
1080
|
+
"description": "Meta Llama 3.3 to wielojęzyczny model językowy (LLM) o skali 70B (wejście/wyjście tekstowe), będący modelem generacyjnym wstępnie wytrenowanym i dostosowanym do instrukcji. Model Llama 3.3 dostosowany do instrukcji jest zoptymalizowany pod kątem zastosowań w dialogach wielojęzycznych i przewyższa wiele dostępnych modeli open-source i zamkniętych w popularnych testach branżowych."
|
1081
|
+
},
|
989
1082
|
"meta-llama/Llama-Vision-Free": {
|
990
1083
|
"description": "LLaMA 3.2 zaprojektowana do przetwarzania zadań łączących dane wizualne i tekstowe. Doskonała w zadaniach takich jak opisywanie obrazów i wizualne pytania odpowiedzi, przekracza granice między generowaniem języka a wnioskowaniem wizualnym."
|
991
1084
|
},
|
@@ -1256,6 +1349,9 @@
|
|
1256
1349
|
"qwen-vl-max-latest": {
|
1257
1350
|
"description": "Model wizualno-językowy Qwen o ultra dużej skali. W porównaniu do wersji rozszerzonej, ponownie zwiększa zdolności wnioskowania wizualnego i przestrzegania instrukcji, oferując wyższy poziom percepcji wizualnej i poznawczej."
|
1258
1351
|
},
|
1352
|
+
"qwen-vl-ocr-latest": {
|
1353
|
+
"description": "Model OCR Tongyi Qianwen to specjalistyczny model do ekstrakcji tekstu, skoncentrowany na zdolności do wydobywania tekstu z obrazów dokumentów, tabel, zadań testowych i pisma ręcznego. Potrafi rozpoznawać wiele języków, w tym: chiński, angielski, francuski, japoński, koreański, niemiecki, rosyjski, włoski, wietnamski i arabski."
|
1354
|
+
},
|
1259
1355
|
"qwen-vl-plus-latest": {
|
1260
1356
|
"description": "Wersja rozszerzona modelu wizualno-językowego Qwen. Znacząco poprawia zdolność rozpoznawania szczegółów i tekstu, obsługuje obrazy o rozdzielczości przekraczającej milion pikseli oraz dowolnych proporcjach."
|
1261
1357
|
},
|
@@ -1274,6 +1370,9 @@
|
|
1274
1370
|
"qwen2.5-14b-instruct": {
|
1275
1371
|
"description": "Model Qwen 2.5 o skali 14B, udostępniony na zasadzie open source."
|
1276
1372
|
},
|
1373
|
+
"qwen2.5-14b-instruct-1m": {
|
1374
|
+
"description": "Model o skali 72B, udostępniony przez Tongyi Qianwen 2.5."
|
1375
|
+
},
|
1277
1376
|
"qwen2.5-32b-instruct": {
|
1278
1377
|
"description": "Model Qwen 2.5 o skali 32B, udostępniony na zasadzie open source."
|
1279
1378
|
},
|
@@ -1301,6 +1400,12 @@
|
|
1301
1400
|
"qwen2.5-math-7b-instruct": {
|
1302
1401
|
"description": "Model Qwen-Math, który ma silne zdolności rozwiązywania problemów matematycznych."
|
1303
1402
|
},
|
1403
|
+
"qwen2.5-vl-72b-instruct": {
|
1404
|
+
"description": "Zwiększona zdolność do podążania za instrukcjami, matematyki, rozwiązywania problemów i kodowania, poprawiona zdolność do rozpoznawania obiektów, wsparcie dla różnych formatów do precyzyjnego lokalizowania elementów wizualnych, zdolność do rozumienia długich plików wideo (do 10 minut) oraz lokalizowania momentów zdarzeń w czasie rzeczywistym, zdolność do rozumienia kolejności czasowej i szybkości, wsparcie dla operacji na systemach OS lub Mobile, silna zdolność do ekstrakcji kluczowych informacji i generowania wyjścia w formacie JSON. Ta wersja to wersja 72B, najsilniejsza w tej serii."
|
1405
|
+
},
|
1406
|
+
"qwen2.5-vl-7b-instruct": {
|
1407
|
+
"description": "Zwiększona zdolność do podążania za instrukcjami, matematyki, rozwiązywania problemów i kodowania, poprawiona zdolność do rozpoznawania obiektów, wsparcie dla różnych formatów do precyzyjnego lokalizowania elementów wizualnych, zdolność do rozumienia długich plików wideo (do 10 minut) oraz lokalizowania momentów zdarzeń w czasie rzeczywistym, zdolność do rozumienia kolejności czasowej i szybkości, wsparcie dla operacji na systemach OS lub Mobile, silna zdolność do ekstrakcji kluczowych informacji i generowania wyjścia w formacie JSON. Ta wersja to wersja 72B, najsilniejsza w tej serii."
|
1408
|
+
},
|
1304
1409
|
"qwen2.5:0.5b": {
|
1305
1410
|
"description": "Qwen2.5 to nowa generacja dużego modelu językowego Alibaba, który wspiera różnorodne potrzeby aplikacyjne dzięki doskonałej wydajności."
|
1306
1411
|
},
|
@@ -286,6 +286,7 @@
|
|
286
286
|
"anonymousNickName": "Usuário Anônimo",
|
287
287
|
"billing": "Gerenciamento de faturas",
|
288
288
|
"cloud": "Experimente {{name}}",
|
289
|
+
"community": "Versão Comunitária",
|
289
290
|
"data": "Armazenamento de dados",
|
290
291
|
"defaultNickname": "Usuário da Comunidade",
|
291
292
|
"discord": "Suporte da Comunidade",
|
@@ -295,7 +296,6 @@
|
|
295
296
|
"help": "Central de Ajuda",
|
296
297
|
"moveGuide": "O botão de configurações foi movido para cá",
|
297
298
|
"plans": "Planos de Assinatura",
|
298
|
-
"preview": "Versão de visualização",
|
299
299
|
"profile": "Gerenciamento de Conta",
|
300
300
|
"setting": "Configurações do Aplicativo",
|
301
301
|
"usages": "Estatísticas de Uso"
|
@@ -294,26 +294,6 @@
|
|
294
294
|
"tooltip": "Atualizar configurações básicas do provedor",
|
295
295
|
"updateSuccess": "Atualização bem-sucedida"
|
296
296
|
},
|
297
|
-
"wenxin": {
|
298
|
-
"accessKey": {
|
299
|
-
"desc": "Insira a Access Key da plataforma Qianfan do Baidu",
|
300
|
-
"placeholder": "Access Key Qianfan",
|
301
|
-
"title": "Access Key"
|
302
|
-
},
|
303
|
-
"checker": {
|
304
|
-
"desc": "Teste se a AccessKey / SecretAccess está preenchida corretamente"
|
305
|
-
},
|
306
|
-
"secretKey": {
|
307
|
-
"desc": "Insira a Secret Key da plataforma Qianfan do Baidu",
|
308
|
-
"placeholder": "Secret Key Qianfan",
|
309
|
-
"title": "Secret Key"
|
310
|
-
},
|
311
|
-
"unlock": {
|
312
|
-
"customRegion": "Região de serviço personalizada",
|
313
|
-
"description": "Insira sua AccessKey / SecretKey para iniciar a sessão. O aplicativo não registrará suas configurações de autenticação",
|
314
|
-
"title": "Usar informações de autenticação personalizadas do Wenxin Yiyan"
|
315
|
-
}
|
316
|
-
},
|
317
297
|
"zeroone": {
|
318
298
|
"title": "01.AI Zero e Um"
|
319
299
|
},
|
@@ -23,6 +23,9 @@
|
|
23
23
|
"360gpt2-pro": {
|
24
24
|
"description": "360GPT2 Pro é um modelo avançado de processamento de linguagem natural lançado pela 360, com excelente capacidade de geração e compreensão de texto, destacando-se especialmente na geração e criação de conteúdo, capaz de lidar com tarefas complexas de conversão de linguagem e interpretação de papéis."
|
25
25
|
},
|
26
|
+
"360zhinao2-o1": {
|
27
|
+
"description": "O 360zhinao2-o1 utiliza busca em árvore para construir cadeias de pensamento e introduz um mecanismo de reflexão, utilizando aprendizado por reforço para treinar, permitindo que o modelo tenha a capacidade de auto-reflexão e correção de erros."
|
28
|
+
},
|
26
29
|
"4.0Ultra": {
|
27
30
|
"description": "Spark4.0 Ultra é a versão mais poderosa da série de grandes modelos Xinghuo, que, ao atualizar a conexão de busca online, melhora a capacidade de compreensão e resumo de conteúdo textual. É uma solução abrangente para aumentar a produtividade no trabalho e responder com precisão às demandas, sendo um produto inteligente líder na indústria."
|
28
31
|
},
|
@@ -44,6 +47,18 @@
|
|
44
47
|
"Baichuan4-Turbo": {
|
45
48
|
"description": "Modelo com a melhor capacidade do país, superando modelos estrangeiros em tarefas em chinês como enciclopédia, textos longos e criação de conteúdo. Também possui capacidades multimodais líderes da indústria, com excelente desempenho em várias avaliações de referência."
|
46
49
|
},
|
50
|
+
"DeepSeek-R1-Distill-Qwen-1.5B": {
|
51
|
+
"description": "Modelo de destilação DeepSeek-R1 baseado no Qwen2.5-Math-1.5B, otimizado para desempenho de inferência através de aprendizado por reforço e dados de inicialização fria, modelo de código aberto que redefine os padrões de múltiplas tarefas."
|
52
|
+
},
|
53
|
+
"DeepSeek-R1-Distill-Qwen-14B": {
|
54
|
+
"description": "Modelo de destilação DeepSeek-R1 baseado no Qwen2.5-14B, otimizado para desempenho de inferência através de aprendizado por reforço e dados de inicialização fria, modelo de código aberto que redefine os padrões de múltiplas tarefas."
|
55
|
+
},
|
56
|
+
"DeepSeek-R1-Distill-Qwen-32B": {
|
57
|
+
"description": "A série DeepSeek-R1 otimiza o desempenho de inferência através de aprendizado por reforço e dados de inicialização fria, modelo de código aberto que redefine os padrões de múltiplas tarefas, superando o nível do OpenAI-o1-mini."
|
58
|
+
},
|
59
|
+
"DeepSeek-R1-Distill-Qwen-7B": {
|
60
|
+
"description": "Modelo de destilação DeepSeek-R1 baseado no Qwen2.5-Math-7B, otimizado para desempenho de inferência através de aprendizado por reforço e dados de inicialização fria, modelo de código aberto que redefine os padrões de múltiplas tarefas."
|
61
|
+
},
|
47
62
|
"Doubao-lite-128k": {
|
48
63
|
"description": "Doubao-lite possui uma velocidade de resposta excepcional e uma melhor relação custo-benefício, oferecendo opções mais flexíveis para diferentes cenários dos clientes. Suporta raciocínio e ajuste fino em janelas de contexto de 128k."
|
49
64
|
},
|
@@ -77,9 +92,6 @@
|
|
77
92
|
"ERNIE-4.0-8K-Preview": {
|
78
93
|
"description": "Modelo de linguagem ultra grande escala desenvolvido pela Baidu, que em comparação com o ERNIE 3.5, apresenta uma atualização completa nas capacidades do modelo, amplamente aplicável em cenários de tarefas complexas em diversas áreas; suporta integração automática com o plugin de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas."
|
79
94
|
},
|
80
|
-
"ERNIE-4.0-Turbo-128K": {
|
81
|
-
"description": "Modelo de linguagem de grande escala desenvolvido pela Baidu, com desempenho excepcional em uma ampla gama de cenários de tarefas complexas; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas. Em comparação com o ERNIE 4.0, apresenta desempenho superior."
|
82
|
-
},
|
83
95
|
"ERNIE-4.0-Turbo-8K-Latest": {
|
84
96
|
"description": "Modelo de linguagem de última geração desenvolvido pela Baidu, com desempenho excepcional em uma ampla gama de cenários de tarefas complexas; suporta integração automática com plugins de busca da Baidu, garantindo a relevância da informação nas respostas. Supera o desempenho do ERNIE 4.0."
|
85
97
|
},
|
@@ -176,6 +188,9 @@
|
|
176
188
|
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
177
189
|
"description": "Meta Llama 3.1 é uma família de modelos de linguagem em larga escala multilíngue desenvolvida pela Meta, incluindo variantes pré-treinadas e de ajuste fino para instruções com tamanhos de parâmetros de 8B, 70B e 405B. Este modelo de 8B foi otimizado para cenários de diálogo multilíngue e se destacou em vários benchmarks da indústria. O treinamento do modelo utilizou mais de 150 trilhões de tokens de dados públicos e empregou técnicas como ajuste fino supervisionado e aprendizado por reforço com feedback humano para melhorar a utilidade e segurança do modelo. Llama 3.1 suporta geração de texto e geração de código, com data de corte de conhecimento em dezembro de 2023."
|
178
190
|
},
|
191
|
+
"QwQ-32B-Preview": {
|
192
|
+
"description": "O QwQ-32B-Preview é um modelo de processamento de linguagem natural inovador, capaz de lidar eficientemente com tarefas complexas de geração de diálogos e compreensão de contexto."
|
193
|
+
},
|
179
194
|
"Qwen/QVQ-72B-Preview": {
|
180
195
|
"description": "QVQ-72B-Preview é um modelo de pesquisa desenvolvido pela equipe Qwen, focado em capacidades de raciocínio visual, apresentando vantagens únicas na compreensão de cenários complexos e na resolução de problemas matemáticos relacionados à visão."
|
181
196
|
},
|
@@ -527,6 +542,24 @@
|
|
527
542
|
"deepseek-ai/DeepSeek-R1": {
|
528
543
|
"description": "DeepSeek-R1 é um modelo de inferência impulsionado por aprendizado por reforço (RL), que resolve problemas de repetitividade e legibilidade no modelo. Antes do RL, o DeepSeek-R1 introduziu dados de inicialização a frio, otimizando ainda mais o desempenho da inferência. Ele apresenta desempenho comparável ao OpenAI-o1 em tarefas matemáticas, de código e de inferência, e melhora o resultado geral por meio de métodos de treinamento cuidadosamente projetados."
|
529
544
|
},
|
545
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
546
|
+
"description": "Modelo de destilação DeepSeek-R1, otimizado para desempenho de inferência através de aprendizado por reforço e dados de inicialização fria, modelo de código aberto que redefine os padrões de múltiplas tarefas."
|
547
|
+
},
|
548
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
|
549
|
+
"description": "DeepSeek-R1-Distill-Llama-8B é um modelo de destilação desenvolvido com base no Llama-3.1-8B. Este modelo foi ajustado com amostras geradas pelo DeepSeek-R1, demonstrando excelente capacidade de inferência. Apresentou bom desempenho em vários testes de referência, alcançando uma precisão de 89,1% no MATH-500, uma taxa de aprovação de 50,4% no AIME 2024 e uma pontuação de 1205 no CodeForces, demonstrando forte capacidade matemática e de programação para um modelo de 8B."
|
550
|
+
},
|
551
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
552
|
+
"description": "Modelo de destilação DeepSeek-R1, otimizado para desempenho de inferência através de aprendizado por reforço e dados de inicialização fria, modelo de código aberto que redefine os padrões de múltiplas tarefas."
|
553
|
+
},
|
554
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B": {
|
555
|
+
"description": "Modelo de destilação DeepSeek-R1, otimizado para desempenho de inferência através de aprendizado por reforço e dados de inicialização fria, modelo de código aberto que redefine os padrões de múltiplas tarefas."
|
556
|
+
},
|
557
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
|
558
|
+
"description": "DeepSeek-R1-Distill-Qwen-32B é um modelo obtido através da destilação do Qwen2.5-32B. Este modelo foi ajustado com 800 mil amostras selecionadas geradas pelo DeepSeek-R1, demonstrando desempenho excepcional em várias áreas, como matemática, programação e raciocínio. Obteve resultados notáveis em vários testes de referência, alcançando uma precisão de 94,3% no MATH-500, demonstrando forte capacidade de raciocínio matemático."
|
559
|
+
},
|
560
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
561
|
+
"description": "DeepSeek-R1-Distill-Qwen-7B é um modelo obtido através da destilação do Qwen2.5-Math-7B. Este modelo foi ajustado com 800 mil amostras selecionadas geradas pelo DeepSeek-R1, demonstrando excelente capacidade de inferência. Apresentou desempenho notável em vários testes de referência, alcançando uma precisão de 92,8% no MATH-500, uma taxa de aprovação de 55,5% no AIME 2024 e uma pontuação de 1189 no CodeForces, demonstrando forte capacidade matemática e de programação para um modelo de 7B."
|
562
|
+
},
|
530
563
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
564
|
"description": "DeepSeek V2.5 combina as excelentes características das versões anteriores, aprimorando a capacidade geral e de codificação."
|
532
565
|
},
|
@@ -554,6 +587,9 @@
|
|
554
587
|
"deepseek-r1": {
|
555
588
|
"description": "DeepSeek-R1 é um modelo de inferência impulsionado por aprendizado por reforço (RL), que resolve problemas de repetitividade e legibilidade no modelo. Antes do RL, o DeepSeek-R1 introduziu dados de inicialização a frio, otimizando ainda mais o desempenho da inferência. Ele apresenta desempenho comparável ao OpenAI-o1 em tarefas matemáticas, de código e de inferência, e melhora o resultado geral por meio de métodos de treinamento cuidadosamente projetados."
|
556
589
|
},
|
590
|
+
"deepseek-r1-distill-llama-70b": {
|
591
|
+
"description": "DeepSeek R1 — um modelo maior e mais inteligente dentro do pacote DeepSeek — foi destilado para a arquitetura Llama 70B. Com base em testes de referência e avaliações humanas, este modelo é mais inteligente que o Llama 70B original, destacando-se especialmente em tarefas que exigem precisão matemática e factual."
|
592
|
+
},
|
557
593
|
"deepseek-reasoner": {
|
558
594
|
"description": "Modelo de raciocínio lançado pela DeepSeek. Antes de fornecer a resposta final, o modelo gera uma cadeia de pensamento para aumentar a precisão da resposta final."
|
559
595
|
},
|
@@ -563,12 +599,63 @@
|
|
563
599
|
"deepseek-v2:236b": {
|
564
600
|
"description": "DeepSeek V2 236B é o modelo de código projetado do DeepSeek, oferecendo forte capacidade de geração de código."
|
565
601
|
},
|
602
|
+
"deepseek-v3": {
|
603
|
+
"description": "DeepSeek-V3 é um modelo MoE desenvolvido pela Hangzhou DeepSeek Artificial Intelligence Technology Research Co., Ltd., com desempenho destacado em várias avaliações, ocupando o primeiro lugar entre os modelos de código aberto nas principais listas. Em comparação com o modelo V2.5, a velocidade de geração do V3 foi aumentada em 3 vezes, proporcionando uma experiência de uso mais rápida e fluida."
|
604
|
+
},
|
566
605
|
"deepseek/deepseek-chat": {
|
567
606
|
"description": "Um novo modelo de código aberto que integra capacidades gerais e de codificação, não apenas preservando a capacidade de diálogo geral do modelo Chat original e a poderosa capacidade de processamento de código do modelo Coder, mas também alinhando-se melhor às preferências humanas. Além disso, o DeepSeek-V2.5 também alcançou melhorias significativas em várias áreas, como tarefas de escrita e seguimento de instruções."
|
568
607
|
},
|
569
608
|
"emohaa": {
|
570
609
|
"description": "O Emohaa é um modelo psicológico com capacidade de consultoria profissional, ajudando os usuários a entender questões emocionais."
|
571
610
|
},
|
611
|
+
"ernie-3.5-128k": {
|
612
|
+
"description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, cobrindo uma vasta quantidade de dados em chinês e inglês, com forte capacidade geral, capaz de atender à maioria das demandas de diálogo, geração criativa e aplicações de plugins; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas."
|
613
|
+
},
|
614
|
+
"ernie-3.5-8k": {
|
615
|
+
"description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, cobrindo uma vasta quantidade de dados em chinês e inglês, com forte capacidade geral, capaz de atender à maioria das demandas de diálogo, geração criativa e aplicações de plugins; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas."
|
616
|
+
},
|
617
|
+
"ernie-3.5-8k-preview": {
|
618
|
+
"description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, cobrindo uma vasta quantidade de dados em chinês e inglês, com forte capacidade geral, capaz de atender à maioria das demandas de diálogo, geração criativa e aplicações de plugins; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas."
|
619
|
+
},
|
620
|
+
"ernie-4.0-8k-latest": {
|
621
|
+
"description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, com capacidade de modelo amplamente aprimorada em comparação com o ERNIE 3.5, amplamente aplicável a cenários de tarefas complexas em várias áreas; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas."
|
622
|
+
},
|
623
|
+
"ernie-4.0-8k-preview": {
|
624
|
+
"description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, com capacidade de modelo amplamente aprimorada em comparação com o ERNIE 3.5, amplamente aplicável a cenários de tarefas complexas em várias áreas; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas."
|
625
|
+
},
|
626
|
+
"ernie-4.0-turbo-128k": {
|
627
|
+
"description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, com desempenho geral excepcional, amplamente aplicável a cenários de tarefas complexas em várias áreas; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas. Em comparação com o ERNIE 4.0, apresenta desempenho superior."
|
628
|
+
},
|
629
|
+
"ernie-4.0-turbo-8k-latest": {
|
630
|
+
"description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, com desempenho geral excepcional, amplamente aplicável a cenários de tarefas complexas em várias áreas; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas. Em comparação com o ERNIE 4.0, apresenta desempenho superior."
|
631
|
+
},
|
632
|
+
"ernie-4.0-turbo-8k-preview": {
|
633
|
+
"description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, com desempenho geral excepcional, amplamente aplicável a cenários de tarefas complexas em várias áreas; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas. Em comparação com o ERNIE 4.0, apresenta desempenho superior."
|
634
|
+
},
|
635
|
+
"ernie-char-8k": {
|
636
|
+
"description": "Modelo de linguagem de grande escala vertical desenvolvido pela Baidu, adequado para aplicações como NPCs de jogos, diálogos de atendimento ao cliente e interpretação de personagens, com estilo de personagem mais distinto e consistente, capacidade de seguir instruções mais forte e desempenho de inferência superior."
|
637
|
+
},
|
638
|
+
"ernie-char-fiction-8k": {
|
639
|
+
"description": "Modelo de linguagem de grande escala vertical desenvolvido pela Baidu, adequado para aplicações como NPCs de jogos, diálogos de atendimento ao cliente e interpretação de personagens, com estilo de personagem mais distinto e consistente, capacidade de seguir instruções mais forte e desempenho de inferência superior."
|
640
|
+
},
|
641
|
+
"ernie-lite-8k": {
|
642
|
+
"description": "ERNIE Lite é um modelo de linguagem de grande escala leve desenvolvido pela Baidu, equilibrando excelente desempenho do modelo e eficiência de inferência, adequado para uso em placas de aceleração de IA de baixa potência."
|
643
|
+
},
|
644
|
+
"ernie-lite-pro-128k": {
|
645
|
+
"description": "Modelo de linguagem de grande escala leve desenvolvido pela Baidu, equilibrando excelente desempenho do modelo e eficiência de inferência, com desempenho superior ao ERNIE Lite, adequado para uso em placas de aceleração de IA de baixa potência."
|
646
|
+
},
|
647
|
+
"ernie-novel-8k": {
|
648
|
+
"description": "Modelo de linguagem de grande escala geral desenvolvido pela Baidu, com vantagens notáveis na capacidade de continuar histórias, também aplicável em cenários como peças curtas e filmes."
|
649
|
+
},
|
650
|
+
"ernie-speed-128k": {
|
651
|
+
"description": "Modelo de linguagem de alto desempenho desenvolvido pela Baidu, lançado em 2024, com excelente capacidade geral, adequado para ser usado como modelo base para ajuste fino, lidando melhor com problemas de cenários específicos, enquanto apresenta excelente desempenho de inferência."
|
652
|
+
},
|
653
|
+
"ernie-speed-pro-128k": {
|
654
|
+
"description": "Modelo de linguagem de alto desempenho desenvolvido pela Baidu, lançado em 2024, com excelente capacidade geral, desempenho superior ao ERNIE Speed, adequado para ser usado como modelo base para ajuste fino, lidando melhor com problemas de cenários específicos, enquanto apresenta excelente desempenho de inferência."
|
655
|
+
},
|
656
|
+
"ernie-tiny-8k": {
|
657
|
+
"description": "ERNIE Tiny é um modelo de linguagem de grande escala de alto desempenho desenvolvido pela Baidu, com os menores custos de implantação e ajuste entre os modelos da série Wenxin."
|
658
|
+
},
|
572
659
|
"gemini-1.0-pro-001": {
|
573
660
|
"description": "Gemini 1.0 Pro 001 (Ajuste) oferece desempenho estável e ajustável, sendo a escolha ideal para soluções de tarefas complexas."
|
574
661
|
},
|
@@ -872,6 +959,9 @@
|
|
872
959
|
"internlm2.5-latest": {
|
873
960
|
"description": "Nossa mais recente série de modelos, com desempenho de raciocínio excepcional, suportando um comprimento de contexto de 1M e capacidades aprimoradas de seguimento de instruções e chamadas de ferramentas."
|
874
961
|
},
|
962
|
+
"internlm3-latest": {
|
963
|
+
"description": "Nossa mais recente série de modelos, com desempenho de inferência excepcional, liderando entre modelos de código aberto de mesma escala. Aponta por padrão para nossa mais recente série de modelos InternLM3."
|
964
|
+
},
|
875
965
|
"learnlm-1.5-pro-experimental": {
|
876
966
|
"description": "LearnLM é um modelo de linguagem experimental e específico para tarefas, treinado para atender aos princípios da ciência da aprendizagem, podendo seguir instruções sistemáticas em cenários de ensino e aprendizagem, atuando como um mentor especialista, entre outros."
|
877
967
|
},
|
@@ -986,6 +1076,9 @@
|
|
986
1076
|
"meta-llama/Llama-3.3-70B-Instruct": {
|
987
1077
|
"description": "Llama 3.3 é o modelo de linguagem de código aberto multilíngue mais avançado da série Llama, oferecendo uma experiência de desempenho comparável ao modelo de 405B a um custo extremamente baixo. Baseado na estrutura Transformer e aprimorado por meio de ajuste fino supervisionado (SFT) e aprendizado por reforço com feedback humano (RLHF) para aumentar a utilidade e segurança. Sua versão ajustada para instruções é otimizada para diálogos multilíngues, superando muitos modelos de chat de código aberto e fechado em vários benchmarks da indústria. Data limite de conhecimento é dezembro de 2023."
|
988
1078
|
},
|
1079
|
+
"meta-llama/Llama-3.3-70B-Instruct-Turbo": {
|
1080
|
+
"description": "O Meta Llama 3.3 é um modelo de linguagem de grande escala multilíngue (LLM) com 70B (entrada/saída de texto) que é um modelo gerado por pré-treinamento e ajuste de instruções. O modelo de texto puro ajustado por instruções do Llama 3.3 foi otimizado para casos de uso de diálogo multilíngue e supera muitos modelos de chat de código aberto e fechados disponíveis em benchmarks de indústria comuns."
|
1081
|
+
},
|
989
1082
|
"meta-llama/Llama-Vision-Free": {
|
990
1083
|
"description": "LLaMA 3.2 é projetado para lidar com tarefas que combinam dados visuais e textuais. Ele se destaca em tarefas como descrição de imagens e perguntas visuais, superando a lacuna entre geração de linguagem e raciocínio visual."
|
991
1084
|
},
|
@@ -1256,6 +1349,9 @@
|
|
1256
1349
|
"qwen-vl-max-latest": {
|
1257
1350
|
"description": "Modelo de linguagem visual em escala ultra grande Qwen. Em comparação com a versão aprimorada, melhora ainda mais a capacidade de raciocínio visual e de seguir instruções, oferecendo um nível mais alto de percepção e cognição visual."
|
1258
1351
|
},
|
1352
|
+
"qwen-vl-ocr-latest": {
|
1353
|
+
"description": "O OCR Qwen é um modelo especializado em extração de texto, focado na capacidade de extrair texto de imagens de documentos, tabelas, questões de exames, escrita manual, entre outros. Ele pode reconhecer vários idiomas, atualmente suportando: chinês, inglês, francês, japonês, coreano, alemão, russo, italiano, vietnamita e árabe."
|
1354
|
+
},
|
1259
1355
|
"qwen-vl-plus-latest": {
|
1260
1356
|
"description": "Versão aprimorada do modelo de linguagem visual em larga escala Qwen. Aumenta significativamente a capacidade de reconhecimento de detalhes e de texto, suportando resolução de mais de um milhão de pixels e imagens de qualquer proporção."
|
1261
1357
|
},
|
@@ -1274,6 +1370,9 @@
|
|
1274
1370
|
"qwen2.5-14b-instruct": {
|
1275
1371
|
"description": "Modelo de 14B parâmetros do Qwen 2.5, disponível como código aberto."
|
1276
1372
|
},
|
1373
|
+
"qwen2.5-14b-instruct-1m": {
|
1374
|
+
"description": "Modelo de 72B de código aberto do Qwen2.5."
|
1375
|
+
},
|
1277
1376
|
"qwen2.5-32b-instruct": {
|
1278
1377
|
"description": "Modelo de 32B parâmetros do Qwen 2.5, disponível como código aberto."
|
1279
1378
|
},
|
@@ -1301,6 +1400,12 @@
|
|
1301
1400
|
"qwen2.5-math-7b-instruct": {
|
1302
1401
|
"description": "O modelo Qwen-Math possui uma forte capacidade de resolução de problemas matemáticos."
|
1303
1402
|
},
|
1403
|
+
"qwen2.5-vl-72b-instruct": {
|
1404
|
+
"description": "Aprimoramento geral em seguimento de instruções, matemática, resolução de problemas e código, com capacidade de reconhecimento de objetos aprimorada, suporte a formatos diversos para localização precisa de elementos visuais, compreensão de arquivos de vídeo longos (até 10 minutos) e localização de eventos em segundos, capaz de entender a sequência e a velocidade do tempo, suportando controle de agentes em OS ou Mobile com forte capacidade de extração de informações e saída em formato Json. Esta versão é a de 72B, a mais poderosa da série."
|
1405
|
+
},
|
1406
|
+
"qwen2.5-vl-7b-instruct": {
|
1407
|
+
"description": "Aprimoramento geral em seguimento de instruções, matemática, resolução de problemas e código, com capacidade de reconhecimento de objetos aprimorada, suporte a formatos diversos para localização precisa de elementos visuais, compreensão de arquivos de vídeo longos (até 10 minutos) e localização de eventos em segundos, capaz de entender a sequência e a velocidade do tempo, suportando controle de agentes em OS ou Mobile com forte capacidade de extração de informações e saída em formato Json. Esta versão é a de 72B, a mais poderosa da série."
|
1408
|
+
},
|
1304
1409
|
"qwen2.5:0.5b": {
|
1305
1410
|
"description": "Qwen2.5 é a nova geração de modelo de linguagem em larga escala da Alibaba, oferecendo desempenho excepcional para atender a diversas necessidades de aplicação."
|
1306
1411
|
},
|
@@ -286,6 +286,7 @@
|
|
286
286
|
"anonymousNickName": "Анонимный пользователь",
|
287
287
|
"billing": "Управление счетами",
|
288
288
|
"cloud": "Опыт {{name}}",
|
289
|
+
"community": "Сообщество",
|
289
290
|
"data": "Хранилище данных",
|
290
291
|
"defaultNickname": "Пользователь сообщества",
|
291
292
|
"discord": "Поддержка сообщества",
|
@@ -295,7 +296,6 @@
|
|
295
296
|
"help": "Центр помощи",
|
296
297
|
"moveGuide": "Кнопка настроек перемещена сюда",
|
297
298
|
"plans": "Планы подписки",
|
298
|
-
"preview": "Предпросмотр",
|
299
299
|
"profile": "Управление аккаунтом",
|
300
300
|
"setting": "Настройки приложения",
|
301
301
|
"usages": "Статистика использования"
|
@@ -294,26 +294,6 @@
|
|
294
294
|
"tooltip": "Обновить базовую конфигурацию провайдера",
|
295
295
|
"updateSuccess": "Обновление успешно"
|
296
296
|
},
|
297
|
-
"wenxin": {
|
298
|
-
"accessKey": {
|
299
|
-
"desc": "Введите Access Key платформы Baidu Qianfan",
|
300
|
-
"placeholder": "Access Key Qianfan",
|
301
|
-
"title": "Access Key"
|
302
|
-
},
|
303
|
-
"checker": {
|
304
|
-
"desc": "Проверьте, правильно ли заполнены AccessKey / SecretAccess"
|
305
|
-
},
|
306
|
-
"secretKey": {
|
307
|
-
"desc": "Введите Secret Key платформы Baidu Qianfan",
|
308
|
-
"placeholder": "Secret Key Qianfan",
|
309
|
-
"title": "Secret Key"
|
310
|
-
},
|
311
|
-
"unlock": {
|
312
|
-
"customRegion": "Пользовательский регион сервиса",
|
313
|
-
"description": "Введите ваш AccessKey / SecretKey, чтобы начать сессию. Приложение не будет сохранять ваши данные аутентификации",
|
314
|
-
"title": "Использовать пользовательскую информацию аутентификации Wenxin Yiyan"
|
315
|
-
}
|
316
|
-
},
|
317
297
|
"zeroone": {
|
318
298
|
"title": "01.AI Цифровая Вселенная"
|
319
299
|
},
|