@lobehub/chat 1.51.8 → 1.51.10

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/changelog/v1.json +18 -0
  3. package/locales/ar/common.json +1 -1
  4. package/locales/ar/modelProvider.json +0 -20
  5. package/locales/ar/models.json +108 -3
  6. package/locales/bg-BG/common.json +1 -1
  7. package/locales/bg-BG/modelProvider.json +0 -20
  8. package/locales/bg-BG/models.json +108 -3
  9. package/locales/de-DE/common.json +1 -1
  10. package/locales/de-DE/modelProvider.json +0 -20
  11. package/locales/de-DE/models.json +108 -3
  12. package/locales/en-US/common.json +1 -1
  13. package/locales/en-US/modelProvider.json +0 -20
  14. package/locales/en-US/models.json +108 -3
  15. package/locales/es-ES/common.json +1 -1
  16. package/locales/es-ES/modelProvider.json +0 -20
  17. package/locales/es-ES/models.json +108 -3
  18. package/locales/fa-IR/common.json +1 -1
  19. package/locales/fa-IR/modelProvider.json +0 -20
  20. package/locales/fa-IR/models.json +108 -3
  21. package/locales/fr-FR/common.json +1 -1
  22. package/locales/fr-FR/modelProvider.json +0 -20
  23. package/locales/fr-FR/models.json +108 -3
  24. package/locales/it-IT/common.json +1 -1
  25. package/locales/it-IT/modelProvider.json +0 -20
  26. package/locales/it-IT/models.json +108 -3
  27. package/locales/ja-JP/common.json +1 -1
  28. package/locales/ja-JP/modelProvider.json +0 -20
  29. package/locales/ja-JP/models.json +108 -3
  30. package/locales/ko-KR/common.json +1 -1
  31. package/locales/ko-KR/modelProvider.json +0 -20
  32. package/locales/ko-KR/models.json +108 -3
  33. package/locales/nl-NL/common.json +1 -1
  34. package/locales/nl-NL/modelProvider.json +0 -20
  35. package/locales/nl-NL/models.json +108 -3
  36. package/locales/pl-PL/common.json +1 -1
  37. package/locales/pl-PL/modelProvider.json +0 -20
  38. package/locales/pl-PL/models.json +108 -3
  39. package/locales/pt-BR/common.json +1 -1
  40. package/locales/pt-BR/modelProvider.json +0 -20
  41. package/locales/pt-BR/models.json +108 -3
  42. package/locales/ru-RU/common.json +1 -1
  43. package/locales/ru-RU/modelProvider.json +0 -20
  44. package/locales/ru-RU/models.json +108 -3
  45. package/locales/tr-TR/common.json +1 -1
  46. package/locales/tr-TR/modelProvider.json +0 -20
  47. package/locales/tr-TR/models.json +108 -3
  48. package/locales/vi-VN/common.json +1 -1
  49. package/locales/vi-VN/modelProvider.json +0 -20
  50. package/locales/vi-VN/models.json +108 -3
  51. package/locales/zh-CN/common.json +1 -1
  52. package/locales/zh-CN/modelProvider.json +0 -20
  53. package/locales/zh-CN/models.json +113 -8
  54. package/locales/zh-TW/common.json +1 -1
  55. package/locales/zh-TW/modelProvider.json +0 -20
  56. package/locales/zh-TW/models.json +108 -3
  57. package/package.json +1 -1
  58. package/src/app/[variants]/(main)/chat/_layout/Desktop/SessionPanel.tsx +2 -1
  59. package/src/app/[variants]/(main)/chat/_layout/Mobile.tsx +2 -1
  60. package/src/app/[variants]/(main)/chat/layout.ts +0 -2
  61. package/src/app/[variants]/(main)/settings/provider/(detail)/[id]/page.tsx +30 -28
  62. package/src/features/User/PlanTag.tsx +2 -2
  63. package/src/locales/default/common.ts +1 -1
@@ -23,6 +23,9 @@
23
23
  "360gpt2-pro": {
24
24
  "description": "360GPT2 Pro는 360 회사에서 출시한 고급 자연어 처리 모델로, 뛰어난 텍스트 생성 및 이해 능력을 갖추고 있으며, 특히 생성 및 창작 분야에서 뛰어난 성능을 발휘하여 복잡한 언어 변환 및 역할 연기 작업을 처리할 수 있습니다."
25
25
  },
26
+ "360zhinao2-o1": {
27
+ "description": "360zhinao2-o1은 트리 탐색을 사용하여 사고 체인을 구축하고 반성 메커니즘을 도입하여 강화 학습으로 훈련되며, 모델은 자기 반성과 오류 수정 능력을 갖추고 있습니다."
28
+ },
26
29
  "4.0Ultra": {
27
30
  "description": "Spark4.0 Ultra는 스타크 대형 모델 시리즈 중 가장 강력한 버전으로, 업그레이드된 네트워크 검색 링크와 함께 텍스트 내용의 이해 및 요약 능력을 향상시킵니다. 사무 생산성을 높이고 정확한 요구에 응답하기 위한 종합 솔루션으로, 업계를 선도하는 스마트 제품입니다."
28
31
  },
@@ -44,6 +47,18 @@
44
47
  "Baichuan4-Turbo": {
45
48
  "description": "모델 능력이 국내 1위이며, 지식 백과, 긴 텍스트, 생성 창작 등 중국어 작업에서 해외 주류 모델을 초월합니다. 또한 업계 선도적인 다중 모달 능력을 갖추고 있으며, 여러 권위 있는 평가 기준에서 우수한 성과를 보입니다."
46
49
  },
50
+ "DeepSeek-R1-Distill-Qwen-1.5B": {
51
+ "description": "Qwen2.5-Math-1.5B를 기반으로 한 DeepSeek-R1 증류 모델로, 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신합니다."
52
+ },
53
+ "DeepSeek-R1-Distill-Qwen-14B": {
54
+ "description": "Qwen2.5-14B를 기반으로 한 DeepSeek-R1 증류 모델로, 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신합니다."
55
+ },
56
+ "DeepSeek-R1-Distill-Qwen-32B": {
57
+ "description": "DeepSeek-R1 시리즈는 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신하고 OpenAI-o1-mini 수준을 초월합니다."
58
+ },
59
+ "DeepSeek-R1-Distill-Qwen-7B": {
60
+ "description": "Qwen2.5-Math-7B를 기반으로 한 DeepSeek-R1 증류 모델로, 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신합니다."
61
+ },
47
62
  "Doubao-lite-128k": {
48
63
  "description": "Doubao-lite는 극한의 응답 속도와 더 나은 가격 대비 성능을 자랑하며, 고객의 다양한 상황에 유연한 선택을 제공합니다. 128k 컨텍스트 윈도우의 추론 및 세부 조정을 지원합니다."
49
64
  },
@@ -77,9 +92,6 @@
77
92
  "ERNIE-4.0-8K-Preview": {
78
93
  "description": "바이두가 자체 개발한 플래그십 초대규모 언어 모델로, ERNIE 3.5에 비해 모델 능력이 전면적으로 업그레이드되었으며, 다양한 분야의 복잡한 작업 시나리오에 널리 적용됩니다. 자동으로 바이두 검색 플러그인과 연결되어 질문 응답 정보의 시의성을 보장합니다."
79
94
  },
80
- "ERNIE-4.0-Turbo-128K": {
81
- "description": "바이두가 자체 개발한 플래그십 초대규모 대언어 모델로, 종합적인 효과가 뛰어나며, 다양한 분야의 복잡한 작업 장면에 널리 적용됩니다. 바이두 검색 플러그인과 자동으로 연결되어 질문과 답변 정보의 시의성을 보장합니다. ERNIE 4.0에 비해 성능이 더욱 우수합니다."
82
- },
83
95
  "ERNIE-4.0-Turbo-8K-Latest": {
84
96
  "description": "바이두가 개발한 플래그십 대규모 언어 모델로, 다양한 분야의 복잡한 작업 환경에서 뛰어난 종합 효과를 보여줍니다. 바이두 검색 플러그인 자동 연결을 지원하여 질문과 답변 정보의 시의성을 보장합니다. ERNIE 4.0에 비해 성능이 더욱 우수합니다."
85
97
  },
@@ -176,6 +188,9 @@
176
188
  "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
177
189
  "description": "Meta Llama 3.1은 Meta가 개발한 다국어 대규모 언어 모델 가족으로, 8B, 70B 및 405B의 세 가지 파라미터 규모의 사전 훈련 및 지침 미세 조정 변형을 포함합니다. 이 8B 지침 미세 조정 모델은 다국어 대화 시나리오에 최적화되어 있으며, 여러 산업 벤치마크 테스트에서 우수한 성능을 보입니다. 모델 훈련에는 15조 개 이상의 공개 데이터 토큰이 사용되었으며, 감독 미세 조정 및 인간 피드백 강화 학습과 같은 기술을 통해 모델의 유용성과 안전성을 향상시켰습니다. Llama 3.1은 텍스트 생성 및 코드 생성을 지원하며, 지식 마감일은 2023년 12월입니다."
178
190
  },
191
+ "QwQ-32B-Preview": {
192
+ "description": "QwQ-32B-Preview는 복잡한 대화 생성 및 맥락 이해 작업을 효율적으로 처리할 수 있는 혁신적인 자연어 처리 모델입니다."
193
+ },
179
194
  "Qwen/QVQ-72B-Preview": {
180
195
  "description": "QVQ-72B-Preview는 Qwen 팀이 개발한 시각적 추론 능력에 중점을 둔 연구 모델로, 복잡한 장면 이해 및 시각 관련 수학 문제 해결에서 독특한 장점을 가지고 있습니다."
181
196
  },
@@ -527,6 +542,24 @@
527
542
  "deepseek-ai/DeepSeek-R1": {
528
543
  "description": "DeepSeek-R1은 강화 학습(RL) 기반의 추론 모델로, 모델 내의 반복성과 가독성 문제를 해결합니다. RL 이전에 DeepSeek-R1은 콜드 스타트 데이터를 도입하여 추론 성능을 더욱 최적화했습니다. 수학, 코드 및 추론 작업에서 OpenAI-o1과 유사한 성능을 보이며, 정교하게 설계된 훈련 방법을 통해 전체적인 효과를 향상시켰습니다."
529
544
  },
545
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
546
+ "description": "DeepSeek-R1 증류 모델로, 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신합니다."
547
+ },
548
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
549
+ "description": "DeepSeek-R1-Distill-Llama-8B는 Llama-3.1-8B를 기반으로 개발된 증류 모델입니다. 이 모델은 DeepSeek-R1이 생성한 샘플을 사용하여 미세 조정되었으며, 뛰어난 추론 능력을 보여줍니다. 여러 기준 테스트에서 좋은 성적을 거두었으며, MATH-500에서 89.1%의 정확도를 달성하고, AIME 2024에서 50.4%의 통과율을 기록했으며, CodeForces에서 1205의 점수를 얻어 8B 규모의 모델로서 강력한 수학 및 프로그래밍 능력을 보여줍니다."
550
+ },
551
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
552
+ "description": "DeepSeek-R1 증류 모델로, 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신합니다."
553
+ },
554
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B": {
555
+ "description": "DeepSeek-R1 증류 모델로, 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신합니다."
556
+ },
557
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
558
+ "description": "DeepSeek-R1-Distill-Qwen-32B는 Qwen2.5-32B를 기반으로 지식 증류를 통해 얻은 모델입니다. 이 모델은 DeepSeek-R1이 생성한 80만 개의 선별된 샘플을 사용하여 미세 조정되었으며, 수학, 프로그래밍 및 추론 등 여러 분야에서 뛰어난 성능을 보여줍니다. AIME 2024, MATH-500, GPQA Diamond 등 여러 기준 테스트에서 우수한 성적을 거두었으며, MATH-500에서 94.3%의 정확도를 달성하여 강력한 수학 추론 능력을 보여줍니다."
559
+ },
560
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
561
+ "description": "DeepSeek-R1-Distill-Qwen-7B는 Qwen2.5-Math-7B를 기반으로 지식 증류를 통해 얻은 모델입니다. 이 모델은 DeepSeek-R1이 생성한 80만 개의 선별된 샘플을 사용하여 미세 조정되었으며, 뛰어난 추론 능력을 보여줍니다. 여러 기준 테스트에서 우수한 성적을 거두었으며, MATH-500에서 92.8%의 정확도를 달성하고, AIME 2024에서 55.5%의 통과율을 기록했으며, CodeForces에서 1189의 점수를 얻어 7B 규모의 모델로서 강력한 수학 및 프로그래밍 능력을 보여줍니다."
562
+ },
530
563
  "deepseek-ai/DeepSeek-V2.5": {
531
564
  "description": "DeepSeek V2.5는 이전 버전의 우수한 기능을 집약하여 일반 및 인코딩 능력을 강화했습니다."
532
565
  },
@@ -554,6 +587,9 @@
554
587
  "deepseek-r1": {
555
588
  "description": "DeepSeek-R1은 강화 학습(RL) 기반의 추론 모델로, 모델 내의 반복성과 가독성 문제를 해결합니다. RL 이전에 DeepSeek-R1은 콜드 스타트 데이터를 도입하여 추론 성능을 더욱 최적화했습니다. 수학, 코드 및 추론 작업에서 OpenAI-o1과 유사한 성능을 보이며, 정교하게 설계된 훈련 방법을 통해 전체적인 효과를 향상시켰습니다."
556
589
  },
590
+ "deepseek-r1-distill-llama-70b": {
591
+ "description": "DeepSeek R1 - DeepSeek 패키지에서 더 크고 더 스마트한 모델이 Llama 70B 아키텍처로 증류되었습니다. 기준 테스트와 인공지능 평가에 따르면, 이 모델은 원래 Llama 70B보다 더 스마트하며, 특히 수학 및 사실 정확성이 필요한 작업에서 뛰어난 성능을 보입니다."
592
+ },
557
593
  "deepseek-reasoner": {
558
594
  "description": "DeepSeek에서 제공하는 추론 모델입니다. 최종 답변을 출력하기 전에 모델은 먼저 사고 과정을 출력하여 최종 답변의 정확성을 높입니다."
559
595
  },
@@ -563,12 +599,63 @@
563
599
  "deepseek-v2:236b": {
564
600
  "description": "DeepSeek V2 236B는 DeepSeek의 설계 코드 모델로, 강력한 코드 생성 능력을 제공합니다."
565
601
  },
602
+ "deepseek-v3": {
603
+ "description": "DeepSeek-V3는 항저우 심도 탐색 인공지능 기초 기술 연구 회사에서 자체 개발한 MoE 모델로, 여러 평가에서 뛰어난 성적을 거두며, 주류 순위에서 오픈 소스 모델 1위를 차지하고 있습니다. V3는 V2.5 모델에 비해 생성 속도가 3배 향상되어 사용자에게 더 빠르고 원활한 사용 경험을 제공합니다."
604
+ },
566
605
  "deepseek/deepseek-chat": {
567
606
  "description": "일반 및 코드 능력을 통합한 새로운 오픈 소스 모델로, 기존 Chat 모델의 일반 대화 능력과 Coder 모델의 강력한 코드 처리 능력을 유지하면서 인간의 선호에 더 잘 맞춰졌습니다. 또한, DeepSeek-V2.5는 작문 작업, 지시 따르기 등 여러 분야에서 큰 향상을 이루었습니다."
568
607
  },
569
608
  "emohaa": {
570
609
  "description": "Emohaa는 심리 모델로, 전문 상담 능력을 갖추고 있어 사용자가 감정 문제를 이해하는 데 도움을 줍니다."
571
610
  },
611
+ "ernie-3.5-128k": {
612
+ "description": "바이두가 자체 개발한 플래그십 대규모 언어 모델로, 방대한 중영문 자료를 포함하고 있으며, 강력한 일반 능력을 가지고 있어 대부분의 대화 질문 답변, 창작 생성, 플러그인 응용 시나리오 요구를 충족할 수 있습니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다."
613
+ },
614
+ "ernie-3.5-8k": {
615
+ "description": "바이두가 자체 개발한 플래그십 대규모 언어 모델로, 방대한 중영문 자료를 포함하고 있으며, 강력한 일반 능력을 가지고 있어 대부분의 대화 질문 답변, 창작 생성, 플러그인 응용 시나리오 요구를 충족할 수 있습니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다."
616
+ },
617
+ "ernie-3.5-8k-preview": {
618
+ "description": "바이두가 자체 개발한 플래그십 대규모 언어 모델로, 방대한 중영문 자료를 포함하고 있으며, 강력한 일반 능력을 가지고 있어 대부분의 대화 질문 답변, 창작 생성, 플러그인 응용 시나리오 요구를 충족할 수 있습니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다."
619
+ },
620
+ "ernie-4.0-8k-latest": {
621
+ "description": "바이두가 자체 개발한 플래그십 초대규모 언어 모델로, ERNIE 3.5에 비해 모델 능력이 전면 업그레이드되었으며, 다양한 분야의 복잡한 작업 시나리오에 널리 적용됩니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다."
622
+ },
623
+ "ernie-4.0-8k-preview": {
624
+ "description": "바이두가 자체 개발한 플래그십 초대규모 언어 모델로, ERNIE 3.5에 비해 모델 능력이 전면 업그레이드되었으며, 다양한 분야의 복잡한 작업 시나리오에 널리 적용됩니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다."
625
+ },
626
+ "ernie-4.0-turbo-128k": {
627
+ "description": "바이두가 자체 개발한 플래그십 초대규모 언어 모델로, 종합적인 성능이 뛰어나며, 다양한 분야의 복잡한 작업 시나리오에 널리 적용됩니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다. ERNIE 4.0에 비해 성능이 더 우수합니다."
628
+ },
629
+ "ernie-4.0-turbo-8k-latest": {
630
+ "description": "바이두가 자체 개발한 플래그십 초대규모 언어 모델로, 종합적인 성능이 뛰어나며, 다양한 분야의 복잡한 작업 시나리오에 널리 적용됩니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다. ERNIE 4.0에 비해 성능이 더 우수합니다."
631
+ },
632
+ "ernie-4.0-turbo-8k-preview": {
633
+ "description": "바이두가 자체 개발한 플래그십 초대규모 언어 모델로, 종합적인 성능이 뛰어나며, 다양한 분야의 복잡한 작업 시나리오에 널리 적용됩니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다. ERNIE 4.0에 비해 성능이 더 우수합니다."
634
+ },
635
+ "ernie-char-8k": {
636
+ "description": "바이두가 자체 개발한 수직 장면 대형 언어 모델로, 게임 NPC, 고객 서비스 대화, 대화 역할극 등 응용 시나리오에 적합하며, 캐릭터 스타일이 더 뚜렷하고 일관되며, 지시 따르기 능력이 더 강하고 추론 성능이 우수합니다."
637
+ },
638
+ "ernie-char-fiction-8k": {
639
+ "description": "바이두가 자체 개발한 수직 장면 대형 언어 모델로, 게임 NPC, 고객 서비스 대화, 대화 역할극 등 응용 시나리오에 적합하며, 캐릭터 스타일이 더 뚜렷하고 일관되며, 지시 따르기 능력이 더 강하고 추론 성능이 우수합니다."
640
+ },
641
+ "ernie-lite-8k": {
642
+ "description": "ERNIE Lite는 바이두가 자체 개발한 경량 대형 언어 모델로, 우수한 모델 효과와 추론 성능을 겸비하여 저전력 AI 가속 카드 추론에 적합합니다."
643
+ },
644
+ "ernie-lite-pro-128k": {
645
+ "description": "바이두가 자체 개발한 경량 대형 언어 모델로, 우수한 모델 효과와 추론 성능을 겸비하여 ERNIE Lite보다 더 우수하며, 저전력 AI 가속 카드 추론에 적합합니다."
646
+ },
647
+ "ernie-novel-8k": {
648
+ "description": "바이두가 자체 개발한 일반 대형 언어 모델로, 소설 연속 작성 능력에서 뚜렷한 장점을 가지고 있으며, 단편극, 영화 등 시나리오에서도 사용할 수 있습니다."
649
+ },
650
+ "ernie-speed-128k": {
651
+ "description": "바이두가 2024년에 최신 출시한 고성능 대형 언어 모델로, 일반 능력이 우수하여 특정 시나리오 문제를 더 잘 처리하기 위해 기초 모델로 미세 조정하는 데 적합하며, 뛰어난 추론 성능을 가지고 있습니다."
652
+ },
653
+ "ernie-speed-pro-128k": {
654
+ "description": "바이두가 2024년에 최신 출시한 고성능 대형 언어 모델로, 일반 능력이 우수하여 ERNIE Speed보다 더 우수하며, 특정 시나리오 문제를 더 잘 처리하기 위해 기초 모델로 미세 조정하는 데 적합하며, 뛰어난 추론 성능을 가지고 있습니다."
655
+ },
656
+ "ernie-tiny-8k": {
657
+ "description": "ERNIE Tiny는 바이두가 자체 개발한 초고성능 대형 언어 모델로, 문신 시리즈 모델 중 배포 및 미세 조정 비용이 가장 낮습니다."
658
+ },
572
659
  "gemini-1.0-pro-001": {
573
660
  "description": "Gemini 1.0 Pro 001 (Tuning)은 안정적이고 조정 가능한 성능을 제공하며, 복잡한 작업 솔루션의 이상적인 선택입니다."
574
661
  },
@@ -872,6 +959,9 @@
872
959
  "internlm2.5-latest": {
873
960
  "description": "우리가 최신으로 선보이는 모델 시리즈로, 뛰어난 추론 성능을 자랑하며 1M의 컨텍스트 길이와 더 강력한 지시 따르기 및 도구 호출 기능을 지원합니다."
874
961
  },
962
+ "internlm3-latest": {
963
+ "description": "우리의 최신 모델 시리즈는 뛰어난 추론 성능을 가지고 있으며, 동급 오픈 소스 모델 중에서 선두를 달리고 있습니다. 기본적으로 최신 출시된 InternLM3 시리즈 모델을 가리킵니다."
964
+ },
875
965
  "learnlm-1.5-pro-experimental": {
876
966
  "description": "LearnLM은 학습 과학 원칙에 맞춰 훈련된 실험적이고 특정 작업에 특화된 언어 모델로, 교육 및 학습 환경에서 시스템 지침을 따르며 전문가 멘토 역할을 수행합니다."
877
967
  },
@@ -986,6 +1076,9 @@
986
1076
  "meta-llama/Llama-3.3-70B-Instruct": {
987
1077
  "description": "Llama 3.3은 Llama 시리즈에서 가장 진보된 다국어 오픈 소스 대형 언어 모델로, 매우 낮은 비용으로 405B 모델의 성능을 경험할 수 있습니다. Transformer 구조를 기반으로 하며, 감독 미세 조정(SFT) 및 인간 피드백 강화 학습(RLHF)을 통해 유용성과 안전성을 향상시켰습니다. 그 지시 조정 버전은 다국어 대화를 최적화하여 여러 산업 벤치마크에서 많은 오픈 소스 및 폐쇄형 채팅 모델보다 우수한 성능을 보입니다. 지식 마감일은 2023년 12월입니다."
988
1078
  },
1079
+ "meta-llama/Llama-3.3-70B-Instruct-Turbo": {
1080
+ "description": "Meta Llama 3.3 다국어 대형 언어 모델(LLM)은 70B(텍스트 입력/텍스트 출력)에서 사전 훈련 및 지시 조정 생성 모델입니다. Llama 3.3 지시 조정의 순수 텍스트 모델은 다국어 대화 사용 사례에 최적화되어 있으며, 일반 산업 기준에서 많은 사용 가능한 오픈 소스 및 폐쇄형 채팅 모델보다 우수한 성능을 보입니다."
1081
+ },
989
1082
  "meta-llama/Llama-Vision-Free": {
990
1083
  "description": "LLaMA 3.2는 시각 및 텍스트 데이터를 결합한 작업을 처리하도록 설계되었습니다. 이미지 설명 및 시각적 질문 응답과 같은 작업에서 뛰어난 성능을 발휘하며, 언어 생성과 시각 추론 간의 간극을 메웁니다."
991
1084
  },
@@ -1256,6 +1349,9 @@
1256
1349
  "qwen-vl-max-latest": {
1257
1350
  "description": "통의천문 초대규모 비주얼 언어 모델. 강화판에 비해 시각적 추론 능력과 지시 준수 능력을 다시 한 번 향상시켜, 더 높은 시각적 인식과 인지 수준을 제공합니다."
1258
1351
  },
1352
+ "qwen-vl-ocr-latest": {
1353
+ "description": "통의천문OCR은 문서, 표, 시험지, 손글씨 등 다양한 유형의 이미지에서 텍스트 추출 능력에 중점을 둔 전용 모델입니다. 여러 언어를 인식할 수 있으며, 현재 지원되는 언어는 중국어, 영어, 프랑스어, 일본어, 한국어, 독일어, 러시아어, 이탈리아어, 베트남어, 아랍어입니다."
1354
+ },
1259
1355
  "qwen-vl-plus-latest": {
1260
1356
  "description": "통의천문 대규모 비주얼 언어 모델 강화판. 세부 사항 인식 능력과 문자 인식 능력을 크게 향상시켰으며, 백만 화소 이상의 해상도와 임의의 가로 세로 비율의 이미지를 지원합니다."
1261
1357
  },
@@ -1274,6 +1370,9 @@
1274
1370
  "qwen2.5-14b-instruct": {
1275
1371
  "description": "통의 천문 2.5 외부 오픈 소스 14B 규모 모델입니다."
1276
1372
  },
1373
+ "qwen2.5-14b-instruct-1m": {
1374
+ "description": "통의천문2.5의 외부 오픈 소스 72B 규모 모델입니다."
1375
+ },
1277
1376
  "qwen2.5-32b-instruct": {
1278
1377
  "description": "통의 천문 2.5 외부 오픈 소스 32B 규모 모델입니다."
1279
1378
  },
@@ -1301,6 +1400,12 @@
1301
1400
  "qwen2.5-math-7b-instruct": {
1302
1401
  "description": "Qwen-Math 모델은 강력한 수학 문제 해결 능력을 가지고 있습니다."
1303
1402
  },
1403
+ "qwen2.5-vl-72b-instruct": {
1404
+ "description": "지시 따르기, 수학, 문제 해결, 코드 전반적인 향상, 모든 사물 인식 능력 향상, 다양한 형식의 시각적 요소를 직접 정확하게 위치 지정할 수 있으며, 최대 10분 길이의 긴 비디오 파일을 이해하고 초 단위의 사건 시점을 위치 지정할 수 있습니다. 시간의 선후와 속도를 이해할 수 있으며, 분석 및 위치 지정 능력을 기반으로 OS 또는 모바일 에이전트를 조작할 수 있습니다. 주요 정보 추출 능력과 Json 형식 출력 능력이 뛰어나며, 이 버전은 72B 버전으로, 이 시리즈에서 가장 강력한 버전입니다."
1405
+ },
1406
+ "qwen2.5-vl-7b-instruct": {
1407
+ "description": "지시 따르기, 수학, 문제 해결, 코드 전반적인 향상, 모든 사물 인식 능력 향상, 다양한 형식의 시각적 요소를 직접 정확하게 위치 지정할 수 있으며, 최대 10분 길이의 긴 비디오 파일을 이해하고 초 단위의 사건 시점을 위치 지정할 수 있습니다. 시간의 선후와 속도를 이해할 수 있으며, 분석 및 위치 지정 능력을 기반으로 OS 또는 모바일 에이전트를 조작할 수 있습니다. 주요 정보 추출 능력과 Json 형식 출력 능력이 뛰어나며, 이 버전은 72B 버전으로, 이 시리즈에서 가장 강력한 버전입니다."
1408
+ },
1304
1409
  "qwen2.5:0.5b": {
1305
1410
  "description": "Qwen2.5는 Alibaba의 차세대 대규모 언어 모델로, 뛰어난 성능으로 다양한 응용 요구를 지원합니다."
1306
1411
  },
@@ -286,6 +286,7 @@
286
286
  "anonymousNickName": "anonieme gebruiker",
287
287
  "billing": "facturatie",
288
288
  "cloud": "Ervaar {{name}}",
289
+ "community": "Gemeenschapsversie",
289
290
  "data": "gegevensopslag",
290
291
  "defaultNickname": "communitygebruiker",
291
292
  "discord": "communityondersteuning",
@@ -295,7 +296,6 @@
295
296
  "help": "helpcentrum",
296
297
  "moveGuide": "instellingen verplaatst naar hier",
297
298
  "plans": "abonnementen",
298
- "preview": "voorbeeldversie",
299
299
  "profile": "accountbeheer",
300
300
  "setting": "app-instellingen",
301
301
  "usages": "gebruiksstatistieken"
@@ -294,26 +294,6 @@
294
294
  "tooltip": "Werk basisconfiguratie van provider bij",
295
295
  "updateSuccess": "Bijwerking geslaagd"
296
296
  },
297
- "wenxin": {
298
- "accessKey": {
299
- "desc": "Vul de Access Key van het Baidu Qianfan-platform in",
300
- "placeholder": "Qianfan Access Key",
301
- "title": "Access Key"
302
- },
303
- "checker": {
304
- "desc": "Test of de AccessKey / SecretAccess correct is ingevuld"
305
- },
306
- "secretKey": {
307
- "desc": "Vul de Secret Key van het Baidu Qianfan-platform in",
308
- "placeholder": "Qianfan Secret Key",
309
- "title": "Secret Key"
310
- },
311
- "unlock": {
312
- "customRegion": "Aangepaste servicegebied",
313
- "description": "Voer je AccessKey / SecretKey in om de sessie te starten. De applicatie zal je authenticatie-instellingen niet opslaan",
314
- "title": "Gebruik aangepaste Wenxin Yiyan-authenticatie-informatie"
315
- }
316
- },
317
297
  "zeroone": {
318
298
  "title": "01.AI Nul Een Alles"
319
299
  },
@@ -23,6 +23,9 @@
23
23
  "360gpt2-pro": {
24
24
  "description": "360GPT2 Pro is een geavanceerd natuurlijk taalverwerkingsmodel dat is ontwikkeld door 360, met uitstekende tekstgeneratie- en begripcapaciteiten, vooral in de generatieve en creatieve domeinen, en kan complexe taaltransformaties en rolinterpretatietaken aan."
25
25
  },
26
+ "360zhinao2-o1": {
27
+ "description": "360zhinao2-o1 bouwt een denkketen op met behulp van boomzoekmethoden en introduceert een reflectiemechanisme, waarbij het gebruik maakt van versterkend leren om het model in staat te stellen tot zelfreflectie en foutcorrectie."
28
+ },
26
29
  "4.0Ultra": {
27
30
  "description": "Spark4.0 Ultra is de krachtigste versie in de Spark-grootmodelserie, die de netwerkintegratie heeft geüpgraded en de tekstbegrip- en samenvattingscapaciteiten heeft verbeterd. Het is een allesomvattende oplossing voor het verbeteren van de kantoorproductiviteit en het nauwkeurig reageren op behoeften, en is een toonaangevend intelligent product in de industrie."
28
31
  },
@@ -44,6 +47,18 @@
44
47
  "Baichuan4-Turbo": {
45
48
  "description": "Modelcapaciteiten zijn nationaal de beste, overtreft buitenlandse mainstream modellen in kennisencyclopedie, lange teksten en creatieve generatie in Chinese taken. Beschikt ook over toonaangevende multimodale capaciteiten en presteert uitstekend op verschillende autoritatieve evaluatiebenchmarks."
46
49
  },
50
+ "DeepSeek-R1-Distill-Qwen-1.5B": {
51
+ "description": "DeepSeek-R1 distillatiemodel gebaseerd op Qwen2.5-Math-1.5B, geoptimaliseerd voor inferentieprestaties door versterkend leren en koude startdata, open-source model dat de multi-taak benchmark vernieuwt."
52
+ },
53
+ "DeepSeek-R1-Distill-Qwen-14B": {
54
+ "description": "DeepSeek-R1 distillatiemodel gebaseerd op Qwen2.5-14B, geoptimaliseerd voor inferentieprestaties door versterkend leren en koude startdata, open-source model dat de multi-taak benchmark vernieuwt."
55
+ },
56
+ "DeepSeek-R1-Distill-Qwen-32B": {
57
+ "description": "De DeepSeek-R1 serie optimaliseert inferentieprestaties door versterkend leren en koude startdata, open-source model dat de multi-taak benchmark vernieuwt en de OpenAI-o1-mini niveaus overtreft."
58
+ },
59
+ "DeepSeek-R1-Distill-Qwen-7B": {
60
+ "description": "DeepSeek-R1 distillatiemodel gebaseerd op Qwen2.5-Math-7B, geoptimaliseerd voor inferentieprestaties door versterkend leren en koude startdata, open-source model dat de multi-taak benchmark vernieuwt."
61
+ },
47
62
  "Doubao-lite-128k": {
48
63
  "description": "Doubao-lite beschikt over een uitstekende responssnelheid en een goede prijs-kwaliteitverhouding, en biedt klanten flexibele keuzes voor verschillende scenario's. Ondersteunt inferentie en fine-tuning met een contextvenster van 128k."
49
64
  },
@@ -77,9 +92,6 @@
77
92
  "ERNIE-4.0-8K-Preview": {
78
93
  "description": "Het door Baidu ontwikkelde vlaggenschip van een ultra-groot taalmodel, dat in vergelijking met ERNIE 3.5 een algehele upgrade van de modelcapaciteiten heeft gerealiseerd, en breed toepasbaar is in complexe taken in verschillende domeinen; ondersteunt automatische integratie met de Baidu-zoekplug-in om de actualiteit van vraag- en antwoordinformatie te waarborgen."
79
94
  },
80
- "ERNIE-4.0-Turbo-128K": {
81
- "description": "Het vlaggenschip supergrote taalmodel van Baidu, met uitstekende algehele prestaties, breed toepasbaar in complexe taakscenario's in verschillende domeinen; ondersteunt automatische integratie met Baidu zoekplug-ins, wat de actualiteit van vraag- en antwoordinformatie waarborgt. In vergelijking met ERNIE 4.0 presteert het beter."
82
- },
83
95
  "ERNIE-4.0-Turbo-8K-Latest": {
84
96
  "description": "De zelfontwikkelde vlaggenschip super-grote taalmodel van Baidu, dat uitmuntend presteert in diverse complexe taakscenario's in verschillende domeinen; ondersteunt automatische integratie met de Baidu-zoekplug-in, waarborgt de actualiteit van vraag-antwoordinformatie. Overtreft in performance ten opzichte van ERNIE 4.0."
85
97
  },
@@ -176,6 +188,9 @@
176
188
  "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
177
189
  "description": "Meta Llama 3.1 is een familie van meertalige grote taalmodellen ontwikkeld door Meta, inclusief voorgetrainde en instructie-fijn afgestelde varianten met parameter groottes van 8B, 70B en 405B. Dit 8B instructie-fijn afgestelde model is geoptimaliseerd voor meertalige gespreksscenario's en presteert uitstekend in verschillende industriële benchmarktests. Het model is getraind met meer dan 150 biljoen tokens van openbare gegevens en maakt gebruik van technieken zoals supervisie-fijn afstemming en versterkend leren met menselijke feedback om de bruikbaarheid en veiligheid van het model te verbeteren. Llama 3.1 ondersteunt tekstgeneratie en codegeneratie, met een kennisafkapdatum van december 2023."
178
190
  },
191
+ "QwQ-32B-Preview": {
192
+ "description": "QwQ-32B-Preview is een innovatief natuurlijk taalverwerkingsmodel dat efficiënt complexe dialooggeneratie en contextbegripstaken kan verwerken."
193
+ },
179
194
  "Qwen/QVQ-72B-Preview": {
180
195
  "description": "QVQ-72B-Preview is een onderzoeksmodel ontwikkeld door het Qwen-team, dat zich richt op visuele redeneervaardigheden en unieke voordelen heeft in het begrijpen van complexe scènes en het oplossen van visueel gerelateerde wiskundige problemen."
181
196
  },
@@ -527,6 +542,24 @@
527
542
  "deepseek-ai/DeepSeek-R1": {
528
543
  "description": "DeepSeek-R1 is een op versterkend leren (RL) aangedreven inferentiemodel dat de problemen van herhaling en leesbaarheid in het model oplost. Voor RL introduceerde DeepSeek-R1 koude startdata om de inferentieprestaties verder te optimaliseren. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en inferentietaken, en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
529
544
  },
545
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
546
+ "description": "DeepSeek-R1 distillatiemodel, geoptimaliseerd voor inferentieprestaties door versterkend leren en koude startdata, open-source model dat de multi-taak benchmark vernieuwt."
547
+ },
548
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
549
+ "description": "DeepSeek-R1-Distill-Llama-8B is een distillatiemodel ontwikkeld op basis van Llama-3.1-8B. Dit model is fijn afgestemd met voorbeelden gegenereerd door DeepSeek-R1 en toont uitstekende inferentiecapaciteiten. Het heeft goed gepresteerd in verschillende benchmarktests, met een nauwkeurigheid van 89,1% op MATH-500, een slaagpercentage van 50,4% op AIME 2024, en een score van 1205 op CodeForces, wat sterke wiskundige en programmeercapaciteiten aantoont voor een model van 8B schaal."
550
+ },
551
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
552
+ "description": "DeepSeek-R1 distillatiemodel, geoptimaliseerd voor inferentieprestaties door versterkend leren en koude startdata, open-source model dat de multi-taak benchmark vernieuwt."
553
+ },
554
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B": {
555
+ "description": "DeepSeek-R1 distillatiemodel, geoptimaliseerd voor inferentieprestaties door versterkend leren en koude startdata, open-source model dat de multi-taak benchmark vernieuwt."
556
+ },
557
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
558
+ "description": "DeepSeek-R1-Distill-Qwen-32B is een model dat is verkregen door kennisdistillatie van Qwen2.5-32B. Dit model is fijn afgestemd met 800.000 zorgvuldig geselecteerde voorbeelden gegenereerd door DeepSeek-R1 en toont uitstekende prestaties in verschillende domeinen zoals wiskunde, programmeren en redeneren. Het heeft uitstekende resultaten behaald in meerdere benchmarktests, waaronder een nauwkeurigheid van 94,3% op MATH-500, wat sterke wiskundige redeneringscapaciteiten aantoont."
559
+ },
560
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
561
+ "description": "DeepSeek-R1-Distill-Qwen-7B is een model dat is verkregen door kennisdistillatie van Qwen2.5-Math-7B. Dit model is fijn afgestemd met 800.000 zorgvuldig geselecteerde voorbeelden gegenereerd door DeepSeek-R1 en toont uitstekende inferentiecapaciteiten. Het heeft uitstekende resultaten behaald in verschillende benchmarktests, met een nauwkeurigheid van 92,8% op MATH-500, een slaagpercentage van 55,5% op AIME 2024, en een score van 1189 op CodeForces, wat sterke wiskundige en programmeercapaciteiten aantoont voor een model van 7B schaal."
562
+ },
530
563
  "deepseek-ai/DeepSeek-V2.5": {
531
564
  "description": "DeepSeek V2.5 combineert de uitstekende kenmerken van eerdere versies en versterkt de algemene en coderingscapaciteiten."
532
565
  },
@@ -554,6 +587,9 @@
554
587
  "deepseek-r1": {
555
588
  "description": "DeepSeek-R1 is een op versterkend leren (RL) aangedreven inferentiemodel dat de problemen van herhaling en leesbaarheid in het model oplost. Voor RL introduceerde DeepSeek-R1 koude startdata om de inferentieprestaties verder te optimaliseren. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en inferentietaken, en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
556
589
  },
590
+ "deepseek-r1-distill-llama-70b": {
591
+ "description": "DeepSeek R1 - een groter en slimmer model binnen de DeepSeek suite - is gedistilleerd naar de Llama 70B architectuur. Op basis van benchmarktests en menselijke evaluaties is dit model slimmer dan de originele Llama 70B, vooral in taken die wiskundige en feitelijke nauwkeurigheid vereisen."
592
+ },
557
593
  "deepseek-reasoner": {
558
594
  "description": "Het redeneer model van DeepSeek. Voordat het model het uiteindelijke antwoord geeft, genereert het eerst een stuk denkproces om de nauwkeurigheid van het uiteindelijke antwoord te verbeteren."
559
595
  },
@@ -563,12 +599,63 @@
563
599
  "deepseek-v2:236b": {
564
600
  "description": "DeepSeek V2 236B is het ontwerpcode-model van DeepSeek, biedt krachtige codegeneratiecapaciteiten."
565
601
  },
602
+ "deepseek-v3": {
603
+ "description": "DeepSeek-V3 is een MoE-model dat is ontwikkeld door Hangzhou DeepSeek Artificial Intelligence Technology Research Co., Ltd. Het heeft uitstekende scores in verschillende evaluaties en staat bovenaan de open-source modellen in de mainstream ranglijsten. V3 heeft de generatiesnelheid met 3 keer verbeterd in vergelijking met het V2.5 model, wat zorgt voor een snellere en soepelere gebruikerservaring."
604
+ },
566
605
  "deepseek/deepseek-chat": {
567
606
  "description": "Een nieuw open-source model dat algemene en codeercapaciteiten combineert, niet alleen de algemene gespreksvaardigheden van het oorspronkelijke Chat-model en de krachtige codeverwerkingscapaciteiten van het Coder-model behoudt, maar ook beter is afgestemd op menselijke voorkeuren. Bovendien heeft DeepSeek-V2.5 aanzienlijke verbeteringen gerealiseerd in schrijfopdrachten, instructievolging en meer."
568
607
  },
569
608
  "emohaa": {
570
609
  "description": "Emohaa is een psychologisch model met professionele adviescapaciteiten, dat gebruikers helpt emotionele problemen te begrijpen."
571
610
  },
611
+ "ernie-3.5-128k": {
612
+ "description": "Het vlaggenschip grote taalmodel van Baidu, zelf ontwikkeld, dekt een enorme hoeveelheid Chinese en Engelse corpora, met sterke algemene capaciteiten die voldoen aan de meeste eisen voor dialoogvragen, creatieve generatie en plug-in toepassingsscenario's; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen."
613
+ },
614
+ "ernie-3.5-8k": {
615
+ "description": "Het vlaggenschip grote taalmodel van Baidu, zelf ontwikkeld, dekt een enorme hoeveelheid Chinese en Engelse corpora, met sterke algemene capaciteiten die voldoen aan de meeste eisen voor dialoogvragen, creatieve generatie en plug-in toepassingsscenario's; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen."
616
+ },
617
+ "ernie-3.5-8k-preview": {
618
+ "description": "Het vlaggenschip grote taalmodel van Baidu, zelf ontwikkeld, dekt een enorme hoeveelheid Chinese en Engelse corpora, met sterke algemene capaciteiten die voldoen aan de meeste eisen voor dialoogvragen, creatieve generatie en plug-in toepassingsscenario's; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen."
619
+ },
620
+ "ernie-4.0-8k-latest": {
621
+ "description": "Het vlaggenschip ultra-grote taalmodel van Baidu, zelf ontwikkeld, heeft een algehele upgrade van modelcapaciteiten in vergelijking met ERNIE 3.5, en is breed toepasbaar in complexe taakscenario's in verschillende domeinen; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen."
622
+ },
623
+ "ernie-4.0-8k-preview": {
624
+ "description": "Het vlaggenschip ultra-grote taalmodel van Baidu, zelf ontwikkeld, heeft een algehele upgrade van modelcapaciteiten in vergelijking met ERNIE 3.5, en is breed toepasbaar in complexe taakscenario's in verschillende domeinen; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen."
625
+ },
626
+ "ernie-4.0-turbo-128k": {
627
+ "description": "Het vlaggenschip ultra-grote taalmodel van Baidu, zelf ontwikkeld, presteert uitstekend in algehele effectiviteit en is breed toepasbaar in complexe taakscenario's in verschillende domeinen; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen. Het presteert beter dan ERNIE 4.0."
628
+ },
629
+ "ernie-4.0-turbo-8k-latest": {
630
+ "description": "Het vlaggenschip ultra-grote taalmodel van Baidu, zelf ontwikkeld, presteert uitstekend in algehele effectiviteit en is breed toepasbaar in complexe taakscenario's in verschillende domeinen; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen. Het presteert beter dan ERNIE 4.0."
631
+ },
632
+ "ernie-4.0-turbo-8k-preview": {
633
+ "description": "Het vlaggenschip ultra-grote taalmodel van Baidu, zelf ontwikkeld, presteert uitstekend in algehele effectiviteit en is breed toepasbaar in complexe taakscenario's in verschillende domeinen; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen. Het presteert beter dan ERNIE 4.0."
634
+ },
635
+ "ernie-char-8k": {
636
+ "description": "Een door Baidu ontwikkeld groot taalmodel voor verticale scenario's, geschikt voor toepassingen zoals game NPC's, klantenservice dialoog, en rollenspellen, met een duidelijkere en consistentere karakterstijl, sterkere instructievolgcapaciteiten en betere inferentieprestaties."
637
+ },
638
+ "ernie-char-fiction-8k": {
639
+ "description": "Een door Baidu ontwikkeld groot taalmodel voor verticale scenario's, geschikt voor toepassingen zoals game NPC's, klantenservice dialoog, en rollenspellen, met een duidelijkere en consistentere karakterstijl, sterkere instructievolgcapaciteiten en betere inferentieprestaties."
640
+ },
641
+ "ernie-lite-8k": {
642
+ "description": "ERNIE Lite is een lichtgewicht groot taalmodel dat door Baidu is ontwikkeld, dat uitstekende modelprestaties en inferentiecapaciteiten combineert, geschikt voor gebruik met AI-versnelling kaarten met lage rekencapaciteit."
643
+ },
644
+ "ernie-lite-pro-128k": {
645
+ "description": "Een lichtgewicht groot taalmodel dat door Baidu is ontwikkeld, dat uitstekende modelprestaties en inferentiecapaciteiten combineert, met betere prestaties dan ERNIE Lite, geschikt voor gebruik met AI-versnelling kaarten met lage rekencapaciteit."
646
+ },
647
+ "ernie-novel-8k": {
648
+ "description": "Een algemeen groot taalmodel dat door Baidu is ontwikkeld, met duidelijke voordelen in het vervolgschrijven van romans, en ook toepasbaar in korte toneelstukken, films en andere scenario's."
649
+ },
650
+ "ernie-speed-128k": {
651
+ "description": "Het nieuwste zelfontwikkelde hoge-prestatie grote taalmodel van Baidu, dat uitstekende algemene capaciteiten heeft en geschikt is als basis model voor afstemming, om beter specifieke scenario's aan te pakken, met uitstekende inferentieprestaties."
652
+ },
653
+ "ernie-speed-pro-128k": {
654
+ "description": "Het nieuwste zelfontwikkelde hoge-prestatie grote taalmodel van Baidu, dat uitstekende algemene capaciteiten heeft en betere prestaties levert dan ERNIE Speed, geschikt als basis model voor afstemming, om beter specifieke scenario's aan te pakken, met uitstekende inferentieprestaties."
655
+ },
656
+ "ernie-tiny-8k": {
657
+ "description": "ERNIE Tiny is een ultra-presterend groot taalmodel dat de laagste implementatie- en afstemmingskosten heeft binnen de Wenxin modelreeks."
658
+ },
572
659
  "gemini-1.0-pro-001": {
573
660
  "description": "Gemini 1.0 Pro 001 (Tuning) biedt stabiele en afstelbare prestaties, ideaal voor oplossingen voor complexe taken."
574
661
  },
@@ -872,6 +959,9 @@
872
959
  "internlm2.5-latest": {
873
960
  "description": "Onze nieuwste modelreeks met uitstekende redeneervaardigheden, ondersteunt een contextlengte van 1M en heeft verbeterde instructievolging en toolaanroepmogelijkheden."
874
961
  },
962
+ "internlm3-latest": {
963
+ "description": "Onze nieuwste modelreeks heeft uitstekende inferentieprestaties en leidt de open-source modellen in dezelfde klasse. Standaard gericht op ons recentste InternLM3 model."
964
+ },
875
965
  "learnlm-1.5-pro-experimental": {
876
966
  "description": "LearnLM is een experimenteel, taak-specifiek taalmodel dat is getraind volgens de principes van de leerwetenschap, en kan systeeminstructies volgen in onderwijs- en leeromgevingen, en fungeert als een expertmentor."
877
967
  },
@@ -986,6 +1076,9 @@
986
1076
  "meta-llama/Llama-3.3-70B-Instruct": {
987
1077
  "description": "Llama 3.3 is het meest geavanceerde meertalige open-source grote taalmodel uit de Llama-serie, dat een vergelijkbare prestatie biedt als het 405B model tegen zeer lage kosten. Gebaseerd op de Transformer-structuur en verbeterd in bruikbaarheid en veiligheid door middel van supervisie-fijnstelling (SFT) en versterkend leren met menselijke feedback (RLHF). De instructie-geoptimaliseerde versie is speciaal ontworpen voor meertalige gesprekken en presteert beter dan veel open-source en gesloten chatmodellen op verschillende industriële benchmarks. Kennisafkapdatum is december 2023."
988
1078
  },
1079
+ "meta-llama/Llama-3.3-70B-Instruct-Turbo": {
1080
+ "description": "Meta Llama 3.3 meertalige grote taalmodel (LLM) is een voorgetraind en instructie-aangepast generatief model van 70B (tekstinvoer/tekstuitvoer). Het Llama 3.3 instructie-aangepaste pure tekstmodel is geoptimaliseerd voor meertalige dialoogtoepassingen en presteert beter dan veel beschikbare open-source en gesloten chatmodellen op gangbare industriële benchmarks."
1081
+ },
989
1082
  "meta-llama/Llama-Vision-Free": {
990
1083
  "description": "LLaMA 3.2 is ontworpen voor taken die zowel visuele als tekstuele gegevens combineren. Het presteert uitstekend in taken zoals afbeeldingsbeschrijving en visuele vraagstukken, en overbrugt de kloof tussen taalgeneratie en visuele redenering."
991
1084
  },
@@ -1256,6 +1349,9 @@
1256
1349
  "qwen-vl-max-latest": {
1257
1350
  "description": "Het Tongyi Qianwen ultra-grootschalige visuele taalmodel. In vergelijking met de verbeterde versie, verhoogt het opnieuw de visuele redeneervaardigheden en de naleving van instructies, en biedt het een hoger niveau van visuele waarneming en cognitie."
1258
1351
  },
1352
+ "qwen-vl-ocr-latest": {
1353
+ "description": "Qwen OCR is een speciaal model voor tekstextractie, gericht op het extraheren van tekst uit documenten, tabellen, examenvragen, handgeschreven teksten en andere soorten afbeeldingen. Het kan verschillende talen herkennen, waaronder: Chinees, Engels, Frans, Japans, Koreaans, Duits, Russisch, Italiaans, Vietnamees en Arabisch."
1354
+ },
1259
1355
  "qwen-vl-plus-latest": {
1260
1356
  "description": "De verbeterde versie van het Tongyi Qianwen grootschalige visuele taalmodel. Het verbetert aanzienlijk de detailherkenning en tekstherkenning, ondersteunt resoluties van meer dan een miljoen pixels en afbeeldingen met elke verhouding."
1261
1357
  },
@@ -1274,6 +1370,9 @@
1274
1370
  "qwen2.5-14b-instruct": {
1275
1371
  "description": "Het 14B model van Tongyi Qianwen 2.5 is open source beschikbaar."
1276
1372
  },
1373
+ "qwen2.5-14b-instruct-1m": {
1374
+ "description": "Qwen2.5 is een open-source model van 72B schaal."
1375
+ },
1277
1376
  "qwen2.5-32b-instruct": {
1278
1377
  "description": "Het 32B model van Tongyi Qianwen 2.5 is open source beschikbaar."
1279
1378
  },
@@ -1301,6 +1400,12 @@
1301
1400
  "qwen2.5-math-7b-instruct": {
1302
1401
  "description": "Het Qwen-Math model heeft krachtige capaciteiten voor het oplossen van wiskundige problemen."
1303
1402
  },
1403
+ "qwen2.5-vl-72b-instruct": {
1404
+ "description": "Verbeterde instructievolging, wiskunde, probleemoplossing en code, met verbeterde herkenningscapaciteiten voor verschillende formaten, directe en nauwkeurige lokalisatie van visuele elementen, ondersteuning voor lange videobestanden (maximaal 10 minuten) en seconde-niveau gebeurtenislocatie, kan tijdsvolgorde en snelheid begrijpen, en ondersteunt het bedienen van OS of mobiele agenten op basis van analyse- en lokalisatiecapaciteiten, sterke capaciteiten voor het extraheren van belangrijke informatie en JSON-formaat uitvoer, deze versie is de 72B versie, de krachtigste versie in deze serie."
1405
+ },
1406
+ "qwen2.5-vl-7b-instruct": {
1407
+ "description": "Verbeterde instructievolging, wiskunde, probleemoplossing en code, met verbeterde herkenningscapaciteiten voor verschillende formaten, directe en nauwkeurige lokalisatie van visuele elementen, ondersteuning voor lange videobestanden (maximaal 10 minuten) en seconde-niveau gebeurtenislocatie, kan tijdsvolgorde en snelheid begrijpen, en ondersteunt het bedienen van OS of mobiele agenten op basis van analyse- en lokalisatiecapaciteiten, sterke capaciteiten voor het extraheren van belangrijke informatie en JSON-formaat uitvoer, deze versie is de 72B versie, de krachtigste versie in deze serie."
1408
+ },
1304
1409
  "qwen2.5:0.5b": {
1305
1410
  "description": "Qwen2.5 is de nieuwe generatie grootschalig taalmodel van Alibaba, dat uitstekende prestaties levert ter ondersteuning van diverse toepassingsbehoeften."
1306
1411
  },
@@ -286,6 +286,7 @@
286
286
  "anonymousNickName": "Użytkownik Anonimowy",
287
287
  "billing": "Zarządzanie rachunkami",
288
288
  "cloud": "Wypróbuj {{name}}",
289
+ "community": "Wersja społeczności",
289
290
  "data": "Przechowywanie danych",
290
291
  "defaultNickname": "Użytkownik Wersji Społecznościowej",
291
292
  "discord": "Wsparcie społeczności",
@@ -295,7 +296,6 @@
295
296
  "help": "Centrum pomocy",
296
297
  "moveGuide": "Przenieś przycisk ustawień tutaj",
297
298
  "plans": "Plan abonamentu",
298
- "preview": "Podgląd",
299
299
  "profile": "Zarządzanie kontem",
300
300
  "setting": "Ustawienia aplikacji",
301
301
  "usages": "Statystyki użycia"
@@ -294,26 +294,6 @@
294
294
  "tooltip": "Aktualizuj podstawowe ustawienia dostawcy",
295
295
  "updateSuccess": "Aktualizacja zakończona sukcesem"
296
296
  },
297
- "wenxin": {
298
- "accessKey": {
299
- "desc": "Wprowadź Access Key z platformy Baidu Qianfan",
300
- "placeholder": "Access Key Qianfan",
301
- "title": "Access Key"
302
- },
303
- "checker": {
304
- "desc": "Sprawdź, czy AccessKey / SecretAccess zostały poprawnie wprowadzone"
305
- },
306
- "secretKey": {
307
- "desc": "Wprowadź Secret Key z platformy Baidu Qianfan",
308
- "placeholder": "Secret Key Qianfan",
309
- "title": "Secret Key"
310
- },
311
- "unlock": {
312
- "customRegion": "Niestandardowy obszar usług",
313
- "description": "Wprowadź swój AccessKey / SecretKey, aby rozpocząć sesję. Aplikacja nie zapisuje twojej konfiguracji uwierzytelniania",
314
- "title": "Użyj niestandardowych informacji uwierzytelniających Wenxin Yiyan"
315
- }
316
- },
317
297
  "zeroone": {
318
298
  "title": "01.AI Zero Jeden Wszystko"
319
299
  },