@lobehub/chat 1.50.1 → 1.50.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/docker-compose/local/.env.example +9 -3
- package/docker-compose/local/.env.zh-CN.example +8 -3
- package/docker-compose/local/docker-compose.yml +22 -12
- package/docker-compose/local/init_data.json +473 -12
- package/docker-compose/setup.sh +660 -0
- package/docs/self-hosting/server-database/docker-compose.mdx +549 -271
- package/docs/self-hosting/server-database/docker-compose.zh-CN.mdx +415 -124
- package/locales/ar/models.json +22 -34
- package/locales/bg-BG/models.json +22 -34
- package/locales/de-DE/models.json +22 -34
- package/locales/en-US/models.json +22 -34
- package/locales/es-ES/models.json +22 -34
- package/locales/fa-IR/models.json +22 -34
- package/locales/fr-FR/models.json +22 -34
- package/locales/it-IT/models.json +22 -34
- package/locales/ja-JP/models.json +22 -34
- package/locales/ko-KR/models.json +25 -38
- package/locales/nl-NL/models.json +22 -34
- package/locales/pl-PL/models.json +22 -34
- package/locales/pt-BR/models.json +22 -34
- package/locales/ru-RU/models.json +22 -34
- package/locales/tr-TR/models.json +22 -34
- package/locales/vi-VN/models.json +22 -34
- package/locales/zh-CN/models.json +39 -51
- package/locales/zh-TW/models.json +22 -34
- package/package.json +1 -1
- package/src/libs/agent-runtime/github/index.ts +2 -2
- package/src/libs/agent-runtime/openai/index.ts +31 -23
- package/docker-compose/local/s3_data.tar.gz +0 -0
- package/docker-compose/local/setup.sh +0 -375
@@ -323,21 +323,15 @@
|
|
323
323
|
"abab7-chat-preview": {
|
324
324
|
"description": "abab6.5シリーズモデルに比べて、長文、数学、執筆などの能力が大幅に向上しています。"
|
325
325
|
},
|
326
|
-
"accounts/fireworks/models/
|
327
|
-
"description": "
|
326
|
+
"accounts/fireworks/models/deepseek-r1": {
|
327
|
+
"description": "DeepSeek-R1は、強化学習とコールドスタートデータの最適化を経た最先端の大規模言語モデルで、優れた推論、数学、プログラミング性能を持っています。"
|
328
328
|
},
|
329
|
-
"accounts/fireworks/models/
|
330
|
-
"description": "
|
331
|
-
},
|
332
|
-
"accounts/fireworks/models/firellava-13b": {
|
333
|
-
"description": "fireworks-ai/FireLLaVA-13bは、画像とテキストの入力を同時に受け取ることができる視覚言語モデルであり、高品質なデータで訓練されており、多モーダルタスクに適しています。"
|
329
|
+
"accounts/fireworks/models/deepseek-v3": {
|
330
|
+
"description": "Deepseekが提供する強力なMixture-of-Experts (MoE)言語モデルで、総パラメータ数は671Bであり、各トークンは37Bのパラメータを活性化します。"
|
334
331
|
},
|
335
332
|
"accounts/fireworks/models/llama-v3-70b-instruct": {
|
336
333
|
"description": "Llama 3 70B指示モデルは、多言語対話と自然言語理解に最適化されており、ほとんどの競合モデルを上回る性能を持っています。"
|
337
334
|
},
|
338
|
-
"accounts/fireworks/models/llama-v3-70b-instruct-hf": {
|
339
|
-
"description": "Llama 3 70B指示モデル(HFバージョン)は、公式実装結果と一致し、高品質な指示フォロータスクに適しています。"
|
340
|
-
},
|
341
335
|
"accounts/fireworks/models/llama-v3-8b-instruct": {
|
342
336
|
"description": "Llama 3 8B指示モデルは、対話や多言語タスクに最適化されており、卓越した効率を発揮します。"
|
343
337
|
},
|
@@ -356,24 +350,24 @@
|
|
356
350
|
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct": {
|
357
351
|
"description": "Metaの11Bパラメータ指示調整画像推論モデルです。このモデルは視覚認識、画像推論、画像説明、および画像に関する一般的な質問への回答に最適化されています。このモデルは、グラフや図表などの視覚データを理解し、画像の詳細をテキストで記述することで、視覚と言語の間のギャップを埋めることができます。"
|
358
352
|
},
|
359
|
-
"accounts/fireworks/models/llama-v3p2-1b-instruct": {
|
360
|
-
"description": "Llama 3.2 1B指示モデルはMetaが発表した軽量な多言語モデルです。このモデルは効率を向上させることを目的としており、より大規模なモデルと比較して遅延とコストの面で大きな改善を提供します。このモデルの使用例には、情報検索や要約が含まれます。"
|
361
|
-
},
|
362
353
|
"accounts/fireworks/models/llama-v3p2-3b-instruct": {
|
363
354
|
"description": "Llama 3.2 3B指示モデルはMetaが発表した軽量な多言語モデルです。このモデルは効率を向上させることを目的としており、より大規模なモデルと比較して遅延とコストの面で大きな改善を提供します。このモデルの使用例には、問い合わせやプロンプトのリライト、執筆支援が含まれます。"
|
364
355
|
},
|
365
356
|
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct": {
|
366
357
|
"description": "Metaの90Bパラメータ指示調整画像推論モデルです。このモデルは視覚認識、画像推論、画像説明、および画像に関する一般的な質問への回答に最適化されています。このモデルは、グラフや図表などの視覚データを理解し、画像の詳細をテキストで記述することで、視覚と言語の間のギャップを埋めることができます。"
|
367
358
|
},
|
359
|
+
"accounts/fireworks/models/llama-v3p3-70b-instruct": {
|
360
|
+
"description": "Llama 3.3 70B Instructは、Llama 3.1 70Bの12月の更新版です。このモデルは、2024年7月にリリースされたLlama 3.1 70Bを基に改良され、ツール呼び出し、多言語テキストサポート、数学およびプログラミング能力が強化されています。このモデルは、推論、数学、指示遵守の面で業界の最前線に達しており、3.1 405Bと同等の性能を提供しつつ、速度とコストにおいて顕著な利点を持っています。"
|
361
|
+
},
|
362
|
+
"accounts/fireworks/models/mistral-small-24b-instruct-2501": {
|
363
|
+
"description": "24Bパラメータモデルで、より大規模なモデルと同等の最先端の能力を備えています。"
|
364
|
+
},
|
368
365
|
"accounts/fireworks/models/mixtral-8x22b-instruct": {
|
369
366
|
"description": "Mixtral MoE 8x22B指示モデルは、大規模なパラメータと多専門家アーキテクチャを持ち、複雑なタスクの高効率処理を全方位でサポートします。"
|
370
367
|
},
|
371
368
|
"accounts/fireworks/models/mixtral-8x7b-instruct": {
|
372
369
|
"description": "Mixtral MoE 8x7B指示モデルは、多専門家アーキテクチャを提供し、高効率の指示フォローと実行をサポートします。"
|
373
370
|
},
|
374
|
-
"accounts/fireworks/models/mixtral-8x7b-instruct-hf": {
|
375
|
-
"description": "Mixtral MoE 8x7B指示モデル(HFバージョン)は、公式実装と一致し、さまざまな高効率タスクシナリオに適しています。"
|
376
|
-
},
|
377
371
|
"accounts/fireworks/models/mythomax-l2-13b": {
|
378
372
|
"description": "MythoMax L2 13Bモデルは、新しい統合技術を組み合わせており、物語やキャラクターの役割に優れています。"
|
379
373
|
},
|
@@ -383,18 +377,15 @@
|
|
383
377
|
"accounts/fireworks/models/qwen-qwq-32b-preview": {
|
384
378
|
"description": "QwQモデルはQwenチームによって開発された実験的な研究モデルで、AIの推論能力を強化することに焦点を当てています。"
|
385
379
|
},
|
380
|
+
"accounts/fireworks/models/qwen2-vl-72b-instruct": {
|
381
|
+
"description": "Qwen-VLモデルの72Bバージョンは、アリババの最新のイテレーションの成果であり、近年の革新を代表しています。"
|
382
|
+
},
|
386
383
|
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
387
384
|
"description": "Qwen2.5はAlibaba Cloud Qwenチームによって開発された一連のデコーダーのみを含む言語モデルです。これらのモデルは、0.5B、1.5B、3B、7B、14B、32B、72Bなど、さまざまなサイズを提供し、ベース版と指示版の2種類のバリエーションがあります。"
|
388
385
|
},
|
389
386
|
"accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
|
390
387
|
"description": "Qwen2.5 Coder 32B InstructはAlibaba Cloudが発表したコード特化型大規模言語モデルシリーズの最新バージョンです。このモデルはQwen2.5を基に、55兆トークンの訓練を通じて、コード生成、推論、修正能力を大幅に向上させました。コーディング能力を強化するだけでなく、数学および一般的な能力の利点も維持しています。このモデルはコードエージェントなどの実際のアプリケーションに対して、より包括的な基盤を提供します。"
|
391
388
|
},
|
392
|
-
"accounts/fireworks/models/starcoder-16b": {
|
393
|
-
"description": "StarCoder 15.5Bモデルは、高度なプログラミングタスクをサポートし、多言語能力を強化し、複雑なコード生成と理解に適しています。"
|
394
|
-
},
|
395
|
-
"accounts/fireworks/models/starcoder-7b": {
|
396
|
-
"description": "StarCoder 7Bモデルは、80以上のプログラミング言語に特化して訓練されており、優れたプログラミング補完能力と文脈理解を持っています。"
|
397
|
-
},
|
398
389
|
"accounts/yi-01-ai/models/yi-large": {
|
399
390
|
"description": "Yi-Largeモデルは、卓越した多言語処理能力を持ち、さまざまな言語生成と理解タスクに使用できます。"
|
400
391
|
},
|
@@ -887,30 +878,18 @@
|
|
887
878
|
"lite": {
|
888
879
|
"description": "Spark Liteは軽量な大規模言語モデルで、非常に低い遅延と高い処理能力を備えています。完全に無料でオープンであり、リアルタイムのオンライン検索機能をサポートしています。その迅速な応答特性により、低算力デバイスでの推論アプリケーションやモデルの微調整において優れたパフォーマンスを発揮し、特に知識問答、コンテンツ生成、検索シーンにおいて優れたコストパフォーマンスとインテリジェントな体験を提供します。"
|
889
880
|
},
|
890
|
-
"llama-3.1-70b-instruct": {
|
891
|
-
"description": "Llama 3.1 70B Instructモデルは、70Bパラメータを持ち、大規模なテキスト生成と指示タスクで卓越した性能を提供します。"
|
892
|
-
},
|
893
881
|
"llama-3.1-70b-versatile": {
|
894
882
|
"description": "Llama 3.1 70Bは、より強力なAI推論能力を提供し、複雑なアプリケーションに適しており、非常に多くの計算処理をサポートし、高効率と精度を保証します。"
|
895
883
|
},
|
896
884
|
"llama-3.1-8b-instant": {
|
897
885
|
"description": "Llama 3.1 8Bは、高効率モデルであり、迅速なテキスト生成能力を提供し、大規模な効率とコスト効果が求められるアプリケーションシナリオに非常に適しています。"
|
898
886
|
},
|
899
|
-
"llama-3.1-8b-instruct": {
|
900
|
-
"description": "Llama 3.1 8B Instructモデルは、8Bパラメータを持ち、画面指示タスクの高効率な実行をサポートし、優れたテキスト生成能力を提供します。"
|
901
|
-
},
|
902
887
|
"llama-3.1-sonar-huge-128k-online": {
|
903
888
|
"description": "Llama 3.1 Sonar Huge Onlineモデルは、405Bパラメータを持ち、約127,000トークンのコンテキスト長をサポートし、複雑なオンラインチャットアプリケーション用に設計されています。"
|
904
889
|
},
|
905
|
-
"llama-3.1-sonar-large-128k-chat": {
|
906
|
-
"description": "Llama 3.1 Sonar Large Chatモデルは、70Bパラメータを持ち、約127,000トークンのコンテキスト長をサポートし、複雑なオフラインチャットタスクに適しています。"
|
907
|
-
},
|
908
890
|
"llama-3.1-sonar-large-128k-online": {
|
909
891
|
"description": "Llama 3.1 Sonar Large Onlineモデルは、70Bパラメータを持ち、約127,000トークンのコンテキスト長をサポートし、高容量で多様なチャットタスクに適しています。"
|
910
892
|
},
|
911
|
-
"llama-3.1-sonar-small-128k-chat": {
|
912
|
-
"description": "Llama 3.1 Sonar Small Chatモデルは、8Bパラメータを持ち、オフラインチャット用に設計されており、約127,000トークンのコンテキスト長をサポートします。"
|
913
|
-
},
|
914
893
|
"llama-3.1-sonar-small-128k-online": {
|
915
894
|
"description": "Llama 3.1 Sonar Small Onlineモデルは、8Bパラメータを持ち、約127,000トークンのコンテキスト長をサポートし、オンラインチャット用に設計されており、さまざまなテキストインタラクションを効率的に処理できます。"
|
916
895
|
},
|
@@ -1355,6 +1334,15 @@
|
|
1355
1334
|
"solar-pro": {
|
1356
1335
|
"description": "Solar ProはUpstageが発表した高インテリジェンスLLMで、単一GPUの指示追従能力に特化しており、IFEvalスコアは80以上です。現在は英語をサポートしており、正式版は2024年11月にリリース予定で、言語サポートとコンテキスト長を拡張します。"
|
1357
1336
|
},
|
1337
|
+
"sonar": {
|
1338
|
+
"description": "検索コンテキストに基づく軽量検索製品で、Sonar Proよりも速く、安価です。"
|
1339
|
+
},
|
1340
|
+
"sonar-pro": {
|
1341
|
+
"description": "検索コンテキストをサポートする高度な検索製品で、高度なクエリとフォローアップをサポートします。"
|
1342
|
+
},
|
1343
|
+
"sonar-reasoning": {
|
1344
|
+
"description": "DeepSeek推論モデルによってサポートされる新しいAPI製品です。"
|
1345
|
+
},
|
1358
1346
|
"step-1-128k": {
|
1359
1347
|
"description": "性能とコストのバランスを取り、一般的なシナリオに適しています。"
|
1360
1348
|
},
|
@@ -1,5 +1,4 @@
|
|
1
1
|
{
|
2
|
-
"0": "{",
|
3
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
4
3
|
"description": "Yi-1.5 34B는 풍부한 훈련 샘플을 통해 산업 응용에서 우수한 성능을 제공합니다."
|
5
4
|
},
|
@@ -9,9 +8,6 @@
|
|
9
8
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
10
9
|
"description": "Yi-1.5 9B는 16K 토큰을 지원하며, 효율적이고 매끄러운 언어 생성 능력을 제공합니다."
|
11
10
|
},
|
12
|
-
"1": "\n",
|
13
|
-
"2": " ",
|
14
|
-
"3": " ",
|
15
11
|
"360gpt-pro": {
|
16
12
|
"description": "360GPT Pro는 360 AI 모델 시리즈의 중요한 구성원으로, 다양한 자연어 응용 시나리오에 맞춘 효율적인 텍스트 처리 능력을 갖추고 있으며, 긴 텍스트 이해 및 다중 회화 기능을 지원합니다."
|
17
13
|
},
|
@@ -327,21 +323,15 @@
|
|
327
323
|
"abab7-chat-preview": {
|
328
324
|
"description": "abab6.5 시리즈 모델에 비해 긴 글, 수학, 작문 등에서 능력이 크게 향상되었습니다."
|
329
325
|
},
|
330
|
-
"accounts/fireworks/models/
|
331
|
-
"description": "
|
326
|
+
"accounts/fireworks/models/deepseek-r1": {
|
327
|
+
"description": "DeepSeek-R1은 최첨단 대형 언어 모델로, 강화 학습과 콜드 스타트 데이터를 최적화하여 뛰어난 추론, 수학 및 프로그래밍 성능을 제공합니다."
|
332
328
|
},
|
333
|
-
"accounts/fireworks/models/
|
334
|
-
"description": "
|
335
|
-
},
|
336
|
-
"accounts/fireworks/models/firellava-13b": {
|
337
|
-
"description": "fireworks-ai/FireLLaVA-13b는 이미지와 텍스트 입력을 동시에 수용할 수 있는 비주얼 언어 모델로, 고품질 데이터로 훈련되어 다중 모달 작업에 적합합니다."
|
329
|
+
"accounts/fireworks/models/deepseek-v3": {
|
330
|
+
"description": "Deepseek에서 제공하는 강력한 Mixture-of-Experts (MoE) 언어 모델로, 총 매개변수 수는 671B이며, 각 토큰은 37B 매개변수를 활성화합니다."
|
338
331
|
},
|
339
332
|
"accounts/fireworks/models/llama-v3-70b-instruct": {
|
340
333
|
"description": "Llama 3 70B 지시 모델은 다국어 대화 및 자연어 이해를 위해 최적화되어 있으며, 대부분의 경쟁 모델보다 성능이 우수합니다."
|
341
334
|
},
|
342
|
-
"accounts/fireworks/models/llama-v3-70b-instruct-hf": {
|
343
|
-
"description": "Llama 3 70B 지시 모델(HF 버전)은 공식 구현 결과와 일치하며, 고품질의 지시 따르기 작업에 적합합니다."
|
344
|
-
},
|
345
335
|
"accounts/fireworks/models/llama-v3-8b-instruct": {
|
346
336
|
"description": "Llama 3 8B 지시 모델은 대화 및 다국어 작업을 위해 최적화되어 있으며, 뛰어난 성능과 효율성을 제공합니다."
|
347
337
|
},
|
@@ -360,24 +350,24 @@
|
|
360
350
|
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct": {
|
361
351
|
"description": "Meta의 11B 파라미터 지시 조정 이미지 추론 모델입니다. 이 모델은 시각 인식, 이미지 추론, 이미지 설명 및 이미지에 대한 일반적인 질문에 답변하기 위해 최적화되었습니다. 이 모델은 차트 및 그래프와 같은 시각 데이터를 이해할 수 있으며, 이미지 세부 사항을 설명하는 텍스트를 생성하여 시각과 언어 간의 격차를 메웁니다."
|
362
352
|
},
|
363
|
-
"accounts/fireworks/models/llama-v3p2-1b-instruct": {
|
364
|
-
"description": "Llama 3.2 1B 지시 모델은 Meta가 출시한 경량 다국어 모델입니다. 이 모델은 효율성을 높이기 위해 설계되었으며, 더 큰 모델에 비해 지연 시간과 비용에서 상당한 개선을 제공합니다. 이 모델의 예시 사용 사례에는 검색 및 요약이 포함됩니다."
|
365
|
-
},
|
366
353
|
"accounts/fireworks/models/llama-v3p2-3b-instruct": {
|
367
354
|
"description": "Llama 3.2 3B 지시 모델은 Meta가 출시한 경량 다국어 모델입니다. 이 모델은 효율성을 높이기 위해 설계되었으며, 더 큰 모델에 비해 지연 시간과 비용에서 상당한 개선을 제공합니다. 이 모델의 예시 사용 사례에는 쿼리 및 프롬프트 재작성, 작문 지원이 포함됩니다."
|
368
355
|
},
|
369
356
|
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct": {
|
370
357
|
"description": "Meta의 90B 파라미터 지시 조정 이미지 추론 모델입니다. 이 모델은 시각 인식, 이미지 추론, 이미지 설명 및 이미지에 대한 일반적인 질문에 답변하기 위해 최적화되었습니다. 이 모델은 차트 및 그래프와 같은 시각 데이터를 이해할 수 있으며, 이미지 세부 사항을 설명하는 텍스트를 생성하여 시각과 언어 간의 격차를 메웁니다."
|
371
358
|
},
|
359
|
+
"accounts/fireworks/models/llama-v3p3-70b-instruct": {
|
360
|
+
"description": "Llama 3.3 70B Instruct는 Llama 3.1 70B의 12월 업데이트 버전입니다. 이 모델은 Llama 3.1 70B(2024년 7월 출시)를 기반으로 개선되어 도구 호출, 다국어 텍스트 지원, 수학 및 프로그래밍 능력을 강화했습니다. 이 모델은 추론, 수학 및 지시 준수에서 업계 최고 수준에 도달했으며, 3.1 405B와 유사한 성능을 제공하면서 속도와 비용에서 상당한 이점을 가지고 있습니다."
|
361
|
+
},
|
362
|
+
"accounts/fireworks/models/mistral-small-24b-instruct-2501": {
|
363
|
+
"description": "24B 매개변수 모델로, 더 큰 모델과 동등한 최첨단 능력을 갖추고 있습니다."
|
364
|
+
},
|
372
365
|
"accounts/fireworks/models/mixtral-8x22b-instruct": {
|
373
366
|
"description": "Mixtral MoE 8x22B 지시 모델은 대규모 매개변수와 다수의 전문가 아키텍처를 통해 복잡한 작업의 효율적인 처리를 전방위적으로 지원합니다."
|
374
367
|
},
|
375
368
|
"accounts/fireworks/models/mixtral-8x7b-instruct": {
|
376
369
|
"description": "Mixtral MoE 8x7B 지시 모델은 다수의 전문가 아키텍처를 통해 효율적인 지시 따르기 및 실행을 제공합니다."
|
377
370
|
},
|
378
|
-
"accounts/fireworks/models/mixtral-8x7b-instruct-hf": {
|
379
|
-
"description": "Mixtral MoE 8x7B 지시 모델(HF 버전)은 성능이 공식 구현과 일치하며, 다양한 효율적인 작업 시나리오에 적합합니다."
|
380
|
-
},
|
381
371
|
"accounts/fireworks/models/mythomax-l2-13b": {
|
382
372
|
"description": "MythoMax L2 13B 모델은 혁신적인 통합 기술을 결합하여 서사 및 역할 수행에 강점을 보입니다."
|
383
373
|
},
|
@@ -387,18 +377,15 @@
|
|
387
377
|
"accounts/fireworks/models/qwen-qwq-32b-preview": {
|
388
378
|
"description": "QwQ 모델은 Qwen 팀이 개발한 실험적 연구 모델로, AI 추론 능력을 향상시키는 데 중점을 두고 있습니다."
|
389
379
|
},
|
380
|
+
"accounts/fireworks/models/qwen2-vl-72b-instruct": {
|
381
|
+
"description": "Qwen-VL 모델의 72B 버전은 알리바바의 최신 반복 결과로, 거의 1년간의 혁신을 대표합니다."
|
382
|
+
},
|
390
383
|
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
391
384
|
"description": "Qwen2.5는 Alibaba Cloud Qwen 팀이 개발한 일련의 디코더 전용 언어 모델입니다. 이러한 모델은 0.5B, 1.5B, 3B, 7B, 14B, 32B 및 72B와 같은 다양한 크기를 제공하며, 기본 버전과 지시 버전 두 가지 변형이 있습니다."
|
392
385
|
},
|
393
386
|
"accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
|
394
387
|
"description": "Qwen2.5 Coder 32B Instruct는 Alibaba Cloud에서 발표한 코드 특화 대규모 언어 모델 시리즈의 최신 버전입니다. 이 모델은 Qwen2.5를 기반으로 하여 55조 개의 토큰으로 훈련되어 코드 생성, 추론 및 수정 능력을 크게 향상시켰습니다. 이 모델은 코딩 능력을 강화할 뿐만 아니라 수학 및 일반 능력의 장점도 유지합니다. 모델은 코드 에이전트와 같은 실제 응용 프로그램에 더 포괄적인 기반을 제공합니다."
|
395
388
|
},
|
396
|
-
"accounts/fireworks/models/starcoder-16b": {
|
397
|
-
"description": "StarCoder 15.5B 모델은 고급 프로그래밍 작업을 지원하며, 다국어 능력이 강화되어 복잡한 코드 생성 및 이해에 적합합니다."
|
398
|
-
},
|
399
|
-
"accounts/fireworks/models/starcoder-7b": {
|
400
|
-
"description": "StarCoder 7B 모델은 80개 이상의 프로그래밍 언어를 대상으로 훈련되어 뛰어난 프로그래밍 완성 능력과 문맥 이해를 제공합니다."
|
401
|
-
},
|
402
389
|
"accounts/yi-01-ai/models/yi-large": {
|
403
390
|
"description": "Yi-Large 모델은 뛰어난 다국어 처리 능력을 갖추고 있으며, 다양한 언어 생성 및 이해 작업에 사용될 수 있습니다."
|
404
391
|
},
|
@@ -564,6 +551,9 @@
|
|
564
551
|
"deepseek-coder-v2:236b": {
|
565
552
|
"description": "DeepSeek Coder V2는 오픈 소스 혼합 전문가 코드 모델로, 코드 작업에서 뛰어난 성능을 발휘하며, GPT4-Turbo와 경쟁할 수 있습니다."
|
566
553
|
},
|
554
|
+
"deepseek-r1": {
|
555
|
+
"description": "DeepSeek-R1은 강화 학습(RL) 기반의 추론 모델로, 모델 내의 반복성과 가독성 문제를 해결합니다. RL 이전에 DeepSeek-R1은 콜드 스타트 데이터를 도입하여 추론 성능을 더욱 최적화했습니다. 수학, 코드 및 추론 작업에서 OpenAI-o1과 유사한 성능을 보이며, 정교하게 설계된 훈련 방법을 통해 전체적인 효과를 향상시켰습니다."
|
556
|
+
},
|
567
557
|
"deepseek-reasoner": {
|
568
558
|
"description": "DeepSeek에서 제공하는 추론 모델입니다. 최종 답변을 출력하기 전에 모델은 먼저 사고 과정을 출력하여 최종 답변의 정확성을 높입니다."
|
569
559
|
},
|
@@ -888,30 +878,18 @@
|
|
888
878
|
"lite": {
|
889
879
|
"description": "Spark Lite는 경량 대형 언어 모델로, 매우 낮은 지연 시간과 효율적인 처리 능력을 갖추고 있으며, 완전히 무료로 제공되고 실시간 온라인 검색 기능을 지원합니다. 빠른 응답 특성 덕분에 저전력 장치에서의 추론 응용 및 모델 미세 조정에서 뛰어난 성능을 발휘하며, 사용자에게 뛰어난 비용 효율성과 스마트한 경험을 제공합니다. 특히 지식 질문 응답, 콘텐츠 생성 및 검색 시나리오에서 두각을 나타냅니다."
|
890
880
|
},
|
891
|
-
"llama-3.1-70b-instruct": {
|
892
|
-
"description": "Llama 3.1 70B Instruct 모델은 70B 매개변수를 갖추고 있으며, 대규모 텍스트 생성 및 지시 작업에서 뛰어난 성능을 제공합니다."
|
893
|
-
},
|
894
881
|
"llama-3.1-70b-versatile": {
|
895
882
|
"description": "Llama 3.1 70B는 더 강력한 AI 추론 능력을 제공하며, 복잡한 응용 프로그램에 적합하고, 많은 계산 처리를 지원하며 효율성과 정확성을 보장합니다."
|
896
883
|
},
|
897
884
|
"llama-3.1-8b-instant": {
|
898
885
|
"description": "Llama 3.1 8B는 효율적인 모델로, 빠른 텍스트 생성 능력을 제공하며, 대규모 효율성과 비용 효과성이 필요한 응용 프로그램에 매우 적합합니다."
|
899
886
|
},
|
900
|
-
"llama-3.1-8b-instruct": {
|
901
|
-
"description": "Llama 3.1 8B Instruct 모델은 8B 매개변수를 갖추고 있으며, 화면 지시 작업의 효율적인 실행을 지원하고 우수한 텍스트 생성 능력을 제공합니다."
|
902
|
-
},
|
903
887
|
"llama-3.1-sonar-huge-128k-online": {
|
904
888
|
"description": "Llama 3.1 Sonar Huge Online 모델은 405B 매개변수를 갖추고 있으며, 약 127,000개의 토큰의 컨텍스트 길이를 지원하여 복잡한 온라인 채팅 애플리케이션을 위해 설계되었습니다."
|
905
889
|
},
|
906
|
-
"llama-3.1-sonar-large-128k-chat": {
|
907
|
-
"description": "Llama 3.1 Sonar Large Chat 모델은 70B 매개변수를 갖추고 있으며, 약 127,000개의 토큰의 컨텍스트 길이를 지원하여 복잡한 오프라인 채팅 작업에 적합합니다."
|
908
|
-
},
|
909
890
|
"llama-3.1-sonar-large-128k-online": {
|
910
891
|
"description": "Llama 3.1 Sonar Large Online 모델은 70B 매개변수를 갖추고 있으며, 약 127,000개의 토큰의 컨텍스트 길이를 지원하여 대용량 및 다양한 채팅 작업에 적합합니다."
|
911
892
|
},
|
912
|
-
"llama-3.1-sonar-small-128k-chat": {
|
913
|
-
"description": "Llama 3.1 Sonar Small Chat 모델은 8B 매개변수를 갖추고 있으며, 오프라인 채팅을 위해 설계되어 약 127,000개의 토큰의 컨텍스트 길이를 지원합니다."
|
914
|
-
},
|
915
893
|
"llama-3.1-sonar-small-128k-online": {
|
916
894
|
"description": "Llama 3.1 Sonar Small Online 모델은 8B 매개변수를 갖추고 있으며, 약 127,000개의 토큰의 컨텍스트 길이를 지원하여 온라인 채팅을 위해 설계되었습니다."
|
917
895
|
},
|
@@ -1356,6 +1334,15 @@
|
|
1356
1334
|
"solar-pro": {
|
1357
1335
|
"description": "Solar Pro는 Upstage에서 출시한 고지능 LLM으로, 단일 GPU의 지시 추적 능력에 중점을 두고 있으며, IFEval 점수가 80 이상입니다. 현재 영어를 지원하며, 정식 버전은 2024년 11월에 출시될 예정이며, 언어 지원 및 컨텍스트 길이를 확장할 계획입니다."
|
1358
1336
|
},
|
1337
|
+
"sonar": {
|
1338
|
+
"description": "검색 맥락 기반의 경량 검색 제품으로, Sonar Pro보다 더 빠르고 저렴합니다."
|
1339
|
+
},
|
1340
|
+
"sonar-pro": {
|
1341
|
+
"description": "고급 쿼리 및 후속 작업을 지원하는 검색 맥락 기반의 고급 검색 제품입니다."
|
1342
|
+
},
|
1343
|
+
"sonar-reasoning": {
|
1344
|
+
"description": "DeepSeek 추론 모델이 지원하는 새로운 API 제품입니다."
|
1345
|
+
},
|
1359
1346
|
"step-1-128k": {
|
1360
1347
|
"description": "성능과 비용의 균형을 맞추어 일반적인 시나리오에 적합합니다."
|
1361
1348
|
},
|
@@ -323,21 +323,15 @@
|
|
323
323
|
"abab7-chat-preview": {
|
324
324
|
"description": "In vergelijking met de abab6.5-serie modellen zijn er aanzienlijke verbeteringen in de capaciteiten op het gebied van lange teksten, wiskunde, schrijven, enzovoort."
|
325
325
|
},
|
326
|
-
"accounts/fireworks/models/
|
327
|
-
"description": "
|
326
|
+
"accounts/fireworks/models/deepseek-r1": {
|
327
|
+
"description": "DeepSeek-R1 is een geavanceerd groot taalmodel, geoptimaliseerd met versterkend leren en koude startdata, met uitstekende prestaties in redeneren, wiskunde en programmeren."
|
328
328
|
},
|
329
|
-
"accounts/fireworks/models/
|
330
|
-
"description": "
|
331
|
-
},
|
332
|
-
"accounts/fireworks/models/firellava-13b": {
|
333
|
-
"description": "fireworks-ai/FireLLaVA-13b is een visueel taalmodel dat zowel afbeeldingen als tekstinvoer kan verwerken, getraind op hoogwaardige gegevens, geschikt voor multimodale taken."
|
329
|
+
"accounts/fireworks/models/deepseek-v3": {
|
330
|
+
"description": "Een krachtige Mixture-of-Experts (MoE) taalmodel van Deepseek, met een totaal aantal parameters van 671B, waarbij 37B parameters per token worden geactiveerd."
|
334
331
|
},
|
335
332
|
"accounts/fireworks/models/llama-v3-70b-instruct": {
|
336
333
|
"description": "Llama 3 70B instructiemodel, speciaal geoptimaliseerd voor meertalige gesprekken en natuurlijke taalbegrip, presteert beter dan de meeste concurrerende modellen."
|
337
334
|
},
|
338
|
-
"accounts/fireworks/models/llama-v3-70b-instruct-hf": {
|
339
|
-
"description": "Llama 3 70B instructiemodel (HF-versie), consistent met de officiële implementatieresultaten, geschikt voor hoogwaardige instructietaken."
|
340
|
-
},
|
341
335
|
"accounts/fireworks/models/llama-v3-8b-instruct": {
|
342
336
|
"description": "Llama 3 8B instructiemodel, geoptimaliseerd voor gesprekken en meertalige taken, presteert uitstekend en efficiënt."
|
343
337
|
},
|
@@ -356,24 +350,24 @@
|
|
356
350
|
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct": {
|
357
351
|
"description": "Meta's 11B-parameter instructie-geoptimaliseerde beeldredeneringsmodel. Dit model is geoptimaliseerd voor visuele herkenning, beeldredenering, afbeeldingsbeschrijving en het beantwoorden van algemene vragen over afbeeldingen. Dit model kan visuele gegevens begrijpen, zoals diagrammen en grafieken, en overbrugt de kloof tussen visuele informatie en tekst door het genereren van tekstbeschrijvingen van afbeeldingsdetails."
|
358
352
|
},
|
359
|
-
"accounts/fireworks/models/llama-v3p2-1b-instruct": {
|
360
|
-
"description": "Llama 3.2 1B instructiemodel is een lichtgewicht meertalig model geïntroduceerd door Meta. Dit model is ontworpen om de efficiëntie te verhogen, met aanzienlijke verbeteringen in latentie en kosten in vergelijking met grotere modellen. Voorbeelden van gebruikssituaties van dit model zijn ophalen en samenvatten."
|
361
|
-
},
|
362
353
|
"accounts/fireworks/models/llama-v3p2-3b-instruct": {
|
363
354
|
"description": "Llama 3.2 3B instructiemodel is een lichtgewicht meertalig model geïntroduceerd door Meta. Dit model is ontworpen om de efficiëntie te verhogen, met aanzienlijke verbeteringen in latentie en kosten in vergelijking met grotere modellen. Voorbeelden van gebruikssituaties van dit model zijn het herformuleren van vragen en prompts, evenals schrijfondersteuning."
|
364
355
|
},
|
365
356
|
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct": {
|
366
357
|
"description": "Meta's 90B-parameter instructie-geoptimaliseerde beeldredeneringsmodel. Dit model is geoptimaliseerd voor visuele herkenning, beeldredenering, afbeeldingsbeschrijving en het beantwoorden van algemene vragen over afbeeldingen. Dit model kan visuele gegevens begrijpen, zoals diagrammen en grafieken, en overbrugt de kloof tussen visuele informatie en tekst door het genereren van tekstbeschrijvingen van afbeeldingsdetails."
|
367
358
|
},
|
359
|
+
"accounts/fireworks/models/llama-v3p3-70b-instruct": {
|
360
|
+
"description": "Llama 3.3 70B Instruct is de update van december voor Llama 3.1 70B. Dit model is verbeterd op basis van Llama 3.1 70B (uitgebracht in juli 2024) en biedt verbeterde toolaanroepen, ondersteuning voor meertalige teksten, wiskunde en programmeervaardigheden. Het model heeft een toonaangevende prestatie bereikt op het gebied van redeneren, wiskunde en het volgen van instructies, en kan prestaties bieden die vergelijkbaar zijn met die van 3.1 405B, met aanzienlijke voordelen op het gebied van snelheid en kosten."
|
361
|
+
},
|
362
|
+
"accounts/fireworks/models/mistral-small-24b-instruct-2501": {
|
363
|
+
"description": "Een model met 24B parameters, dat geavanceerde mogelijkheden biedt die vergelijkbaar zijn met grotere modellen."
|
364
|
+
},
|
368
365
|
"accounts/fireworks/models/mixtral-8x22b-instruct": {
|
369
366
|
"description": "Mixtral MoE 8x22B instructiemodel, met een groot aantal parameters en een multi-expertarchitectuur, biedt uitgebreide ondersteuning voor de efficiënte verwerking van complexe taken."
|
370
367
|
},
|
371
368
|
"accounts/fireworks/models/mixtral-8x7b-instruct": {
|
372
369
|
"description": "Mixtral MoE 8x7B instructiemodel, met een multi-expertarchitectuur die efficiënte instructievolging en uitvoering biedt."
|
373
370
|
},
|
374
|
-
"accounts/fireworks/models/mixtral-8x7b-instruct-hf": {
|
375
|
-
"description": "Mixtral MoE 8x7B instructiemodel (HF-versie), met prestaties die overeenkomen met de officiële implementatie, geschikt voor verschillende efficiënte taakscenario's."
|
376
|
-
},
|
377
371
|
"accounts/fireworks/models/mythomax-l2-13b": {
|
378
372
|
"description": "MythoMax L2 13B model, dat gebruik maakt van innovatieve samenvoegtechnologie, is goed in verhalen vertellen en rollenspellen."
|
379
373
|
},
|
@@ -383,18 +377,15 @@
|
|
383
377
|
"accounts/fireworks/models/qwen-qwq-32b-preview": {
|
384
378
|
"description": "Het QwQ-model is een experimenteel onderzoeksmodel ontwikkeld door het Qwen-team, gericht op het verbeteren van de AI-redeneringscapaciteiten."
|
385
379
|
},
|
380
|
+
"accounts/fireworks/models/qwen2-vl-72b-instruct": {
|
381
|
+
"description": "De 72B versie van het Qwen-VL model is het nieuwste resultaat van Alibaba's iteraties, dat bijna een jaar aan innovaties vertegenwoordigt."
|
382
|
+
},
|
386
383
|
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
387
384
|
"description": "Qwen2.5 is een serie decoder-only taalmodellen ontwikkeld door het Alibaba Qwen-team. Deze modellen zijn beschikbaar in verschillende groottes, waaronder 0.5B, 1.5B, 3B, 7B, 14B, 32B en 72B, met zowel een basisversie als een instructieversie."
|
388
385
|
},
|
389
386
|
"accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
|
390
387
|
"description": "Qwen2.5 Coder 32B Instruct is de nieuwste versie van de code-specifieke grote taalmodelreeks die door Alibaba Cloud is uitgebracht. Dit model is aanzienlijk verbeterd in codegeneratie, redenering en herstelcapaciteiten door training met 55 biljoen tokens, gebaseerd op Qwen2.5. Het versterkt niet alleen de coderingscapaciteiten, maar behoudt ook de voordelen van wiskundige en algemene vaardigheden. Het model biedt een meer uitgebreide basis voor praktische toepassingen zoals code-agenten."
|
391
388
|
},
|
392
|
-
"accounts/fireworks/models/starcoder-16b": {
|
393
|
-
"description": "StarCoder 15.5B model, ondersteunt geavanceerde programmeertaken, met verbeterde meertalige capaciteiten, geschikt voor complexe codegeneratie en -begrip."
|
394
|
-
},
|
395
|
-
"accounts/fireworks/models/starcoder-7b": {
|
396
|
-
"description": "StarCoder 7B model, getraind op meer dan 80 programmeertalen, met uitstekende programmeervulcapaciteiten en contextbegrip."
|
397
|
-
},
|
398
389
|
"accounts/yi-01-ai/models/yi-large": {
|
399
390
|
"description": "Yi-Large model, met uitstekende meertalige verwerkingscapaciteiten, geschikt voor verschillende taalgeneratie- en begripstaken."
|
400
391
|
},
|
@@ -887,30 +878,18 @@
|
|
887
878
|
"lite": {
|
888
879
|
"description": "Spark Lite is een lichtgewicht groot taalmodel met extreem lage latentie en efficiënte verwerkingscapaciteit. Het is volledig gratis en open, en ondersteunt realtime online zoekfunctionaliteit. De snelle respons maakt het uitermate geschikt voor inferentie op apparaten met lage rekenkracht en modelafstemming, wat gebruikers uitstekende kosteneffectiviteit en een slimme ervaring biedt, vooral in kennisvragen, contentgeneratie en zoekscenario's."
|
889
880
|
},
|
890
|
-
"llama-3.1-70b-instruct": {
|
891
|
-
"description": "Llama 3.1 70B Instruct model, met 70B parameters, biedt uitstekende prestaties in grote tekstgeneratie- en instructietaken."
|
892
|
-
},
|
893
881
|
"llama-3.1-70b-versatile": {
|
894
882
|
"description": "Llama 3.1 70B biedt krachtigere AI-inferentiecapaciteiten, geschikt voor complexe toepassingen, ondersteunt een enorme rekenverwerking en garandeert efficiëntie en nauwkeurigheid."
|
895
883
|
},
|
896
884
|
"llama-3.1-8b-instant": {
|
897
885
|
"description": "Llama 3.1 8B is een hoogpresterend model dat snelle tekstgeneratiecapaciteiten biedt, zeer geschikt voor toepassingen die grootschalige efficiëntie en kosteneffectiviteit vereisen."
|
898
886
|
},
|
899
|
-
"llama-3.1-8b-instruct": {
|
900
|
-
"description": "Llama 3.1 8B Instruct model, met 8B parameters, ondersteunt de efficiënte uitvoering van visuele instructietaken en biedt hoogwaardige tekstgeneratiecapaciteiten."
|
901
|
-
},
|
902
887
|
"llama-3.1-sonar-huge-128k-online": {
|
903
888
|
"description": "Llama 3.1 Sonar Huge Online model, met 405B parameters, ondersteunt een contextlengte van ongeveer 127.000 tokens, ontworpen voor complexe online chattoepassingen."
|
904
889
|
},
|
905
|
-
"llama-3.1-sonar-large-128k-chat": {
|
906
|
-
"description": "Llama 3.1 Sonar Large Chat model, met 70B parameters, ondersteunt een contextlengte van ongeveer 127.000 tokens, geschikt voor complexe offline chattaken."
|
907
|
-
},
|
908
890
|
"llama-3.1-sonar-large-128k-online": {
|
909
891
|
"description": "Llama 3.1 Sonar Large Online model, met 70B parameters, ondersteunt een contextlengte van ongeveer 127.000 tokens, geschikt voor hoge capaciteit en diverse chattaken."
|
910
892
|
},
|
911
|
-
"llama-3.1-sonar-small-128k-chat": {
|
912
|
-
"description": "Llama 3.1 Sonar Small Chat model, met 8B parameters, speciaal ontworpen voor offline chat, ondersteunt een contextlengte van ongeveer 127.000 tokens."
|
913
|
-
},
|
914
893
|
"llama-3.1-sonar-small-128k-online": {
|
915
894
|
"description": "Llama 3.1 Sonar Small Online model, met 8B parameters, ondersteunt een contextlengte van ongeveer 127.000 tokens, speciaal ontworpen voor online chat en kan efficiënt verschillende tekstinteracties verwerken."
|
916
895
|
},
|
@@ -1355,6 +1334,15 @@
|
|
1355
1334
|
"solar-pro": {
|
1356
1335
|
"description": "Solar Pro is een zeer intelligent LLM dat is uitgebracht door Upstage, gericht op instructievolging met één GPU, met een IFEval-score van boven de 80. Momenteel ondersteunt het Engels, met een officiële versie die gepland staat voor november 2024, die de taalondersteuning en contextlengte zal uitbreiden."
|
1357
1336
|
},
|
1337
|
+
"sonar": {
|
1338
|
+
"description": "Een lichtgewicht zoekproduct op basis van contextuele zoekopdrachten, sneller en goedkoper dan Sonar Pro."
|
1339
|
+
},
|
1340
|
+
"sonar-pro": {
|
1341
|
+
"description": "Een geavanceerd zoekproduct dat contextuele zoekopdrachten ondersteunt, met geavanceerde query's en vervolgacties."
|
1342
|
+
},
|
1343
|
+
"sonar-reasoning": {
|
1344
|
+
"description": "Een nieuw API-product ondersteund door het DeepSeek redeneringsmodel."
|
1345
|
+
},
|
1358
1346
|
"step-1-128k": {
|
1359
1347
|
"description": "Biedt een balans tussen prestaties en kosten, geschikt voor algemene scenario's."
|
1360
1348
|
},
|
@@ -323,21 +323,15 @@
|
|
323
323
|
"abab7-chat-preview": {
|
324
324
|
"description": "W porównaniu do modeli z serii abab6.5, zdolności w zakresie długich tekstów, matematyki i pisania uległy znacznej poprawie."
|
325
325
|
},
|
326
|
-
"accounts/fireworks/models/
|
327
|
-
"description": "
|
326
|
+
"accounts/fireworks/models/deepseek-r1": {
|
327
|
+
"description": "DeepSeek-R1 to zaawansowany model językowy, który został zoptymalizowany dzięki uczeniu przez wzmocnienie i danym z zimnego startu, oferując doskonałe możliwości wnioskowania, matematyki i programowania."
|
328
328
|
},
|
329
|
-
"accounts/fireworks/models/
|
330
|
-
"description": "
|
331
|
-
},
|
332
|
-
"accounts/fireworks/models/firellava-13b": {
|
333
|
-
"description": "fireworks-ai/FireLLaVA-13b to model językowy wizualny, który może jednocześnie przyjmować obrazy i tekst, przeszkolony na wysokiej jakości danych, idealny do zadań multimodalnych."
|
329
|
+
"accounts/fireworks/models/deepseek-v3": {
|
330
|
+
"description": "Potężny model językowy Mixture-of-Experts (MoE) oferowany przez Deepseek, z całkowitą liczbą parametrów wynoszącą 671 miliardów, aktywującym 37 miliardów parametrów na każdy token."
|
334
331
|
},
|
335
332
|
"accounts/fireworks/models/llama-v3-70b-instruct": {
|
336
333
|
"description": "Model Llama 3 70B Instruct, zaprojektowany do wielojęzycznych dialogów i rozumienia języka naturalnego, przewyższa większość konkurencyjnych modeli."
|
337
334
|
},
|
338
|
-
"accounts/fireworks/models/llama-v3-70b-instruct-hf": {
|
339
|
-
"description": "Model Llama 3 70B Instruct (wersja HF), zgodny z wynikami oficjalnej implementacji, idealny do wysokiej jakości zadań śledzenia poleceń."
|
340
|
-
},
|
341
335
|
"accounts/fireworks/models/llama-v3-8b-instruct": {
|
342
336
|
"description": "Model Llama 3 8B Instruct, zoptymalizowany do dialogów i zadań wielojęzycznych, oferuje doskonałe i efektywne osiągi."
|
343
337
|
},
|
@@ -356,24 +350,24 @@
|
|
356
350
|
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct": {
|
357
351
|
"description": "Model wnioskowania wizualnego z 11B parametrów od Meta. Model zoptymalizowany do rozpoznawania wizualnego, wnioskowania obrazów, opisywania obrazów oraz odpowiadania na ogólne pytania dotyczące obrazów. Model potrafi rozumieć dane wizualne, takie jak wykresy i grafiki, a dzięki generowaniu tekstowych opisów szczegółów obrazów, łączy wizję z językiem."
|
358
352
|
},
|
359
|
-
"accounts/fireworks/models/llama-v3p2-1b-instruct": {
|
360
|
-
"description": "Model instruktażowy Llama 3.2 1B to lekki model wielojęzyczny zaprezentowany przez Meta. Zaprojektowany, aby poprawić wydajność, oferując znaczące usprawnienia w opóźnieniu i kosztach w porównaniu do większych modeli. Przykładowe przypadki użycia tego modelu obejmują wyszukiwanie i podsumowywanie."
|
361
|
-
},
|
362
353
|
"accounts/fireworks/models/llama-v3p2-3b-instruct": {
|
363
354
|
"description": "Model instruktażowy Llama 3.2 3B to lekki model wielojęzyczny zaprezentowany przez Meta. Zaprojektowany, aby poprawić wydajność, oferując znaczące usprawnienia w opóźnieniu i kosztach w porównaniu do większych modeli. Przykładowe przypadki użycia tego modelu obejmują zapytania i przepisanie sugestii oraz pomoc w pisaniu."
|
364
355
|
},
|
365
356
|
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct": {
|
366
357
|
"description": "Model wnioskowania wizualnego z 90B parametrów od Meta. Model zoptymalizowany do rozpoznawania wizualnego, wnioskowania obrazów, opisywania obrazów oraz odpowiadania na ogólne pytania dotyczące obrazów. Model potrafi rozumieć dane wizualne, takie jak wykresy i grafiki, a dzięki generowaniu tekstowych opisów szczegółów obrazów, łączy wizję z językiem."
|
367
358
|
},
|
359
|
+
"accounts/fireworks/models/llama-v3p3-70b-instruct": {
|
360
|
+
"description": "Llama 3.3 70B Instruct to zaktualizowana wersja Llama 3.1 70B z grudnia. Model ten został ulepszony w oparciu o Llama 3.1 70B (wydany w lipcu 2024), wzmacniając możliwości wywoływania narzędzi, wsparcie dla tekstów w wielu językach, a także umiejętności matematyczne i programistyczne. Model osiągnął wiodący w branży poziom w zakresie wnioskowania, matematyki i przestrzegania instrukcji, oferując wydajność porównywalną z 3.1 405B, jednocześnie zapewniając znaczące korzyści w zakresie szybkości i kosztów."
|
361
|
+
},
|
362
|
+
"accounts/fireworks/models/mistral-small-24b-instruct-2501": {
|
363
|
+
"description": "Model z 24 miliardami parametrów, oferujący zaawansowane możliwości porównywalne z większymi modelami."
|
364
|
+
},
|
368
365
|
"accounts/fireworks/models/mixtral-8x22b-instruct": {
|
369
366
|
"description": "Model Mixtral MoE 8x22B Instruct, z dużą liczbą parametrów i architekturą wielu ekspertów, kompleksowo wspierający efektywne przetwarzanie złożonych zadań."
|
370
367
|
},
|
371
368
|
"accounts/fireworks/models/mixtral-8x7b-instruct": {
|
372
369
|
"description": "Model Mixtral MoE 8x7B Instruct, architektura wielu ekspertów, oferująca efektywne śledzenie i wykonanie poleceń."
|
373
370
|
},
|
374
|
-
"accounts/fireworks/models/mixtral-8x7b-instruct-hf": {
|
375
|
-
"description": "Model Mixtral MoE 8x7B Instruct (wersja HF), wydajność zgodna z oficjalną implementacją, idealny do różnych scenariuszy efektywnych zadań."
|
376
|
-
},
|
377
371
|
"accounts/fireworks/models/mythomax-l2-13b": {
|
378
372
|
"description": "Model MythoMax L2 13B, łączący nowatorskie techniki łączenia, doskonały w narracji i odgrywaniu ról."
|
379
373
|
},
|
@@ -383,18 +377,15 @@
|
|
383
377
|
"accounts/fireworks/models/qwen-qwq-32b-preview": {
|
384
378
|
"description": "Model QwQ to eksperymentalny model badawczy opracowany przez zespół Qwen, skoncentrowany na zwiększeniu zdolności wnioskowania AI."
|
385
379
|
},
|
380
|
+
"accounts/fireworks/models/qwen2-vl-72b-instruct": {
|
381
|
+
"description": "Wersja 72B modelu Qwen-VL to najnowszy owoc iteracji Alibaba, reprezentujący innowacje z ostatniego roku."
|
382
|
+
},
|
386
383
|
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
387
384
|
"description": "Qwen2.5 to seria modeli językowych opracowana przez zespół Qwen na chmurze Alibaba, która zawiera jedynie dekodery. Modele te występują w różnych rozmiarach, w tym 0.5B, 1.5B, 3B, 7B, 14B, 32B i 72B, i oferują dwie wersje: bazową (base) i instruktażową (instruct)."
|
388
385
|
},
|
389
386
|
"accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
|
390
387
|
"description": "Qwen2.5 Coder 32B Instruct to najnowsza wersja serii dużych modeli językowych specyficznych dla kodu wydana przez Alibaba Cloud. Model ten, oparty na Qwen2.5, został przeszkolony na 55 bilionach tokenów, znacznie poprawiając zdolności generowania kodu, wnioskowania i naprawy. Wzmacnia on nie tylko zdolności kodowania, ale także utrzymuje przewagę w zakresie matematyki i ogólnych umiejętności. Model ten stanowi bardziej kompleksową podstawę dla rzeczywistych zastosowań, takich jak inteligentne agenty kodowe."
|
391
388
|
},
|
392
|
-
"accounts/fireworks/models/starcoder-16b": {
|
393
|
-
"description": "Model StarCoder 15.5B, wspierający zaawansowane zadania programistyczne, z wzmocnionymi możliwościami wielojęzycznymi, idealny do złożonego generowania i rozumienia kodu."
|
394
|
-
},
|
395
|
-
"accounts/fireworks/models/starcoder-7b": {
|
396
|
-
"description": "Model StarCoder 7B, przeszkolony w ponad 80 językach programowania, oferujący doskonałe możliwości uzupełniania kodu i rozumienia kontekstu."
|
397
|
-
},
|
398
389
|
"accounts/yi-01-ai/models/yi-large": {
|
399
390
|
"description": "Model Yi-Large, oferujący doskonałe możliwości przetwarzania wielojęzycznego, nadający się do różnych zadań generowania i rozumienia języka."
|
400
391
|
},
|
@@ -887,30 +878,18 @@
|
|
887
878
|
"lite": {
|
888
879
|
"description": "Spark Lite to lekki model językowy o dużej skali, charakteryzujący się niezwykle niskim opóźnieniem i wysoką wydajnością przetwarzania, całkowicie darmowy i otwarty, wspierający funkcje wyszukiwania w czasie rzeczywistym. Jego cechy szybkiej reakcji sprawiają, że doskonale sprawdza się w zastosowaniach inferencyjnych na urządzeniach o niskiej mocy obliczeniowej oraz w dostosowywaniu modeli, oferując użytkownikom znakomity stosunek kosztów do korzyści oraz inteligentne doświadczenie, szczególnie w kontekście pytań i odpowiedzi, generowania treści oraz wyszukiwania."
|
889
880
|
},
|
890
|
-
"llama-3.1-70b-instruct": {
|
891
|
-
"description": "Model Llama 3.1 70B Instruct, z 70B parametrami, oferujący doskonałe osiągi w dużych zadaniach generowania tekstu i poleceń."
|
892
|
-
},
|
893
881
|
"llama-3.1-70b-versatile": {
|
894
882
|
"description": "Llama 3.1 70B oferuje potężne możliwości wnioskowania AI, odpowiednie do złożonych zastosowań, wspierające ogromne przetwarzanie obliczeniowe przy zachowaniu efektywności i dokładności."
|
895
883
|
},
|
896
884
|
"llama-3.1-8b-instant": {
|
897
885
|
"description": "Llama 3.1 8B to model o wysokiej wydajności, oferujący szybkie możliwości generowania tekstu, idealny do zastosowań wymagających dużej efektywności i opłacalności."
|
898
886
|
},
|
899
|
-
"llama-3.1-8b-instruct": {
|
900
|
-
"description": "Model Llama 3.1 8B Instruct, z 8B parametrami, wspierający efektywne wykonanie zadań wskazujących, oferujący wysoką jakość generowania tekstu."
|
901
|
-
},
|
902
887
|
"llama-3.1-sonar-huge-128k-online": {
|
903
888
|
"description": "Model Llama 3.1 Sonar Huge Online, z 405B parametrami, obsługujący kontekst o długości około 127,000 tokenów, zaprojektowany do złożonych aplikacji czatu online."
|
904
889
|
},
|
905
|
-
"llama-3.1-sonar-large-128k-chat": {
|
906
|
-
"description": "Model Llama 3.1 Sonar Large Chat, z 70B parametrami, obsługujący kontekst o długości około 127,000 tokenów, idealny do złożonych zadań czatu offline."
|
907
|
-
},
|
908
890
|
"llama-3.1-sonar-large-128k-online": {
|
909
891
|
"description": "Model Llama 3.1 Sonar Large Online, z 70B parametrami, obsługujący kontekst o długości około 127,000 tokenów, idealny do zadań czatu o dużej pojemności i różnorodności."
|
910
892
|
},
|
911
|
-
"llama-3.1-sonar-small-128k-chat": {
|
912
|
-
"description": "Model Llama 3.1 Sonar Small Chat, z 8B parametrami, zaprojektowany do czatów offline, obsługujący kontekst o długości około 127,000 tokenów."
|
913
|
-
},
|
914
893
|
"llama-3.1-sonar-small-128k-online": {
|
915
894
|
"description": "Model Llama 3.1 Sonar Small Online, z 8B parametrami, obsługujący kontekst o długości około 127,000 tokenów, zaprojektowany do czatów online, efektywnie przetwarzający różne interakcje tekstowe."
|
916
895
|
},
|
@@ -1355,6 +1334,15 @@
|
|
1355
1334
|
"solar-pro": {
|
1356
1335
|
"description": "Solar Pro to model LLM o wysokiej inteligencji wydany przez Upstage, koncentrujący się na zdolności do przestrzegania instrukcji na pojedynczym GPU, osiągając wynik IFEval powyżej 80. Obecnie wspiera język angielski, a wersja oficjalna planowana jest na listopad 2024, z rozszerzeniem wsparcia językowego i długości kontekstu."
|
1357
1336
|
},
|
1337
|
+
"sonar": {
|
1338
|
+
"description": "Lekki produkt wyszukiwania oparty na kontekście, szybszy i tańszy niż Sonar Pro."
|
1339
|
+
},
|
1340
|
+
"sonar-pro": {
|
1341
|
+
"description": "Zaawansowany produkt wyszukiwania wspierający kontekst wyszukiwania, oferujący zaawansowane zapytania i śledzenie."
|
1342
|
+
},
|
1343
|
+
"sonar-reasoning": {
|
1344
|
+
"description": "Nowy produkt API wspierany przez model wnioskowania DeepSeek."
|
1345
|
+
},
|
1358
1346
|
"step-1-128k": {
|
1359
1347
|
"description": "Równoważy wydajność i koszty, odpowiedni do ogólnych scenariuszy."
|
1360
1348
|
},
|