@lobehub/chat 1.50.1 → 1.50.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/docker-compose/local/.env.example +9 -3
- package/docker-compose/local/.env.zh-CN.example +8 -3
- package/docker-compose/local/docker-compose.yml +22 -12
- package/docker-compose/local/init_data.json +473 -12
- package/docker-compose/setup.sh +660 -0
- package/docs/self-hosting/server-database/docker-compose.mdx +549 -271
- package/docs/self-hosting/server-database/docker-compose.zh-CN.mdx +415 -124
- package/locales/ar/models.json +22 -34
- package/locales/bg-BG/models.json +22 -34
- package/locales/de-DE/models.json +22 -34
- package/locales/en-US/models.json +22 -34
- package/locales/es-ES/models.json +22 -34
- package/locales/fa-IR/models.json +22 -34
- package/locales/fr-FR/models.json +22 -34
- package/locales/it-IT/models.json +22 -34
- package/locales/ja-JP/models.json +22 -34
- package/locales/ko-KR/models.json +25 -38
- package/locales/nl-NL/models.json +22 -34
- package/locales/pl-PL/models.json +22 -34
- package/locales/pt-BR/models.json +22 -34
- package/locales/ru-RU/models.json +22 -34
- package/locales/tr-TR/models.json +22 -34
- package/locales/vi-VN/models.json +22 -34
- package/locales/zh-CN/models.json +39 -51
- package/locales/zh-TW/models.json +22 -34
- package/package.json +1 -1
- package/src/libs/agent-runtime/github/index.ts +2 -2
- package/src/libs/agent-runtime/openai/index.ts +31 -23
- package/docker-compose/local/s3_data.tar.gz +0 -0
- package/docker-compose/local/setup.sh +0 -375
package/locales/ar/models.json
CHANGED
@@ -323,21 +323,15 @@
|
|
323
323
|
"abab7-chat-preview": {
|
324
324
|
"description": "تحسين كبير في قدرات النموذج مقارنة بسلسلة abab6.5 في النصوص الطويلة، الرياضيات، والكتابة."
|
325
325
|
},
|
326
|
-
"accounts/fireworks/models/
|
327
|
-
"description": "نموذج
|
326
|
+
"accounts/fireworks/models/deepseek-r1": {
|
327
|
+
"description": "DeepSeek-R1 هو نموذج لغة كبير متقدم، تم تحسينه من خلال التعلم المعزز وبيانات البدء البارد، ويتميز بأداء ممتاز في الاستدلال، والرياضيات، والبرمجة."
|
328
328
|
},
|
329
|
-
"accounts/fireworks/models/
|
330
|
-
"description": "
|
331
|
-
},
|
332
|
-
"accounts/fireworks/models/firellava-13b": {
|
333
|
-
"description": "fireworks-ai/FireLLaVA-13b هو نموذج لغوي بصري، يمكنه استقبال المدخلات من الصور والنصوص، تم تدريبه على بيانات عالية الجودة، مناسب للمهام متعددة الوسائط."
|
329
|
+
"accounts/fireworks/models/deepseek-v3": {
|
330
|
+
"description": "نموذج اللغة القوي من Deepseek، الذي يعتمد على مزيج من الخبراء (MoE)، بإجمالي عدد معلمات يبلغ 671 مليار، حيث يتم تفعيل 37 مليار معلمة لكل علامة."
|
334
331
|
},
|
335
332
|
"accounts/fireworks/models/llama-v3-70b-instruct": {
|
336
333
|
"description": "نموذج Llama 3 70B للتعليمات، مصمم للحوار متعدد اللغات وفهم اللغة الطبيعية، أداءه يتفوق على معظم النماذج المنافسة."
|
337
334
|
},
|
338
|
-
"accounts/fireworks/models/llama-v3-70b-instruct-hf": {
|
339
|
-
"description": "نموذج Llama 3 70B للتعليمات (نسخة HF)، يتوافق مع نتائج التنفيذ الرسمية، مناسب لمهام اتباع التعليمات عالية الجودة."
|
340
|
-
},
|
341
335
|
"accounts/fireworks/models/llama-v3-8b-instruct": {
|
342
336
|
"description": "نموذج Llama 3 8B للتعليمات، تم تحسينه للحوار والمهام متعددة اللغات، يظهر أداءً ممتازًا وفعالًا."
|
343
337
|
},
|
@@ -356,24 +350,24 @@
|
|
356
350
|
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct": {
|
357
351
|
"description": "نموذج استدلال الصور المعدل من Meta ذو 11B معلمات. تم تحسين هذا النموذج للتعرف البصري، واستدلال الصور، ووصف الصور، والإجابة عن الأسئلة العامة المتعلقة بالصور. يستطيع النموذج فهم البيانات البصرية مثل الرسوم البيانية والرسوم، ويسد الفجوة بين الرؤية واللغة من خلال توليد أوصاف نصية لجزئيات الصور."
|
358
352
|
},
|
359
|
-
"accounts/fireworks/models/llama-v3p2-1b-instruct": {
|
360
|
-
"description": "نموذج التوجيه Llama 3.2 1B هو نموذج متعدد اللغات خفيف الوزن قدمته Meta. يهدف هذا النموذج إلى زيادة الكفاءة، مع تحسينات ملحوظة في التأخير والتكلفة مقارنة بالنماذج الأكبر. تشمل حالات الاستخدام النموذجية لهذا النموذج الاسترجاع والتلخيص."
|
361
|
-
},
|
362
353
|
"accounts/fireworks/models/llama-v3p2-3b-instruct": {
|
363
354
|
"description": "نموذج التوجيه Llama 3.2 3B هو نموذج متعدد اللغات خفيف الوزن قدمته Meta. يهدف هذا النموذج إلى زيادة الكفاءة، مع تحسينات ملحوظة في التأخير والتكلفة مقارنة بالنماذج الأكبر. تشمل حالات الاستخدام النموذجية لهذا النموذج الاستفسارات وإعادة كتابة الملاحظات والمساعدة في الكتابة."
|
364
355
|
},
|
365
356
|
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct": {
|
366
357
|
"description": "نموذج استدلال الصور المعدل من Meta ذو 90B معلمات. تم تحسين هذا النموذج للتعرف البصري، واستدلال الصور، ووصف الصور، والإجابة عن الأسئلة العامة المتعلقة بالصور. يستطيع النموذج فهم البيانات البصرية مثل الرسوم البيانية والرسوم، ويسد الفجوة بين الرؤية واللغة من خلال توليد أوصاف نصية لجزئيات الصور."
|
367
358
|
},
|
359
|
+
"accounts/fireworks/models/llama-v3p3-70b-instruct": {
|
360
|
+
"description": "Llama 3.3 70B Instruct هو الإصدار المحدث من Llama 3.1 70B في ديسمبر. تم تحسين هذا النموذج بناءً على Llama 3.1 70B (الذي تم إصداره في يوليو 2024) لتعزيز استدعاء الأدوات، ودعم النصوص متعددة اللغات، والقدرات الرياضية وبرمجة. لقد حقق هذا النموذج مستويات رائدة في الصناعة في الاستدلال، والرياضيات، واتباع التعليمات، ويستطيع تقديم أداء مشابه لـ 3.1 405B، مع مزايا ملحوظة في السرعة والتكلفة."
|
361
|
+
},
|
362
|
+
"accounts/fireworks/models/mistral-small-24b-instruct-2501": {
|
363
|
+
"description": "نموذج بـ 24 مليار معلمة، يتمتع بقدرات متقدمة تعادل النماذج الأكبر حجماً."
|
364
|
+
},
|
368
365
|
"accounts/fireworks/models/mixtral-8x22b-instruct": {
|
369
366
|
"description": "نموذج Mixtral MoE 8x22B للتعليمات، مع معلمات ضخمة وهيكل خبير متعدد، يدعم معالجة فعالة لمهام معقدة."
|
370
367
|
},
|
371
368
|
"accounts/fireworks/models/mixtral-8x7b-instruct": {
|
372
369
|
"description": "نموذج Mixtral MoE 8x7B للتعليمات، يوفر هيكل خبير متعدد لتقديم تعليمات فعالة واتباعها."
|
373
370
|
},
|
374
|
-
"accounts/fireworks/models/mixtral-8x7b-instruct-hf": {
|
375
|
-
"description": "نموذج Mixtral MoE 8x7B للتعليمات (نسخة HF)، الأداء يتوافق مع التنفيذ الرسمي، مناسب لمجموعة متنوعة من سيناريوهات المهام الفعالة."
|
376
|
-
},
|
377
371
|
"accounts/fireworks/models/mythomax-l2-13b": {
|
378
372
|
"description": "نموذج MythoMax L2 13B، يجمع بين تقنيات الدمج الجديدة، بارع في السرد وأدوار الشخصيات."
|
379
373
|
},
|
@@ -383,18 +377,15 @@
|
|
383
377
|
"accounts/fireworks/models/qwen-qwq-32b-preview": {
|
384
378
|
"description": "نموذج QwQ هو نموذج بحث تجريبي تم تطويره بواسطة فريق Qwen، يركز على تعزيز قدرات الاستدلال للذكاء الاصطناعي."
|
385
379
|
},
|
380
|
+
"accounts/fireworks/models/qwen2-vl-72b-instruct": {
|
381
|
+
"description": "الإصدار 72B من نموذج Qwen-VL هو نتيجة أحدث ابتكارات Alibaba، ويمثل ما يقرب من عام من الابتكار."
|
382
|
+
},
|
386
383
|
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
387
384
|
"description": "Qwen2.5 هي سلسلة من نماذج اللغة التي طورتها مجموعة Qwen من علي بابا، تحتوي فقط على شريحة فك شفرات. توفر هذه النماذج أحجامًا مختلفة، بما في ذلك 0.5B، 1.5B، 3B، 7B، 14B، 32B و72B، وتأتي بنسخ أساسية (base) ونماذج توجيهية (instruct)."
|
388
385
|
},
|
389
386
|
"accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
|
390
387
|
"description": "Qwen2.5 Coder 32B Instruct هو أحدث إصدار من سلسلة نماذج اللغة الكبيرة المحددة للشيفرة التي أصدرتها Alibaba Cloud. تم تحسين هذا النموذج بشكل كبير في توليد الشيفرة، والاستدلال، وإصلاح الأخطاء، من خلال تدريب على 55 تريليون توكن."
|
391
388
|
},
|
392
|
-
"accounts/fireworks/models/starcoder-16b": {
|
393
|
-
"description": "نموذج StarCoder 15.5B، يدعم مهام البرمجة المتقدمة، مع تعزيز القدرة على التعامل مع لغات متعددة، مناسب لتوليد وفهم الشيفرات المعقدة."
|
394
|
-
},
|
395
|
-
"accounts/fireworks/models/starcoder-7b": {
|
396
|
-
"description": "نموذج StarCoder 7B، تم تدريبه على أكثر من 80 لغة برمجة، يتمتع بقدرة ممتازة على ملء البرمجة وفهم السياق."
|
397
|
-
},
|
398
389
|
"accounts/yi-01-ai/models/yi-large": {
|
399
390
|
"description": "نموذج Yi-Large، يتمتع بقدرة معالجة لغوية ممتازة، يمكن استخدامه في جميع أنواع مهام توليد وفهم اللغة."
|
400
391
|
},
|
@@ -887,30 +878,18 @@
|
|
887
878
|
"lite": {
|
888
879
|
"description": "سبارك لايت هو نموذج لغوي كبير خفيف الوزن، يتميز بتأخير منخفض للغاية وكفاءة عالية في المعالجة، وهو مجاني تمامًا ومفتوح، ويدعم وظيفة البحث عبر الإنترنت في الوقت الحقيقي. تجعل خصائص استجابته السريعة منه مثاليًا لتطبيقات الاستدلال على الأجهزة ذات القدرة الحاسوبية المنخفضة وضبط النماذج، مما يوفر للمستخدمين قيمة ممتازة من حيث التكلفة وتجربة ذكية، خاصة في مجالات الأسئلة والأجوبة المعرفية، وتوليد المحتوى، وسيناريوهات البحث."
|
889
880
|
},
|
890
|
-
"llama-3.1-70b-instruct": {
|
891
|
-
"description": "نموذج Llama 3.1 70B للتعليمات، يتمتع بـ 70B من المعلمات، قادر على تقديم أداء ممتاز في مهام توليد النصوص الكبيرة والتعليمات."
|
892
|
-
},
|
893
881
|
"llama-3.1-70b-versatile": {
|
894
882
|
"description": "Llama 3.1 70B يوفر قدرة استدلال ذكائي أقوى، مناسب للتطبيقات المعقدة، يدعم معالجة حسابية ضخمة ويضمن الكفاءة والدقة."
|
895
883
|
},
|
896
884
|
"llama-3.1-8b-instant": {
|
897
885
|
"description": "Llama 3.1 8B هو نموذج عالي الأداء، يوفر قدرة سريعة على توليد النصوص، مما يجعله مثاليًا لمجموعة من التطبيقات التي تتطلب كفاءة كبيرة وتكلفة فعالة."
|
898
886
|
},
|
899
|
-
"llama-3.1-8b-instruct": {
|
900
|
-
"description": "نموذج Llama 3.1 8B للتعليمات، يتمتع بـ 8B من المعلمات، يدعم تنفيذ مهام التعليمات بكفاءة، ويوفر قدرة ممتازة على توليد النصوص."
|
901
|
-
},
|
902
887
|
"llama-3.1-sonar-huge-128k-online": {
|
903
888
|
"description": "نموذج Llama 3.1 Sonar Huge Online، يتمتع بـ 405B من المعلمات، يدعم طول سياق حوالي 127,000 علامة، مصمم لتطبيقات دردشة معقدة عبر الإنترنت."
|
904
889
|
},
|
905
|
-
"llama-3.1-sonar-large-128k-chat": {
|
906
|
-
"description": "نموذج Llama 3.1 Sonar Large Chat، يتمتع بـ 70B من المعلمات، يدعم طول سياق حوالي 127,000 علامة، مناسب لمهام دردشة غير متصلة معقدة."
|
907
|
-
},
|
908
890
|
"llama-3.1-sonar-large-128k-online": {
|
909
891
|
"description": "نموذج Llama 3.1 Sonar Large Online، يتمتع بـ 70B من المعلمات، يدعم طول سياق حوالي 127,000 علامة، مناسب لمهام دردشة عالية السعة ومتنوعة."
|
910
892
|
},
|
911
|
-
"llama-3.1-sonar-small-128k-chat": {
|
912
|
-
"description": "نموذج Llama 3.1 Sonar Small Chat، يتمتع بـ 8B من المعلمات، مصمم للدردشة غير المتصلة، يدعم طول سياق حوالي 127,000 علامة."
|
913
|
-
},
|
914
893
|
"llama-3.1-sonar-small-128k-online": {
|
915
894
|
"description": "نموذج Llama 3.1 Sonar Small Online، يتمتع بـ 8B من المعلمات، يدعم طول سياق حوالي 127,000 علامة، مصمم للدردشة عبر الإنترنت، قادر على معالجة تفاعلات نصية متنوعة بكفاءة."
|
916
895
|
},
|
@@ -1355,6 +1334,15 @@
|
|
1355
1334
|
"solar-pro": {
|
1356
1335
|
"description": "Solar Pro هو نموذج LLM عالي الذكاء تم إطلاقه من قبل Upstage، يركز على قدرة اتباع التعليمات على وحدة معالجة الرسوميات الواحدة، وسجل IFEval فوق 80. حاليًا يدعم اللغة الإنجليزية، ومن المقرر إصدار النسخة الرسمية في نوفمبر 2024، مع توسيع دعم اللغات وطول السياق."
|
1357
1336
|
},
|
1337
|
+
"sonar": {
|
1338
|
+
"description": "منتج بحث خفيف الوزن يعتمد على سياق البحث، أسرع وأرخص من Sonar Pro."
|
1339
|
+
},
|
1340
|
+
"sonar-pro": {
|
1341
|
+
"description": "منتج بحث متقدم يدعم سياق البحث، مع دعم للاستعلامات المتقدمة والمتابعة."
|
1342
|
+
},
|
1343
|
+
"sonar-reasoning": {
|
1344
|
+
"description": "منتج API الجديد المدعوم من نموذج الاستدلال من DeepSeek."
|
1345
|
+
},
|
1358
1346
|
"step-1-128k": {
|
1359
1347
|
"description": "يوفر توازنًا بين الأداء والتكلفة، مناسب لمجموعة متنوعة من السيناريوهات."
|
1360
1348
|
},
|
@@ -323,21 +323,15 @@
|
|
323
323
|
"abab7-chat-preview": {
|
324
324
|
"description": "В сравнение с моделите от серията abab6.5, този модел предлага значително подобрение в способностите за работа с дълги текстове, математика и писане."
|
325
325
|
},
|
326
|
-
"accounts/fireworks/models/
|
327
|
-
"description": "
|
326
|
+
"accounts/fireworks/models/deepseek-r1": {
|
327
|
+
"description": "DeepSeek-R1 е авангарден голям езиков модел, оптимизиран чрез подсилено обучение и данни за студен старт, с отлични способности в разсъжденията, математиката и програмирането."
|
328
328
|
},
|
329
|
-
"accounts/fireworks/models/
|
330
|
-
"description": "
|
331
|
-
},
|
332
|
-
"accounts/fireworks/models/firellava-13b": {
|
333
|
-
"description": "fireworks-ai/FireLLaVA-13b е визуален езиков модел, който може да приема изображения и текстови входове, обучен с висококачествени данни, подходящ за мултимодални задачи."
|
329
|
+
"accounts/fireworks/models/deepseek-v3": {
|
330
|
+
"description": "Мощен езиков модел Mixture-of-Experts (MoE) от Deepseek, с общ брой параметри 671B, активиращи 37B параметри на всеки токен."
|
334
331
|
},
|
335
332
|
"accounts/fireworks/models/llama-v3-70b-instruct": {
|
336
333
|
"description": "Llama 3 70B модел за инструкции, специално оптимизиран за многоезични диалози и разбиране на естествен език, с производителност, превъзхождаща повечето конкурентни модели."
|
337
334
|
},
|
338
|
-
"accounts/fireworks/models/llama-v3-70b-instruct-hf": {
|
339
|
-
"description": "Llama 3 70B модел за инструкции (HF версия), с резултати, съвпадащи с официалната реализация, подходящ за висококачествени задачи за следване на инструкции."
|
340
|
-
},
|
341
335
|
"accounts/fireworks/models/llama-v3-8b-instruct": {
|
342
336
|
"description": "Llama 3 8B модел за инструкции, оптимизиран за диалози и многоезични задачи, с изключителна производителност и ефективност."
|
343
337
|
},
|
@@ -356,24 +350,24 @@
|
|
356
350
|
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct": {
|
357
351
|
"description": "Моделът за разсъждение по изображения с 11B параметри на Meta е оптимизиран за визуално разпознаване, разсъждение по изображения, описание на изображения и отговаряне на общи въпроси относно изображения. Моделът може да разбира визуални данни, като графики и таблици, и свързва визуалните данни с текстовите описания на детайлите на изображенията."
|
358
352
|
},
|
359
|
-
"accounts/fireworks/models/llama-v3p2-1b-instruct": {
|
360
|
-
"description": "Моделът Llama 3.2 1B е лека многоезична разработка от Meta. Този модел е проектиран да подобри ефективността, предоставяйки значителни подобрения в забавянето и разходите в сравнение с по-големи модели. Примерни случаи на ползване включват извличане и обобщение."
|
361
|
-
},
|
362
353
|
"accounts/fireworks/models/llama-v3p2-3b-instruct": {
|
363
354
|
"description": "Моделът Llama 3.2 3B е лека многоезична разработка от Meta. Този модел е проектиран да подобри ефективността, предоставяйки значителни подобрения в забавянето и разходите в сравнение с по-големи модели. Примерни случаи на ползване включват заявки, пренаписване на подканвания и подпомагане на писането."
|
364
355
|
},
|
365
356
|
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct": {
|
366
357
|
"description": "Моделът за разсъждение по изображения с 90B параметри на Meta е оптимизиран за визуално разпознаване, разсъждение по изображения, описание на изображения и отговаряне на общи въпроси относно изображения. Моделът може да разбира визуални данни, като графики и таблици, и свързва визуалните данни с текстовите описания на детайлите на изображенията."
|
367
358
|
},
|
359
|
+
"accounts/fireworks/models/llama-v3p3-70b-instruct": {
|
360
|
+
"description": "Llama 3.3 70B Instruct е актуализирана версия на Llama 3.1 70B от декември. Този модел е подобрен на базата на Llama 3.1 70B (пуснат през юли 2024 г.), с подобрени възможности за извикване на инструменти, поддръжка на многоезичен текст, математика и програмиране. Моделът постига водещи в индустрията резултати в области като разсъждение, математика и следване на инструкции, и предлага производителност, подобна на 3.1 405B, с значителни предимства в скоростта и разходите."
|
361
|
+
},
|
362
|
+
"accounts/fireworks/models/mistral-small-24b-instruct-2501": {
|
363
|
+
"description": "Модел с 24B параметри, предлагащ водещи в индустрията способности, сравними с по-големите модели."
|
364
|
+
},
|
368
365
|
"accounts/fireworks/models/mixtral-8x22b-instruct": {
|
369
366
|
"description": "Mixtral MoE 8x22B модел за инструкции, с голям брой параметри и архитектура с множество експерти, осигуряваща всестранна поддръжка за ефективна обработка на сложни задачи."
|
370
367
|
},
|
371
368
|
"accounts/fireworks/models/mixtral-8x7b-instruct": {
|
372
369
|
"description": "Mixtral MoE 8x7B модел за инструкции, архитектура с множество експерти, предлагаща ефективно следване и изпълнение на инструкции."
|
373
370
|
},
|
374
|
-
"accounts/fireworks/models/mixtral-8x7b-instruct-hf": {
|
375
|
-
"description": "Mixtral MoE 8x7B модел за инструкции (HF версия), с производителност, съвпадаща с официалната реализация, подходящ за множество ефективни сценарии."
|
376
|
-
},
|
377
371
|
"accounts/fireworks/models/mythomax-l2-13b": {
|
378
372
|
"description": "MythoMax L2 13B модел, комбиниращ новаторски технологии за интеграция, специализиран в разказване на истории и ролеви игри."
|
379
373
|
},
|
@@ -383,18 +377,15 @@
|
|
383
377
|
"accounts/fireworks/models/qwen-qwq-32b-preview": {
|
384
378
|
"description": "QwQ моделът е експериментален изследователски модел, разработен от екипа на Qwen, който се фокусира върху подобряване на AI разсъдъчните способности."
|
385
379
|
},
|
380
|
+
"accounts/fireworks/models/qwen2-vl-72b-instruct": {
|
381
|
+
"description": "72B версия на модела Qwen-VL е последната итерация на Alibaba, представляваща иновации от последната година."
|
382
|
+
},
|
386
383
|
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
387
384
|
"description": "Qwen2.5 е серия от езикови модели, разработени от екипа на Alibaba Cloud Qwen, които съдържат само декодери. Тези модели предлагат различни размери, включително 0.5B, 1.5B, 3B, 7B, 14B, 32B и 72B, и разполагат с базови (base) и инструкти (instruct) варианти."
|
388
385
|
},
|
389
386
|
"accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
|
390
387
|
"description": "Qwen2.5 Coder 32B Instruct е най-новата версия на серията големи езикови модели, специфични за код, публикувана от Alibaba Cloud. Моделът значително подобрява способностите за генериране на код, разсъждения и корекции, след като е обучен с 55 трилиона токена на базата на Qwen2.5. Той не само подобрява кодовите умения, но и запазва предимствата в математиката и общите способности. Моделът предоставя по-пълна основа за практическите приложения като кодови интелигентни агенти."
|
391
388
|
},
|
392
|
-
"accounts/fireworks/models/starcoder-16b": {
|
393
|
-
"description": "StarCoder 15.5B модел, поддържащ напреднали програмни задачи, с подобрени многоезични способности, подходящ за сложна генерация и разбиране на код."
|
394
|
-
},
|
395
|
-
"accounts/fireworks/models/starcoder-7b": {
|
396
|
-
"description": "StarCoder 7B модел, обучен за над 80 програмни езика, с отлични способности за попълване на код и разбиране на контекста."
|
397
|
-
},
|
398
389
|
"accounts/yi-01-ai/models/yi-large": {
|
399
390
|
"description": "Yi-Large модел, предлагащ изключителни способности за многоезична обработка, подходящ за различни задачи по генериране и разбиране на език."
|
400
391
|
},
|
@@ -887,30 +878,18 @@
|
|
887
878
|
"lite": {
|
888
879
|
"description": "Spark Lite е лек модел на голям език, с изключително ниска латентност и ефективна обработка, напълно безплатен и отворен, поддържащ функции за онлайн търсене в реално време. Неговите бързи отговори го правят отличен за приложения на нискомощни устройства и фина настройка на модели, предоставяйки на потребителите отлична рентабилност и интелигентно изживяване, особено в контекста на въпроси и отговори, генериране на съдържание и търсене."
|
889
880
|
},
|
890
|
-
"llama-3.1-70b-instruct": {
|
891
|
-
"description": "Llama 3.1 70B Instruct модел, с 70B параметри, способен да предоставя изключителна производителност в задачи за генериране на текст и инструкции."
|
892
|
-
},
|
893
881
|
"llama-3.1-70b-versatile": {
|
894
882
|
"description": "Llama 3.1 70B предлага по-мощни способности за разсъждение на AI, подходящи за сложни приложения, поддържащи множество изчислителни обработки и осигуряващи ефективност и точност."
|
895
883
|
},
|
896
884
|
"llama-3.1-8b-instant": {
|
897
885
|
"description": "Llama 3.1 8B е модел с висока производителност, предлагащ бързи способности за генериране на текст, особено подходящ за приложения, изискващи мащабна ефективност и икономичност."
|
898
886
|
},
|
899
|
-
"llama-3.1-8b-instruct": {
|
900
|
-
"description": "Llama 3.1 8B Instruct модел, с 8B параметри, поддържащ ефективно изпълнение на задачи с визуални указания, предлагащ качествени способности за генериране на текст."
|
901
|
-
},
|
902
887
|
"llama-3.1-sonar-huge-128k-online": {
|
903
888
|
"description": "Llama 3.1 Sonar Huge Online модел, с 405B параметри, поддържащ контекстова дължина от около 127,000 маркера, проектиран за сложни онлайн чат приложения."
|
904
889
|
},
|
905
|
-
"llama-3.1-sonar-large-128k-chat": {
|
906
|
-
"description": "Llama 3.1 Sonar Large Chat модел, с 70B параметри, поддържащ контекстова дължина от около 127,000 маркера, подходящ за сложни офлайн чат задачи."
|
907
|
-
},
|
908
890
|
"llama-3.1-sonar-large-128k-online": {
|
909
891
|
"description": "Llama 3.1 Sonar Large Online модел, с 70B параметри, поддържащ контекстова дължина от около 127,000 маркера, подходящ за задачи с висока капацитет и разнообразие в чата."
|
910
892
|
},
|
911
|
-
"llama-3.1-sonar-small-128k-chat": {
|
912
|
-
"description": "Llama 3.1 Sonar Small Chat модел, с 8B параметри, проектиран за офлайн чат, поддържащ контекстова дължина от около 127,000 маркера."
|
913
|
-
},
|
914
893
|
"llama-3.1-sonar-small-128k-online": {
|
915
894
|
"description": "Llama 3.1 Sonar Small Online модел, с 8B параметри, поддържащ контекстова дължина от около 127,000 маркера, проектиран за онлайн чат, способен да обработва ефективно различни текстови взаимодействия."
|
916
895
|
},
|
@@ -1355,6 +1334,15 @@
|
|
1355
1334
|
"solar-pro": {
|
1356
1335
|
"description": "Solar Pro е високоинтелигентен LLM, пуснат от Upstage, фокусиран върху способността за следване на инструкции с един GPU, с IFEval оценка над 80. В момента поддържа английски, а официалната версия е планирана за пускане през ноември 2024 г., с разширена поддръжка на езици и дължина на контекста."
|
1357
1336
|
},
|
1337
|
+
"sonar": {
|
1338
|
+
"description": "Лек продукт за търсене, базиран на контекст на търсене, по-бърз и по-евтин от Sonar Pro."
|
1339
|
+
},
|
1340
|
+
"sonar-pro": {
|
1341
|
+
"description": "Разширен продукт за търсене, който поддържа контекст на търсене, напреднали запитвания и проследяване."
|
1342
|
+
},
|
1343
|
+
"sonar-reasoning": {
|
1344
|
+
"description": "Нови API продукти, поддържани от модела за разсъждение на DeepSeek."
|
1345
|
+
},
|
1358
1346
|
"step-1-128k": {
|
1359
1347
|
"description": "Баланс между производителност и разходи, подходящ за общи сценарии."
|
1360
1348
|
},
|
@@ -323,21 +323,15 @@
|
|
323
323
|
"abab7-chat-preview": {
|
324
324
|
"description": "Im Vergleich zur abab6.5-Modellreihe gibt es erhebliche Verbesserungen in den Fähigkeiten bei langen Texten, Mathematik und Schreiben."
|
325
325
|
},
|
326
|
-
"accounts/fireworks/models/
|
327
|
-
"description": "
|
326
|
+
"accounts/fireworks/models/deepseek-r1": {
|
327
|
+
"description": "DeepSeek-R1 ist ein hochmodernes großes Sprachmodell, das durch verstärktes Lernen und Optimierung mit Kaltstartdaten hervorragende Leistungen in Inferenz, Mathematik und Programmierung bietet."
|
328
328
|
},
|
329
|
-
"accounts/fireworks/models/
|
330
|
-
"description": "
|
331
|
-
},
|
332
|
-
"accounts/fireworks/models/firellava-13b": {
|
333
|
-
"description": "fireworks-ai/FireLLaVA-13b ist ein visuelles Sprachmodell, das sowohl Bild- als auch Texteingaben verarbeiten kann und für multimodale Aufgaben geeignet ist, nachdem es mit hochwertigen Daten trainiert wurde."
|
329
|
+
"accounts/fireworks/models/deepseek-v3": {
|
330
|
+
"description": "Ein leistungsstarkes Mixture-of-Experts (MoE) Sprachmodell von Deepseek mit insgesamt 671B Parametern, wobei 37B Parameter pro Token aktiviert werden."
|
334
331
|
},
|
335
332
|
"accounts/fireworks/models/llama-v3-70b-instruct": {
|
336
333
|
"description": "Das Llama 3 70B Instruct-Modell ist speziell für mehrsprachige Dialoge und natürliche Sprachverständnis optimiert und übertrifft die meisten Wettbewerbsmodelle."
|
337
334
|
},
|
338
|
-
"accounts/fireworks/models/llama-v3-70b-instruct-hf": {
|
339
|
-
"description": "Das Llama 3 70B Instruct-Modell (HF-Version) entspricht den offiziellen Ergebnissen und eignet sich für hochwertige Anweisungsverfolgungsaufgaben."
|
340
|
-
},
|
341
335
|
"accounts/fireworks/models/llama-v3-8b-instruct": {
|
342
336
|
"description": "Das Llama 3 8B Instruct-Modell ist für Dialoge und mehrsprachige Aufgaben optimiert und bietet hervorragende und effiziente Leistungen."
|
343
337
|
},
|
@@ -356,24 +350,24 @@
|
|
356
350
|
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct": {
|
357
351
|
"description": "Meta's 11B Parameter instruct-Modell für Bildverarbeitung. Dieses Modell ist optimiert für visuelle Erkennung, Bildverarbeitung, Bildbeschreibung und die Beantwortung allgemeiner Fragen zu Bildern. Es kann visuelle Daten wie Diagramme und Grafiken verstehen und schließt die Lücke zwischen visuellen und sprachlichen Informationen, indem es textuelle Beschreibungen der Bilddetails generiert."
|
358
352
|
},
|
359
|
-
"accounts/fireworks/models/llama-v3p2-1b-instruct": {
|
360
|
-
"description": "Llama 3.2 1B instruct-Modell ist ein leichtgewichtiges mehrsprachiges Modell, das von Meta veröffentlicht wurde. Dieses Modell zielt darauf ab, die Effizienz zu steigern und bietet im Vergleich zu größeren Modellen signifikante Verbesserungen in Bezug auf Latenz und Kosten. Anwendungsbeispiele für dieses Modell sind Retrieval und Zusammenfassung."
|
361
|
-
},
|
362
353
|
"accounts/fireworks/models/llama-v3p2-3b-instruct": {
|
363
354
|
"description": "Llama 3.2 3B instruct-Modell ist ein leichtgewichtiges mehrsprachiges Modell, das von Meta veröffentlicht wurde. Dieses Modell zielt darauf ab, die Effizienz zu steigern und bietet im Vergleich zu größeren Modellen signifikante Verbesserungen in Bezug auf Latenz und Kosten. Anwendungsbeispiele für dieses Modell sind Abfragen und Aufforderungsneuschreibungen sowie Schreibassistenz."
|
364
355
|
},
|
365
356
|
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct": {
|
366
357
|
"description": "Meta's 90B Parameter instruct-Modell für Bildverarbeitung. Dieses Modell ist optimiert für visuelle Erkennung, Bildverarbeitung, Bildbeschreibung und die Beantwortung allgemeiner Fragen zu Bildern. Es kann visuelle Daten wie Diagramme und Grafiken verstehen und schließt die Lücke zwischen visuellen und sprachlichen Informationen, indem es textuelle Beschreibungen der Bilddetails generiert."
|
367
358
|
},
|
359
|
+
"accounts/fireworks/models/llama-v3p3-70b-instruct": {
|
360
|
+
"description": "Llama 3.3 70B Instruct ist die aktualisierte Version von Llama 3.1 70B aus dem Dezember. Dieses Modell wurde auf der Grundlage von Llama 3.1 70B (veröffentlicht im Juli 2024) verbessert und bietet erweiterte Funktionen für Toolaufrufe, mehrsprachige Textunterstützung sowie mathematische und Programmierfähigkeiten. Das Modell erreicht branchenführende Leistungen in den Bereichen Inferenz, Mathematik und Befehlsbefolgung und bietet eine ähnliche Leistung wie 3.1 405B, während es gleichzeitig signifikante Vorteile in Bezug auf Geschwindigkeit und Kosten bietet."
|
361
|
+
},
|
362
|
+
"accounts/fireworks/models/mistral-small-24b-instruct-2501": {
|
363
|
+
"description": "Ein 24B-Parameter-Modell mit fortschrittlichen Fähigkeiten, die mit größeren Modellen vergleichbar sind."
|
364
|
+
},
|
368
365
|
"accounts/fireworks/models/mixtral-8x22b-instruct": {
|
369
366
|
"description": "Das Mixtral MoE 8x22B Instruct-Modell unterstützt durch seine große Anzahl an Parametern und Multi-Expert-Architektur die effiziente Verarbeitung komplexer Aufgaben."
|
370
367
|
},
|
371
368
|
"accounts/fireworks/models/mixtral-8x7b-instruct": {
|
372
369
|
"description": "Das Mixtral MoE 8x7B Instruct-Modell bietet durch seine Multi-Expert-Architektur effiziente Anweisungsverfolgung und -ausführung."
|
373
370
|
},
|
374
|
-
"accounts/fireworks/models/mixtral-8x7b-instruct-hf": {
|
375
|
-
"description": "Das Mixtral MoE 8x7B Instruct-Modell (HF-Version) bietet die gleiche Leistung wie die offizielle Implementierung und eignet sich für verschiedene effiziente Anwendungsszenarien."
|
376
|
-
},
|
377
371
|
"accounts/fireworks/models/mythomax-l2-13b": {
|
378
372
|
"description": "Das MythoMax L2 13B-Modell kombiniert neuartige Kombinations-Technologien und ist besonders gut in Erzählungen und Rollenspielen."
|
379
373
|
},
|
@@ -383,18 +377,15 @@
|
|
383
377
|
"accounts/fireworks/models/qwen-qwq-32b-preview": {
|
384
378
|
"description": "Das QwQ-Modell ist ein experimentelles Forschungsmodell, das vom Qwen-Team entwickelt wurde und sich auf die Verbesserung der KI-Inferenzfähigkeiten konzentriert."
|
385
379
|
},
|
380
|
+
"accounts/fireworks/models/qwen2-vl-72b-instruct": {
|
381
|
+
"description": "Die 72B-Version des Qwen-VL-Modells ist das neueste Ergebnis von Alibabas Iteration und repräsentiert fast ein Jahr an Innovation."
|
382
|
+
},
|
386
383
|
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
387
384
|
"description": "Qwen2.5 ist eine Reihe von Sprachmodellen mit ausschließlich Decodern, die vom Alibaba Cloud Qwen-Team entwickelt wurde. Diese Modelle sind in verschiedenen Größen erhältlich, darunter 0.5B, 1.5B, 3B, 7B, 14B, 32B und 72B, mit Basis- und instruct-Varianten."
|
388
385
|
},
|
389
386
|
"accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
|
390
387
|
"description": "Qwen2.5 Coder 32B Instruct ist die neueste Version der von Alibaba Cloud veröffentlichten Reihe von code-spezifischen großen Sprachmodellen. Dieses Modell basiert auf Qwen2.5 und wurde mit 55 Billionen Tokens trainiert, um die Fähigkeiten zur Codegenerierung, Inferenz und Fehlerbehebung erheblich zu verbessern. Es verbessert nicht nur die Codierungsfähigkeiten, sondern bewahrt auch die Vorteile in Mathematik und allgemeinen Fähigkeiten. Das Modell bietet eine umfassendere Grundlage für praktische Anwendungen wie Code-Agenten."
|
391
388
|
},
|
392
|
-
"accounts/fireworks/models/starcoder-16b": {
|
393
|
-
"description": "Das StarCoder 15.5B-Modell unterstützt fortgeschrittene Programmieraufgaben und hat verbesserte mehrsprachige Fähigkeiten, die sich für komplexe Codegenerierung und -verständnis eignen."
|
394
|
-
},
|
395
|
-
"accounts/fireworks/models/starcoder-7b": {
|
396
|
-
"description": "Das StarCoder 7B-Modell wurde für über 80 Programmiersprachen trainiert und bietet hervorragende Programmierausfüllfähigkeiten und Kontextverständnis."
|
397
|
-
},
|
398
389
|
"accounts/yi-01-ai/models/yi-large": {
|
399
390
|
"description": "Das Yi-Large-Modell bietet hervorragende mehrsprachige Verarbeitungsfähigkeiten und kann für verschiedene Sprachgenerierungs- und Verständnisaufgaben eingesetzt werden."
|
400
391
|
},
|
@@ -887,30 +878,18 @@
|
|
887
878
|
"lite": {
|
888
879
|
"description": "Spark Lite ist ein leichtgewichtiges großes Sprachmodell mit extrem niedriger Latenz und effizienter Verarbeitung, das vollständig kostenlos und offen ist und Echtzeitsuchfunktionen unterstützt. Seine schnelle Reaktionsfähigkeit macht es besonders geeignet für Inferenzanwendungen und Modellanpassungen auf Geräten mit geringer Rechenleistung und bietet den Nutzern ein hervorragendes Kosten-Nutzen-Verhältnis sowie ein intelligentes Erlebnis, insbesondere in den Bereichen Wissensabfragen, Inhaltserstellung und Suchszenarien."
|
889
880
|
},
|
890
|
-
"llama-3.1-70b-instruct": {
|
891
|
-
"description": "Das Llama 3.1 70B Instruct-Modell hat 70B Parameter und bietet herausragende Leistungen bei der Generierung großer Texte und Anweisungsaufgaben."
|
892
|
-
},
|
893
881
|
"llama-3.1-70b-versatile": {
|
894
882
|
"description": "Llama 3.1 70B bietet leistungsstarke KI-Schlussfolgerungsfähigkeiten, die für komplexe Anwendungen geeignet sind und eine hohe Rechenverarbeitung bei gleichzeitiger Effizienz und Genauigkeit unterstützen."
|
895
883
|
},
|
896
884
|
"llama-3.1-8b-instant": {
|
897
885
|
"description": "Llama 3.1 8B ist ein leistungsstarkes Modell, das schnelle Textgenerierungsfähigkeiten bietet und sich hervorragend für Anwendungen eignet, die große Effizienz und Kosteneffektivität erfordern."
|
898
886
|
},
|
899
|
-
"llama-3.1-8b-instruct": {
|
900
|
-
"description": "Das Llama 3.1 8B Instruct-Modell hat 8B Parameter und unterstützt die effiziente Ausführung von bildbasierten Anweisungsaufgaben und bietet hochwertige Textgenerierungsfähigkeiten."
|
901
|
-
},
|
902
887
|
"llama-3.1-sonar-huge-128k-online": {
|
903
888
|
"description": "Das Llama 3.1 Sonar Huge Online-Modell hat 405B Parameter und unterstützt eine Kontextlänge von etwa 127.000 Markierungen, es wurde für komplexe Online-Chat-Anwendungen entwickelt."
|
904
889
|
},
|
905
|
-
"llama-3.1-sonar-large-128k-chat": {
|
906
|
-
"description": "Das Llama 3.1 Sonar Large Chat-Modell hat 70B Parameter und unterstützt eine Kontextlänge von etwa 127.000 Markierungen, es eignet sich für komplexe Offline-Chat-Aufgaben."
|
907
|
-
},
|
908
890
|
"llama-3.1-sonar-large-128k-online": {
|
909
891
|
"description": "Das Llama 3.1 Sonar Large Online-Modell hat 70B Parameter und unterstützt eine Kontextlänge von etwa 127.000 Markierungen, es eignet sich für hochvolumige und vielfältige Chat-Aufgaben."
|
910
892
|
},
|
911
|
-
"llama-3.1-sonar-small-128k-chat": {
|
912
|
-
"description": "Das Llama 3.1 Sonar Small Chat-Modell hat 8B Parameter und wurde speziell für Offline-Chat entwickelt, es unterstützt eine Kontextlänge von etwa 127.000 Markierungen."
|
913
|
-
},
|
914
893
|
"llama-3.1-sonar-small-128k-online": {
|
915
894
|
"description": "Das Llama 3.1 Sonar Small Online-Modell hat 8B Parameter und unterstützt eine Kontextlänge von etwa 127.000 Markierungen, es wurde speziell für Online-Chat entwickelt und kann verschiedene Textinteraktionen effizient verarbeiten."
|
916
895
|
},
|
@@ -1355,6 +1334,15 @@
|
|
1355
1334
|
"solar-pro": {
|
1356
1335
|
"description": "Solar Pro ist ein hochintelligentes LLM, das von Upstage entwickelt wurde und sich auf die Befolgung von Anweisungen mit einer einzigen GPU konzentriert, mit einem IFEval-Score von über 80. Derzeit unterstützt es Englisch, die offizielle Version ist für November 2024 geplant und wird die Sprachunterstützung und Kontextlänge erweitern."
|
1357
1336
|
},
|
1337
|
+
"sonar": {
|
1338
|
+
"description": "Ein leichtgewichtiges Suchprodukt, das auf kontextbezogener Suche basiert und schneller und günstiger ist als Sonar Pro."
|
1339
|
+
},
|
1340
|
+
"sonar-pro": {
|
1341
|
+
"description": "Ein fortschrittliches Suchprodukt, das kontextbezogene Suche unterstützt und erweiterte Abfragen sowie Nachverfolgung ermöglicht."
|
1342
|
+
},
|
1343
|
+
"sonar-reasoning": {
|
1344
|
+
"description": "Ein neues API-Produkt, das von DeepSeek-Inferenzmodellen unterstützt wird."
|
1345
|
+
},
|
1358
1346
|
"step-1-128k": {
|
1359
1347
|
"description": "Bietet ein ausgewogenes Verhältnis zwischen Leistung und Kosten, geeignet für allgemeine Szenarien."
|
1360
1348
|
},
|
@@ -323,21 +323,15 @@
|
|
323
323
|
"abab7-chat-preview": {
|
324
324
|
"description": "Significant improvements in capabilities such as long text, mathematics, and writing compared to the abab6.5 series models."
|
325
325
|
},
|
326
|
-
"accounts/fireworks/models/
|
327
|
-
"description": "
|
326
|
+
"accounts/fireworks/models/deepseek-r1": {
|
327
|
+
"description": "DeepSeek-R1 is a state-of-the-art large language model optimized through reinforcement learning and cold-start data, excelling in reasoning, mathematics, and programming performance."
|
328
328
|
},
|
329
|
-
"accounts/fireworks/models/
|
330
|
-
"description": "
|
331
|
-
},
|
332
|
-
"accounts/fireworks/models/firellava-13b": {
|
333
|
-
"description": "fireworks-ai/FireLLaVA-13b is a visual language model that can accept both image and text inputs, trained on high-quality data, suitable for multimodal tasks."
|
329
|
+
"accounts/fireworks/models/deepseek-v3": {
|
330
|
+
"description": "A powerful Mixture-of-Experts (MoE) language model provided by Deepseek, with a total parameter count of 671B, activating 37B parameters per token."
|
334
331
|
},
|
335
332
|
"accounts/fireworks/models/llama-v3-70b-instruct": {
|
336
333
|
"description": "Llama 3 70B instruction model, optimized for multilingual dialogues and natural language understanding, outperforming most competitive models."
|
337
334
|
},
|
338
|
-
"accounts/fireworks/models/llama-v3-70b-instruct-hf": {
|
339
|
-
"description": "Llama 3 70B instruction model (HF version), aligned with official implementation results, suitable for high-quality instruction following tasks."
|
340
|
-
},
|
341
335
|
"accounts/fireworks/models/llama-v3-8b-instruct": {
|
342
336
|
"description": "Llama 3 8B instruction model, optimized for dialogues and multilingual tasks, delivering outstanding and efficient performance."
|
343
337
|
},
|
@@ -356,24 +350,24 @@
|
|
356
350
|
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct": {
|
357
351
|
"description": "Meta's 11B parameter instruction-tuned image reasoning model. This model is optimized for visual recognition, image reasoning, image description, and answering general questions about images. It understands visual data like charts and graphs, generating text descriptions of image details to bridge the gap between vision and language."
|
358
352
|
},
|
359
|
-
"accounts/fireworks/models/llama-v3p2-1b-instruct": {
|
360
|
-
"description": "The Llama 3.2 1B instruction model is a lightweight multilingual model introduced by Meta. This model aims to enhance efficiency, providing significant improvements in latency and cost compared to larger models. Sample use cases include retrieval and summarization."
|
361
|
-
},
|
362
353
|
"accounts/fireworks/models/llama-v3p2-3b-instruct": {
|
363
354
|
"description": "The Llama 3.2 3B instruction model is a lightweight multilingual model introduced by Meta. This model aims to enhance efficiency, providing significant improvements in latency and cost compared to larger models. Sample use cases include querying, prompt rewriting, and writing assistance."
|
364
355
|
},
|
365
356
|
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct": {
|
366
357
|
"description": "Meta's 90B parameter instruction-tuned image reasoning model. This model is optimized for visual recognition, image reasoning, image description, and answering general questions about images. It understands visual data like charts and graphs, generating text descriptions of image details to bridge the gap between vision and language."
|
367
358
|
},
|
359
|
+
"accounts/fireworks/models/llama-v3p3-70b-instruct": {
|
360
|
+
"description": "Llama 3.3 70B Instruct is the December update of Llama 3.1 70B. This model builds upon Llama 3.1 70B (released in July 2024) with enhancements in tool invocation, multilingual text support, mathematics, and programming capabilities. It achieves industry-leading performance in reasoning, mathematics, and instruction following, providing similar performance to 3.1 405B while offering significant advantages in speed and cost."
|
361
|
+
},
|
362
|
+
"accounts/fireworks/models/mistral-small-24b-instruct-2501": {
|
363
|
+
"description": "A 24B parameter model that possesses state-of-the-art capabilities comparable to larger models."
|
364
|
+
},
|
368
365
|
"accounts/fireworks/models/mixtral-8x22b-instruct": {
|
369
366
|
"description": "Mixtral MoE 8x22B instruction model, featuring large-scale parameters and a multi-expert architecture, fully supporting efficient processing of complex tasks."
|
370
367
|
},
|
371
368
|
"accounts/fireworks/models/mixtral-8x7b-instruct": {
|
372
369
|
"description": "Mixtral MoE 8x7B instruction model, with a multi-expert architecture providing efficient instruction following and execution."
|
373
370
|
},
|
374
|
-
"accounts/fireworks/models/mixtral-8x7b-instruct-hf": {
|
375
|
-
"description": "Mixtral MoE 8x7B instruction model (HF version), performance consistent with official implementation, suitable for various efficient task scenarios."
|
376
|
-
},
|
377
371
|
"accounts/fireworks/models/mythomax-l2-13b": {
|
378
372
|
"description": "MythoMax L2 13B model, combining novel merging techniques, excels in narrative and role-playing."
|
379
373
|
},
|
@@ -383,18 +377,15 @@
|
|
383
377
|
"accounts/fireworks/models/qwen-qwq-32b-preview": {
|
384
378
|
"description": "The QwQ model is an experimental research model developed by the Qwen team, focusing on enhancing AI reasoning capabilities."
|
385
379
|
},
|
380
|
+
"accounts/fireworks/models/qwen2-vl-72b-instruct": {
|
381
|
+
"description": "The 72B version of the Qwen-VL model is the latest iteration from Alibaba, representing nearly a year of innovation."
|
382
|
+
},
|
386
383
|
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
387
384
|
"description": "Qwen2.5 is a series of decoder-only language models developed by the Alibaba Cloud Qwen team. These models come in different sizes including 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B, available in both base and instruct variants."
|
388
385
|
},
|
389
386
|
"accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
|
390
387
|
"description": "Qwen2.5 Coder 32B Instruct is the latest version in Alibaba Cloud's series of code-specific large language models. This model significantly enhances code generation, reasoning, and repair capabilities based on Qwen2.5, trained on 55 trillion tokens. It not only improves coding abilities but also maintains advantages in mathematics and general capabilities, providing a more comprehensive foundation for practical applications such as code agents."
|
391
388
|
},
|
392
|
-
"accounts/fireworks/models/starcoder-16b": {
|
393
|
-
"description": "StarCoder 15.5B model supports advanced programming tasks, enhanced multilingual capabilities, suitable for complex code generation and understanding."
|
394
|
-
},
|
395
|
-
"accounts/fireworks/models/starcoder-7b": {
|
396
|
-
"description": "StarCoder 7B model, trained on over 80 programming languages, boasts excellent code completion capabilities and contextual understanding."
|
397
|
-
},
|
398
389
|
"accounts/yi-01-ai/models/yi-large": {
|
399
390
|
"description": "Yi-Large model, featuring exceptional multilingual processing capabilities, suitable for various language generation and understanding tasks."
|
400
391
|
},
|
@@ -887,30 +878,18 @@
|
|
887
878
|
"lite": {
|
888
879
|
"description": "Spark Lite is a lightweight large language model with extremely low latency and efficient processing capabilities, completely free and open, supporting real-time online search functionality. Its quick response feature makes it excel in inference applications and model fine-tuning on low-power devices, providing users with excellent cost-effectiveness and intelligent experiences, particularly in knowledge Q&A, content generation, and search scenarios."
|
889
880
|
},
|
890
|
-
"llama-3.1-70b-instruct": {
|
891
|
-
"description": "Llama 3.1 70B Instruct model, featuring 70B parameters, delivers outstanding performance in large text generation and instruction tasks."
|
892
|
-
},
|
893
881
|
"llama-3.1-70b-versatile": {
|
894
882
|
"description": "Llama 3.1 70B provides enhanced AI reasoning capabilities, suitable for complex applications, supporting extensive computational processing while ensuring efficiency and accuracy."
|
895
883
|
},
|
896
884
|
"llama-3.1-8b-instant": {
|
897
885
|
"description": "Llama 3.1 8B is a high-performance model that offers rapid text generation capabilities, making it ideal for applications requiring large-scale efficiency and cost-effectiveness."
|
898
886
|
},
|
899
|
-
"llama-3.1-8b-instruct": {
|
900
|
-
"description": "Llama 3.1 8B Instruct model, featuring 8B parameters, supports efficient execution of visual instruction tasks, providing high-quality text generation capabilities."
|
901
|
-
},
|
902
887
|
"llama-3.1-sonar-huge-128k-online": {
|
903
888
|
"description": "Llama 3.1 Sonar Huge Online model, featuring 405B parameters, supports a context length of approximately 127,000 tokens, designed for complex online chat applications."
|
904
889
|
},
|
905
|
-
"llama-3.1-sonar-large-128k-chat": {
|
906
|
-
"description": "Llama 3.1 Sonar Large Chat model, featuring 70B parameters, supports a context length of approximately 127,000 tokens, suitable for complex offline chat tasks."
|
907
|
-
},
|
908
890
|
"llama-3.1-sonar-large-128k-online": {
|
909
891
|
"description": "Llama 3.1 Sonar Large Online model, featuring 70B parameters, supports a context length of approximately 127,000 tokens, suitable for high-capacity and diverse chat tasks."
|
910
892
|
},
|
911
|
-
"llama-3.1-sonar-small-128k-chat": {
|
912
|
-
"description": "Llama 3.1 Sonar Small Chat model, featuring 8B parameters, designed for offline chat, supports a context length of approximately 127,000 tokens."
|
913
|
-
},
|
914
893
|
"llama-3.1-sonar-small-128k-online": {
|
915
894
|
"description": "Llama 3.1 Sonar Small Online model, featuring 8B parameters, supports a context length of approximately 127,000 tokens, designed for online chat, efficiently handling various text interactions."
|
916
895
|
},
|
@@ -1355,6 +1334,15 @@
|
|
1355
1334
|
"solar-pro": {
|
1356
1335
|
"description": "Solar Pro is a highly intelligent LLM launched by Upstage, focusing on single-GPU instruction-following capabilities, with an IFEval score above 80. Currently supports English, with a formal version planned for release in November 2024, which will expand language support and context length."
|
1357
1336
|
},
|
1337
|
+
"sonar": {
|
1338
|
+
"description": "A lightweight search product based on contextual search, faster and cheaper than Sonar Pro."
|
1339
|
+
},
|
1340
|
+
"sonar-pro": {
|
1341
|
+
"description": "An advanced search product that supports contextual search, advanced queries, and follow-ups."
|
1342
|
+
},
|
1343
|
+
"sonar-reasoning": {
|
1344
|
+
"description": "A new API product powered by the DeepSeek reasoning model."
|
1345
|
+
},
|
1358
1346
|
"step-1-128k": {
|
1359
1347
|
"description": "Balances performance and cost, suitable for general scenarios."
|
1360
1348
|
},
|