@lobehub/chat 1.49.16 → 1.50.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (72) hide show
  1. package/CHANGELOG.md +33 -0
  2. package/changelog/v1.json +12 -0
  3. package/docs/usage/agents/model.mdx +16 -0
  4. package/docs/usage/agents/model.zh-CN.mdx +16 -0
  5. package/locales/ar/discover.json +4 -0
  6. package/locales/ar/models.json +3 -0
  7. package/locales/ar/setting.json +12 -0
  8. package/locales/bg-BG/discover.json +4 -0
  9. package/locales/bg-BG/models.json +3 -0
  10. package/locales/bg-BG/setting.json +12 -0
  11. package/locales/de-DE/discover.json +4 -0
  12. package/locales/de-DE/models.json +3 -0
  13. package/locales/de-DE/setting.json +12 -0
  14. package/locales/en-US/discover.json +4 -0
  15. package/locales/en-US/models.json +3 -0
  16. package/locales/en-US/setting.json +12 -0
  17. package/locales/es-ES/discover.json +4 -0
  18. package/locales/es-ES/models.json +3 -0
  19. package/locales/es-ES/setting.json +12 -0
  20. package/locales/fa-IR/discover.json +4 -0
  21. package/locales/fa-IR/models.json +3 -0
  22. package/locales/fa-IR/setting.json +12 -0
  23. package/locales/fr-FR/discover.json +4 -0
  24. package/locales/fr-FR/models.json +3 -0
  25. package/locales/fr-FR/setting.json +12 -0
  26. package/locales/it-IT/discover.json +4 -0
  27. package/locales/it-IT/models.json +3 -0
  28. package/locales/it-IT/setting.json +12 -0
  29. package/locales/ja-JP/discover.json +4 -0
  30. package/locales/ja-JP/models.json +3 -0
  31. package/locales/ja-JP/setting.json +12 -0
  32. package/locales/ko-KR/discover.json +4 -0
  33. package/locales/ko-KR/models.json +15 -0
  34. package/locales/ko-KR/setting.json +12 -0
  35. package/locales/nl-NL/discover.json +4 -0
  36. package/locales/nl-NL/models.json +3 -0
  37. package/locales/nl-NL/setting.json +12 -0
  38. package/locales/pl-PL/discover.json +4 -0
  39. package/locales/pl-PL/models.json +3 -0
  40. package/locales/pl-PL/setting.json +12 -0
  41. package/locales/pt-BR/discover.json +4 -0
  42. package/locales/pt-BR/models.json +3 -0
  43. package/locales/pt-BR/setting.json +12 -0
  44. package/locales/ru-RU/discover.json +4 -0
  45. package/locales/ru-RU/models.json +3 -0
  46. package/locales/ru-RU/setting.json +12 -0
  47. package/locales/tr-TR/discover.json +4 -0
  48. package/locales/tr-TR/models.json +3 -0
  49. package/locales/tr-TR/setting.json +12 -0
  50. package/locales/vi-VN/discover.json +4 -0
  51. package/locales/vi-VN/models.json +3 -0
  52. package/locales/vi-VN/setting.json +12 -0
  53. package/locales/zh-CN/discover.json +4 -0
  54. package/locales/zh-CN/models.json +4 -1
  55. package/locales/zh-CN/setting.json +12 -0
  56. package/locales/zh-TW/discover.json +4 -0
  57. package/locales/zh-TW/models.json +3 -0
  58. package/locales/zh-TW/setting.json +12 -0
  59. package/package.json +1 -1
  60. package/src/app/(main)/discover/(detail)/model/[...slugs]/features/ParameterList/index.tsx +10 -0
  61. package/src/config/aiModels/github.ts +18 -7
  62. package/src/config/aiModels/openai.ts +35 -2
  63. package/src/features/AgentSetting/AgentModal/index.tsx +27 -3
  64. package/src/libs/agent-runtime/github/index.ts +3 -3
  65. package/src/libs/agent-runtime/openai/index.ts +7 -5
  66. package/src/libs/agent-runtime/utils/streams/openai.test.ts +202 -0
  67. package/src/libs/agent-runtime/utils/streams/openai.ts +9 -8
  68. package/src/locales/default/discover.ts +4 -0
  69. package/src/locales/default/setting.ts +12 -0
  70. package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +5 -0
  71. package/src/types/agent/index.ts +6 -0
  72. package/src/types/llm.ts +5 -0
@@ -200,6 +200,9 @@
200
200
  "enableMaxTokens": {
201
201
  "title": "단일 응답 제한 활성화"
202
202
  },
203
+ "enableReasoningEffort": {
204
+ "title": "추론 강도 조정 활성화"
205
+ },
203
206
  "frequencyPenalty": {
204
207
  "desc": "값이 클수록 반복 단어가 줄어듭니다",
205
208
  "title": "빈도 패널티"
@@ -216,6 +219,15 @@
216
219
  "desc": "값이 클수록 새로운 주제로 확장될 가능성이 높아집니다",
217
220
  "title": "주제 신선도"
218
221
  },
222
+ "reasoningEffort": {
223
+ "desc": "값이 클수록 추론 능력이 강해지지만, 응답 시간과 토큰 소모가 증가할 수 있습니다.",
224
+ "options": {
225
+ "high": "높음",
226
+ "low": "낮음",
227
+ "medium": "중간"
228
+ },
229
+ "title": "추론 강도"
230
+ },
219
231
  "temperature": {
220
232
  "desc": "값이 클수록 응답이 더 무작위해집니다",
221
233
  "title": "랜덤성",
@@ -126,6 +126,10 @@
126
126
  "title": "Onderwerp versheid"
127
127
  },
128
128
  "range": "Bereik",
129
+ "reasoning_effort": {
130
+ "desc": "Deze instelling wordt gebruikt om de redeneerkracht van het model te regelen voordat het een antwoord genereert. Lage kracht geeft prioriteit aan de responssnelheid en bespaart tokens, terwijl hoge kracht een completere redenering biedt, maar meer tokens verbruikt en de responssnelheid verlaagt. De standaardwaarde is gemiddeld, wat een balans biedt tussen redeneringsnauwkeurigheid en responssnelheid.",
131
+ "title": "Redeneerkracht"
132
+ },
129
133
  "temperature": {
130
134
  "desc": "Deze instelling beïnvloedt de diversiteit van de reacties van het model. Lagere waarden leiden tot meer voorspelbare en typische reacties, terwijl hogere waarden meer diverse en ongebruikelijke reacties aanmoedigen. Wanneer de waarde op 0 is ingesteld, geeft het model altijd dezelfde reactie op een gegeven invoer.",
131
135
  "title": "Willekeurigheid"
@@ -1184,6 +1184,9 @@
1184
1184
  "o1-preview": {
1185
1185
  "description": "o1 is het nieuwe redeneermodel van OpenAI, geschikt voor complexe taken die uitgebreide algemene kennis vereisen. Dit model heeft een context van 128K en een kennisafkapdatum van oktober 2023."
1186
1186
  },
1187
+ "o3-mini": {
1188
+ "description": "o3-mini is ons nieuwste kleine inferentiemodel dat hoge intelligentie biedt met dezelfde kosten- en vertragingdoelen als o1-mini."
1189
+ },
1187
1190
  "open-codestral-mamba": {
1188
1191
  "description": "Codestral Mamba is een Mamba 2-taalmodel dat zich richt op codegeneratie en krachtige ondersteuning biedt voor geavanceerde code- en inferentietaken."
1189
1192
  },
@@ -200,6 +200,9 @@
200
200
  "enableMaxTokens": {
201
201
  "title": "Limiet voor enkele reacties inschakelen"
202
202
  },
203
+ "enableReasoningEffort": {
204
+ "title": "Inschakelen van redeneringsinspanningsaanpassing"
205
+ },
203
206
  "frequencyPenalty": {
204
207
  "desc": "Hoe hoger de waarde, hoe waarschijnlijker het is dat herhaalde woorden worden verminderd",
205
208
  "title": "Frequentieboete"
@@ -216,6 +219,15 @@
216
219
  "desc": "Hoe hoger de waarde, hoe waarschijnlijker het is dat het gesprek naar nieuwe onderwerpen wordt uitgebreid",
217
220
  "title": "Onderwerpnieuwheid"
218
221
  },
222
+ "reasoningEffort": {
223
+ "desc": "Hoe hoger de waarde, hoe sterker de redeneringscapaciteit, maar dit kan de responstijd en het tokenverbruik verhogen",
224
+ "options": {
225
+ "high": "Hoog",
226
+ "low": "Laag",
227
+ "medium": "Gemiddeld"
228
+ },
229
+ "title": "Redeneringsinspanningsniveau"
230
+ },
219
231
  "temperature": {
220
232
  "desc": "Hoe hoger de waarde, hoe willekeuriger de reactie",
221
233
  "title": "Willekeurigheid",
@@ -126,6 +126,10 @@
126
126
  "title": "Świeżość tematu"
127
127
  },
128
128
  "range": "Zakres",
129
+ "reasoning_effort": {
130
+ "desc": "To ustawienie kontroluje intensywność rozumowania modelu przed wygenerowaniem odpowiedzi. Niska intensywność priorytetowo traktuje szybkość odpowiedzi i oszczędza tokeny, podczas gdy wysoka intensywność zapewnia pełniejsze rozumowanie, ale zużywa więcej tokenów i obniża szybkość odpowiedzi. Wartość domyślna to średnia, co równoważy dokładność rozumowania z szybkością odpowiedzi.",
131
+ "title": "Intensywność rozumowania"
132
+ },
129
133
  "temperature": {
130
134
  "desc": "To ustawienie wpływa na różnorodność odpowiedzi modelu. Niższe wartości prowadzą do bardziej przewidywalnych i typowych odpowiedzi, podczas gdy wyższe wartości zachęcają do bardziej zróżnicowanych i rzadziej spotykanych odpowiedzi. Gdy wartość wynosi 0, model zawsze daje tę samą odpowiedź na dane wejście.",
131
135
  "title": "Losowość"
@@ -1184,6 +1184,9 @@
1184
1184
  "o1-preview": {
1185
1185
  "description": "o1 to nowy model wnioskowania OpenAI, odpowiedni do złożonych zadań wymagających szerokiej wiedzy ogólnej. Model ten ma kontekst 128K i datę graniczną wiedzy z października 2023 roku."
1186
1186
  },
1187
+ "o3-mini": {
1188
+ "description": "o3-mini to nasz najnowszy mały model wnioskowania, który oferuje wysoką inteligencję przy tych samych kosztach i celach opóźnienia co o1-mini."
1189
+ },
1187
1190
  "open-codestral-mamba": {
1188
1191
  "description": "Codestral Mamba to model językowy Mamba 2 skoncentrowany na generowaniu kodu, oferujący silne wsparcie dla zaawansowanych zadań kodowania i wnioskowania."
1189
1192
  },
@@ -200,6 +200,9 @@
200
200
  "enableMaxTokens": {
201
201
  "title": "Włącz limit jednorazowej odpowiedzi"
202
202
  },
203
+ "enableReasoningEffort": {
204
+ "title": "Włącz dostosowanie intensywności rozumowania"
205
+ },
203
206
  "frequencyPenalty": {
204
207
  "desc": "Im większa wartość, tym większe prawdopodobieństwo zmniejszenia powtarzających się słów",
205
208
  "title": "Kara za częstość"
@@ -216,6 +219,15 @@
216
219
  "desc": "Im większa wartość, tym większe prawdopodobieństwo rozszerzenia się na nowe tematy",
217
220
  "title": "Świeżość tematu"
218
221
  },
222
+ "reasoningEffort": {
223
+ "desc": "Im wyższa wartość, tym silniejsza zdolność rozumowania, ale może to zwiększyć czas odpowiedzi i zużycie tokenów",
224
+ "options": {
225
+ "high": "Wysoki",
226
+ "low": "Niski",
227
+ "medium": "Średni"
228
+ },
229
+ "title": "Intensywność rozumowania"
230
+ },
219
231
  "temperature": {
220
232
  "desc": "Im większa wartość, tym odpowiedzi są bardziej losowe",
221
233
  "title": "Losowość",
@@ -126,6 +126,10 @@
126
126
  "title": "Novidade do Tópico"
127
127
  },
128
128
  "range": "Faixa",
129
+ "reasoning_effort": {
130
+ "desc": "Esta configuração é usada para controlar a intensidade de raciocínio do modelo antes de gerar uma resposta. Intensidade baixa prioriza a velocidade de resposta e economiza Tokens, enquanto intensidade alta oferece um raciocínio mais completo, mas consome mais Tokens e reduz a velocidade de resposta. O valor padrão é médio, equilibrando a precisão do raciocínio com a velocidade de resposta.",
131
+ "title": "Intensidade de Raciocínio"
132
+ },
129
133
  "temperature": {
130
134
  "desc": "Esta configuração afeta a diversidade das respostas do modelo. Valores mais baixos resultam em respostas mais previsíveis e típicas, enquanto valores mais altos incentivam respostas mais variadas e incomuns. Quando o valor é 0, o modelo sempre dá a mesma resposta para uma entrada dada.",
131
135
  "title": "Aleatoriedade"
@@ -1184,6 +1184,9 @@
1184
1184
  "o1-preview": {
1185
1185
  "description": "o1 é o novo modelo de raciocínio da OpenAI, adequado para tarefas complexas que exigem amplo conhecimento geral. Este modelo possui um contexto de 128K e uma data limite de conhecimento em outubro de 2023."
1186
1186
  },
1187
+ "o3-mini": {
1188
+ "description": "o3-mini é nosso mais recente modelo de inferência em miniatura, oferecendo alta inteligência com os mesmos custos e metas de latência que o o1-mini."
1189
+ },
1187
1190
  "open-codestral-mamba": {
1188
1191
  "description": "Codestral Mamba é um modelo de linguagem Mamba 2 focado em geração de código, oferecendo forte suporte para tarefas avançadas de codificação e raciocínio."
1189
1192
  },
@@ -200,6 +200,9 @@
200
200
  "enableMaxTokens": {
201
201
  "title": "Ativar limite de resposta única"
202
202
  },
203
+ "enableReasoningEffort": {
204
+ "title": "Ativar ajuste de intensidade de raciocínio"
205
+ },
203
206
  "frequencyPenalty": {
204
207
  "desc": "Quanto maior o valor, maior a probabilidade de reduzir palavras repetidas",
205
208
  "title": "Penalidade de frequência"
@@ -216,6 +219,15 @@
216
219
  "desc": "Quanto maior o valor, maior a probabilidade de expandir para novos tópicos",
217
220
  "title": "Penalidade de novidade do tópico"
218
221
  },
222
+ "reasoningEffort": {
223
+ "desc": "Quanto maior o valor, mais forte será a capacidade de raciocínio, mas isso pode aumentar o tempo de resposta e o consumo de tokens",
224
+ "options": {
225
+ "high": "Alto",
226
+ "low": "Baixo",
227
+ "medium": "Médio"
228
+ },
229
+ "title": "Intensidade de raciocínio"
230
+ },
219
231
  "temperature": {
220
232
  "desc": "Quanto maior o valor, mais aleatória será a resposta",
221
233
  "title": "Aleatoriedade",
@@ -126,6 +126,10 @@
126
126
  "title": "Свежесть темы"
127
127
  },
128
128
  "range": "Диапазон",
129
+ "reasoning_effort": {
130
+ "desc": "Эта настройка используется для управления интенсивностью размышлений модели перед генерацией ответа. Низкая интенсивность приоритизирует скорость ответа и экономит токены, высокая интенсивность обеспечивает более полное размышление, но потребляет больше токенов и снижает скорость ответа. Значение по умолчанию - среднее, что обеспечивает баланс между точностью размышлений и скоростью ответа.",
131
+ "title": "Интенсивность размышлений"
132
+ },
129
133
  "temperature": {
130
134
  "desc": "Эта настройка влияет на разнообразие ответов модели. Более низкие значения приводят к более предсказуемым и типичным ответам, в то время как более высокие значения поощряют более разнообразные и необычные ответы. Когда значение установлено на 0, модель всегда дает один и тот же ответ на данный ввод.",
131
135
  "title": "Случайность"
@@ -1184,6 +1184,9 @@
1184
1184
  "o1-preview": {
1185
1185
  "description": "o1 — это новая модель вывода от OpenAI, подходящая для сложных задач, требующих обширных общих знаний. Модель имеет контекст 128K и срок знания до октября 2023 года."
1186
1186
  },
1187
+ "o3-mini": {
1188
+ "description": "o3-mini — это наша последняя компактная модель вывода, обеспечивающая высокий уровень интеллекта при тех же затратах и задержках, что и o1-mini."
1189
+ },
1187
1190
  "open-codestral-mamba": {
1188
1191
  "description": "Codestral Mamba — это языковая модель Mamba 2, сосредоточенная на генерации кода, обеспечивающая мощную поддержку для сложных задач по коду и выводу."
1189
1192
  },
@@ -200,6 +200,9 @@
200
200
  "enableMaxTokens": {
201
201
  "title": "Включить ограничение максимального количества токенов"
202
202
  },
203
+ "enableReasoningEffort": {
204
+ "title": "Включить настройку интенсивности вывода"
205
+ },
203
206
  "frequencyPenalty": {
204
207
  "desc": "Чем выше значение, тем меньше вероятность повторения слов",
205
208
  "title": "Штраф за повторение"
@@ -216,6 +219,15 @@
216
219
  "desc": "Чем выше значение, тем больше вероятность перехода на новые темы",
217
220
  "title": "Штраф за однообразие"
218
221
  },
222
+ "reasoningEffort": {
223
+ "desc": "Чем больше значение, тем сильнее способность вывода, но это может увеличить время отклика и потребление токенов",
224
+ "options": {
225
+ "high": "Высокий",
226
+ "low": "Низкий",
227
+ "medium": "Средний"
228
+ },
229
+ "title": "Интенсивность вывода"
230
+ },
219
231
  "temperature": {
220
232
  "desc": "Чем выше значение, тем более непредсказуемым будет ответ",
221
233
  "title": "Непредсказуемость",
@@ -126,6 +126,10 @@
126
126
  "title": "Konu Tazeliği"
127
127
  },
128
128
  "range": "Aralık",
129
+ "reasoning_effort": {
130
+ "desc": "Bu ayar, modelin yanıt üretmeden önceki akıl yürütme gücünü kontrol etmek için kullanılır. Düşük güç, yanıt hızını önceliklendirir ve Token tasarrufu sağlar; yüksek güç ise daha kapsamlı bir akıl yürütme sunar, ancak daha fazla Token tüketir ve yanıt hızını düşürür. Varsayılan değer orta seviyedir, akıl yürütme doğruluğu ile yanıt hızı arasında bir denge sağlar.",
131
+ "title": "Akıl Yürütme Gücü"
132
+ },
129
133
  "temperature": {
130
134
  "desc": "Bu ayar, modelin yanıtlarının çeşitliliğini etkiler. Daha düşük değerler daha öngörülebilir ve tipik yanıtlar verirken, daha yüksek değerler daha çeşitli ve nadir yanıtları teşvik eder. Değer 0 olarak ayarlandığında, model belirli bir girdi için her zaman aynı yanıtı verir.",
131
135
  "title": "Rastgelelik"
@@ -1184,6 +1184,9 @@
1184
1184
  "o1-preview": {
1185
1185
  "description": "o1, OpenAI'nin geniş genel bilgiye ihtiyaç duyan karmaşık görevler için uygun yeni bir akıl yürütme modelidir. Bu model, 128K bağlam ve Ekim 2023 bilgi kesim tarihi ile donatılmıştır."
1186
1186
  },
1187
+ "o3-mini": {
1188
+ "description": "o3-mini, aynı maliyet ve gecikme hedefleriyle yüksek zeka sunan en yeni küçük ölçekli çıkarım modelimizdir."
1189
+ },
1187
1190
  "open-codestral-mamba": {
1188
1191
  "description": "Codestral Mamba, kod üretimine odaklanan Mamba 2 dil modelidir ve ileri düzey kod ve akıl yürütme görevlerine güçlü destek sunar."
1189
1192
  },
@@ -200,6 +200,9 @@
200
200
  "enableMaxTokens": {
201
201
  "title": "Max Token Sınırlamasını Etkinleştir"
202
202
  },
203
+ "enableReasoningEffort": {
204
+ "title": "Akıl yürütme yoğunluğunu ayarla"
205
+ },
203
206
  "frequencyPenalty": {
204
207
  "desc": "Değer ne kadar yüksekse, tekrarlayan kelimeleri azaltma olasılığı o kadar yüksektir",
205
208
  "title": "Frequency Penalty"
@@ -216,6 +219,15 @@
216
219
  "desc": "Değer ne kadar yüksekse, yeni konulara genişleme olasılığı o kadar yüksektir",
217
220
  "title": "Presence Penalty"
218
221
  },
222
+ "reasoningEffort": {
223
+ "desc": "Değer ne kadar yüksekse, akıl yürütme yeteneği o kadar güçlüdür, ancak yanıt süresi ve Token tüketimini artırabilir",
224
+ "options": {
225
+ "high": "Yüksek",
226
+ "low": "Düşük",
227
+ "medium": "Orta"
228
+ },
229
+ "title": "Akıl yürütme yoğunluğu"
230
+ },
219
231
  "temperature": {
220
232
  "desc": "Değer ne kadar yüksekse, yanıt o kadar rastgele olur",
221
233
  "title": "Randomness",
@@ -126,6 +126,10 @@
126
126
  "title": "Độ mới của chủ đề"
127
127
  },
128
128
  "range": "Phạm vi",
129
+ "reasoning_effort": {
130
+ "desc": "Cài đặt này được sử dụng để kiểm soát mức độ suy luận của mô hình trước khi tạo câu trả lời. Mức độ thấp ưu tiên tốc độ phản hồi và tiết kiệm Token, trong khi mức độ cao cung cấp suy luận đầy đủ hơn nhưng tiêu tốn nhiều Token hơn và làm giảm tốc độ phản hồi. Giá trị mặc định là trung bình, cân bằng giữa độ chính xác của suy luận và tốc độ phản hồi.",
131
+ "title": "Mức độ suy luận"
132
+ },
129
133
  "temperature": {
130
134
  "desc": "Cài đặt này ảnh hưởng đến sự đa dạng trong phản hồi của mô hình. Giá trị thấp hơn dẫn đến phản hồi dễ đoán và điển hình hơn, trong khi giá trị cao hơn khuyến khích phản hồi đa dạng và không thường gặp. Khi giá trị được đặt là 0, mô hình sẽ luôn đưa ra cùng một phản hồi cho đầu vào nhất định.",
131
135
  "title": "Ngẫu nhiên"
@@ -1184,6 +1184,9 @@
1184
1184
  "o1-preview": {
1185
1185
  "description": "o1 là mô hình suy diễn mới của OpenAI, phù hợp cho các nhiệm vụ phức tạp cần kiến thức tổng quát rộng rãi. Mô hình này có ngữ cảnh 128K và thời điểm cắt kiến thức vào tháng 10 năm 2023."
1186
1186
  },
1187
+ "o3-mini": {
1188
+ "description": "o3-mini là mô hình suy diễn nhỏ gọn mới nhất của chúng tôi, cung cấp trí thông minh cao với chi phí và độ trễ tương tự như o1-mini."
1189
+ },
1187
1190
  "open-codestral-mamba": {
1188
1191
  "description": "Codestral Mamba là mô hình ngôn ngữ Mamba 2 tập trung vào sinh mã, cung cấp hỗ trợ mạnh mẽ cho các nhiệm vụ mã và suy luận tiên tiến."
1189
1192
  },
@@ -200,6 +200,9 @@
200
200
  "enableMaxTokens": {
201
201
  "title": "Bật giới hạn phản hồi một lần"
202
202
  },
203
+ "enableReasoningEffort": {
204
+ "title": "Bật điều chỉnh cường độ suy luận"
205
+ },
203
206
  "frequencyPenalty": {
204
207
  "desc": "Giá trị càng cao, càng có khả năng giảm sự lặp lại của từ/cụm từ",
205
208
  "title": "Hình phạt tần suất"
@@ -216,6 +219,15 @@
216
219
  "desc": "Giá trị càng cao, càng có khả năng mở rộng đến chủ đề mới",
217
220
  "title": "Độ mới của chủ đề"
218
221
  },
222
+ "reasoningEffort": {
223
+ "desc": "Giá trị càng lớn, khả năng suy luận càng mạnh, nhưng có thể làm tăng thời gian phản hồi và tiêu tốn Token",
224
+ "options": {
225
+ "high": "Cao",
226
+ "low": "Thấp",
227
+ "medium": "Trung bình"
228
+ },
229
+ "title": "Cường độ suy luận"
230
+ },
219
231
  "temperature": {
220
232
  "desc": "Giá trị càng cao, phản hồi càng ngẫu nhiên",
221
233
  "title": "Độ ngẫu nhiên",
@@ -126,6 +126,10 @@
126
126
  "title": "话题新鲜度"
127
127
  },
128
128
  "range": "范围",
129
+ "reasoning_effort": {
130
+ "desc": "此设置用于控制模型在生成回答前的推理强度。低强度优先响应速度并节省 Token,高强度提供更完整的推理,但会消耗更多 Token 并降低响应速度。默认值为中,平衡推理准确性与响应速度。",
131
+ "title": "推理强度"
132
+ },
129
133
  "temperature": {
130
134
  "desc": "此设置影响模型回应的多样性。较低的值会导致更可预测和典型的回应,而较高的值则鼓励更多样化和不常见的回应。当值设为0时,模型对于给定的输入总是给出相同的回应。",
131
135
  "title": "随机性"
@@ -1176,7 +1176,7 @@
1176
1176
  "description": "Llama 3.1 Nemotron 70B 是由 NVIDIA 定制的大型语言模型,旨在提高 LLM 生成的响应对用户查询的帮助程度。该模型在 Arena Hard、AlpacaEval 2 LC 和 GPT-4-Turbo MT-Bench 等基准测试中表现出色,截至 2024 年 10 月 1 日,在所有三个自动对齐基准测试中排名第一。该模型使用 RLHF(特别是 REINFORCE)、Llama-3.1-Nemotron-70B-Reward 和 HelpSteer2-Preference 提示在 Llama-3.1-70B-Instruct 模型基础上进行训练"
1177
1177
  },
1178
1178
  "o1": {
1179
- "description": "专注于高级推理和解决复杂问题,包括数学和科学任务。非常适合需要深入上下文理解和代理工作流程的应用程序。"
1179
+ "description": "o1是OpenAI新的推理模型,支持图文输入并输出文本,适用于需要广泛通用知识的复杂任务。该模型具有200K上下文和2023年10月的知识截止日期。"
1180
1180
  },
1181
1181
  "o1-mini": {
1182
1182
  "description": "o1-mini是一款针对编程、数学和科学应用场景而设计的快速、经济高效的推理模型。该模型具有128K上下文和2023年10月的知识截止日期。"
@@ -1184,6 +1184,9 @@
1184
1184
  "o1-preview": {
1185
1185
  "description": "o1是OpenAI新的推理模型,适用于需要广泛通用知识的复杂任务。该模型具有128K上下文和2023年10月的知识截止日期。"
1186
1186
  },
1187
+ "o3-mini": {
1188
+ "description": "o3-mini 是我们最新的小型推理模型,在与 o1-mini 相同的成本和延迟目标下提供高智能。"
1189
+ },
1187
1190
  "open-codestral-mamba": {
1188
1191
  "description": "Codestral Mamba是专注于代码生成的Mamba 2语言模型,为先进的代码和推理任务提供强力支持。"
1189
1192
  },
@@ -200,6 +200,9 @@
200
200
  "enableMaxTokens": {
201
201
  "title": "开启单次回复限制"
202
202
  },
203
+ "enableReasoningEffort": {
204
+ "title": "开启推理强度调整"
205
+ },
203
206
  "frequencyPenalty": {
204
207
  "desc": "值越大,越有可能降低重复字词",
205
208
  "title": "频率惩罚度"
@@ -216,6 +219,15 @@
216
219
  "desc": "值越大,越有可能扩展到新话题",
217
220
  "title": "话题新鲜度"
218
221
  },
222
+ "reasoningEffort": {
223
+ "desc": "值越大,推理能力越强,但可能会增加响应时间和 Token 消耗",
224
+ "options": {
225
+ "high": "高",
226
+ "low": "低",
227
+ "medium": "中"
228
+ },
229
+ "title": "推理强度"
230
+ },
219
231
  "temperature": {
220
232
  "desc": "值越大,回复越随机",
221
233
  "title": "随机性",
@@ -126,6 +126,10 @@
126
126
  "title": "話題新鮮度"
127
127
  },
128
128
  "range": "範圍",
129
+ "reasoning_effort": {
130
+ "desc": "此設定用於控制模型在生成回答前的推理強度。低強度優先響應速度並節省 Token,高強度提供更完整的推理,但會消耗更多 Token 並降低響應速度。預設值為中,平衡推理準確性與響應速度。",
131
+ "title": "推理強度"
132
+ },
129
133
  "temperature": {
130
134
  "desc": "此設置影響模型回應的多樣性。較低的值會導致更可預測和典型的回應,而較高的值則鼓勵更多樣化和不常見的回應。當值設為0時,模型對於給定的輸入總是給出相同的回應。",
131
135
  "title": "隨機性"
@@ -1184,6 +1184,9 @@
1184
1184
  "o1-preview": {
1185
1185
  "description": "o1是OpenAI新的推理模型,適用於需要廣泛通用知識的複雜任務。該模型具有128K上下文和2023年10月的知識截止日期。"
1186
1186
  },
1187
+ "o3-mini": {
1188
+ "description": "o3-mini 是我們最新的小型推理模型,在與 o1-mini 相同的成本和延遲目標下提供高智能。"
1189
+ },
1187
1190
  "open-codestral-mamba": {
1188
1191
  "description": "Codestral Mamba 是專注於代碼生成的 Mamba 2 語言模型,為先進的代碼和推理任務提供強力支持。"
1189
1192
  },
@@ -200,6 +200,9 @@
200
200
  "enableMaxTokens": {
201
201
  "title": "啟用單次回覆限制"
202
202
  },
203
+ "enableReasoningEffort": {
204
+ "title": "開啟推理強度調整"
205
+ },
203
206
  "frequencyPenalty": {
204
207
  "desc": "數值越大,越有可能降低重複字詞",
205
208
  "title": "頻率懲罰度"
@@ -216,6 +219,15 @@
216
219
  "desc": "數值越大,越有可能擴展到新話題",
217
220
  "title": "話題新鮮度"
218
221
  },
222
+ "reasoningEffort": {
223
+ "desc": "值越大,推理能力越強,但可能會增加回應時間和 Token 消耗",
224
+ "options": {
225
+ "high": "高",
226
+ "low": "低",
227
+ "medium": "中"
228
+ },
229
+ "title": "推理強度"
230
+ },
219
231
  "temperature": {
220
232
  "desc": "數值越大,回覆越隨機",
221
233
  "title": "隨機性",
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@lobehub/chat",
3
- "version": "1.49.16",
3
+ "version": "1.50.0",
4
4
  "description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
5
5
  "keywords": [
6
6
  "framework",
@@ -5,6 +5,7 @@ import {
5
5
  ChartColumnBig,
6
6
  Delete,
7
7
  FileMinus,
8
+ Pickaxe,
8
9
  LucideIcon,
9
10
  MessageSquareText,
10
11
  Thermometer,
@@ -83,6 +84,15 @@ const ParameterList = memo<ParameterListProps>(({ data }) => {
83
84
  range: data?.meta?.maxOutput ? [0, formatTokenNumber(data.meta.maxOutput)] : undefined,
84
85
  type: 'int',
85
86
  },
87
+ {
88
+ defaultValue: '--',
89
+ desc: t('models.parameterList.reasoning_effort.desc'),
90
+ icon: Pickaxe,
91
+ key: 'reasoning_effort',
92
+ label: t('models.parameterList.reasoning_effort.title'),
93
+ range: ['low', 'high'],
94
+ type: 'string',
95
+ },
86
96
  ];
87
97
 
88
98
  return (
@@ -3,21 +3,20 @@ import { AIChatModelCard } from '@/types/aiModel';
3
3
  const githubChatModels: AIChatModelCard[] = [
4
4
  {
5
5
  abilities: {
6
- functionCall: false,
7
- vision: true,
6
+ functionCall: true,
8
7
  },
9
8
  contextWindowTokens: 200_000,
10
9
  description:
11
- '专注于高级推理和解决复杂问题,包括数学和科学任务。非常适合需要深入上下文理解和代理工作流程的应用程序。',
12
- displayName: 'OpenAI o1',
10
+ 'o3-mini 是我们最新的小型推理模型,在与 o1-mini 相同的成本和延迟目标下提供高智能。',
11
+ displayName: 'OpenAI o3-mini',
13
12
  enabled: true,
14
- id: 'o1',
13
+ id: 'o3-mini',
15
14
  maxOutput: 100_000,
15
+ releasedAt: '2025-01-31',
16
16
  type: 'chat',
17
17
  },
18
18
  {
19
19
  abilities: {
20
- functionCall: false,
21
20
  vision: true,
22
21
  },
23
22
  contextWindowTokens: 128_000,
@@ -30,7 +29,19 @@ const githubChatModels: AIChatModelCard[] = [
30
29
  },
31
30
  {
32
31
  abilities: {
33
- functionCall: false,
32
+ vision: true,
33
+ },
34
+ contextWindowTokens: 200_000,
35
+ description:
36
+ 'o1是OpenAI新的推理模型,支持图文输入并输出文本,适用于需要广泛通用知识的复杂任务。该模型具有200K上下文和2023年10月的知识截止日期。',
37
+ displayName: 'OpenAI o1',
38
+ enabled: true,
39
+ id: 'o1',
40
+ maxOutput: 100_000,
41
+ type: 'chat',
42
+ },
43
+ {
44
+ abilities: {
34
45
  vision: true,
35
46
  },
36
47
  contextWindowTokens: 128_000,
@@ -8,6 +8,24 @@ import {
8
8
  } from '@/types/aiModel';
9
9
 
10
10
  export const openaiChatModels: AIChatModelCard[] = [
11
+ {
12
+ abilities: {
13
+ functionCall: true,
14
+ },
15
+ contextWindowTokens: 200_000,
16
+ description:
17
+ 'o3-mini 是我们最新的小型推理模型,在与 o1-mini 相同的成本和延迟目标下提供高智能。',
18
+ displayName: 'OpenAI o3-mini',
19
+ enabled: true,
20
+ id: 'o3-mini',
21
+ maxOutput: 100_000,
22
+ pricing: {
23
+ input: 1.1,
24
+ output: 4.4,
25
+ },
26
+ releasedAt: '2025-01-31',
27
+ type: 'chat',
28
+ },
11
29
  {
12
30
  contextWindowTokens: 128_000,
13
31
  description:
@@ -17,12 +35,27 @@ export const openaiChatModels: AIChatModelCard[] = [
17
35
  id: 'o1-mini',
18
36
  maxOutput: 65_536,
19
37
  pricing: {
20
- input: 3,
21
- output: 12,
38
+ input: 1.1,
39
+ output: 4.4,
22
40
  },
23
41
  releasedAt: '2024-09-12',
24
42
  type: 'chat',
25
43
  },
44
+ {
45
+ contextWindowTokens: 200_000,
46
+ description:
47
+ 'o1是OpenAI新的推理模型,支持图文输入并输出文本,适用于需要广泛通用知识的复杂任务。该模型具有200K上下文和2023年10月的知识截止日期。',
48
+ displayName: 'OpenAI o1',
49
+ enabled: true,
50
+ id: 'o1',
51
+ maxOutput: 100_000,
52
+ pricing: {
53
+ input: 15,
54
+ output: 60,
55
+ },
56
+ releasedAt: '2024-12-17',
57
+ type: 'chat',
58
+ },
26
59
  {
27
60
  contextWindowTokens: 128_000,
28
61
  description:
@@ -1,7 +1,7 @@
1
1
  'use client';
2
2
 
3
3
  import { Form, ItemGroup, SliderWithInput } from '@lobehub/ui';
4
- import { Switch } from 'antd';
4
+ import { Select, Switch } from 'antd';
5
5
  import { memo } from 'react';
6
6
  import { useTranslation } from 'react-i18next';
7
7
 
@@ -17,9 +17,9 @@ const AgentModal = memo(() => {
17
17
  const { t } = useTranslation('setting');
18
18
  const [form] = Form.useForm();
19
19
 
20
- const [enableMaxTokens, updateConfig] = useStore((s) => {
20
+ const [enableMaxTokens, enableReasoningEffort, updateConfig] = useStore((s) => {
21
21
  const config = selectors.chatConfig(s);
22
- return [config.enableMaxTokens, s.setAgentConfig];
22
+ return [config.enableMaxTokens, config.enableReasoningEffort, s.setAgentConfig];
23
23
  });
24
24
 
25
25
  const providerName = useProviderName(useStore((s) => s.config.provider) as string);
@@ -79,6 +79,30 @@ const AgentModal = memo(() => {
79
79
  name: ['params', 'max_tokens'],
80
80
  tag: 'max_tokens',
81
81
  },
82
+ {
83
+ children: <Switch />,
84
+ label: t('settingModel.enableReasoningEffort.title'),
85
+ minWidth: undefined,
86
+ name: ['chatConfig', 'enableReasoningEffort'],
87
+ valuePropName: 'checked',
88
+ },
89
+ {
90
+ children: (
91
+ <Select
92
+ defaultValue='medium'
93
+ options={[
94
+ { label: t('settingModel.reasoningEffort.options.low'), value: 'low' },
95
+ { label: t('settingModel.reasoningEffort.options.medium'), value: 'medium' },
96
+ { label: t('settingModel.reasoningEffort.options.high'), value: 'high' },
97
+ ]}
98
+ />
99
+ ),
100
+ desc: t('settingModel.reasoningEffort.desc'),
101
+ hidden: !enableReasoningEffort,
102
+ label: t('settingModel.reasoningEffort.title'),
103
+ name: ['params', 'reasoning_effort'],
104
+ tag: 'reasoning_effort',
105
+ },
82
106
  ],
83
107
  title: t('settingModel.title'),
84
108
  };