@lobehub/chat 1.49.16 → 1.50.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +33 -0
- package/changelog/v1.json +12 -0
- package/docs/usage/agents/model.mdx +16 -0
- package/docs/usage/agents/model.zh-CN.mdx +16 -0
- package/locales/ar/discover.json +4 -0
- package/locales/ar/models.json +3 -0
- package/locales/ar/setting.json +12 -0
- package/locales/bg-BG/discover.json +4 -0
- package/locales/bg-BG/models.json +3 -0
- package/locales/bg-BG/setting.json +12 -0
- package/locales/de-DE/discover.json +4 -0
- package/locales/de-DE/models.json +3 -0
- package/locales/de-DE/setting.json +12 -0
- package/locales/en-US/discover.json +4 -0
- package/locales/en-US/models.json +3 -0
- package/locales/en-US/setting.json +12 -0
- package/locales/es-ES/discover.json +4 -0
- package/locales/es-ES/models.json +3 -0
- package/locales/es-ES/setting.json +12 -0
- package/locales/fa-IR/discover.json +4 -0
- package/locales/fa-IR/models.json +3 -0
- package/locales/fa-IR/setting.json +12 -0
- package/locales/fr-FR/discover.json +4 -0
- package/locales/fr-FR/models.json +3 -0
- package/locales/fr-FR/setting.json +12 -0
- package/locales/it-IT/discover.json +4 -0
- package/locales/it-IT/models.json +3 -0
- package/locales/it-IT/setting.json +12 -0
- package/locales/ja-JP/discover.json +4 -0
- package/locales/ja-JP/models.json +3 -0
- package/locales/ja-JP/setting.json +12 -0
- package/locales/ko-KR/discover.json +4 -0
- package/locales/ko-KR/models.json +15 -0
- package/locales/ko-KR/setting.json +12 -0
- package/locales/nl-NL/discover.json +4 -0
- package/locales/nl-NL/models.json +3 -0
- package/locales/nl-NL/setting.json +12 -0
- package/locales/pl-PL/discover.json +4 -0
- package/locales/pl-PL/models.json +3 -0
- package/locales/pl-PL/setting.json +12 -0
- package/locales/pt-BR/discover.json +4 -0
- package/locales/pt-BR/models.json +3 -0
- package/locales/pt-BR/setting.json +12 -0
- package/locales/ru-RU/discover.json +4 -0
- package/locales/ru-RU/models.json +3 -0
- package/locales/ru-RU/setting.json +12 -0
- package/locales/tr-TR/discover.json +4 -0
- package/locales/tr-TR/models.json +3 -0
- package/locales/tr-TR/setting.json +12 -0
- package/locales/vi-VN/discover.json +4 -0
- package/locales/vi-VN/models.json +3 -0
- package/locales/vi-VN/setting.json +12 -0
- package/locales/zh-CN/discover.json +4 -0
- package/locales/zh-CN/models.json +4 -1
- package/locales/zh-CN/setting.json +12 -0
- package/locales/zh-TW/discover.json +4 -0
- package/locales/zh-TW/models.json +3 -0
- package/locales/zh-TW/setting.json +12 -0
- package/package.json +1 -1
- package/src/app/(main)/discover/(detail)/model/[...slugs]/features/ParameterList/index.tsx +10 -0
- package/src/config/aiModels/github.ts +18 -7
- package/src/config/aiModels/openai.ts +35 -2
- package/src/features/AgentSetting/AgentModal/index.tsx +27 -3
- package/src/libs/agent-runtime/github/index.ts +3 -3
- package/src/libs/agent-runtime/openai/index.ts +7 -5
- package/src/libs/agent-runtime/utils/streams/openai.test.ts +202 -0
- package/src/libs/agent-runtime/utils/streams/openai.ts +9 -8
- package/src/locales/default/discover.ts +4 -0
- package/src/locales/default/setting.ts +12 -0
- package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +5 -0
- package/src/types/agent/index.ts +6 -0
- package/src/types/llm.ts +5 -0
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,39 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
## [Version 1.50.0](https://github.com/lobehub/lobe-chat/compare/v1.49.16...v1.50.0)
|
6
|
+
|
7
|
+
<sup>Released on **2025-02-03**</sup>
|
8
|
+
|
9
|
+
#### ✨ Features
|
10
|
+
|
11
|
+
- **misc**: Add `o3-mini` support for OpenAI & GitHub Models.
|
12
|
+
|
13
|
+
#### 🐛 Bug Fixes
|
14
|
+
|
15
|
+
- **misc**: Fix parse of deepseek r1 in siliconflow provider.
|
16
|
+
|
17
|
+
<br/>
|
18
|
+
|
19
|
+
<details>
|
20
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
21
|
+
|
22
|
+
#### What's improved
|
23
|
+
|
24
|
+
- **misc**: Add `o3-mini` support for OpenAI & GitHub Models, closes [#5657](https://github.com/lobehub/lobe-chat/issues/5657) ([492cfd4](https://github.com/lobehub/lobe-chat/commit/492cfd4))
|
25
|
+
|
26
|
+
#### What's fixed
|
27
|
+
|
28
|
+
- **misc**: Fix parse of deepseek r1 in siliconflow provider, closes [#5687](https://github.com/lobehub/lobe-chat/issues/5687) ([44e81e2](https://github.com/lobehub/lobe-chat/commit/44e81e2))
|
29
|
+
|
30
|
+
</details>
|
31
|
+
|
32
|
+
<div align="right">
|
33
|
+
|
34
|
+
[](#readme-top)
|
35
|
+
|
36
|
+
</div>
|
37
|
+
|
5
38
|
### [Version 1.49.16](https://github.com/lobehub/lobe-chat/compare/v1.49.15...v1.49.16)
|
6
39
|
|
7
40
|
<sup>Released on **2025-02-03**</sup>
|
package/changelog/v1.json
CHANGED
@@ -1,4 +1,16 @@
|
|
1
1
|
[
|
2
|
+
{
|
3
|
+
"children": {
|
4
|
+
"features": [
|
5
|
+
"Add o3-mini support for OpenAI & GitHub Models."
|
6
|
+
],
|
7
|
+
"fixes": [
|
8
|
+
"Fix parse of deepseek r1 in siliconflow provider."
|
9
|
+
]
|
10
|
+
},
|
11
|
+
"date": "2025-02-03",
|
12
|
+
"version": "1.50.0"
|
13
|
+
},
|
2
14
|
{
|
3
15
|
"children": {
|
4
16
|
"improvements": [
|
@@ -77,3 +77,19 @@ It is a mechanism that penalizes frequently occurring new vocabulary in the text
|
|
77
77
|
- `0.0` When the morning sun poured into the small diner, a tired postman appeared at the door, carrying a bag of letters in his hands. The owner warmly prepared a breakfast for him, and he started sorting the mail while enjoying his breakfast. **(The highest frequency word is "of", accounting for 8.45%)**
|
78
78
|
- `1.0` A girl in deep sleep was woken up by a warm ray of sunshine, she saw the first ray of morning light, surrounded by birdsong and flowers, everything was full of vitality. (The highest frequency word is "of", accounting for 5.45%)
|
79
79
|
- `2.0` Every morning, he would sit on the balcony to have breakfast. Under the soft setting sun, everything looked very peaceful. However, one day, when he was about to pick up his breakfast, an optimistic little bird flew by, bringing him a good mood for the day. (The highest frequency word is "of", accounting for 4.94%)
|
80
|
+
|
81
|
+
<br />
|
82
|
+
|
83
|
+
### `reasoning_effort`
|
84
|
+
|
85
|
+
The `reasoning_effort` parameter controls the strength of the reasoning process. This setting affects the depth of reasoning the model performs when generating a response. The available values are **`low`**, **`medium`**, and **`high`**, with the following meanings:
|
86
|
+
|
87
|
+
- **low**: Lower reasoning effort, resulting in faster response times. Suitable for scenarios where quick responses are needed, but it may sacrifice some reasoning accuracy.
|
88
|
+
- **medium** (default): Balances reasoning accuracy and response speed, suitable for most scenarios.
|
89
|
+
- **high**: Higher reasoning effort, producing more detailed and complex responses, but slower response times and greater token consumption.
|
90
|
+
|
91
|
+
By adjusting the `reasoning_effort` parameter, you can find an appropriate balance between response speed and reasoning depth based on your needs. For example, in conversational scenarios, if fast responses are a priority, you can choose low reasoning effort; if more complex analysis or reasoning is needed, you can opt for high reasoning effort.
|
92
|
+
|
93
|
+
<Callout>
|
94
|
+
This parameter is only applicable to reasoning models, such as OpenAI's `o1`, `o1-mini`, `o3-mini`, etc.
|
95
|
+
</Callout>
|
@@ -72,3 +72,19 @@ Presence Penalty 参数可以看作是对生成文本中重复内容的一种惩
|
|
72
72
|
- `0.0` 当清晨的阳光洒进小餐馆时,一名疲倦的邮递员出现在门口,他的手中提着一袋信件。店主热情地为他准备了一份早餐,他在享用早餐的同时开始整理邮件。**(频率最高的词是 “的”,占比 8.45%)**
|
73
73
|
- `1.0` 一个深度睡眠的女孩被一阵温暖的阳光唤醒,她看到了早晨的第一缕阳光,周围是鸟语花香,一切都充满了生机。*(频率最高的词是 “的”,占比 5.45%)*
|
74
74
|
- `2.0` 每天早上,他都会在阳台上坐着吃早餐。在柔和的夕阳照耀下,一切看起来都非常宁静。然而有一天,当他准备端起早餐的时候,一只乐观的小鸟飞过,给他带来了一天的好心情。 *(频率最高的词是 “的”,占比 4.94%)*
|
75
|
+
|
76
|
+
<br />
|
77
|
+
|
78
|
+
### `reasoning_effort`
|
79
|
+
|
80
|
+
`reasoning_effort` 参数用于控制推理过程的强度。此参数的设置会影响模型在生成回答时的推理深度。可选值包括 **`low`**、**`medium`** 和 **`high`**,具体含义如下:
|
81
|
+
|
82
|
+
- **low(低)**:推理强度较低,生成速度较快,适用于需要快速响应的场景,但可能牺牲一定的推理精度。
|
83
|
+
- **medium(中,默认值)**:平衡推理精度与响应速度,适用于大多数场景。
|
84
|
+
- **high(高)**:推理强度较高,生成更为详细和复杂的回答,但响应时间较长,且消耗更多的 Token。
|
85
|
+
|
86
|
+
通过调整 `reasoning_effort` 参数,可以根据需求在生成速度与推理深度之间找到适合的平衡。例如,在对话场景中,如果更关注快速响应,可以选择低推理强度;如果需要更复杂的分析或推理,可以选择高推理强度。
|
87
|
+
|
88
|
+
<Callout>
|
89
|
+
该参数仅适用于推理模型,如 OpenAI 的 `o1`、`o1-mini`、`o3-mini` 等。
|
90
|
+
</Callout>
|
package/locales/ar/discover.json
CHANGED
@@ -126,6 +126,10 @@
|
|
126
126
|
"title": "جدة الموضوع"
|
127
127
|
},
|
128
128
|
"range": "نطاق",
|
129
|
+
"reasoning_effort": {
|
130
|
+
"desc": "تُستخدم هذه الإعدادات للتحكم في شدة التفكير التي يقوم بها النموذج قبل توليد الإجابات. الشدة المنخفضة تعطي الأولوية لسرعة الاستجابة وتوفر الرموز، بينما الشدة العالية توفر تفكيرًا أكثر اكتمالًا ولكنها تستهلك المزيد من الرموز وتقلل من سرعة الاستجابة. القيمة الافتراضية هي متوسطة، مما يوازن بين دقة التفكير وسرعة الاستجابة.",
|
131
|
+
"title": "شدة التفكير"
|
132
|
+
},
|
129
133
|
"temperature": {
|
130
134
|
"desc": "تؤثر هذه الإعدادات على تنوع استجابة النموذج. القيم المنخفضة تؤدي إلى استجابات أكثر توقعًا ونمطية، بينما القيم الأعلى تشجع على استجابات أكثر تنوعًا وغير شائعة. عندما تكون القيمة 0، يعطي النموذج نفس الاستجابة دائمًا لنفس المدخل.",
|
131
135
|
"title": "عشوائية"
|
package/locales/ar/models.json
CHANGED
@@ -1184,6 +1184,9 @@
|
|
1184
1184
|
"o1-preview": {
|
1185
1185
|
"description": "o1 هو نموذج استدلال جديد من OpenAI، مناسب للمهام المعقدة التي تتطلب معرفة عامة واسعة. يحتوي هذا النموذج على 128K من السياق وتاريخ انتهاء المعرفة في أكتوبر 2023."
|
1186
1186
|
},
|
1187
|
+
"o3-mini": {
|
1188
|
+
"description": "o3-mini هو أحدث نموذج استدلال صغير لدينا، يقدم ذكاءً عالياً تحت نفس تكاليف التأخير والأداء مثل o1-mini."
|
1189
|
+
},
|
1187
1190
|
"open-codestral-mamba": {
|
1188
1191
|
"description": "Codestral Mamba هو نموذج لغة Mamba 2 يركز على توليد الشيفرة، ويوفر دعمًا قويًا لمهام الشيفرة المتقدمة والاستدلال."
|
1189
1192
|
},
|
package/locales/ar/setting.json
CHANGED
@@ -200,6 +200,9 @@
|
|
200
200
|
"enableMaxTokens": {
|
201
201
|
"title": "تمكين الحد الأقصى للردود"
|
202
202
|
},
|
203
|
+
"enableReasoningEffort": {
|
204
|
+
"title": "تفعيل ضبط قوة الاستدلال"
|
205
|
+
},
|
203
206
|
"frequencyPenalty": {
|
204
207
|
"desc": "كلما زادت القيمة، زاد احتمال تقليل تكرار الكلمات",
|
205
208
|
"title": "عقوبة التكرار"
|
@@ -216,6 +219,15 @@
|
|
216
219
|
"desc": "كلما زادت القيمة، زاد احتمال التوسع في مواضيع جديدة",
|
217
220
|
"title": "جديد الحديث"
|
218
221
|
},
|
222
|
+
"reasoningEffort": {
|
223
|
+
"desc": "كلما زادت القيمة، زادت قدرة الاستدلال، ولكن قد يؤدي ذلك إلى زيادة وقت الاستجابة واستهلاك التوكنات",
|
224
|
+
"options": {
|
225
|
+
"high": "عالي",
|
226
|
+
"low": "منخفض",
|
227
|
+
"medium": "متوسط"
|
228
|
+
},
|
229
|
+
"title": "قوة الاستدلال"
|
230
|
+
},
|
219
231
|
"temperature": {
|
220
232
|
"desc": "كلما زادت القيمة، زادت الردود عشوائية أكثر",
|
221
233
|
"title": "التباين",
|
@@ -126,6 +126,10 @@
|
|
126
126
|
"title": "Свежест на темата"
|
127
127
|
},
|
128
128
|
"range": "Обхват",
|
129
|
+
"reasoning_effort": {
|
130
|
+
"desc": "Тази настройка контролира интензивността на разсъжденията на модела преди генерирането на отговор. Ниска интензивност приоритизира скоростта на отговор и спестява токени, докато висока интензивност предоставя по-пълни разсъждения, но изразходва повече токени и намалява скоростта на отговор. Стойността по подразбиране е средна, което балансира точността на разсъжденията и скоростта на отговор.",
|
131
|
+
"title": "Интензивност на разсъжденията"
|
132
|
+
},
|
129
133
|
"temperature": {
|
130
134
|
"desc": "Тази настройка влияе на разнообразието на отговорите на модела. По-ниски стойности водят до по-предсказуеми и типични отговори, докато по-високи стойности насърчават по-разнообразни и необичайни отговори. Когато стойността е 0, моделът винаги дава един и същ отговор на даден вход.",
|
131
135
|
"title": "Случайност"
|
@@ -1184,6 +1184,9 @@
|
|
1184
1184
|
"o1-preview": {
|
1185
1185
|
"description": "o1 е новият модел за изводи на OpenAI, подходящ за сложни задачи, изискващи обширни общи знания. Моделът разполага с контекст от 128K и дата на знание до октомври 2023."
|
1186
1186
|
},
|
1187
|
+
"o3-mini": {
|
1188
|
+
"description": "o3-mini е нашият най-нов малък модел за инференция, който предлага висока интелигентност при същите разходи и цели за закъснение като o1-mini."
|
1189
|
+
},
|
1187
1190
|
"open-codestral-mamba": {
|
1188
1191
|
"description": "Codestral Mamba е модел на езика Mamba 2, специализиран в генерирането на код, предоставящ мощна поддръжка за напреднали кодови и разсъждателни задачи."
|
1189
1192
|
},
|
@@ -200,6 +200,9 @@
|
|
200
200
|
"enableMaxTokens": {
|
201
201
|
"title": "Активиране на ограничението за максимален брой токени"
|
202
202
|
},
|
203
|
+
"enableReasoningEffort": {
|
204
|
+
"title": "Активиране на настройките за интензивност на разсъжденията"
|
205
|
+
},
|
203
206
|
"frequencyPenalty": {
|
204
207
|
"desc": "Колкото по-висока е стойността, толкова по-вероятно е да се намалят повтарящите се думи",
|
205
208
|
"title": "Наказание за честота"
|
@@ -216,6 +219,15 @@
|
|
216
219
|
"desc": "Колкото по-висока е стойността, толкова по-вероятно е да се разшири до нови теми",
|
217
220
|
"title": "Свежест на темата"
|
218
221
|
},
|
222
|
+
"reasoningEffort": {
|
223
|
+
"desc": "Колкото по-висока е стойността, толкова по-силна е способността за разсъждение, но може да увеличи времето за отговор и консумацията на токени",
|
224
|
+
"options": {
|
225
|
+
"high": "Висока",
|
226
|
+
"low": "Ниска",
|
227
|
+
"medium": "Средна"
|
228
|
+
},
|
229
|
+
"title": "Интензивност на разсъжденията"
|
230
|
+
},
|
219
231
|
"temperature": {
|
220
232
|
"desc": "Колкото по-висока е стойността, толкова по-случаен е отговорът",
|
221
233
|
"title": "Случайност",
|
@@ -126,6 +126,10 @@
|
|
126
126
|
"title": "Themenfrische"
|
127
127
|
},
|
128
128
|
"range": "Bereich",
|
129
|
+
"reasoning_effort": {
|
130
|
+
"desc": "Diese Einstellung steuert die Intensität des Denkprozesses des Modells, bevor es eine Antwort generiert. Eine niedrige Intensität priorisiert die Geschwindigkeit der Antwort und spart Token, während eine hohe Intensität eine umfassendere Argumentation bietet, jedoch mehr Token verbraucht und die Antwortgeschwindigkeit verringert. Der Standardwert ist mittel, um eine Balance zwischen Genauigkeit des Denkens und Antwortgeschwindigkeit zu gewährleisten.",
|
131
|
+
"title": "Denkintensität"
|
132
|
+
},
|
129
133
|
"temperature": {
|
130
134
|
"desc": "Diese Einstellung beeinflusst die Vielfalt der Antworten des Modells. Niedrigere Werte führen zu vorhersehbareren und typischen Antworten, während höhere Werte zu vielfältigeren und weniger häufigen Antworten anregen. Wenn der Wert auf 0 gesetzt wird, gibt das Modell für einen bestimmten Input immer die gleiche Antwort.",
|
131
135
|
"title": "Zufälligkeit"
|
@@ -1184,6 +1184,9 @@
|
|
1184
1184
|
"o1-preview": {
|
1185
1185
|
"description": "o1 ist OpenAIs neues Inferenzmodell, das für komplexe Aufgaben geeignet ist, die umfangreiches Allgemeinwissen erfordern. Das Modell hat einen Kontext von 128K und einen Wissensstand bis Oktober 2023."
|
1186
1186
|
},
|
1187
|
+
"o3-mini": {
|
1188
|
+
"description": "o3-mini ist unser neuestes kompaktes Inferenzmodell, das bei den gleichen Kosten- und Verzögerungszielen wie o1-mini hohe Intelligenz bietet."
|
1189
|
+
},
|
1187
1190
|
"open-codestral-mamba": {
|
1188
1191
|
"description": "Codestral Mamba ist ein auf die Codegenerierung spezialisiertes Mamba 2-Sprachmodell, das starke Unterstützung für fortschrittliche Code- und Schlussfolgerungsaufgaben bietet."
|
1189
1192
|
},
|
@@ -200,6 +200,9 @@
|
|
200
200
|
"enableMaxTokens": {
|
201
201
|
"title": "Maximale Token pro Antwort aktivieren"
|
202
202
|
},
|
203
|
+
"enableReasoningEffort": {
|
204
|
+
"title": "Aktivieren Sie die Anpassung der Schlussfolgerungsintensität"
|
205
|
+
},
|
203
206
|
"frequencyPenalty": {
|
204
207
|
"desc": "Je höher der Wert, desto wahrscheinlicher ist es, dass sich wiederholende Wörter reduziert werden",
|
205
208
|
"title": "Frequenzstrafe"
|
@@ -216,6 +219,15 @@
|
|
216
219
|
"desc": "Je höher der Wert, desto wahrscheinlicher ist es, dass sich das Gespräch auf neue Themen ausweitet",
|
217
220
|
"title": "Themenfrische"
|
218
221
|
},
|
222
|
+
"reasoningEffort": {
|
223
|
+
"desc": "Je höher der Wert, desto stärker die Schlussfolgerungsfähigkeit, aber dies kann die Antwortzeit und den Tokenverbrauch erhöhen.",
|
224
|
+
"options": {
|
225
|
+
"high": "Hoch",
|
226
|
+
"low": "Niedrig",
|
227
|
+
"medium": "Mittel"
|
228
|
+
},
|
229
|
+
"title": "Schlussfolgerungsintensität"
|
230
|
+
},
|
219
231
|
"temperature": {
|
220
232
|
"desc": "Je höher der Wert, desto zufälliger die Antwort",
|
221
233
|
"title": "Zufälligkeit",
|
@@ -126,6 +126,10 @@
|
|
126
126
|
"title": "Topic Freshness"
|
127
127
|
},
|
128
128
|
"range": "Range",
|
129
|
+
"reasoning_effort": {
|
130
|
+
"desc": "This setting controls the intensity of reasoning the model applies before generating a response. Low intensity prioritizes response speed and saves tokens, while high intensity provides more comprehensive reasoning but consumes more tokens and slows down response time. The default value is medium, balancing reasoning accuracy with response speed.",
|
131
|
+
"title": "Reasoning Intensity"
|
132
|
+
},
|
129
133
|
"temperature": {
|
130
134
|
"desc": "This setting affects the diversity of the model's responses. Lower values lead to more predictable and typical responses, while higher values encourage more diverse and less common responses. When set to 0, the model always gives the same response to a given input.",
|
131
135
|
"title": "Randomness"
|
@@ -1184,6 +1184,9 @@
|
|
1184
1184
|
"o1-preview": {
|
1185
1185
|
"description": "o1 is OpenAI's new reasoning model, suitable for complex tasks that require extensive general knowledge. This model features a 128K context and has a knowledge cutoff date of October 2023."
|
1186
1186
|
},
|
1187
|
+
"o3-mini": {
|
1188
|
+
"description": "o3-mini is our latest small inference model that delivers high intelligence while maintaining the same cost and latency targets as o1-mini."
|
1189
|
+
},
|
1187
1190
|
"open-codestral-mamba": {
|
1188
1191
|
"description": "Codestral Mamba is a language model focused on code generation, providing strong support for advanced coding and reasoning tasks."
|
1189
1192
|
},
|
@@ -200,6 +200,9 @@
|
|
200
200
|
"enableMaxTokens": {
|
201
201
|
"title": "Enable Max Tokens Limit"
|
202
202
|
},
|
203
|
+
"enableReasoningEffort": {
|
204
|
+
"title": "Enable Reasoning Effort Adjustment"
|
205
|
+
},
|
203
206
|
"frequencyPenalty": {
|
204
207
|
"desc": "The higher the value, the more likely it is to reduce repeated words",
|
205
208
|
"title": "Frequency Penalty"
|
@@ -216,6 +219,15 @@
|
|
216
219
|
"desc": "The higher the value, the more likely it is to expand to new topics",
|
217
220
|
"title": "Topic Freshness"
|
218
221
|
},
|
222
|
+
"reasoningEffort": {
|
223
|
+
"desc": "The higher the value, the stronger the reasoning ability, but it may increase response time and token consumption.",
|
224
|
+
"options": {
|
225
|
+
"high": "High",
|
226
|
+
"low": "Low",
|
227
|
+
"medium": "Medium"
|
228
|
+
},
|
229
|
+
"title": "Reasoning Effort"
|
230
|
+
},
|
219
231
|
"temperature": {
|
220
232
|
"desc": "The higher the value, the more random the response",
|
221
233
|
"title": "Randomness",
|
@@ -126,6 +126,10 @@
|
|
126
126
|
"title": "Novedad del tema"
|
127
127
|
},
|
128
128
|
"range": "Rango",
|
129
|
+
"reasoning_effort": {
|
130
|
+
"desc": "Esta configuración se utiliza para controlar la intensidad de razonamiento del modelo antes de generar una respuesta. Una baja intensidad prioriza la velocidad de respuesta y ahorra tokens, mientras que una alta intensidad proporciona un razonamiento más completo, pero consume más tokens y reduce la velocidad de respuesta. El valor predeterminado es medio, equilibrando la precisión del razonamiento con la velocidad de respuesta.",
|
131
|
+
"title": "Intensidad de razonamiento"
|
132
|
+
},
|
129
133
|
"temperature": {
|
130
134
|
"desc": "Esta configuración afecta la diversidad de las respuestas del modelo. Un valor más bajo resultará en respuestas más predecibles y típicas, mientras que un valor más alto alentará respuestas más diversas y menos comunes. Cuando el valor se establece en 0, el modelo siempre dará la misma respuesta para una entrada dada.",
|
131
135
|
"title": "Aleatoriedad"
|
@@ -1184,6 +1184,9 @@
|
|
1184
1184
|
"o1-preview": {
|
1185
1185
|
"description": "o1 es el nuevo modelo de inferencia de OpenAI, adecuado para tareas complejas que requieren un amplio conocimiento general. Este modelo tiene un contexto de 128K y una fecha de corte de conocimiento en octubre de 2023."
|
1186
1186
|
},
|
1187
|
+
"o3-mini": {
|
1188
|
+
"description": "o3-mini es nuestro último modelo de inferencia de tamaño pequeño, que ofrece alta inteligencia con los mismos objetivos de costo y latencia que o1-mini."
|
1189
|
+
},
|
1187
1190
|
"open-codestral-mamba": {
|
1188
1191
|
"description": "Codestral Mamba es un modelo de lenguaje Mamba 2 enfocado en la generación de código, que proporciona un fuerte apoyo para tareas avanzadas de codificación y razonamiento."
|
1189
1192
|
},
|
@@ -200,6 +200,9 @@
|
|
200
200
|
"enableMaxTokens": {
|
201
201
|
"title": "Activar límite de tokens por respuesta"
|
202
202
|
},
|
203
|
+
"enableReasoningEffort": {
|
204
|
+
"title": "Activar ajuste de intensidad de razonamiento"
|
205
|
+
},
|
203
206
|
"frequencyPenalty": {
|
204
207
|
"desc": "Cuanto mayor sea el valor, más probable es que se reduzcan las repeticiones de palabras",
|
205
208
|
"title": "Penalización de frecuencia"
|
@@ -216,6 +219,15 @@
|
|
216
219
|
"desc": "Cuanto mayor sea el valor, más probable es que se amplíe a nuevos temas",
|
217
220
|
"title": "Penalización de novedad del tema"
|
218
221
|
},
|
222
|
+
"reasoningEffort": {
|
223
|
+
"desc": "Cuanto mayor sea el valor, más fuerte será la capacidad de razonamiento, pero puede aumentar el tiempo de respuesta y el consumo de tokens.",
|
224
|
+
"options": {
|
225
|
+
"high": "Alto",
|
226
|
+
"low": "Bajo",
|
227
|
+
"medium": "Medio"
|
228
|
+
},
|
229
|
+
"title": "Intensidad de razonamiento"
|
230
|
+
},
|
219
231
|
"temperature": {
|
220
232
|
"desc": "Cuanto mayor sea el valor, más aleatoria será la respuesta",
|
221
233
|
"title": "Temperatura",
|
@@ -126,6 +126,10 @@
|
|
126
126
|
"title": "تازگی موضوع"
|
127
127
|
},
|
128
128
|
"range": "محدوده",
|
129
|
+
"reasoning_effort": {
|
130
|
+
"desc": "این تنظیم برای کنترل شدت استدلال مدل قبل از تولید پاسخ استفاده میشود. شدت پایین به سرعت پاسخدهی اولویت میدهد و توکن را صرفهجویی میکند، در حالی که شدت بالا استدلال کاملتری ارائه میدهد اما توکن بیشتری مصرف کرده و سرعت پاسخدهی را کاهش میدهد. مقدار پیشفرض متوسط است که تعادل بین دقت استدلال و سرعت پاسخدهی را برقرار میکند.",
|
131
|
+
"title": "شدت استدلال"
|
132
|
+
},
|
129
133
|
"temperature": {
|
130
134
|
"desc": "این تنظیمات بر تنوع پاسخهای مدل تأثیر میگذارد. مقادیر پایینتر منجر به پاسخهای قابل پیشبینیتر و معمولیتر میشود، در حالی که مقادیر بالاتر تنوع و پاسخهای غیرمعمولتر را تشویق میکند. وقتی مقدار به 0 تنظیم شود، مدل همیشه برای ورودی داده شده یک پاسخ یکسان ارائه میدهد.",
|
131
135
|
"title": "تصادفی بودن"
|
@@ -1184,6 +1184,9 @@
|
|
1184
1184
|
"o1-preview": {
|
1185
1185
|
"description": "تمرکز بر استدلال پیشرفته و حل مسائل پیچیده، از جمله وظایف ریاضی و علمی. بسیار مناسب برای برنامههایی که نیاز به درک عمیق از زمینه و جریان کاری خودمختار دارند."
|
1186
1186
|
},
|
1187
|
+
"o3-mini": {
|
1188
|
+
"description": "o3-mini جدیدترین مدل استنتاج کوچک ماست که هوش بالایی را با هزینه و هدف تأخیر مشابه o1-mini ارائه میدهد."
|
1189
|
+
},
|
1187
1190
|
"open-codestral-mamba": {
|
1188
1191
|
"description": "Codestral Mamba یک مدل زبان Mamba 2 است که بر تولید کد تمرکز دارد و پشتیبانی قدرتمندی برای وظایف پیشرفته کدنویسی و استدلال ارائه میدهد."
|
1189
1192
|
},
|
@@ -200,6 +200,9 @@
|
|
200
200
|
"enableMaxTokens": {
|
201
201
|
"title": "فعالسازی محدودیت پاسخ"
|
202
202
|
},
|
203
|
+
"enableReasoningEffort": {
|
204
|
+
"title": "فعالسازی تنظیم شدت استدلال"
|
205
|
+
},
|
203
206
|
"frequencyPenalty": {
|
204
207
|
"desc": "هرچه مقدار بیشتر باشد، احتمال کاهش تکرار کلمات بیشتر است",
|
205
208
|
"title": "مجازات تکرار"
|
@@ -216,6 +219,15 @@
|
|
216
219
|
"desc": "هرچه مقدار بیشتر باشد، احتمال گسترش به موضوعات جدید بیشتر است",
|
217
220
|
"title": "تازگی موضوع"
|
218
221
|
},
|
222
|
+
"reasoningEffort": {
|
223
|
+
"desc": "هرچه مقدار بیشتر باشد، توانایی استدلال قویتر است، اما ممکن است زمان پاسخ و مصرف توکن را افزایش دهد",
|
224
|
+
"options": {
|
225
|
+
"high": "بالا",
|
226
|
+
"low": "پایین",
|
227
|
+
"medium": "متوسط"
|
228
|
+
},
|
229
|
+
"title": "شدت استدلال"
|
230
|
+
},
|
219
231
|
"temperature": {
|
220
232
|
"desc": "هرچه مقدار بیشتر باشد، پاسخها تصادفیتر خواهند بود",
|
221
233
|
"title": "تصادفی بودن",
|
@@ -126,6 +126,10 @@
|
|
126
126
|
"title": "Fraîcheur des sujets"
|
127
127
|
},
|
128
128
|
"range": "Plage",
|
129
|
+
"reasoning_effort": {
|
130
|
+
"desc": "Ce paramètre contrôle l'intensité de raisonnement du modèle avant de générer une réponse. Une faible intensité privilégie la rapidité de réponse et économise des tokens, tandis qu'une forte intensité offre un raisonnement plus complet, mais consomme plus de tokens et ralentit la réponse. La valeur par défaut est moyenne, équilibrant précision du raisonnement et rapidité de réponse.",
|
131
|
+
"title": "Intensité de raisonnement"
|
132
|
+
},
|
129
133
|
"temperature": {
|
130
134
|
"desc": "Ce paramètre influence la diversité des réponses du modèle. Des valeurs plus basses entraînent des réponses plus prévisibles et typiques, tandis que des valeurs plus élevées encouragent des réponses plus variées et moins courantes. Lorsque la valeur est fixée à 0, le modèle donne toujours la même réponse pour une entrée donnée.",
|
131
135
|
"title": "Aléatoire"
|
@@ -1184,6 +1184,9 @@
|
|
1184
1184
|
"o1-preview": {
|
1185
1185
|
"description": "o1 est le nouveau modèle de raisonnement d'OpenAI, adapté aux tâches complexes nécessitant une vaste connaissance générale. Ce modèle dispose d'un contexte de 128K et d'une date limite de connaissance en octobre 2023."
|
1186
1186
|
},
|
1187
|
+
"o3-mini": {
|
1188
|
+
"description": "o3-mini est notre dernier modèle d'inférence compact, offrant une grande intelligence avec les mêmes objectifs de coût et de latence que o1-mini."
|
1189
|
+
},
|
1187
1190
|
"open-codestral-mamba": {
|
1188
1191
|
"description": "Codestral Mamba est un modèle de langage Mamba 2 axé sur la génération de code, offrant un soutien puissant pour des tâches avancées de codage et de raisonnement."
|
1189
1192
|
},
|
@@ -200,6 +200,9 @@
|
|
200
200
|
"enableMaxTokens": {
|
201
201
|
"title": "Activer la limite de tokens par réponse"
|
202
202
|
},
|
203
|
+
"enableReasoningEffort": {
|
204
|
+
"title": "Activer l'ajustement de l'intensité de raisonnement"
|
205
|
+
},
|
203
206
|
"frequencyPenalty": {
|
204
207
|
"desc": "Plus la valeur est élevée, plus il est probable de réduire les mots répétés",
|
205
208
|
"title": "Pénalité de fréquence"
|
@@ -216,6 +219,15 @@
|
|
216
219
|
"desc": "Plus la valeur est élevée, plus il est probable d'explorer de nouveaux sujets",
|
217
220
|
"title": "Pénalité de présence"
|
218
221
|
},
|
222
|
+
"reasoningEffort": {
|
223
|
+
"desc": "Plus la valeur est élevée, plus la capacité de raisonnement est forte, mais cela peut augmenter le temps de réponse et la consommation de jetons",
|
224
|
+
"options": {
|
225
|
+
"high": "Élevé",
|
226
|
+
"low": "Bas",
|
227
|
+
"medium": "Moyen"
|
228
|
+
},
|
229
|
+
"title": "Intensité de raisonnement"
|
230
|
+
},
|
219
231
|
"temperature": {
|
220
232
|
"desc": "Plus la valeur est élevée, plus la réponse est aléatoire",
|
221
233
|
"title": "Aléatoire",
|
@@ -126,6 +126,10 @@
|
|
126
126
|
"title": "Freschezza del tema"
|
127
127
|
},
|
128
128
|
"range": "Intervallo",
|
129
|
+
"reasoning_effort": {
|
130
|
+
"desc": "Questa impostazione controlla l'intensità del ragionamento del modello prima di generare una risposta. Un'intensità bassa privilegia la velocità di risposta e risparmia Token, mentre un'intensità alta fornisce un ragionamento più completo, ma consuma più Token e riduce la velocità di risposta. Il valore predefinito è medio, bilanciando l'accuratezza del ragionamento e la velocità di risposta.",
|
131
|
+
"title": "Intensità del ragionamento"
|
132
|
+
},
|
129
133
|
"temperature": {
|
130
134
|
"desc": "Questa impostazione influisce sulla diversità delle risposte del modello. Valori più bassi portano a risposte più prevedibili e tipiche, mentre valori più alti incoraggiano risposte più varie e insolite. Quando il valore è impostato a 0, il modello fornisce sempre la stessa risposta per un dato input.",
|
131
135
|
"title": "Casualità"
|
@@ -1184,6 +1184,9 @@
|
|
1184
1184
|
"o1-preview": {
|
1185
1185
|
"description": "o1 è il nuovo modello di inferenza di OpenAI, adatto a compiti complessi che richiedono una vasta conoscenza generale. Questo modello ha un contesto di 128K e una data di cutoff della conoscenza di ottobre 2023."
|
1186
1186
|
},
|
1187
|
+
"o3-mini": {
|
1188
|
+
"description": "o3-mini è il nostro ultimo modello di inferenza compatto, che offre un'intelligenza elevata con gli stessi obiettivi di costo e latenza di o1-mini."
|
1189
|
+
},
|
1187
1190
|
"open-codestral-mamba": {
|
1188
1191
|
"description": "Codestral Mamba è un modello linguistico Mamba 2 focalizzato sulla generazione di codice, offre un forte supporto per compiti avanzati di codifica e ragionamento."
|
1189
1192
|
},
|
@@ -200,6 +200,9 @@
|
|
200
200
|
"enableMaxTokens": {
|
201
201
|
"title": "Abilita limite di risposta singola"
|
202
202
|
},
|
203
|
+
"enableReasoningEffort": {
|
204
|
+
"title": "Attiva la regolazione dell'intensità del ragionamento"
|
205
|
+
},
|
203
206
|
"frequencyPenalty": {
|
204
207
|
"desc": "Più alto è il valore, più probabile è la riduzione delle parole ripetute",
|
205
208
|
"title": "Penalità di frequenza"
|
@@ -216,6 +219,15 @@
|
|
216
219
|
"desc": "Più alto è il valore, più probabile è l'estensione a nuovi argomenti",
|
217
220
|
"title": "Freschezza dell'argomento"
|
218
221
|
},
|
222
|
+
"reasoningEffort": {
|
223
|
+
"desc": "Maggiore è il valore, più forte è la capacità di ragionamento, ma potrebbe aumentare il tempo di risposta e il consumo di Token",
|
224
|
+
"options": {
|
225
|
+
"high": "Alto",
|
226
|
+
"low": "Basso",
|
227
|
+
"medium": "Medio"
|
228
|
+
},
|
229
|
+
"title": "Intensità del ragionamento"
|
230
|
+
},
|
219
231
|
"temperature": {
|
220
232
|
"desc": "Più alto è il valore, più casuale è la risposta",
|
221
233
|
"title": "Casualità",
|
@@ -126,6 +126,10 @@
|
|
126
126
|
"title": "トピックの新鮮さ"
|
127
127
|
},
|
128
128
|
"range": "範囲",
|
129
|
+
"reasoning_effort": {
|
130
|
+
"desc": "この設定は、モデルが回答を生成する前の推論の強度を制御するために使用されます。低強度は応答速度を優先し、トークンを節約しますが、高強度はより完全な推論を提供しますが、より多くのトークンを消費し、応答速度が低下します。デフォルト値は中で、推論の正確性と応答速度のバランスを取ります。",
|
131
|
+
"title": "推論強度"
|
132
|
+
},
|
129
133
|
"temperature": {
|
130
134
|
"desc": "この設定は、モデルの応答の多様性に影響を与えます。低い値はより予測可能で典型的な応答をもたらし、高い値はより多様で珍しい応答を奨励します。値が0に設定されると、モデルは与えられた入力に対して常に同じ応答を返します。",
|
131
135
|
"title": "ランダム性"
|
@@ -1184,6 +1184,9 @@
|
|
1184
1184
|
"o1-preview": {
|
1185
1185
|
"description": "o1はOpenAIの新しい推論モデルで、広範な一般知識を必要とする複雑なタスクに適しています。このモデルは128Kのコンテキストを持ち、2023年10月の知識のカットオフがあります。"
|
1186
1186
|
},
|
1187
|
+
"o3-mini": {
|
1188
|
+
"description": "o3-miniは、o1-miniと同じコストと遅延目標で高い知能を提供する最新の小型推論モデルです。"
|
1189
|
+
},
|
1187
1190
|
"open-codestral-mamba": {
|
1188
1191
|
"description": "Codestral Mambaは、コード生成に特化したMamba 2言語モデルであり、高度なコードおよび推論タスクを強力にサポートします。"
|
1189
1192
|
},
|
@@ -200,6 +200,9 @@
|
|
200
200
|
"enableMaxTokens": {
|
201
201
|
"title": "単一応答制限を有効にする"
|
202
202
|
},
|
203
|
+
"enableReasoningEffort": {
|
204
|
+
"title": "推論強度調整を有効にする"
|
205
|
+
},
|
203
206
|
"frequencyPenalty": {
|
204
207
|
"desc": "値が大きいほど、単語の繰り返しを減らす可能性が高くなります",
|
205
208
|
"title": "頻度ペナルティ"
|
@@ -216,6 +219,15 @@
|
|
216
219
|
"desc": "値が大きいほど、新しいトピックに拡張する可能性が高くなります",
|
217
220
|
"title": "トピックの新鮮度"
|
218
221
|
},
|
222
|
+
"reasoningEffort": {
|
223
|
+
"desc": "値が大きいほど推論能力が高まりますが、応答時間とトークン消費が増加する可能性があります",
|
224
|
+
"options": {
|
225
|
+
"high": "高",
|
226
|
+
"low": "低",
|
227
|
+
"medium": "中"
|
228
|
+
},
|
229
|
+
"title": "推論強度"
|
230
|
+
},
|
219
231
|
"temperature": {
|
220
232
|
"desc": "値が大きいほど、応答がよりランダムになります",
|
221
233
|
"title": "ランダム性",
|
@@ -126,6 +126,10 @@
|
|
126
126
|
"title": "주제 신선도"
|
127
127
|
},
|
128
128
|
"range": "범위",
|
129
|
+
"reasoning_effort": {
|
130
|
+
"desc": "이 설정은 모델이 응답을 생성하기 전에 추론 강도를 제어하는 데 사용됩니다. 낮은 강도는 응답 속도를 우선시하고 토큰을 절약하며, 높은 강도는 더 완전한 추론을 제공하지만 더 많은 토큰을 소모하고 응답 속도를 저하시킵니다. 기본값은 중간으로, 추론 정확성과 응답 속도의 균형을 맞춥니다.",
|
131
|
+
"title": "추론 강도"
|
132
|
+
},
|
129
133
|
"temperature": {
|
130
134
|
"desc": "이 설정은 모델 응답의 다양성에 영향을 미칩니다. 낮은 값은 더 예측 가능하고 전형적인 응답을 유도하며, 높은 값은 더 다양하고 드문 응답을 장려합니다. 값이 0으로 설정되면 모델은 주어진 입력에 대해 항상 동일한 응답을 제공합니다.",
|
131
135
|
"title": "무작위성"
|
@@ -180,6 +180,9 @@
|
|
180
180
|
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
181
181
|
"description": "Meta Llama 3.1은 Meta가 개발한 다국어 대규모 언어 모델 가족으로, 8B, 70B 및 405B의 세 가지 파라미터 규모의 사전 훈련 및 지침 미세 조정 변형을 포함합니다. 이 8B 지침 미세 조정 모델은 다국어 대화 시나리오에 최적화되어 있으며, 여러 산업 벤치마크 테스트에서 우수한 성능을 보입니다. 모델 훈련에는 15조 개 이상의 공개 데이터 토큰이 사용되었으며, 감독 미세 조정 및 인간 피드백 강화 학습과 같은 기술을 통해 모델의 유용성과 안전성을 향상시켰습니다. Llama 3.1은 텍스트 생성 및 코드 생성을 지원하며, 지식 마감일은 2023년 12월입니다."
|
182
182
|
},
|
183
|
+
"Qwen/QVQ-72B-Preview": {
|
184
|
+
"description": "QVQ-72B-Preview는 Qwen 팀이 개발한 시각적 추론 능력에 중점을 둔 연구 모델로, 복잡한 장면 이해 및 시각 관련 수학 문제 해결에서 독특한 장점을 가지고 있습니다."
|
185
|
+
},
|
183
186
|
"Qwen/QwQ-32B-Preview": {
|
184
187
|
"description": "QwQ-32B-Preview는 Qwen의 최신 실험적 연구 모델로, AI 추론 능력을 향상시키는 데 중점을 두고 있습니다. 언어 혼합, 재귀 추론 등 복잡한 메커니즘을 탐구하며, 주요 장점으로는 강력한 추론 분석 능력, 수학 및 프로그래밍 능력이 포함됩니다. 동시에 언어 전환 문제, 추론 루프, 안전성 고려 및 기타 능력 차이와 같은 문제도 존재합니다."
|
185
188
|
},
|
@@ -534,12 +537,21 @@
|
|
534
537
|
"databricks/dbrx-instruct": {
|
535
538
|
"description": "DBRX Instruct는 높은 신뢰성을 가진 지시 처리 능력을 제공하며, 다양한 산업 응용을 지원합니다."
|
536
539
|
},
|
540
|
+
"deepseek-ai/DeepSeek-R1": {
|
541
|
+
"description": "DeepSeek-R1은 강화 학습(RL) 기반의 추론 모델로, 모델 내의 반복성과 가독성 문제를 해결합니다. RL 이전에 DeepSeek-R1은 콜드 스타트 데이터를 도입하여 추론 성능을 더욱 최적화했습니다. 수학, 코드 및 추론 작업에서 OpenAI-o1과 유사한 성능을 보이며, 정교하게 설계된 훈련 방법을 통해 전체적인 효과를 향상시켰습니다."
|
542
|
+
},
|
537
543
|
"deepseek-ai/DeepSeek-V2.5": {
|
538
544
|
"description": "DeepSeek V2.5는 이전 버전의 우수한 기능을 집약하여 일반 및 인코딩 능력을 강화했습니다."
|
539
545
|
},
|
546
|
+
"deepseek-ai/DeepSeek-V3": {
|
547
|
+
"description": "DeepSeek-V3는 6710억 개의 매개변수를 가진 혼합 전문가(MoE) 언어 모델로, 다중 헤드 잠재 주의(MLA) 및 DeepSeekMoE 아키텍처를 채택하여 보조 손실 없는 부하 균형 전략을 결합하여 추론 및 훈련 효율성을 최적화합니다. 14.8조 개의 고품질 토큰에서 사전 훈련을 수행하고 감독 미세 조정 및 강화 학습을 통해 DeepSeek-V3는 성능 면에서 다른 오픈 소스 모델을 초월하며, 선도적인 폐쇄형 모델에 근접합니다."
|
548
|
+
},
|
540
549
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
541
550
|
"description": "DeepSeek 67B는 고복잡성 대화를 위해 훈련된 고급 모델입니다."
|
542
551
|
},
|
552
|
+
"deepseek-ai/deepseek-vl2": {
|
553
|
+
"description": "DeepSeek-VL2는 DeepSeekMoE-27B를 기반으로 개발된 혼합 전문가(MoE) 비주얼 언어 모델로, 희소 활성화 MoE 아키텍처를 사용하여 4.5B 매개변수만 활성화된 상태에서 뛰어난 성능을 발휘합니다. 이 모델은 비주얼 질문 응답, 광학 문자 인식, 문서/표/차트 이해 및 비주얼 위치 지정 등 여러 작업에서 우수한 성과를 보입니다."
|
554
|
+
},
|
543
555
|
"deepseek-chat": {
|
544
556
|
"description": "일반 및 코드 능력을 융합한 새로운 오픈 소스 모델로, 기존 Chat 모델의 일반 대화 능력과 Coder 모델의 강력한 코드 처리 능력을 유지하면서 인간의 선호에 더 잘 맞춰졌습니다. 또한, DeepSeek-V2.5는 작문 작업, 지시 따르기 등 여러 측면에서 큰 향상을 이루었습니다."
|
545
557
|
},
|
@@ -1173,6 +1185,9 @@
|
|
1173
1185
|
"o1-preview": {
|
1174
1186
|
"description": "o1은 OpenAI의 새로운 추론 모델로, 광범위한 일반 지식이 필요한 복잡한 작업에 적합합니다. 이 모델은 128K의 컨텍스트와 2023년 10월의 지식 기준일을 가지고 있습니다."
|
1175
1187
|
},
|
1188
|
+
"o3-mini": {
|
1189
|
+
"description": "o3-mini는 최신 소형 추론 모델로, o1-mini와 동일한 비용과 지연 목표에서 높은 지능을 제공합니다."
|
1190
|
+
},
|
1176
1191
|
"open-codestral-mamba": {
|
1177
1192
|
"description": "Codestral Mamba는 코드 생성을 전문으로 하는 Mamba 2 언어 모델로, 고급 코드 및 추론 작업에 강력한 지원을 제공합니다."
|
1178
1193
|
},
|