@lobehub/chat 1.45.3 → 1.45.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -119,9 +119,6 @@
119
119
  "OpenGVLab/InternVL2-26B": {
120
120
  "description": "InternVL2 đã thể hiện hiệu suất xuất sắc trong nhiều tác vụ ngôn ngữ hình ảnh, bao gồm hiểu tài liệu và biểu đồ, hiểu văn bản trong cảnh, OCR, giải quyết vấn đề khoa học và toán học."
121
121
  },
122
- "OpenGVLab/InternVL2-Llama3-76B": {
123
- "description": "InternVL2 đã thể hiện hiệu suất xuất sắc trong nhiều tác vụ ngôn ngữ hình ảnh, bao gồm hiểu tài liệu và biểu đồ, hiểu văn bản trong cảnh, OCR, giải quyết vấn đề khoa học và toán học."
124
- },
125
122
  "Phi-3-medium-128k-instruct": {
126
123
  "description": "Mô hình Phi-3-medium giống nhau, nhưng với kích thước ngữ cảnh lớn hơn cho RAG hoặc gợi ý ít."
127
124
  },
@@ -215,9 +212,6 @@
215
212
  "Qwen/Qwen2.5-Coder-7B-Instruct": {
216
213
  "description": "Qwen2.5-Coder-7B-Instruct là phiên bản mới nhất trong loạt mô hình ngôn ngữ lớn chuyên biệt cho mã do Alibaba Cloud phát hành. Mô hình này được cải thiện đáng kể khả năng tạo mã, suy luận và sửa chữa thông qua việc đào tạo trên 5.5 triệu tỷ tokens, không chỉ nâng cao khả năng lập trình mà còn duy trì lợi thế về khả năng toán học và tổng quát. Mô hình cung cấp nền tảng toàn diện hơn cho các ứng dụng thực tế như tác nhân mã."
217
214
  },
218
- "Qwen/Qwen2.5-Math-72B-Instruct": {
219
- "description": "Qwen2.5-Math tập trung vào việc giải quyết các vấn đề trong lĩnh vực toán học, cung cấp giải pháp chuyên nghiệp cho các bài toán khó."
220
- },
221
215
  "Qwen2-72B-Instruct": {
222
216
  "description": "Qwen2 là dòng mô hình mới nhất của Qwen, hỗ trợ ngữ cảnh 128k, so với các mô hình mã nguồn mở tốt nhất hiện tại, Qwen2-72B vượt trội hơn hẳn trong nhiều khả năng như hiểu ngôn ngữ tự nhiên, kiến thức, mã, toán học và đa ngôn ngữ."
223
217
  },
@@ -290,12 +284,6 @@
290
284
  "TeleAI/TeleMM": {
291
285
  "description": "Mô hình đa phương tiện TeleMM là một mô hình hiểu đa phương tiện do China Telecom phát triển, có khả năng xử lý nhiều loại đầu vào như văn bản và hình ảnh, hỗ trợ các chức năng như hiểu hình ảnh, phân tích biểu đồ, cung cấp dịch vụ hiểu đa phương tiện cho người dùng. Mô hình có khả năng tương tác đa phương tiện với người dùng, hiểu chính xác nội dung đầu vào, trả lời câu hỏi, hỗ trợ sáng tạo và cung cấp thông tin và cảm hứng đa phương tiện một cách hiệu quả. Mô hình thể hiện xuất sắc trong các nhiệm vụ đa phương tiện như nhận thức chi tiết và suy luận logic."
292
286
  },
293
- "Tencent/Hunyuan-A52B-Instruct": {
294
- "description": "Hunyuan-Large là mô hình MoE kiến trúc Transformer mã nguồn mở lớn nhất trong ngành, với tổng số tham số là 3890 tỷ và 52 tỷ tham số kích hoạt."
295
- },
296
- "Vendor-A/Qwen/Qwen2-7B-Instruct": {
297
- "description": "Qwen2-72B-Instruct là mô hình ngôn ngữ lớn được tinh chỉnh theo chỉ dẫn trong loạt Qwen2, với quy mô tham số là 72B. Mô hình này dựa trên kiến trúc Transformer, sử dụng hàm kích hoạt SwiGLU, độ lệch QKV trong chú ý và chú ý theo nhóm. Nó có khả năng xử lý đầu vào quy mô lớn. Mô hình thể hiện xuất sắc trong nhiều bài kiểm tra chuẩn về hiểu ngôn ngữ, sinh ngôn ngữ, khả năng đa ngôn ngữ, mã hóa, toán học và suy luận, vượt qua hầu hết các mô hình mã nguồn mở và thể hiện sức cạnh tranh tương đương với các mô hình độc quyền trong một số nhiệm vụ."
298
- },
299
287
  "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
300
288
  "description": "Qwen2.5-72B-Instruct là một trong những mô hình ngôn ngữ lớn mới nhất do Alibaba Cloud phát hành. Mô hình 72B này có khả năng cải thiện đáng kể trong các lĩnh vực mã hóa và toán học. Mô hình cũng cung cấp hỗ trợ đa ngôn ngữ, bao gồm hơn 29 ngôn ngữ, bao gồm tiếng Trung, tiếng Anh, v.v. Mô hình đã có sự cải thiện đáng kể trong việc tuân theo chỉ dẫn, hiểu dữ liệu có cấu trúc và tạo ra đầu ra có cấu trúc (đặc biệt là JSON)."
301
289
  },
@@ -521,12 +509,15 @@
521
509
  "command-r-plus": {
522
510
  "description": "Command R+ là một mô hình ngôn ngữ lớn hiệu suất cao, được thiết kế cho các tình huống doanh nghiệp thực tế và ứng dụng phức tạp."
523
511
  },
512
+ "dall-e-2": {
513
+ "description": "Mô hình DALL·E thế hệ thứ hai, hỗ trợ tạo hình ảnh chân thực và chính xác hơn, với độ phân giải gấp 4 lần thế hệ đầu tiên."
514
+ },
515
+ "dall-e-3": {
516
+ "description": "Mô hình DALL·E mới nhất, phát hành vào tháng 11 năm 2023. Hỗ trợ tạo hình ảnh chân thực và chính xác hơn, với khả năng thể hiện chi tiết mạnh mẽ hơn."
517
+ },
524
518
  "databricks/dbrx-instruct": {
525
519
  "description": "DBRX Instruct cung cấp khả năng xử lý chỉ dẫn đáng tin cậy, hỗ trợ nhiều ứng dụng trong ngành."
526
520
  },
527
- "deepseek-ai/DeepSeek-V2-Chat": {
528
- "description": "DeepSeek-V2 là một mô hình ngôn ngữ hỗn hợp chuyên gia (MoE) mạnh mẽ và tiết kiệm chi phí. Nó đã được tiền huấn luyện trên một tập dữ liệu chất lượng cao với 8.1 triệu tỷ tokens và được cải thiện thêm thông qua tinh chỉnh giám sát (SFT) và học tăng cường (RL). So với DeepSeek 67B, DeepSeek-V2 không chỉ mạnh mẽ hơn mà còn tiết kiệm 42.5% chi phí đào tạo, giảm 93.3% bộ nhớ KV và tăng gấp 5.76 lần thông lượng sinh tối đa. Mô hình hỗ trợ độ dài ngữ cảnh 128k và thể hiện xuất sắc trong các bài kiểm tra chuẩn và đánh giá sinh mở."
529
- },
530
521
  "deepseek-ai/DeepSeek-V2.5": {
531
522
  "description": "DeepSeek V2.5 kết hợp các đặc điểm xuất sắc của các phiên bản trước, tăng cường khả năng tổng quát và mã hóa."
532
523
  },
@@ -704,6 +695,9 @@
704
695
  "gpt-3.5-turbo-1106": {
705
696
  "description": "GPT 3.5 Turbo, phù hợp cho nhiều nhiệm vụ sinh và hiểu văn bản, hiện tại trỏ đến gpt-3.5-turbo-0125."
706
697
  },
698
+ "gpt-3.5-turbo-16k": {
699
+ "description": "GPT 3.5 Turbo 16k, mô hình sinh văn bản dung lượng lớn, phù hợp cho các nhiệm vụ phức tạp."
700
+ },
707
701
  "gpt-3.5-turbo-instruct": {
708
702
  "description": "GPT 3.5 Turbo, phù hợp cho nhiều nhiệm vụ sinh và hiểu văn bản, hiện tại trỏ đến gpt-3.5-turbo-0125."
709
703
  },
@@ -755,9 +749,24 @@
755
749
  "gpt-4o-2024-11-20": {
756
750
  "description": "ChatGPT-4o là một mô hình động, được cập nhật liên tục để giữ phiên bản mới nhất. Nó kết hợp khả năng hiểu và tạo ngôn ngữ mạnh mẽ, phù hợp cho nhiều ứng dụng quy mô lớn, bao gồm dịch vụ khách hàng, giáo dục và hỗ trợ kỹ thuật."
757
751
  },
752
+ "gpt-4o-audio-preview": {
753
+ "description": "Mô hình GPT-4o Audio, hỗ trợ đầu vào và đầu ra âm thanh."
754
+ },
758
755
  "gpt-4o-mini": {
759
756
  "description": "GPT-4o mini là mô hình mới nhất do OpenAI phát hành sau GPT-4 Omni, hỗ trợ đầu vào hình ảnh và đầu ra văn bản. Là mô hình nhỏ gọn tiên tiến nhất của họ, nó rẻ hơn nhiều so với các mô hình tiên tiến gần đây khác và rẻ hơn hơn 60% so với GPT-3.5 Turbo. Nó giữ lại trí thông minh tiên tiến nhất trong khi có giá trị sử dụng đáng kể. GPT-4o mini đạt 82% điểm trong bài kiểm tra MMLU và hiện đứng cao hơn GPT-4 về sở thích trò chuyện."
760
757
  },
758
+ "gpt-4o-mini-realtime-preview": {
759
+ "description": "Phiên bản thời gian thực của GPT-4o-mini, hỗ trợ đầu vào và đầu ra âm thanh và văn bản theo thời gian thực."
760
+ },
761
+ "gpt-4o-realtime-preview": {
762
+ "description": "Phiên bản thời gian thực của GPT-4o, hỗ trợ đầu vào và đầu ra âm thanh và văn bản theo thời gian thực."
763
+ },
764
+ "gpt-4o-realtime-preview-2024-10-01": {
765
+ "description": "Phiên bản thời gian thực của GPT-4o, hỗ trợ đầu vào và đầu ra âm thanh và văn bản theo thời gian thực."
766
+ },
767
+ "gpt-4o-realtime-preview-2024-12-17": {
768
+ "description": "Phiên bản thời gian thực của GPT-4o, hỗ trợ đầu vào và đầu ra âm thanh và văn bản theo thời gian thực."
769
+ },
761
770
  "grok-2-1212": {
762
771
  "description": "Mô hình này đã được cải thiện về độ chính xác, khả năng tuân thủ hướng dẫn và khả năng đa ngôn ngữ."
763
772
  },
@@ -935,6 +944,9 @@
935
944
  "meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
936
945
  "description": "LLaMA 3.2 được thiết kế để xử lý các tác vụ kết hợp dữ liệu hình ảnh và văn bản. Nó có khả năng xuất sắc trong các tác vụ mô tả hình ảnh và trả lời câu hỏi hình ảnh, vượt qua khoảng cách giữa tạo ngôn ngữ và suy luận hình ảnh."
937
946
  },
947
+ "meta-llama/Llama-3.3-70B-Instruct": {
948
+ "description": "Llama 3.3 là mô hình ngôn ngữ lớn mã nguồn mở đa ngôn ngữ tiên tiến nhất trong dòng Llama, mang đến trải nghiệm hiệu suất tương đương mô hình 405B với chi phí cực thấp. Dựa trên cấu trúc Transformer, và được cải thiện tính hữu ích và an toàn thông qua tinh chỉnh giám sát (SFT) và học tăng cường phản hồi từ con người (RLHF). Phiên bản tinh chỉnh theo chỉ dẫn được tối ưu hóa cho đối thoại đa ngôn ngữ, thể hiện tốt hơn nhiều mô hình trò chuyện mã nguồn mở và đóng trong nhiều tiêu chuẩn ngành. Ngày cắt kiến thức là tháng 12 năm 2023."
949
+ },
938
950
  "meta-llama/Llama-Vision-Free": {
939
951
  "description": "LLaMA 3.2 được thiết kế để xử lý các tác vụ kết hợp dữ liệu hình ảnh và văn bản. Nó có khả năng xuất sắc trong các tác vụ mô tả hình ảnh và trả lời câu hỏi hình ảnh, vượt qua khoảng cách giữa tạo ngôn ngữ và suy luận hình ảnh."
940
952
  },
@@ -1091,18 +1103,12 @@
1091
1103
  "nousresearch/hermes-2-pro-llama-3-8b": {
1092
1104
  "description": "Hermes 2 Pro Llama 3 8B là phiên bản nâng cấp của Nous Hermes 2, bao gồm bộ dữ liệu phát triển nội bộ mới nhất."
1093
1105
  },
1094
- "nvidia/Llama-3.1-Nemotron-70B-Instruct": {
1095
- "description": "Llama 3.1 Nemotron 70B là mô hình ngôn ngữ lớn được tùy chỉnh bởi NVIDIA, được thiết kế để cải thiện mức độ hỗ trợ của phản hồi do LLM tạo ra đối với các truy vấn của người dùng."
1096
- },
1097
1106
  "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
1098
1107
  "description": "Llama 3.1 Nemotron 70B là một mô hình ngôn ngữ quy mô lớn tùy chỉnh bởi NVIDIA, nhằm nâng cao mức độ hỗ trợ của phản hồi do LLM tạo ra đối với các truy vấn của người dùng. Mô hình này đã thể hiện xuất sắc trong các bài kiểm tra chuẩn như Arena Hard, AlpacaEval 2 LC và GPT-4-Turbo MT-Bench, đứng đầu trong cả ba bài kiểm tra tự động cho đến ngày 1 tháng 10 năm 2024. Mô hình sử dụng RLHF (đặc biệt là REINFORCE), Llama-3.1-Nemotron-70B-Reward và HelpSteer2-Preference để đào tạo trên cơ sở mô hình Llama-3.1-70B-Instruct."
1099
1108
  },
1100
1109
  "o1": {
1101
1110
  "description": "Tập trung vào suy diễn nâng cao và giải quyết các vấn đề phức tạp, bao gồm các nhiệm vụ toán học và khoa học. Rất phù hợp cho các ứng dụng cần hiểu biết sâu sắc về ngữ cảnh và quy trình làm việc đại diện."
1102
1111
  },
1103
- "o1-2024-12-17": {
1104
- "description": "o1 là mô hình suy diễn mới của OpenAI, hỗ trợ đầu vào hình ảnh và văn bản và xuất ra văn bản, phù hợp cho các nhiệm vụ phức tạp cần kiến thức chung rộng rãi. Mô hình này có ngữ cảnh 200K và thời điểm cắt đứt kiến thức vào tháng 10 năm 2023."
1105
- },
1106
1112
  "o1-mini": {
1107
1113
  "description": "o1-mini là một mô hình suy diễn nhanh chóng và tiết kiệm chi phí, được thiết kế cho các ứng dụng lập trình, toán học và khoa học. Mô hình này có ngữ cảnh 128K và thời điểm cắt kiến thức vào tháng 10 năm 2023."
1108
1114
  },
@@ -1130,9 +1136,6 @@
1130
1136
  "openai/gpt-4o-mini": {
1131
1137
  "description": "GPT-4o mini là mô hình mới nhất của OpenAI, được phát hành sau GPT-4 Omni, hỗ trợ đầu vào hình ảnh và văn bản, và đầu ra văn bản. Là mô hình nhỏ tiên tiến nhất của họ, nó rẻ hơn nhiều so với các mô hình tiên tiến gần đây khác và rẻ hơn hơn 60% so với GPT-3.5 Turbo. Nó giữ lại trí thông minh tiên tiến nhất trong khi có giá trị sử dụng đáng kể. GPT-4o mini đạt 82% điểm trong bài kiểm tra MMLU và hiện đứng đầu về sở thích trò chuyện so với GPT-4."
1132
1138
  },
1133
- "openai/o1": {
1134
- "description": "o1 là mô hình suy diễn mới của OpenAI, hỗ trợ đầu vào hình ảnh và văn bản và xuất ra văn bản, phù hợp cho các nhiệm vụ phức tạp cần kiến thức chung rộng rãi. Mô hình này có ngữ cảnh 200K và thời điểm cắt đứt kiến thức vào tháng 10 năm 2023."
1135
- },
1136
1139
  "openai/o1-mini": {
1137
1140
  "description": "o1-mini là một mô hình suy diễn nhanh chóng và tiết kiệm chi phí, được thiết kế cho các ứng dụng lập trình, toán học và khoa học. Mô hình này có ngữ cảnh 128K và thời điểm cắt kiến thức vào tháng 10 năm 2023."
1138
1141
  },
@@ -1307,15 +1310,30 @@
1307
1310
  "taichu_llm": {
1308
1311
  "description": "Mô hình ngôn ngữ lớn Taichu có khả năng hiểu ngôn ngữ mạnh mẽ và các khả năng như sáng tạo văn bản, trả lời câu hỏi kiến thức, lập trình mã, tính toán toán học, suy luận logic, phân tích cảm xúc, tóm tắt văn bản. Đổi mới kết hợp giữa đào tạo trước với dữ liệu phong phú từ nhiều nguồn, thông qua việc liên tục cải tiến công nghệ thuật toán và hấp thụ kiến thức mới từ dữ liệu văn bản khổng lồ, giúp mô hình ngày càng hoàn thiện. Cung cấp thông tin và dịch vụ tiện lợi hơn cho người dùng cùng trải nghiệm thông minh hơn."
1309
1312
  },
1313
+ "text-embedding-3-large": {
1314
+ "description": "Mô hình vector hóa mạnh mẽ nhất, phù hợp cho các nhiệm vụ tiếng Anh và không phải tiếng Anh."
1315
+ },
1316
+ "text-embedding-3-small": {
1317
+ "description": "Mô hình Embedding thế hệ mới hiệu quả và tiết kiệm, phù hợp cho tìm kiếm kiến thức, ứng dụng RAG và các tình huống khác."
1318
+ },
1310
1319
  "togethercomputer/StripedHyena-Nous-7B": {
1311
1320
  "description": "StripedHyena Nous (7B) cung cấp khả năng tính toán nâng cao thông qua chiến lược và kiến trúc mô hình hiệu quả."
1312
1321
  },
1322
+ "tts-1": {
1323
+ "description": "Mô hình chuyển văn bản thành giọng nói mới nhất, tối ưu hóa tốc độ cho các tình huống thời gian thực."
1324
+ },
1325
+ "tts-1-hd": {
1326
+ "description": "Mô hình chuyển văn bản thành giọng nói mới nhất, tối ưu hóa cho chất lượng."
1327
+ },
1313
1328
  "upstage/SOLAR-10.7B-Instruct-v1.0": {
1314
1329
  "description": "Upstage SOLAR Instruct v1 (11B) phù hợp cho các nhiệm vụ chỉ dẫn tinh vi, cung cấp khả năng xử lý ngôn ngữ xuất sắc."
1315
1330
  },
1316
1331
  "us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
1317
1332
  "description": "Claude 3.5 Sonnet nâng cao tiêu chuẩn ngành, hiệu suất vượt trội so với các mô hình cạnh tranh và Claude 3 Opus, thể hiện xuất sắc trong nhiều đánh giá, đồng thời có tốc độ và chi phí tương đương với các mô hình tầm trung của chúng tôi."
1318
1333
  },
1334
+ "whisper-1": {
1335
+ "description": "Mô hình nhận diện giọng nói đa năng, hỗ trợ nhận diện giọng nói đa ngôn ngữ, dịch giọng nói và nhận diện ngôn ngữ."
1336
+ },
1319
1337
  "wizardlm2": {
1320
1338
  "description": "WizardLM 2 là mô hình ngôn ngữ do Microsoft AI cung cấp, đặc biệt xuất sắc trong các lĩnh vực đối thoại phức tạp, đa ngôn ngữ, suy luận và trợ lý thông minh."
1321
1339
  },
@@ -119,9 +119,6 @@
119
119
  "OpenGVLab/InternVL2-26B": {
120
120
  "description": "InternVL2-26B 是 InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 internlm2-chat-20b 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-26B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力"
121
121
  },
122
- "OpenGVLab/InternVL2-Llama3-76B": {
123
- "description": "InternVL2-Llama3-76B 是 InternVL 2.0 系列中的大规模多模态模型。它由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 Hermes-2-Theta-Llama-3-70B 语言模型组成。该模型在各种视觉语言任务上表现出色,包括文档和图表理解、信息图表问答、场景文本理解和 OCR 任务等。InternVL2-Llama3-76B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力,在多项基准测试中达到或接近最先进的商业模型水平"
124
- },
125
122
  "Phi-3-medium-128k-instruct": {
126
123
  "description": "相同的Phi-3-medium模型,但具有更大的上下文大小,适用于RAG或少量提示。"
127
124
  },
@@ -174,7 +171,7 @@
174
171
  "description": "Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月"
175
172
  },
176
173
  "Qwen/QwQ-32B-Preview": {
177
- "description": "QwQ-32B-Preview是Qwen 最新的实验性研究模型,专注于提升AI推理能力。通过探索语言混合、递归推理等复杂机制,主要优势包括强大的推理分析能力、数学和编程能力。与此同时,也存在语言切换问题、推理循环、安全性考虑、其他能力方面的差异。"
174
+ "description": "QwQ模型是由 Qwen 团队开发的实验性研究模型,专注于增强 AI 推理能力。"
178
175
  },
179
176
  "Qwen/Qwen2-1.5B-Instruct": {
180
177
  "description": "Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少"
@@ -183,7 +180,7 @@
183
180
  "description": "Qwen 2 Instruct (72B) 为企业级应用提供精准的指令理解和响应。"
184
181
  },
185
182
  "Qwen/Qwen2-7B-Instruct": {
186
- "description": "Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力"
183
+ "description": "Qwen2-7B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 7B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力。Qwen2-7B-Instruct 在多项评测中均优于 Qwen1.5-7B-Chat,显示出显著的性能提升"
187
184
  },
188
185
  "Qwen/Qwen2-VL-72B-Instruct": {
189
186
  "description": "Qwen2-VL 是 Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能,包括 MathVista、DocVQA、RealWorldQA 和 MTVQA 等。Qwen2-VL 能够理解超过 20 分钟的视频,用于高质量的基于视频的问答、对话和内容创作。它还具备复杂推理和决策能力,可以与移动设备、机器人等集成,基于视觉环境和文本指令进行自动操作。除了英语和中文,Qwen2-VL 现在还支持理解图像中不同语言的文本,包括大多数欧洲语言、日语、韩语、阿拉伯语和越南语等"
@@ -210,14 +207,11 @@
210
207
  "description": "Qwen2.5 是全新的大型语言模型系列,旨在优化指令式任务的处理。"
211
208
  },
212
209
  "Qwen/Qwen2.5-Coder-32B-Instruct": {
213
- "description": "Qwen2.5-Coder-32B-Instruct 是基于 Qwen2.5 开发的代码特定大语言模型。该模型通过 5.5 万亿 tokens 的训练,在代码生成、代码推理和代码修复方面都取得了显著提升。它是当前最先进的开源代码语言模型,编码能力可与 GPT-4 相媲美。模型不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长文本处理"
210
+ "description": "Qwen2.5 Coder 32B Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础"
214
211
  },
215
212
  "Qwen/Qwen2.5-Coder-7B-Instruct": {
216
213
  "description": "Qwen2.5-Coder-7B-Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础"
217
214
  },
218
- "Qwen/Qwen2.5-Math-72B-Instruct": {
219
- "description": "Qwen2.5-Math-72B 是阿里云发布的 Qwen2.5-Math 系列数学大语言模型之一。该模型支持使用思维链(CoT)和工具集成推理(TIR)方法解决中文和英文数学问题。相比前代 Qwen2-Math 系列,Qwen2.5-Math 系列在中英文数学基准测试中取得了显著的性能提升。该模型在处理精确计算、符号操作和算法操作方面表现出色,尤其适合解决复杂的数学和算法推理任务"
220
- },
221
215
  "Qwen2-72B-Instruct": {
222
216
  "description": "Qwen2 是 Qwen 模型的最新系列,支持 128k 上下文,对比当前最优的开源模型,Qwen2-72B 在自然语言理解、知识、代码、数学及多语言等多项能力上均显著超越当前领先的模型。"
223
217
  },
@@ -290,12 +284,6 @@
290
284
  "TeleAI/TeleMM": {
291
285
  "description": "TeleMM多模态大模型是由中国电信自主研发的多模态理解大模型,能够处理文本、图像等多种模态输入,支持图像理解、图表分析等功能,为用户提供跨模态的理解服务。模型能够与用户进行多模态交互,准确理解输入内容,回答问题、协助创作,并高效提供多模态信息和灵感支持。在细粒度感知,逻辑推理等多模态任务上有出色表现"
292
286
  },
293
- "Tencent/Hunyuan-A52B-Instruct": {
294
- "description": "Hunyuan-Large 是业界最大的开源 Transformer 架构 MoE 模型,拥有 3890 亿总参数量和 520 亿激活参数量。"
295
- },
296
- "Vendor-A/Qwen/Qwen2-7B-Instruct": {
297
- "description": "Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力"
298
- },
299
287
  "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
300
288
  "description": "Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升"
301
289
  },
@@ -521,12 +509,15 @@
521
509
  "command-r-plus": {
522
510
  "description": "Command R+ 是一款高性能的大型语言模型,专为真实企业场景和复杂应用而设计。"
523
511
  },
512
+ "dall-e-2": {
513
+ "description": "第二代 DALL·E 模型,支持更真实、准确的图像生成,分辨率是第一代的4倍"
514
+ },
515
+ "dall-e-3": {
516
+ "description": "最新的 DALL·E 模型,于2023年11月发布。支持更真实、准确的图像生成,具有更强的细节表现力"
517
+ },
524
518
  "databricks/dbrx-instruct": {
525
519
  "description": "DBRX Instruct 提供高可靠性的指令处理能力,支持多行业应用。"
526
520
  },
527
- "deepseek-ai/DeepSeek-V2-Chat": {
528
- "description": "DeepSeek-V2 是一个强大、经济高效的混合专家(MoE)语言模型。它在 8.1 万亿个 token 的高质量语料库上进行了预训练,并通过监督微调(SFT)和强化学习(RL)进一步提升了模型能力。与 DeepSeek 67B 相比, DeepSeek-V2 在性能更强的同时,节省了 42.5% 的训练成本,减少了 93.3% 的 KV 缓存,并将最大生成吞吐量提高到了 5.76 倍。该模型支持 128k 的上下文长度,在标准基准测试和开放式生成评估中都表现出色"
529
- },
530
521
  "deepseek-ai/DeepSeek-V2.5": {
531
522
  "description": "DeepSeek-V2.5 是 DeepSeek-V2-Chat 和 DeepSeek-Coder-V2-Instruct 的升级版本,集成了两个先前版本的通用和编码能力。该模型在多个方面进行了优化,包括写作和指令跟随能力,更好地与人类偏好保持一致。DeepSeek-V2.5 在各种评估基准上都取得了显著的提升,如 AlpacaEval 2.0、ArenaHard、AlignBench 和 MT-Bench 等"
532
523
  },
@@ -681,13 +672,13 @@
681
672
  "description": "Gemini 1.5 Pro 结合最新优化技术,带来更高效的多模态数据处理能力。"
682
673
  },
683
674
  "google/gemma-2-27b-it": {
684
- "description": "Gemma 是由 Google 开发的轻量级、最先进的开放模型系列,采用与 Gemini 模型相同的研究和技术构建。这些模型是仅解码器的大型语言模型,支持英语,提供预训练和指令微调两种变体的开放权重。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。其相对较小的规模使其能够部署在资源有限的环境中,如笔记本电脑、台式机或个人云基础设施,从而让所有人都能获得最先进的 AI 模型,促进创新"
675
+ "description": "Gemma 2 27B 是一款通用大语言模型,具有优异的性能和广泛的应用场景。"
685
676
  },
686
677
  "google/gemma-2-2b-it": {
687
678
  "description": "Google的轻量级指令调优模型"
688
679
  },
689
680
  "google/gemma-2-9b-it": {
690
- "description": "Gemma Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新"
681
+ "description": "Gemma 2 9B 由Google开发,提供高效的指令响应和综合能力。"
691
682
  },
692
683
  "google/gemma-2-9b-it:free": {
693
684
  "description": "Gemma 2 是Google轻量化的开源文本模型系列。"
@@ -704,6 +695,9 @@
704
695
  "gpt-3.5-turbo-1106": {
705
696
  "description": "GPT 3.5 Turbo,适用于各种文本生成和理解任务,Currently points to gpt-3.5-turbo-0125"
706
697
  },
698
+ "gpt-3.5-turbo-16k": {
699
+ "description": "GPT 3.5 Turbo 16k,高容量文本生成模型,适合复杂任务。"
700
+ },
707
701
  "gpt-3.5-turbo-instruct": {
708
702
  "description": "GPT 3.5 Turbo,适用于各种文本生成和理解任务,Currently points to gpt-3.5-turbo-0125"
709
703
  },
@@ -714,7 +708,7 @@
714
708
  "description": "GPT 3.5 Turbo 16k,高容量文本生成模型,适合复杂任务。"
715
709
  },
716
710
  "gpt-4": {
717
- "description": "GPT 4 Turbo,多模态模型,提供杰出的语言理解和生成能力,同时支持图像输入。"
711
+ "description": "GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。"
718
712
  },
719
713
  "gpt-4-0125-preview": {
720
714
  "description": "最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。"
@@ -744,7 +738,7 @@
744
738
  "description": "GPT-4 视觉预览版,专为图像分析和处理任务设计。"
745
739
  },
746
740
  "gpt-4o": {
747
- "description": "OpenAI GPT-4系列中最先进的多模态模型,可以处理文本和图像输入。"
741
+ "description": "ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。"
748
742
  },
749
743
  "gpt-4o-2024-05-13": {
750
744
  "description": "ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。"
@@ -755,8 +749,23 @@
755
749
  "gpt-4o-2024-11-20": {
756
750
  "description": "ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。"
757
751
  },
752
+ "gpt-4o-audio-preview": {
753
+ "description": "GPT-4o Audio 模型,支持音频输入输出"
754
+ },
758
755
  "gpt-4o-mini": {
759
- "description": "一种经济高效的AI解决方案,适用于多种文本和图像任务。"
756
+ "description": "GPT-4o mini是OpenAI在GPT-4 Omni之后推出的最新模型,支持图文输入并输出文本。作为他们最先进的小型模型,它比其他近期的前沿模型便宜很多,并且比GPT-3.5 Turbo便宜超过60%。它保持了最先进的智能,同时具有显著的性价比。GPT-4o mini在MMLU测试中获得了 82% 的得分,目前在聊天偏好上排名高于 GPT-4。"
757
+ },
758
+ "gpt-4o-mini-realtime-preview": {
759
+ "description": "GPT-4o-mini 实时版本,支持音频和文本实时输入输出"
760
+ },
761
+ "gpt-4o-realtime-preview": {
762
+ "description": "GPT-4o 实时版本,支持音频和文本实时输入输出"
763
+ },
764
+ "gpt-4o-realtime-preview-2024-10-01": {
765
+ "description": "GPT-4o 实时版本,支持音频和文本实时输入输出"
766
+ },
767
+ "gpt-4o-realtime-preview-2024-12-17": {
768
+ "description": "GPT-4o 实时版本,支持音频和文本实时输入输出"
760
769
  },
761
770
  "grok-2-1212": {
762
771
  "description": "该模型在准确性、指令遵循和多语言能力方面有所改进。"
@@ -935,6 +944,9 @@
935
944
  "meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
936
945
  "description": "LLaMA 3.2 旨在处理结合视觉和文本数据的任务。它在图像描述和视觉问答等任务中表现出色,跨越了语言生成和视觉推理之间的鸿沟。"
937
946
  },
947
+ "meta-llama/Llama-3.3-70B-Instruct": {
948
+ "description": "Llama 3.3 是 Llama 系列最先进的多语言开源大型语言模型,以极低成本体验媲美 405B 模型的性能。基于 Transformer 结构,并通过监督微调(SFT)和人类反馈强化学习(RLHF)提升有用性和安全性。其指令调优版本专为多语言对话优化,在多项行业基准上表现优于众多开源和封闭聊天模型。知识截止日期为 2023 年 12 月"
949
+ },
938
950
  "meta-llama/Llama-Vision-Free": {
939
951
  "description": "LLaMA 3.2 旨在处理结合视觉和文本数据的任务。它在图像描述和视觉问答等任务中表现出色,跨越了语言生成和视觉推理之间的鸿沟。"
940
952
  },
@@ -1029,13 +1041,13 @@
1029
1041
  "description": "Mistral 是 Mistral AI 发布的 7B 模型,适合多变的语言处理需求。"
1030
1042
  },
1031
1043
  "mistral-large": {
1032
- "description": "Mistral的旗舰模型,适合需要大规模推理能力或高度专业化的复杂任务(合成文本生成、代码生成、RAG或代理)。"
1044
+ "description": "Mixtral Large 是 Mistral 的旗舰模型,结合代码生成、数学和推理的能力,支持 128k 上下文窗口。"
1033
1045
  },
1034
1046
  "mistral-large-latest": {
1035
1047
  "description": "Mistral Large是旗舰大模型,擅长多语言任务、复杂推理和代码生成,是高端应用的理想选择。"
1036
1048
  },
1037
1049
  "mistral-nemo": {
1038
- "description": "Mistral Nemo是一种尖端的语言模型(LLM),在其尺寸类别中拥有最先进的推理、世界知识和编码能力。"
1050
+ "description": "Mistral Nemo 由 Mistral AI 和 NVIDIA 合作推出,是高效性能的 12B 模型。"
1039
1051
  },
1040
1052
  "mistral-small": {
1041
1053
  "description": "Mistral Small可用于任何需要高效率和低延迟的基于语言的任务。"
@@ -1050,7 +1062,7 @@
1050
1062
  "description": "Mistral (7B) Instruct v0.2 提供改进的指令处理能力和更精确的结果。"
1051
1063
  },
1052
1064
  "mistralai/Mistral-7B-Instruct-v0.3": {
1053
- "description": "Mistral AI的指令调优模型"
1065
+ "description": "Mistral (7B) Instruct v0.3 提供高效的计算能力和自然语言理解,适合广泛的应用。"
1054
1066
  },
1055
1067
  "mistralai/Mistral-7B-v0.1": {
1056
1068
  "description": "Mistral 7B是一款紧凑但高性能的模型,擅长批量处理和简单任务,如分类和文本生成,具有良好的推理能力。"
@@ -1091,23 +1103,17 @@
1091
1103
  "nousresearch/hermes-2-pro-llama-3-8b": {
1092
1104
  "description": "Hermes 2 Pro Llama 3 8B 是 Nous Hermes 2的升级版本,包含最新的内部开发的数据集。"
1093
1105
  },
1094
- "nvidia/Llama-3.1-Nemotron-70B-Instruct": {
1095
- "description": "Llama-3.1-Nemotron-70B-Instruct 是由 NVIDIA 定制的大型语言模型,旨在提高 LLM 生成的响应对用户查询的帮助程度。该模型在 Arena Hard、AlpacaEval 2 LC 和 GPT-4-Turbo MT-Bench 等基准测试中表现出色,截至 2024 年 10 月 1 日,在所有三个自动对齐基准测试中排名第一。该模型使用 RLHF(特别是 REINFORCE)、Llama-3.1-Nemotron-70B-Reward 和 HelpSteer2-Preference 提示在 Llama-3.1-70B-Instruct 模型基础上进行训练"
1096
- },
1097
1106
  "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
1098
1107
  "description": "Llama 3.1 Nemotron 70B 是由 NVIDIA 定制的大型语言模型,旨在提高 LLM 生成的响应对用户查询的帮助程度。该模型在 Arena Hard、AlpacaEval 2 LC 和 GPT-4-Turbo MT-Bench 等基准测试中表现出色,截至 2024 年 10 月 1 日,在所有三个自动对齐基准测试中排名第一。该模型使用 RLHF(特别是 REINFORCE)、Llama-3.1-Nemotron-70B-Reward 和 HelpSteer2-Preference 提示在 Llama-3.1-70B-Instruct 模型基础上进行训练"
1099
1108
  },
1100
1109
  "o1": {
1101
1110
  "description": "专注于高级推理和解决复杂问题,包括数学和科学任务。非常适合需要深入上下文理解和代理工作流程的应用程序。"
1102
1111
  },
1103
- "o1-2024-12-17": {
1104
- "description": "o1是OpenAI新的推理模型,支持图文输入并输出文本,适用于需要广泛通用知识的复杂任务。该模型具有200K上下文和2023年10月的知识截止日期。"
1105
- },
1106
1112
  "o1-mini": {
1107
- "description": "o1-preview 更小、更快,成本低80%,在代码生成和小上下文操作方面表现良好。"
1113
+ "description": "o1-mini是一款针对编程、数学和科学应用场景而设计的快速、经济高效的推理模型。该模型具有128K上下文和2023年10月的知识截止日期。"
1108
1114
  },
1109
1115
  "o1-preview": {
1110
- "description": "专注于高级推理和解决复杂问题,包括数学和科学任务。非常适合需要深度上下文理解和自主工作流程的应用。"
1116
+ "description": "o1是OpenAI新的推理模型,适用于需要广泛通用知识的复杂任务。该模型具有128K上下文和2023年10月的知识截止日期。"
1111
1117
  },
1112
1118
  "open-codestral-mamba": {
1113
1119
  "description": "Codestral Mamba是专注于代码生成的Mamba 2语言模型,为先进的代码和推理任务提供强力支持。"
@@ -1130,9 +1136,6 @@
1130
1136
  "openai/gpt-4o-mini": {
1131
1137
  "description": "GPT-4o mini是OpenAI在GPT-4 Omni之后推出的最新模型,支持图文输入并输出文本。作为他们最先进的小型模型,它比其他近期的前沿模型便宜很多,并且比GPT-3.5 Turbo便宜超过60%。它保持了最先进的智能,同时具有显著的性价比。GPT-4o mini在MMLU测试中获得了 82% 的得分,目前在聊天偏好上排名高于 GPT-4。"
1132
1138
  },
1133
- "openai/o1": {
1134
- "description": "o1是OpenAI新的推理模型,支持图文输入并输出文本,适用于需要广泛通用知识的复杂任务。该模型具有200K上下文和2023年10月的知识截止日期。"
1135
- },
1136
1139
  "openai/o1-mini": {
1137
1140
  "description": "o1-mini是一款针对编程、数学和科学应用场景而设计的快速、经济高效的推理模型。该模型具有128K上下文和2023年10月的知识截止日期。"
1138
1141
  },
@@ -1307,15 +1310,30 @@
1307
1310
  "taichu_llm": {
1308
1311
  "description": "Taichu 2.0 基于海量高质数据训练,具有更强的文本理解、内容创作、对话问答等能力"
1309
1312
  },
1313
+ "text-embedding-3-large": {
1314
+ "description": "最强大的向量化模型,适用于英文和非英文任务"
1315
+ },
1316
+ "text-embedding-3-small": {
1317
+ "description": "高效且经济的新一代 Embedding 模型,适用于知识检索、RAG 应用等场景"
1318
+ },
1310
1319
  "togethercomputer/StripedHyena-Nous-7B": {
1311
1320
  "description": "StripedHyena Nous (7B) 通过高效的策略和模型架构,提供增强的计算能力。"
1312
1321
  },
1322
+ "tts-1": {
1323
+ "description": "最新的文本转语音模型,针对实时场景优化速度"
1324
+ },
1325
+ "tts-1-hd": {
1326
+ "description": "最新的文本转语音模型,针对质量进行优化"
1327
+ },
1313
1328
  "upstage/SOLAR-10.7B-Instruct-v1.0": {
1314
1329
  "description": "Upstage SOLAR Instruct v1 (11B) 适用于精细化指令任务,提供出色的语言处理能力。"
1315
1330
  },
1316
1331
  "us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
1317
1332
  "description": "Claude 3.5 Sonnet 提升了行业标准,性能超过竞争对手模型和 Claude 3 Opus,在广泛的评估中表现出色,同时具有我们中等层级模型的速度和成本。"
1318
1333
  },
1334
+ "whisper-1": {
1335
+ "description": "通用语音识别模型,支持多语言语音识别、语音翻译和语言识别"
1336
+ },
1319
1337
  "wizardlm2": {
1320
1338
  "description": "WizardLM 2 是微软AI提供的语言模型,在复杂对话、多语言、推理和智能助手领域表现尤为出色。"
1321
1339
  },
@@ -119,9 +119,6 @@
119
119
  "OpenGVLab/InternVL2-26B": {
120
120
  "description": "InternVL2在各種視覺語言任務上展現出了卓越的性能,包括文檔和圖表理解、場景文本理解、OCR、科學和數學問題解決等。"
121
121
  },
122
- "OpenGVLab/InternVL2-Llama3-76B": {
123
- "description": "InternVL2在各種視覺語言任務上展現出了卓越的性能,包括文檔和圖表理解、場景文本理解、OCR、科學和數學問題解決等。"
124
- },
125
122
  "Phi-3-medium-128k-instruct": {
126
123
  "description": "相同的Phi-3-medium模型,但具有更大的上下文大小,適用於RAG或少量提示。"
127
124
  },
@@ -215,9 +212,6 @@
215
212
  "Qwen/Qwen2.5-Coder-7B-Instruct": {
216
213
  "description": "Qwen2.5-Coder-7B-Instruct 是阿里雲發布的代碼特定大語言模型系列的最新版本。該模型在 Qwen2.5 的基礎上,通過 5.5 萬億個 tokens 的訓練,顯著提升了代碼生成、推理和修復能力。它不僅增強了編碼能力,還保持了數學和通用能力的優勢。模型為代碼智能體等實際應用提供了更全面的基礎"
217
214
  },
218
- "Qwen/Qwen2.5-Math-72B-Instruct": {
219
- "description": "Qwen2.5-Math專注於數學領域的問題求解,為高難度題提供專業解答。"
220
- },
221
215
  "Qwen2-72B-Instruct": {
222
216
  "description": "Qwen2 是 Qwen 模型的最新系列,支持 128k 上下文,對比當前最優的開源模型,Qwen2-72B 在自然語言理解、知識、代碼、數學及多語言等多項能力上均顯著超越當前領先的模型。"
223
217
  },
@@ -290,12 +284,6 @@
290
284
  "TeleAI/TeleMM": {
291
285
  "description": "TeleMM多模態大模型是由中國電信自主研發的多模態理解大模型,能夠處理文本、圖像等多種模態輸入,支持圖像理解、圖表分析等功能,為用戶提供跨模態的理解服務。模型能夠與用戶進行多模態互動,準確理解輸入內容,回答問題、協助創作,並高效提供多模態信息和靈感支持。在細粒度感知,邏輯推理等多模態任務上有出色表現"
292
286
  },
293
- "Tencent/Hunyuan-A52B-Instruct": {
294
- "description": "Hunyuan-Large 是業界最大的開源 Transformer 架構 MoE 模型,擁有 3890 億總參數量和 520 億激活參數量。"
295
- },
296
- "Vendor-A/Qwen/Qwen2-7B-Instruct": {
297
- "description": "Qwen2-72B-Instruct 是 Qwen2 系列中的指令微調大語言模型,參數規模為 72B。該模型基於 Transformer 架構,採用了 SwiGLU 激活函數、注意力 QKV 偏置和組查詢注意力等技術。它能夠處理大規模輸入。該模型在語言理解、生成、多語言能力、編碼、數學和推理等多個基準測試中表現出色,超越了大多數開源模型,並在某些任務上展現出與專有模型相當的競爭力"
298
- },
299
287
  "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
300
288
  "description": "Qwen2.5-72B-Instruct 是阿里雲發布的最新大語言模型系列之一。該 72B 模型在編碼和數學等領域具有顯著改進的能力。該模型還提供了多語言支持,覆蓋超過 29 種語言,包括中文、英文等。模型在指令跟隨、理解結構化數據以及生成結構化輸出(尤其是 JSON)方面都有顯著提升"
301
289
  },
@@ -521,12 +509,15 @@
521
509
  "command-r-plus": {
522
510
  "description": "Command R+ 是一款高性能的大型語言模型,專為真實企業場景和複雜應用而設計。"
523
511
  },
512
+ "dall-e-2": {
513
+ "description": "第二代 DALL·E 模型,支持更真實、準確的圖像生成,解析度是第一代的4倍"
514
+ },
515
+ "dall-e-3": {
516
+ "description": "最新的 DALL·E 模型,於2023年11月發布。支持更真實、準確的圖像生成,具有更強的細節表現力"
517
+ },
524
518
  "databricks/dbrx-instruct": {
525
519
  "description": "DBRX Instruct 提供高可靠性的指令處理能力,支持多行業應用。"
526
520
  },
527
- "deepseek-ai/DeepSeek-V2-Chat": {
528
- "description": "DeepSeek-V2 是一個強大、經濟高效的混合專家(MoE)語言模型。它在 8.1 萬億個 token 的高質量語料庫上進行了預訓練,並通過監督微調(SFT)和強化學習(RL)進一步提升了模型能力。與 DeepSeek 67B 相比, DeepSeek-V2 在性能更強的同時,節省了 42.5% 的訓練成本,減少了 93.3% 的 KV 緩存,並將最大生成吞吐量提高到了 5.76 倍。該模型支持 128k 的上下文長度,在標準基準測試和開放式生成評估中都表現出色"
529
- },
530
521
  "deepseek-ai/DeepSeek-V2.5": {
531
522
  "description": "DeepSeek V2.5 集合了先前版本的優秀特徵,增強了通用和編碼能力。"
532
523
  },
@@ -704,6 +695,9 @@
704
695
  "gpt-3.5-turbo-1106": {
705
696
  "description": "GPT 3.5 Turbo,適用於各種文本生成和理解任務,Currently points to gpt-3.5-turbo-0125"
706
697
  },
698
+ "gpt-3.5-turbo-16k": {
699
+ "description": "GPT 3.5 Turbo 16k,高容量文本生成模型,適合複雜任務。"
700
+ },
707
701
  "gpt-3.5-turbo-instruct": {
708
702
  "description": "GPT 3.5 Turbo,適用於各種文本生成和理解任務,Currently points to gpt-3.5-turbo-0125"
709
703
  },
@@ -755,9 +749,24 @@
755
749
  "gpt-4o-2024-11-20": {
756
750
  "description": "ChatGPT-4o 是一款動態模型,實時更新以保持當前最新版本。它結合了強大的語言理解與生成能力,適合於大規模應用場景,包括客戶服務、教育和技術支持。"
757
751
  },
752
+ "gpt-4o-audio-preview": {
753
+ "description": "GPT-4o Audio 模型,支持音頻輸入輸出"
754
+ },
758
755
  "gpt-4o-mini": {
759
756
  "description": "GPT-4o mini是OpenAI在GPT-4 Omni之後推出的最新模型,支持圖文輸入並輸出文本。作為他們最先進的小型模型,它比其他近期的前沿模型便宜很多,並且比GPT-3.5 Turbo便宜超過60%。它保持了最先進的智能,同時具有顯著的性價比。GPT-4o mini在MMLU測試中獲得了82%的得分,目前在聊天偏好上排名高於GPT-4。"
760
757
  },
758
+ "gpt-4o-mini-realtime-preview": {
759
+ "description": "GPT-4o-mini 實時版本,支持音頻和文本實時輸入輸出"
760
+ },
761
+ "gpt-4o-realtime-preview": {
762
+ "description": "GPT-4o 實時版本,支持音頻和文本實時輸入輸出"
763
+ },
764
+ "gpt-4o-realtime-preview-2024-10-01": {
765
+ "description": "GPT-4o 實時版本,支持音頻和文本實時輸入輸出"
766
+ },
767
+ "gpt-4o-realtime-preview-2024-12-17": {
768
+ "description": "GPT-4o 實時版本,支持音頻和文本實時輸入輸出"
769
+ },
761
770
  "grok-2-1212": {
762
771
  "description": "該模型在準確性、指令遵循和多語言能力方面有所改進。"
763
772
  },
@@ -935,6 +944,9 @@
935
944
  "meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
936
945
  "description": "LLaMA 3.2 旨在處理結合視覺和文本數據的任務。它在圖像描述和視覺問答等任務中表現出色,跨越了語言生成和視覺推理之間的鴻溝。"
937
946
  },
947
+ "meta-llama/Llama-3.3-70B-Instruct": {
948
+ "description": "Llama 3.3 是 Llama 系列最先進的多語言開源大型語言模型,以極低成本體驗媲美 405B 模型的性能。基於 Transformer 結構,並通過監督微調(SFT)和人類反饋強化學習(RLHF)提升有用性和安全性。其指令調優版本專為多語言對話優化,在多項行業基準上表現優於眾多開源和封閉聊天模型。知識截止日期為 2023 年 12 月"
949
+ },
938
950
  "meta-llama/Llama-Vision-Free": {
939
951
  "description": "LLaMA 3.2 旨在處理結合視覺和文本數據的任務。它在圖像描述和視覺問答等任務中表現出色,跨越了語言生成和視覺推理之間的鴻溝。"
940
952
  },
@@ -1091,18 +1103,12 @@
1091
1103
  "nousresearch/hermes-2-pro-llama-3-8b": {
1092
1104
  "description": "Hermes 2 Pro Llama 3 8B 是 Nous Hermes 2 的升級版本,包含最新的內部開發的數據集。"
1093
1105
  },
1094
- "nvidia/Llama-3.1-Nemotron-70B-Instruct": {
1095
- "description": "Llama 3.1 Nemotron 70B 是由 NVIDIA 定製的大型語言模型,旨在提升 LLM 生成的回應對用戶查詢的幫助程度。"
1096
- },
1097
1106
  "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
1098
1107
  "description": "Llama 3.1 Nemotron 70B 是由 NVIDIA 定制的大型語言模型,旨在提高 LLM 生成的回應對用戶查詢的幫助程度。該模型在 Arena Hard、AlpacaEval 2 LC 和 GPT-4-Turbo MT-Bench 等基準測試中表現出色,截至 2024 年 10 月 1 日,在所有三個自動對齊基準測試中排名第一。該模型使用 RLHF(特別是 REINFORCE)、Llama-3.1-Nemotron-70B-Reward 和 HelpSteer2-Preference 提示在 Llama-3.1-70B-Instruct 模型基礎上進行訓練"
1099
1108
  },
1100
1109
  "o1": {
1101
1110
  "description": "專注於高級推理和解決複雜問題,包括數學和科學任務。非常適合需要深入上下文理解和代理工作流程的應用程序。"
1102
1111
  },
1103
- "o1-2024-12-17": {
1104
- "description": "o1是OpenAI新的推理模型,支持圖文輸入並輸出文本,適用於需要廣泛通用知識的複雜任務。該模型具有200K上下文和2023年10月的知識截止日期。"
1105
- },
1106
1112
  "o1-mini": {
1107
1113
  "description": "o1-mini是一款針對程式設計、數學和科學應用場景而設計的快速、經濟高效的推理模型。該模型具有128K上下文和2023年10月的知識截止日期。"
1108
1114
  },
@@ -1130,9 +1136,6 @@
1130
1136
  "openai/gpt-4o-mini": {
1131
1137
  "description": "GPT-4o mini是OpenAI在GPT-4 Omni之後推出的最新模型,支持圖文輸入並輸出文本。作為他們最先進的小型模型,它比其他近期的前沿模型便宜很多,並且比GPT-3.5 Turbo便宜超過60%。它保持了最先進的智能,同時具有顯著的性價比。GPT-4o mini在MMLU測試中獲得了82%的得分,目前在聊天偏好上排名高於GPT-4。"
1132
1138
  },
1133
- "openai/o1": {
1134
- "description": "o1是OpenAI新的推理模型,支持圖文輸入並輸出文本,適用於需要廣泛通用知識的複雜任務。該模型具有200K上下文和2023年10月的知識截止日期。"
1135
- },
1136
1139
  "openai/o1-mini": {
1137
1140
  "description": "o1-mini是一款針對程式設計、數學和科學應用場景而設計的快速、經濟高效的推理模型。該模型具有128K上下文和2023年10月的知識截止日期。"
1138
1141
  },
@@ -1307,15 +1310,30 @@
1307
1310
  "taichu_llm": {
1308
1311
  "description": "紫東太初語言大模型具備超強語言理解能力以及文本創作、知識問答、代碼編程、數學計算、邏輯推理、情感分析、文本摘要等能力。創新性地將大數據預訓練與多源豐富知識相結合,通過持續打磨算法技術,並不斷吸收海量文本數據中詞彙、結構、語法、語義等方面的新知識,實現模型效果不斷進化。為用戶提供更加便捷的信息和服務以及更為智能化的體驗。"
1309
1312
  },
1313
+ "text-embedding-3-large": {
1314
+ "description": "最強大的向量化模型,適用於英文和非英文任務"
1315
+ },
1316
+ "text-embedding-3-small": {
1317
+ "description": "高效且經濟的新一代 Embedding 模型,適用於知識檢索、RAG 應用等場景"
1318
+ },
1310
1319
  "togethercomputer/StripedHyena-Nous-7B": {
1311
1320
  "description": "StripedHyena Nous (7B) 通過高效的策略和模型架構,提供增強的計算能力。"
1312
1321
  },
1322
+ "tts-1": {
1323
+ "description": "最新的文本轉語音模型,針對即時場景優化速度"
1324
+ },
1325
+ "tts-1-hd": {
1326
+ "description": "最新的文本轉語音模型,針對品質進行優化"
1327
+ },
1313
1328
  "upstage/SOLAR-10.7B-Instruct-v1.0": {
1314
1329
  "description": "Upstage SOLAR Instruct v1 (11B) 適用於精細化指令任務,提供出色的語言處理能力。"
1315
1330
  },
1316
1331
  "us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
1317
1332
  "description": "Claude 3.5 Sonnet 提升了行業標準,性能超越競爭對手模型和 Claude 3 Opus,在廣泛的評估中表現出色,同時具備我們中等層級模型的速度和成本。"
1318
1333
  },
1334
+ "whisper-1": {
1335
+ "description": "通用語音識別模型,支持多語言語音識別、語音翻譯和語言識別"
1336
+ },
1319
1337
  "wizardlm2": {
1320
1338
  "description": "WizardLM 2 是微軟 AI 提供的語言模型,在複雜對話、多語言、推理和智能助手領域表現尤為出色。"
1321
1339
  },
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@lobehub/chat",
3
- "version": "1.45.3",
3
+ "version": "1.45.5",
4
4
  "description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
5
5
  "keywords": [
6
6
  "framework",
@@ -182,7 +182,7 @@
182
182
  "nextjs-toploader": "^3.7.15",
183
183
  "numeral": "^2.0.6",
184
184
  "nuqs": "^1.20.0",
185
- "officeparser": "^5.1.1",
185
+ "officeparser": "^4.2.0",
186
186
  "ollama": "^0.5.11",
187
187
  "openai": "^4.77.3",
188
188
  "openapi-fetch": "^0.13.4",
@@ -43,16 +43,16 @@ const useProviderCard = (): ProviderItem => {
43
43
  ) : (
44
44
  <Input.Password
45
45
  autoComplete={'new-password'}
46
- placeholder={t(`${providerKey}.personalAccessToken.placeholder`)}
46
+ placeholder={t(`github.personalAccessToken.placeholder`)}
47
47
  />
48
48
  ),
49
49
  desc: (
50
50
  <Markdown className={styles.markdown} fontSize={12} variant={'chat'}>
51
- {t(`${providerKey}.personalAccessToken.desc`)}
51
+ {t(`github.personalAccessToken.desc`)}
52
52
  </Markdown>
53
53
  ),
54
- label: t(`${providerKey}.personalAccessToken.title`),
55
- name: [KeyVaultsConfigKey, providerKey, LLMProviderApiTokenKey],
54
+ label: t(`github.personalAccessToken.title`),
55
+ name: [KeyVaultsConfigKey, LLMProviderApiTokenKey],
56
56
  },
57
57
  ],
58
58
  };