@lobehub/chat 1.45.3 → 1.45.5
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/models.json +42 -24
- package/locales/bg-BG/models.json +42 -24
- package/locales/de-DE/models.json +42 -24
- package/locales/en-US/models.json +42 -24
- package/locales/es-ES/models.json +42 -24
- package/locales/fa-IR/models.json +42 -24
- package/locales/fr-FR/models.json +42 -24
- package/locales/it-IT/models.json +42 -24
- package/locales/ja-JP/models.json +42 -24
- package/locales/ko-KR/models.json +42 -24
- package/locales/nl-NL/models.json +42 -24
- package/locales/pl-PL/models.json +42 -24
- package/locales/pt-BR/models.json +42 -24
- package/locales/ru-RU/models.json +42 -24
- package/locales/tr-TR/models.json +42 -24
- package/locales/vi-VN/models.json +42 -24
- package/locales/zh-CN/models.json +55 -37
- package/locales/zh-TW/models.json +42 -24
- package/package.json +2 -2
- package/src/app/(main)/settings/provider/(detail)/github/page.tsx +4 -4
- package/src/app/(main)/settings/provider/(detail)/huggingface/page.tsx +4 -4
- package/src/locales/default/models.ts +2 -2
@@ -119,9 +119,6 @@
|
|
119
119
|
"OpenGVLab/InternVL2-26B": {
|
120
120
|
"description": "InternVL2는 문서 및 차트 이해, 장면 텍스트 이해, OCR, 과학 및 수학 문제 해결을 포함한 다양한 시각 언어 작업에서 뛰어난 성능을 보여줍니다."
|
121
121
|
},
|
122
|
-
"OpenGVLab/InternVL2-Llama3-76B": {
|
123
|
-
"description": "InternVL2는 문서 및 차트 이해, 장면 텍스트 이해, OCR, 과학 및 수학 문제 해결을 포함한 다양한 시각 언어 작업에서 뛰어난 성능을 보여줍니다."
|
124
|
-
},
|
125
122
|
"Phi-3-medium-128k-instruct": {
|
126
123
|
"description": "같은 Phi-3-medium 모델이지만 RAG 또는 몇 가지 샷 프롬프트를 위한 더 큰 컨텍스트 크기를 가지고 있습니다."
|
127
124
|
},
|
@@ -215,9 +212,6 @@
|
|
215
212
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
216
213
|
"description": "Qwen2.5-Coder-7B-Instruct는 Alibaba Cloud에서 발표한 코드 특화 대규모 언어 모델 시리즈의 최신 버전입니다. 이 모델은 Qwen2.5를 기반으로 하여 55조 개의 토큰으로 훈련되어 코드 생성, 추론 및 수정 능력을 크게 향상시켰습니다. 이 모델은 코딩 능력을 강화할 뿐만 아니라 수학 및 일반 능력의 장점도 유지합니다. 모델은 코드 에이전트와 같은 실제 응용 프로그램에 더 포괄적인 기반을 제공합니다."
|
217
214
|
},
|
218
|
-
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
219
|
-
"description": "Qwen2.5-Math는 수학 분야의 문제 해결에 중점을 두고 있으며, 고난이도 문제에 대한 전문적인 해답을 제공합니다."
|
220
|
-
},
|
221
215
|
"Qwen2-72B-Instruct": {
|
222
216
|
"description": "Qwen2는 Qwen 모델의 최신 시리즈로, 128k 컨텍스트를 지원합니다. 현재 최상의 오픈 소스 모델과 비교할 때, Qwen2-72B는 자연어 이해, 지식, 코드, 수학 및 다국어 등 여러 능력에서 현재 선도하는 모델을 현저히 초월합니다."
|
223
217
|
},
|
@@ -290,12 +284,6 @@
|
|
290
284
|
"TeleAI/TeleMM": {
|
291
285
|
"description": "TeleMM 다중 모달 대모델은 중국 전신이 독자적으로 개발한 다중 모달 이해 대모델로, 텍스트, 이미지 등 다양한 모달 입력을 처리할 수 있으며, 이미지 이해, 차트 분석 등의 기능을 지원하여 사용자에게 교차 모달 이해 서비스를 제공합니다. 이 모델은 사용자와 다중 모달 상호작용을 통해 입력 내용을 정확하게 이해하고 질문에 답하며 창작을 도와주고, 효율적으로 다중 모달 정보와 영감을 제공합니다. 세밀한 인식, 논리 추론 등 다중 모달 작업에서 뛰어난 성능을 보입니다."
|
292
286
|
},
|
293
|
-
"Tencent/Hunyuan-A52B-Instruct": {
|
294
|
-
"description": "Hunyuan-Large는 업계에서 가장 큰 오픈 소스 Transformer 아키텍처 MoE 모델로, 총 3890억 개의 매개변수와 520억 개의 활성 매개변수를 가지고 있습니다."
|
295
|
-
},
|
296
|
-
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
297
|
-
"description": "Qwen2-72B-Instruct는 Qwen2 시리즈의 지침 미세 조정 대규모 언어 모델로, 파라미터 규모는 72B입니다. 이 모델은 Transformer 아키텍처를 기반으로 하며, SwiGLU 활성화 함수, 주의 QKV 편향 및 그룹 쿼리 주의와 같은 기술을 사용합니다. 이 모델은 대규모 입력을 처리할 수 있습니다. 이 모델은 언어 이해, 생성, 다국어 능력, 코딩, 수학 및 추론 등 여러 벤치마크 테스트에서 뛰어난 성능을 보이며, 대부분의 오픈 소스 모델을 초월하고 특정 작업에서 독점 모델과 동등한 경쟁력을 보여줍니다."
|
298
|
-
},
|
299
287
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
300
288
|
"description": "Qwen2.5-72B-Instruct는 Alibaba Cloud에서 발표한 최신 대규모 언어 모델 시리즈 중 하나입니다. 이 72B 모델은 코딩 및 수학 분야에서 상당한 개선된 능력을 가지고 있습니다. 이 모델은 또한 29개 이상의 언어를 포함한 다국어 지원을 제공합니다. 모델은 지침 준수, 구조화된 데이터 이해 및 구조화된 출력 생성(특히 JSON)에서 상당한 향상을 보입니다."
|
301
289
|
},
|
@@ -521,12 +509,15 @@
|
|
521
509
|
"command-r-plus": {
|
522
510
|
"description": "Command R+는 실제 기업 환경 및 복잡한 응용을 위해 설계된 고성능 대형 언어 모델입니다."
|
523
511
|
},
|
512
|
+
"dall-e-2": {
|
513
|
+
"description": "2세대 DALL·E 모델로, 더 사실적이고 정확한 이미지 생성을 지원하며, 해상도는 1세대의 4배입니다."
|
514
|
+
},
|
515
|
+
"dall-e-3": {
|
516
|
+
"description": "최신 DALL·E 모델로, 2023년 11월에 출시되었습니다. 더 사실적이고 정확한 이미지 생성을 지원하며, 세부 표현력이 강화되었습니다."
|
517
|
+
},
|
524
518
|
"databricks/dbrx-instruct": {
|
525
519
|
"description": "DBRX Instruct는 높은 신뢰성을 가진 지시 처리 능력을 제공하며, 다양한 산업 응용을 지원합니다."
|
526
520
|
},
|
527
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
528
|
-
"description": "DeepSeek-V2는 강력하고 경제적인 혼합 전문가(MoE) 언어 모델입니다. 81조 개의 고품질 토큰 데이터셋에서 사전 훈련되었으며, 감독 미세 조정(SFT) 및 강화 학습(RL)을 통해 모델 능력을 더욱 향상시켰습니다. DeepSeek 67B와 비교할 때, DeepSeek-V2는 성능이 더 강력하면서도 42.5%의 훈련 비용을 절감하고 93.3%의 KV 캐시를 줄이며 최대 생성 처리량을 5.76배 향상시켰습니다. 이 모델은 128k의 컨텍스트 길이를 지원하며, 표준 벤치마크 테스트와 오픈 생성 평가에서 모두 뛰어난 성능을 보입니다."
|
529
|
-
},
|
530
521
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
522
|
"description": "DeepSeek V2.5는 이전 버전의 우수한 기능을 집약하여 일반 및 인코딩 능력을 강화했습니다."
|
532
523
|
},
|
@@ -704,6 +695,9 @@
|
|
704
695
|
"gpt-3.5-turbo-1106": {
|
705
696
|
"description": "GPT 3.5 Turbo는 다양한 텍스트 생성 및 이해 작업에 적합하며, 현재 gpt-3.5-turbo-0125를 가리킵니다."
|
706
697
|
},
|
698
|
+
"gpt-3.5-turbo-16k": {
|
699
|
+
"description": "GPT 3.5 Turbo 16k, 고용량 텍스트 생성 모델로 복잡한 작업에 적합합니다."
|
700
|
+
},
|
707
701
|
"gpt-3.5-turbo-instruct": {
|
708
702
|
"description": "GPT 3.5 Turbo는 다양한 텍스트 생성 및 이해 작업에 적합하며, 현재 gpt-3.5-turbo-0125를 가리킵니다."
|
709
703
|
},
|
@@ -755,9 +749,24 @@
|
|
755
749
|
"gpt-4o-2024-11-20": {
|
756
750
|
"description": "ChatGPT-4o는 동적 모델로, 최신 버전을 유지하기 위해 실시간으로 업데이트됩니다. 강력한 언어 이해 및 생성 능력을 결합하여 고객 서비스, 교육 및 기술 지원을 포함한 대규모 애플리케이션에 적합합니다."
|
757
751
|
},
|
752
|
+
"gpt-4o-audio-preview": {
|
753
|
+
"description": "GPT-4o 오디오 모델로, 오디오 입력 및 출력을 지원합니다."
|
754
|
+
},
|
758
755
|
"gpt-4o-mini": {
|
759
756
|
"description": "GPT-4o mini는 OpenAI가 GPT-4 Omni 이후에 출시한 최신 모델로, 텍스트와 이미지를 입력받아 텍스트를 출력합니다. 이 모델은 최신의 소형 모델로, 최근의 다른 최첨단 모델보다 훨씬 저렴하며, GPT-3.5 Turbo보다 60% 이상 저렴합니다. 최첨단의 지능을 유지하면서도 뛰어난 가성비를 자랑합니다. GPT-4o mini는 MMLU 테스트에서 82%의 점수를 기록했으며, 현재 채팅 선호도에서 GPT-4보다 높은 순위를 차지하고 있습니다."
|
760
757
|
},
|
758
|
+
"gpt-4o-mini-realtime-preview": {
|
759
|
+
"description": "GPT-4o-mini 실시간 버전으로, 오디오 및 텍스트의 실시간 입력 및 출력을 지원합니다."
|
760
|
+
},
|
761
|
+
"gpt-4o-realtime-preview": {
|
762
|
+
"description": "GPT-4o 실시간 버전으로, 오디오 및 텍스트의 실시간 입력 및 출력을 지원합니다."
|
763
|
+
},
|
764
|
+
"gpt-4o-realtime-preview-2024-10-01": {
|
765
|
+
"description": "GPT-4o 실시간 버전으로, 오디오 및 텍스트의 실시간 입력 및 출력을 지원합니다."
|
766
|
+
},
|
767
|
+
"gpt-4o-realtime-preview-2024-12-17": {
|
768
|
+
"description": "GPT-4o 실시간 버전으로, 오디오 및 텍스트의 실시간 입력 및 출력을 지원합니다."
|
769
|
+
},
|
761
770
|
"grok-2-1212": {
|
762
771
|
"description": "이 모델은 정확성, 지시 준수 및 다국어 능력에서 개선되었습니다."
|
763
772
|
},
|
@@ -935,6 +944,9 @@
|
|
935
944
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
936
945
|
"description": "LLaMA 3.2는 시각 및 텍스트 데이터를 결합한 작업을 처리하도록 설계되었습니다. 이미지 설명 및 시각적 질문 응답과 같은 작업에서 뛰어난 성능을 발휘하며, 언어 생성과 시각 추론 간의 간극을 메웁니다."
|
937
946
|
},
|
947
|
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
948
|
+
"description": "Llama 3.3은 Llama 시리즈에서 가장 진보된 다국어 오픈 소스 대형 언어 모델로, 매우 낮은 비용으로 405B 모델의 성능을 경험할 수 있습니다. Transformer 구조를 기반으로 하며, 감독 미세 조정(SFT) 및 인간 피드백 강화 학습(RLHF)을 통해 유용성과 안전성을 향상시켰습니다. 그 지시 조정 버전은 다국어 대화를 최적화하여 여러 산업 벤치마크에서 많은 오픈 소스 및 폐쇄형 채팅 모델보다 우수한 성능을 보입니다. 지식 마감일은 2023년 12월입니다."
|
949
|
+
},
|
938
950
|
"meta-llama/Llama-Vision-Free": {
|
939
951
|
"description": "LLaMA 3.2는 시각 및 텍스트 데이터를 결합한 작업을 처리하도록 설계되었습니다. 이미지 설명 및 시각적 질문 응답과 같은 작업에서 뛰어난 성능을 발휘하며, 언어 생성과 시각 추론 간의 간극을 메웁니다."
|
940
952
|
},
|
@@ -1091,18 +1103,12 @@
|
|
1091
1103
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
1092
1104
|
"description": "Hermes 2 Pro Llama 3 8B는 Nous Hermes 2의 업그레이드 버전으로, 최신 내부 개발 데이터 세트를 포함하고 있습니다."
|
1093
1105
|
},
|
1094
|
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
1095
|
-
"description": "Llama 3.1 Nemotron 70B는 NVIDIA가 맞춤 제작한 대형 언어 모델로, LLM 생성된 응답이 사용자 쿼리에 도움이 되는 정도를 높이기 위해 설계되었습니다."
|
1096
|
-
},
|
1097
1106
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1098
1107
|
"description": "Llama 3.1 Nemotron 70B는 NVIDIA가 맞춤 제작한 대규모 언어 모델로, LLM이 생성한 응답이 사용자 쿼리에 얼마나 도움이 되는지를 향상시키기 위해 설계되었습니다. 이 모델은 Arena Hard, AlpacaEval 2 LC 및 GPT-4-Turbo MT-Bench와 같은 벤치마크 테스트에서 뛰어난 성능을 보였으며, 2024년 10월 1일 기준으로 모든 자동 정렬 벤치마크 테스트에서 1위를 차지했습니다. 이 모델은 RLHF(특히 REINFORCE), Llama-3.1-Nemotron-70B-Reward 및 HelpSteer2-Preference 프롬프트를 사용하여 Llama-3.1-70B-Instruct 모델을 기반으로 훈련되었습니다."
|
1099
1108
|
},
|
1100
1109
|
"o1": {
|
1101
1110
|
"description": "고급 추론 및 복잡한 문제 해결에 중점을 두며, 수학 및 과학 작업을 포함합니다. 깊이 있는 컨텍스트 이해와 에이전트 작업 흐름이 필요한 애플리케이션에 매우 적합합니다."
|
1102
1111
|
},
|
1103
|
-
"o1-2024-12-17": {
|
1104
|
-
"description": "o1은 OpenAI의 새로운 추론 모델로, 이미지와 텍스트 입력을 지원하며 텍스트 출력을 제공합니다. 광범위한 일반 지식이 필요한 복잡한 작업에 적합합니다. 이 모델은 200K의 컨텍스트와 2023년 10월의 지식 기준일을 가지고 있습니다."
|
1105
|
-
},
|
1106
1112
|
"o1-mini": {
|
1107
1113
|
"description": "o1-mini는 프로그래밍, 수학 및 과학 응용 프로그램을 위해 설계된 빠르고 경제적인 추론 모델입니다. 이 모델은 128K의 컨텍스트와 2023년 10월의 지식 기준일을 가지고 있습니다."
|
1108
1114
|
},
|
@@ -1130,9 +1136,6 @@
|
|
1130
1136
|
"openai/gpt-4o-mini": {
|
1131
1137
|
"description": "GPT-4o mini는 OpenAI가 GPT-4 Omni 이후에 출시한 최신 모델로, 이미지와 텍스트 입력을 지원하며 텍스트를 출력합니다. 가장 진보된 소형 모델로, 최근의 다른 최첨단 모델보다 훨씬 저렴하며, GPT-3.5 Turbo보다 60% 이상 저렴합니다. 최첨단 지능을 유지하면서도 뛰어난 가성비를 자랑합니다. GPT-4o mini는 MMLU 테스트에서 82%의 점수를 기록했으며, 현재 채팅 선호도에서 GPT-4보다 높은 순위를 차지하고 있습니다."
|
1132
1138
|
},
|
1133
|
-
"openai/o1": {
|
1134
|
-
"description": "o1은 OpenAI의 새로운 추론 모델로, 이미지와 텍스트 입력을 지원하며 텍스트 출력을 제공합니다. 광범위한 일반 지식이 필요한 복잡한 작업에 적합합니다. 이 모델은 200K의 컨텍스트와 2023년 10월의 지식 기준일을 가지고 있습니다."
|
1135
|
-
},
|
1136
1139
|
"openai/o1-mini": {
|
1137
1140
|
"description": "o1-mini는 프로그래밍, 수학 및 과학 응용 프로그램을 위해 설계된 빠르고 경제적인 추론 모델입니다. 이 모델은 128K의 컨텍스트와 2023년 10월의 지식 기준일을 가지고 있습니다."
|
1138
1141
|
},
|
@@ -1307,15 +1310,30 @@
|
|
1307
1310
|
"taichu_llm": {
|
1308
1311
|
"description": "자이동 태초 언어 대모델은 뛰어난 언어 이해 능력과 텍스트 창작, 지식 질문 응답, 코드 프로그래밍, 수학 계산, 논리 추론, 감정 분석, 텍스트 요약 등의 능력을 갖추고 있습니다. 혁신적으로 대규모 데이터 사전 훈련과 다원적 풍부한 지식을 결합하여 알고리즘 기술을 지속적으로 다듬고, 방대한 텍스트 데이터에서 어휘, 구조, 문법, 의미 등의 새로운 지식을 지속적으로 흡수하여 모델 성능을 지속적으로 진화시킵니다. 사용자에게 보다 편리한 정보와 서비스, 그리고 더 지능적인 경험을 제공합니다."
|
1309
1312
|
},
|
1313
|
+
"text-embedding-3-large": {
|
1314
|
+
"description": "가장 강력한 벡터화 모델로, 영어 및 비영어 작업에 적합합니다."
|
1315
|
+
},
|
1316
|
+
"text-embedding-3-small": {
|
1317
|
+
"description": "효율적이고 경제적인 차세대 임베딩 모델로, 지식 검색, RAG 애플리케이션 등 다양한 상황에 적합합니다."
|
1318
|
+
},
|
1310
1319
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1311
1320
|
"description": "StripedHyena Nous (7B)는 효율적인 전략과 모델 아키텍처를 통해 향상된 계산 능력을 제공합니다."
|
1312
1321
|
},
|
1322
|
+
"tts-1": {
|
1323
|
+
"description": "최신 텍스트 음성 변환 모델로, 실시간 상황에 최적화된 속도를 제공합니다."
|
1324
|
+
},
|
1325
|
+
"tts-1-hd": {
|
1326
|
+
"description": "최신 텍스트 음성 변환 모델로, 품질을 최적화했습니다."
|
1327
|
+
},
|
1313
1328
|
"upstage/SOLAR-10.7B-Instruct-v1.0": {
|
1314
1329
|
"description": "Upstage SOLAR Instruct v1 (11B)는 세밀한 지시 작업에 적합하며, 뛰어난 언어 처리 능력을 제공합니다."
|
1315
1330
|
},
|
1316
1331
|
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
|
1317
1332
|
"description": "Claude 3.5 Sonnet는 업계 표준을 향상시켰으며, 경쟁 모델과 Claude 3 Opus를 초월하는 성능을 보여주고, 광범위한 평가에서 뛰어난 성과를 보이며, 중간 수준 모델의 속도와 비용을 갖추고 있습니다."
|
1318
1333
|
},
|
1334
|
+
"whisper-1": {
|
1335
|
+
"description": "범용 음성 인식 모델로, 다국어 음성 인식, 음성 번역 및 언어 인식을 지원합니다."
|
1336
|
+
},
|
1319
1337
|
"wizardlm2": {
|
1320
1338
|
"description": "WizardLM 2는 Microsoft AI에서 제공하는 언어 모델로, 복잡한 대화, 다국어, 추론 및 스마트 어시스턴트 분야에서 특히 뛰어난 성능을 발휘합니다."
|
1321
1339
|
},
|
@@ -119,9 +119,6 @@
|
|
119
119
|
"OpenGVLab/InternVL2-26B": {
|
120
120
|
"description": "InternVL2 toont uitstekende prestaties bij diverse visuele taaltaken, waaronder document- en grafiekbegrip, scène-tekstbegrip, OCR, en het oplossen van wetenschappelijke en wiskundige problemen."
|
121
121
|
},
|
122
|
-
"OpenGVLab/InternVL2-Llama3-76B": {
|
123
|
-
"description": "InternVL2 toont uitstekende prestaties bij diverse visuele taaltaken, waaronder document- en grafiekbegrip, scène-tekstbegrip, OCR, en het oplossen van wetenschappelijke en wiskundige problemen."
|
124
|
-
},
|
125
122
|
"Phi-3-medium-128k-instruct": {
|
126
123
|
"description": "Hetzelfde Phi-3-medium model, maar met een grotere contextgrootte voor RAG of few shot prompting."
|
127
124
|
},
|
@@ -215,9 +212,6 @@
|
|
215
212
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
216
213
|
"description": "Qwen2.5-Coder-7B-Instruct is de nieuwste versie van de code-specifieke grote taalmodelreeks die door Alibaba Cloud is uitgebracht. Dit model is aanzienlijk verbeterd in codegeneratie, redenering en herstelcapaciteiten door training met 55 biljoen tokens, gebaseerd op Qwen2.5. Het versterkt niet alleen de coderingscapaciteiten, maar behoudt ook de voordelen van wiskundige en algemene vaardigheden. Het model biedt een meer uitgebreide basis voor praktische toepassingen zoals code-agenten."
|
217
214
|
},
|
218
|
-
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
219
|
-
"description": "Qwen2.5-Math richt zich op het oplossen van wiskundige vraagstukken en biedt professionele antwoorden op moeilijke vragen."
|
220
|
-
},
|
221
215
|
"Qwen2-72B-Instruct": {
|
222
216
|
"description": "Qwen2 is de nieuwste serie van het Qwen-model, dat 128k context ondersteunt. In vergelijking met de huidige beste open-source modellen, overtreft Qwen2-72B op het gebied van natuurlijke taalbegrip, kennis, code, wiskunde en meertaligheid aanzienlijk de huidige toonaangevende modellen."
|
223
217
|
},
|
@@ -290,12 +284,6 @@
|
|
290
284
|
"TeleAI/TeleMM": {
|
291
285
|
"description": "Het TeleMM multimodale grote model is een door China Telecom ontwikkeld model voor multimodale begrip, dat verschillende modaliteiten zoals tekst en afbeeldingen kan verwerken, en ondersteunt functies zoals beeldbegrip en grafiekanalyse, en biedt gebruikers cross-modale begripdiensten. Het model kan met gebruikers communiceren in meerdere modaliteiten, de invoer nauwkeurig begrijpen, vragen beantwoorden, helpen bij creatie en efficiënt multimodale informatie en inspiratie bieden. Het presteert uitstekend in multimodale taken zoals fijne perceptie en logische redenering."
|
292
286
|
},
|
293
|
-
"Tencent/Hunyuan-A52B-Instruct": {
|
294
|
-
"description": "Hunyuan-Large is het grootste open source Transformer-architectuur MoE-model in de industrie, met een totaal van 389 miljard parameters en 52 miljard geactiveerde parameters."
|
295
|
-
},
|
296
|
-
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
297
|
-
"description": "Qwen2-72B-Instruct is een instructie-fijn afgesteld groot taalmodel in de Qwen2-serie, met een parameter grootte van 72B. Dit model is gebaseerd op de Transformer-architectuur en maakt gebruik van technieken zoals de SwiGLU-activeringsfunctie, aandacht QKV-bias en groepsquery-aandacht. Het kan grote invoer verwerken. Dit model presteert uitstekend in taalbegrip, generatie, meertalige capaciteiten, codering, wiskunde en redenering in verschillende benchmarktests, en overtreft de meeste open-source modellen, en toont in sommige taken een concurrentievermogen vergelijkbaar met dat van propriëtaire modellen."
|
298
|
-
},
|
299
287
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
300
288
|
"description": "Qwen2.5-72B-Instruct is een van de nieuwste grote taalmodellen die door Alibaba Cloud is uitgebracht. Dit 72B-model heeft aanzienlijke verbeteringen in coderings- en wiskundige vaardigheden. Het model biedt ook meertalige ondersteuning, met meer dan 29 ondersteunde talen, waaronder Chinees en Engels. Het model heeft aanzienlijke verbeteringen in het volgen van instructies, het begrijpen van gestructureerde gegevens en het genereren van gestructureerde uitvoer (vooral JSON)."
|
301
289
|
},
|
@@ -521,12 +509,15 @@
|
|
521
509
|
"command-r-plus": {
|
522
510
|
"description": "Command R+ is een hoogpresterend groot taalmodel, speciaal ontworpen voor echte zakelijke scenario's en complexe toepassingen."
|
523
511
|
},
|
512
|
+
"dall-e-2": {
|
513
|
+
"description": "De tweede generatie DALL·E model, ondersteunt realistischere en nauwkeurigere beeldgeneratie, met een resolutie die vier keer zo hoog is als die van de eerste generatie."
|
514
|
+
},
|
515
|
+
"dall-e-3": {
|
516
|
+
"description": "Het nieuwste DALL·E model, uitgebracht in november 2023. Ondersteunt realistischere en nauwkeurigere beeldgeneratie met een sterkere detailweergave."
|
517
|
+
},
|
524
518
|
"databricks/dbrx-instruct": {
|
525
519
|
"description": "DBRX Instruct biedt betrouwbare instructieverwerkingscapaciteiten en ondersteunt toepassingen in verschillende sectoren."
|
526
520
|
},
|
527
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
528
|
-
"description": "DeepSeek-V2 is een krachtig en kosteneffectief hybride expert (MoE) taalmodel. Het is voorgetraind op een hoogwaardige corpus van 81 biljoen tokens en verder verbeterd door middel van supervisie-fijnafstemming (SFT) en versterkend leren (RL). In vergelijking met DeepSeek 67B bespaart DeepSeek-V2 42,5% van de trainingskosten, vermindert 93,3% van de KV-cache en verhoogt de maximale generatiedoorvoer met 5,76 keer. Dit model ondersteunt een contextlengte van 128k en presteert uitstekend in standaard benchmarktests en open generatieve evaluaties."
|
529
|
-
},
|
530
521
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
522
|
"description": "DeepSeek V2.5 combineert de uitstekende kenmerken van eerdere versies en versterkt de algemene en coderingscapaciteiten."
|
532
523
|
},
|
@@ -704,6 +695,9 @@
|
|
704
695
|
"gpt-3.5-turbo-1106": {
|
705
696
|
"description": "GPT 3.5 Turbo, geschikt voor verschillende tekstgeneratie- en begrijptaken, wijst momenteel naar gpt-3.5-turbo-0125."
|
706
697
|
},
|
698
|
+
"gpt-3.5-turbo-16k": {
|
699
|
+
"description": "GPT 3.5 Turbo 16k, een model voor tekstgeneratie met hoge capaciteit, geschikt voor complexe taken."
|
700
|
+
},
|
707
701
|
"gpt-3.5-turbo-instruct": {
|
708
702
|
"description": "GPT 3.5 Turbo, geschikt voor verschillende tekstgeneratie- en begrijptaken, wijst momenteel naar gpt-3.5-turbo-0125."
|
709
703
|
},
|
@@ -755,9 +749,24 @@
|
|
755
749
|
"gpt-4o-2024-11-20": {
|
756
750
|
"description": "ChatGPT-4o is een dynamisch model dat in real-time wordt bijgewerkt om de meest actuele versie te behouden. Het combineert krachtige taalbegrip en generatiemogelijkheden, geschikt voor grootschalige toepassingen zoals klantenservice, onderwijs en technische ondersteuning."
|
757
751
|
},
|
752
|
+
"gpt-4o-audio-preview": {
|
753
|
+
"description": "GPT-4o Audio model, ondersteunt audio-invoer en -uitvoer."
|
754
|
+
},
|
758
755
|
"gpt-4o-mini": {
|
759
756
|
"description": "GPT-4o mini is het nieuwste model van OpenAI, gelanceerd na GPT-4 Omni, en ondersteunt zowel tekst- als beeldinvoer met tekstuitvoer. Als hun meest geavanceerde kleine model is het veel goedkoper dan andere recente toonaangevende modellen en meer dan 60% goedkoper dan GPT-3.5 Turbo. Het behoudt de meest geavanceerde intelligentie met een aanzienlijke prijs-kwaliteitverhouding. GPT-4o mini behaalde 82% op de MMLU-test en staat momenteel hoger in chatvoorkeuren dan GPT-4."
|
760
757
|
},
|
758
|
+
"gpt-4o-mini-realtime-preview": {
|
759
|
+
"description": "GPT-4o-mini realtime versie, ondersteunt audio en tekst realtime invoer en uitvoer."
|
760
|
+
},
|
761
|
+
"gpt-4o-realtime-preview": {
|
762
|
+
"description": "GPT-4o realtime versie, ondersteunt audio en tekst realtime invoer en uitvoer."
|
763
|
+
},
|
764
|
+
"gpt-4o-realtime-preview-2024-10-01": {
|
765
|
+
"description": "GPT-4o realtime versie, ondersteunt audio en tekst realtime invoer en uitvoer."
|
766
|
+
},
|
767
|
+
"gpt-4o-realtime-preview-2024-12-17": {
|
768
|
+
"description": "GPT-4o realtime versie, ondersteunt audio en tekst realtime invoer en uitvoer."
|
769
|
+
},
|
761
770
|
"grok-2-1212": {
|
762
771
|
"description": "Dit model heeft verbeteringen aangebracht in nauwkeurigheid, instructievolging en meertalige capaciteiten."
|
763
772
|
},
|
@@ -935,6 +944,9 @@
|
|
935
944
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
936
945
|
"description": "LLaMA 3.2 is ontworpen voor taken die zowel visuele als tekstuele gegevens combineren. Het presteert uitstekend in taken zoals afbeeldingsbeschrijving en visuele vraagstukken, en overbrugt de kloof tussen taalgeneratie en visuele redenering."
|
937
946
|
},
|
947
|
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
948
|
+
"description": "Llama 3.3 is het meest geavanceerde meertalige open-source grote taalmodel uit de Llama-serie, dat een vergelijkbare prestatie biedt als het 405B model tegen zeer lage kosten. Gebaseerd op de Transformer-structuur en verbeterd in bruikbaarheid en veiligheid door middel van supervisie-fijnstelling (SFT) en versterkend leren met menselijke feedback (RLHF). De instructie-geoptimaliseerde versie is speciaal ontworpen voor meertalige gesprekken en presteert beter dan veel open-source en gesloten chatmodellen op verschillende industriële benchmarks. Kennisafkapdatum is december 2023."
|
949
|
+
},
|
938
950
|
"meta-llama/Llama-Vision-Free": {
|
939
951
|
"description": "LLaMA 3.2 is ontworpen voor taken die zowel visuele als tekstuele gegevens combineren. Het presteert uitstekend in taken zoals afbeeldingsbeschrijving en visuele vraagstukken, en overbrugt de kloof tussen taalgeneratie en visuele redenering."
|
940
952
|
},
|
@@ -1091,18 +1103,12 @@
|
|
1091
1103
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
1092
1104
|
"description": "Hermes 2 Pro Llama 3 8B is een upgrade van Nous Hermes 2, met de nieuwste intern ontwikkelde datasets."
|
1093
1105
|
},
|
1094
|
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
1095
|
-
"description": "Llama 3.1 Nemotron 70B is een op maat gemaakt groot taalmodel van NVIDIA, ontworpen om de hulp te verbeteren die LLM-gebaseerde reacties bieden op gebruikersvragen."
|
1096
|
-
},
|
1097
1106
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1098
1107
|
"description": "Llama 3.1 Nemotron 70B is een op maat gemaakt groot taalmodel van NVIDIA, ontworpen om de hulp van LLM-gegenereerde reacties op gebruikersvragen te verbeteren. Dit model presteert uitstekend in benchmarktests zoals Arena Hard, AlpacaEval 2 LC en GPT-4-Turbo MT-Bench, en staat per 1 oktober 2024 op de eerste plaats in alle drie de automatische afstemmingsbenchmarktests. Het model is getraind met RLHF (met name REINFORCE), Llama-3.1-Nemotron-70B-Reward en HelpSteer2-Preference prompts op basis van het Llama-3.1-70B-Instruct model."
|
1099
1108
|
},
|
1100
1109
|
"o1": {
|
1101
1110
|
"description": "Gefocust op geavanceerd redeneren en het oplossen van complexe problemen, inclusief wiskunde en wetenschappelijke taken. Zeer geschikt voor toepassingen die diepgaand begrip van context en agentwerkstromen vereisen."
|
1102
1111
|
},
|
1103
|
-
"o1-2024-12-17": {
|
1104
|
-
"description": "o1 is het nieuwe redeneer model van OpenAI, dat tekst- en afbeeldingsinvoer ondersteunt en tekstuitvoer genereert, geschikt voor complexe taken die uitgebreide algemene kennis vereisen. Dit model heeft een context van 200K en een kennisafkapdatum van oktober 2023."
|
1105
|
-
},
|
1106
1112
|
"o1-mini": {
|
1107
1113
|
"description": "o1-mini is een snel en kosteneffectief redeneermodel dat is ontworpen voor programmeer-, wiskunde- en wetenschappelijke toepassingen. Dit model heeft een context van 128K en een kennisafkapdatum van oktober 2023."
|
1108
1114
|
},
|
@@ -1130,9 +1136,6 @@
|
|
1130
1136
|
"openai/gpt-4o-mini": {
|
1131
1137
|
"description": "GPT-4o mini is het nieuwste model van OpenAI, gelanceerd na GPT-4 Omni, dat tekst- en afbeeldingsinvoer ondersteunt en tekstuitvoer genereert. Als hun meest geavanceerde kleine model is het veel goedkoper dan andere recente toonaangevende modellen en meer dan 60% goedkoper dan GPT-3.5 Turbo. Het behoudt de meest geavanceerde intelligentie met een aanzienlijke prijs-kwaliteitverhouding. GPT-4o mini behaalde 82% op de MMLU-test en staat momenteel hoger in chatvoorkeuren dan GPT-4."
|
1132
1138
|
},
|
1133
|
-
"openai/o1": {
|
1134
|
-
"description": "o1 is het nieuwe redeneer model van OpenAI, dat tekst- en afbeeldingsinvoer ondersteunt en tekstuitvoer genereert, geschikt voor complexe taken die uitgebreide algemene kennis vereisen. Dit model heeft een context van 200K en een kennisafkapdatum van oktober 2023."
|
1135
|
-
},
|
1136
1139
|
"openai/o1-mini": {
|
1137
1140
|
"description": "o1-mini is een snel en kosteneffectief redeneermodel dat is ontworpen voor programmeer-, wiskunde- en wetenschappelijke toepassingen. Dit model heeft een context van 128K en een kennisafkapdatum van oktober 2023."
|
1138
1141
|
},
|
@@ -1307,15 +1310,30 @@
|
|
1307
1310
|
"taichu_llm": {
|
1308
1311
|
"description": "Het Zido Tai Chu-taalmodel heeft een sterke taalbegripcapaciteit en kan tekstcreatie, kennisvragen, codeprogrammering, wiskundige berekeningen, logische redenering, sentimentanalyse, tekstsamenvattingen en meer aan. Het combineert innovatief grote data voortraining met rijke kennis uit meerdere bronnen, door algoritmische technologie continu te verfijnen en voortdurend nieuwe kennis op te nemen uit enorme tekstdata op het gebied van vocabulaire, structuur, grammatica en semantiek, waardoor de modelprestaties voortdurend evolueren. Het biedt gebruikers gemakkelijkere informatie en diensten en een meer intelligente ervaring."
|
1309
1312
|
},
|
1313
|
+
"text-embedding-3-large": {
|
1314
|
+
"description": "Het krachtigste vectorisatie model, geschikt voor Engelse en niet-Engelse taken."
|
1315
|
+
},
|
1316
|
+
"text-embedding-3-small": {
|
1317
|
+
"description": "Een efficiënte en kosteneffectieve nieuwe generatie Embedding model, geschikt voor kennisretrieval, RAG-toepassingen en andere scenario's."
|
1318
|
+
},
|
1310
1319
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1311
1320
|
"description": "StripedHyena Nous (7B) biedt verbeterde rekenkracht door middel van efficiënte strategieën en modelarchitectuur."
|
1312
1321
|
},
|
1322
|
+
"tts-1": {
|
1323
|
+
"description": "Het nieuwste tekst-naar-spraak model, geoptimaliseerd voor snelheid in realtime scenario's."
|
1324
|
+
},
|
1325
|
+
"tts-1-hd": {
|
1326
|
+
"description": "Het nieuwste tekst-naar-spraak model, geoptimaliseerd voor kwaliteit."
|
1327
|
+
},
|
1313
1328
|
"upstage/SOLAR-10.7B-Instruct-v1.0": {
|
1314
1329
|
"description": "Upstage SOLAR Instruct v1 (11B) is geschikt voor verfijnde instructietaken en biedt uitstekende taalverwerkingscapaciteiten."
|
1315
1330
|
},
|
1316
1331
|
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
|
1317
1332
|
"description": "Claude 3.5 Sonnet heeft de industrienormen verbeterd, met prestaties die de concurrentiemodellen en Claude 3 Opus overtreffen, en excelleert in uitgebreide evaluaties, terwijl het de snelheid en kosten van onze middelgrote modellen behoudt."
|
1318
1333
|
},
|
1334
|
+
"whisper-1": {
|
1335
|
+
"description": "Algemeen spraakherkenningsmodel, ondersteunt meertalige spraakherkenning, spraakvertaling en taalherkenning."
|
1336
|
+
},
|
1319
1337
|
"wizardlm2": {
|
1320
1338
|
"description": "WizardLM 2 is een taalmodel van Microsoft AI dat uitblinkt in complexe gesprekken, meertaligheid, inferentie en intelligente assistentie."
|
1321
1339
|
},
|
@@ -119,9 +119,6 @@
|
|
119
119
|
"OpenGVLab/InternVL2-26B": {
|
120
120
|
"description": "InternVL2 pokazuje wyjątkowe wyniki w różnych zadaniach językowych i wizualnych, w tym zrozumieniu dokumentów i wykresów, zrozumieniu tekstu w scenach, OCR, rozwiązywaniu problemów naukowych i matematycznych."
|
121
121
|
},
|
122
|
-
"OpenGVLab/InternVL2-Llama3-76B": {
|
123
|
-
"description": "InternVL2 pokazuje wyjątkowe wyniki w różnych zadaniach językowych i wizualnych, w tym zrozumieniu dokumentów i wykresów, zrozumieniu tekstu w scenach, OCR, rozwiązywaniu problemów naukowych i matematycznych."
|
124
|
-
},
|
125
122
|
"Phi-3-medium-128k-instruct": {
|
126
123
|
"description": "Ten sam model Phi-3-medium, ale z większym rozmiarem kontekstu do RAG lub kilku strzałowego wywoływania."
|
127
124
|
},
|
@@ -215,9 +212,6 @@
|
|
215
212
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
216
213
|
"description": "Qwen2.5-Coder-7B-Instruct to najnowsza wersja serii dużych modeli językowych specyficznych dla kodu wydana przez Alibaba Cloud. Model ten, oparty na Qwen2.5, został przeszkolony na 55 bilionach tokenów, znacznie poprawiając zdolności generowania kodu, wnioskowania i naprawy. Wzmacnia on nie tylko zdolności kodowania, ale także utrzymuje przewagę w zakresie matematyki i ogólnych umiejętności. Model ten stanowi bardziej kompleksową podstawę dla rzeczywistych zastosowań, takich jak inteligentne agenty kodowe."
|
217
214
|
},
|
218
|
-
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
219
|
-
"description": "Qwen2.5-Math koncentruje się na rozwiązywaniu problemów w dziedzinie matematyki, oferując profesjonalne odpowiedzi na trudne pytania."
|
220
|
-
},
|
221
215
|
"Qwen2-72B-Instruct": {
|
222
216
|
"description": "Qwen2 to najnowsza seria modeli Qwen, obsługująca kontekst 128k. W porównaniu do obecnie najlepszych modeli open source, Qwen2-72B znacznie przewyższa w zakresie rozumienia języka naturalnego, wiedzy, kodowania, matematyki i wielu języków."
|
223
217
|
},
|
@@ -290,12 +284,6 @@
|
|
290
284
|
"TeleAI/TeleMM": {
|
291
285
|
"description": "Model TeleMM to model wielomodalny opracowany przez China Telecom, który potrafi przetwarzać różne rodzaje wejść, takie jak tekst i obrazy, wspierając funkcje rozumienia obrazów oraz analizy wykresów, oferując użytkownikom usługi rozumienia międzymodalnego. Model ten potrafi prowadzić interakcje wielomodalne z użytkownikami, dokładnie rozumiejąc wprowadzone treści, odpowiadając na pytania, wspierając twórczość oraz efektywnie dostarczając informacji i inspiracji w różnych modalnościach. Wykazuje doskonałe wyniki w zadaniach wielomodalnych, takich jak precyzyjne postrzeganie i rozumowanie logiczne."
|
292
286
|
},
|
293
|
-
"Tencent/Hunyuan-A52B-Instruct": {
|
294
|
-
"description": "Hunyuan-Large to największy w branży otwarty model Transformer MoE, z 389 miliardami parametrów ogółem i 52 miliardami aktywowanych parametrów."
|
295
|
-
},
|
296
|
-
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
297
|
-
"description": "Qwen2-72B-Instruct to model dużego języka z serii Qwen2, dostosowany do instrukcji, o rozmiarze parametrów wynoszącym 72B. Model ten oparty jest na architekturze Transformer, wykorzystując funkcję aktywacji SwiGLU, przesunięcia QKV w uwadze oraz grupowe zapytania uwagi. Może obsługiwać duże wejścia. Model ten wykazuje doskonałe wyniki w wielu testach benchmarkowych dotyczących rozumienia języka, generowania, zdolności wielojęzycznych, kodowania, matematyki i wnioskowania, przewyższając większość modeli open-source i wykazując konkurencyjność z modelami własnościowymi w niektórych zadaniach."
|
298
|
-
},
|
299
287
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
300
288
|
"description": "Qwen2.5-72B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 72B ma znacząco poprawione zdolności w zakresie kodowania i matematyki. Oferuje również wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model ten wykazuje znaczną poprawę w zakresie przestrzegania instrukcji, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
|
301
289
|
},
|
@@ -521,12 +509,15 @@
|
|
521
509
|
"command-r-plus": {
|
522
510
|
"description": "Command R+ to model językowy o wysokiej wydajności, zaprojektowany z myślą o rzeczywistych scenariuszach biznesowych i złożonych zastosowaniach."
|
523
511
|
},
|
512
|
+
"dall-e-2": {
|
513
|
+
"description": "Druga generacja modelu DALL·E, obsługująca bardziej realistyczne i dokładne generowanie obrazów, o rozdzielczości czterokrotnie większej niż pierwsza generacja."
|
514
|
+
},
|
515
|
+
"dall-e-3": {
|
516
|
+
"description": "Najnowocześniejszy model DALL·E, wydany w listopadzie 2023 roku. Obsługuje bardziej realistyczne i dokładne generowanie obrazów, z lepszą zdolnością do oddawania szczegółów."
|
517
|
+
},
|
524
518
|
"databricks/dbrx-instruct": {
|
525
519
|
"description": "DBRX Instruct oferuje wysoką niezawodność w przetwarzaniu poleceń, wspierając różne branże."
|
526
520
|
},
|
527
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
528
|
-
"description": "DeepSeek-V2 to potężny, ekonomiczny model językowy typu mieszany ekspert (MoE). Został wstępnie przeszkolony na wysokiej jakości korpusie danych liczącym 8,1 biliona tokenów, a jego zdolności zostały dodatkowo poprawione dzięki nadzorowanemu dostrajaniu (SFT) i uczeniu przez wzmacnianie (RL). W porównaniu do DeepSeek 67B, DeepSeek-V2 osiąga lepszą wydajność, oszczędzając 42,5% kosztów szkolenia, redukując 93,3% pamięci podręcznej KV i zwiększając maksymalną przepustowość generacji do 5,76 razy. Model obsługuje długość kontekstu 128k i osiąga doskonałe wyniki w standardowych testach benchmarkowych oraz w otwartych ocenach generacji."
|
529
|
-
},
|
530
521
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
522
|
"description": "DeepSeek V2.5 łączy doskonałe cechy wcześniejszych wersji, wzmacniając zdolności ogólne i kodowania."
|
532
523
|
},
|
@@ -704,6 +695,9 @@
|
|
704
695
|
"gpt-3.5-turbo-1106": {
|
705
696
|
"description": "GPT 3.5 Turbo, odpowiedni do różnych zadań generowania i rozumienia tekstu, obecnie wskazuje na gpt-3.5-turbo-0125."
|
706
697
|
},
|
698
|
+
"gpt-3.5-turbo-16k": {
|
699
|
+
"description": "GPT 3.5 Turbo 16k, model generacji tekstu o dużej pojemności, odpowiedni do złożonych zadań."
|
700
|
+
},
|
707
701
|
"gpt-3.5-turbo-instruct": {
|
708
702
|
"description": "GPT 3.5 Turbo, odpowiedni do różnych zadań generowania i rozumienia tekstu, obecnie wskazuje na gpt-3.5-turbo-0125."
|
709
703
|
},
|
@@ -755,9 +749,24 @@
|
|
755
749
|
"gpt-4o-2024-11-20": {
|
756
750
|
"description": "ChatGPT-4o to dynamiczny model, aktualizowany w czasie rzeczywistym, aby być zawsze na bieżąco z najnowszą wersją. Łączy potężne zdolności rozumienia i generowania języka, idealny do zastosowań w dużej skali, w tym obsłudze klienta, edukacji i wsparciu technicznym."
|
757
751
|
},
|
752
|
+
"gpt-4o-audio-preview": {
|
753
|
+
"description": "Model audio GPT-4o, obsługujący wejście i wyjście audio."
|
754
|
+
},
|
758
755
|
"gpt-4o-mini": {
|
759
756
|
"description": "GPT-4o mini to najnowszy model OpenAI, wprowadzony po GPT-4 Omni, obsługujący wejścia tekstowe i wizualne oraz generujący tekst. Jako ich najnowocześniejszy model w małej skali, jest znacznie tańszy niż inne niedawno wprowadzone modele, a jego cena jest o ponad 60% niższa niż GPT-3.5 Turbo. Utrzymuje najnowocześniejszą inteligencję, jednocześnie oferując znaczną wartość za pieniądze. GPT-4o mini uzyskał wynik 82% w teście MMLU i obecnie zajmuje wyższą pozycję w preferencjach czatu niż GPT-4."
|
760
757
|
},
|
758
|
+
"gpt-4o-mini-realtime-preview": {
|
759
|
+
"description": "Wersja na żywo GPT-4o-mini, obsługująca wejście i wyjście audio oraz tekstowe w czasie rzeczywistym."
|
760
|
+
},
|
761
|
+
"gpt-4o-realtime-preview": {
|
762
|
+
"description": "Wersja na żywo GPT-4o, obsługująca wejście i wyjście audio oraz tekstowe w czasie rzeczywistym."
|
763
|
+
},
|
764
|
+
"gpt-4o-realtime-preview-2024-10-01": {
|
765
|
+
"description": "Wersja na żywo GPT-4o, obsługująca wejście i wyjście audio oraz tekstowe w czasie rzeczywistym."
|
766
|
+
},
|
767
|
+
"gpt-4o-realtime-preview-2024-12-17": {
|
768
|
+
"description": "Wersja na żywo GPT-4o, obsługująca wejście i wyjście audio oraz tekstowe w czasie rzeczywistym."
|
769
|
+
},
|
761
770
|
"grok-2-1212": {
|
762
771
|
"description": "Model ten poprawił dokładność, przestrzeganie instrukcji oraz zdolności wielojęzyczne."
|
763
772
|
},
|
@@ -935,6 +944,9 @@
|
|
935
944
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
936
945
|
"description": "LLaMA 3.2 zaprojektowana do przetwarzania zadań łączących dane wizualne i tekstowe. Doskonała w zadaniach takich jak opisywanie obrazów i wizualne pytania odpowiedzi, przekracza granice między generowaniem języka a wnioskowaniem wizualnym."
|
937
946
|
},
|
947
|
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
948
|
+
"description": "Llama 3.3 to najnowocześniejszy wielojęzyczny model językowy open-source z serii Llama, oferujący wydajność porównywalną z modelem 405B przy bardzo niskich kosztach. Oparty na strukturze Transformer, poprawiony dzięki nadzorowanemu dostrajaniu (SFT) oraz uczeniu się z ludzkiego feedbacku (RLHF), co zwiększa użyteczność i bezpieczeństwo. Jego wersja dostosowana do instrukcji jest zoptymalizowana do wielojęzycznych rozmów, osiągając lepsze wyniki w wielu branżowych benchmarkach niż wiele modeli czatu open-source i zamkniętych. Data graniczna wiedzy to grudzień 2023 roku."
|
949
|
+
},
|
938
950
|
"meta-llama/Llama-Vision-Free": {
|
939
951
|
"description": "LLaMA 3.2 zaprojektowana do przetwarzania zadań łączących dane wizualne i tekstowe. Doskonała w zadaniach takich jak opisywanie obrazów i wizualne pytania odpowiedzi, przekracza granice między generowaniem języka a wnioskowaniem wizualnym."
|
940
952
|
},
|
@@ -1091,18 +1103,12 @@
|
|
1091
1103
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
1092
1104
|
"description": "Hermes 2 Pro Llama 3 8B to ulepszona wersja Nous Hermes 2, zawierająca najnowsze wewnętrznie opracowane zbiory danych."
|
1093
1105
|
},
|
1094
|
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
1095
|
-
"description": "Llama 3.1 Nemotron 70B to duży model językowy stworzony przez NVIDIA, zaprojektowany w celu zwiększenia użyteczności odpowiedzi generowanych przez LLM dla zapytań użytkowników."
|
1096
|
-
},
|
1097
1106
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1098
1107
|
"description": "Llama 3.1 Nemotron 70B to dostosowany przez NVIDIA duży model językowy, mający na celu zwiększenie użyteczności odpowiedzi generowanych przez LLM w odpowiedzi na zapytania użytkowników. Model ten osiągnął doskonałe wyniki w testach benchmarkowych, takich jak Arena Hard, AlpacaEval 2 LC i GPT-4-Turbo MT-Bench, zajmując pierwsze miejsce we wszystkich trzech automatycznych testach do 1 października 2024 roku. Model został przeszkolony przy użyciu RLHF (szczególnie REINFORCE), Llama-3.1-Nemotron-70B-Reward i HelpSteer2-Preference na bazie modelu Llama-3.1-70B-Instruct."
|
1099
1108
|
},
|
1100
1109
|
"o1": {
|
1101
1110
|
"description": "Skupia się na zaawansowanym wnioskowaniu i rozwiązywaniu złożonych problemów, w tym zadań matematycznych i naukowych. Doskonale nadaje się do aplikacji wymagających głębokiego zrozumienia kontekstu i zarządzania procesami."
|
1102
1111
|
},
|
1103
|
-
"o1-2024-12-17": {
|
1104
|
-
"description": "o1 to nowy model wnioskowania OpenAI, który obsługuje wejścia tekstowe i graficzne oraz generuje tekst, idealny do złożonych zadań wymagających szerokiej wiedzy ogólnej. Model ma kontekst 200K i datę graniczną wiedzy do października 2023 roku."
|
1105
|
-
},
|
1106
1112
|
"o1-mini": {
|
1107
1113
|
"description": "o1-mini to szybki i ekonomiczny model wnioskowania zaprojektowany z myślą o programowaniu, matematyce i zastosowaniach naukowych. Model ten ma kontekst 128K i datę graniczną wiedzy z października 2023 roku."
|
1108
1114
|
},
|
@@ -1130,9 +1136,6 @@
|
|
1130
1136
|
"openai/gpt-4o-mini": {
|
1131
1137
|
"description": "GPT-4o mini to najnowszy model OpenAI, wydany po GPT-4 Omni, obsługujący wejścia tekstowe i wizualne. Jako ich najnowocześniejszy mały model, jest znacznie tańszy od innych niedawnych modeli czołowych i kosztuje o ponad 60% mniej niż GPT-3.5 Turbo. Utrzymuje najnowocześniejszą inteligencję, oferując jednocześnie znaczną wartość za pieniądze. GPT-4o mini uzyskał wynik 82% w teście MMLU i obecnie zajmuje wyższą pozycję w preferencjach czatu niż GPT-4."
|
1132
1138
|
},
|
1133
|
-
"openai/o1": {
|
1134
|
-
"description": "o1 to nowy model wnioskowania OpenAI, który obsługuje wejścia tekstowe i graficzne oraz generuje tekst, idealny do złożonych zadań wymagających szerokiej wiedzy ogólnej. Model ma kontekst 200K i datę graniczną wiedzy do października 2023 roku."
|
1135
|
-
},
|
1136
1139
|
"openai/o1-mini": {
|
1137
1140
|
"description": "o1-mini to szybki i ekonomiczny model wnioskowania zaprojektowany z myślą o programowaniu, matematyce i zastosowaniach naukowych. Model ten ma kontekst 128K i datę graniczną wiedzy z października 2023 roku."
|
1138
1141
|
},
|
@@ -1307,15 +1310,30 @@
|
|
1307
1310
|
"taichu_llm": {
|
1308
1311
|
"description": "Model językowy TaiChu charakteryzuje się wyjątkową zdolnością rozumienia języka oraz umiejętnościami w zakresie tworzenia tekstów, odpowiadania na pytania, programowania, obliczeń matematycznych, wnioskowania logicznego, analizy emocji i streszczenia tekstu. Innowacyjnie łączy wstępne uczenie się na dużych zbiorach danych z bogatą wiedzą z wielu źródeł, stale doskonaląc technologię algorytmiczną i nieustannie przyswajając nową wiedzę z zakresu słownictwa, struktury, gramatyki i semantyki z ogromnych zbiorów danych tekstowych, co prowadzi do ciągłej ewolucji modelu. Umożliwia użytkownikom łatwiejszy dostęp do informacji i usług oraz bardziej inteligentne doświadczenia."
|
1309
1312
|
},
|
1313
|
+
"text-embedding-3-large": {
|
1314
|
+
"description": "Najpotężniejszy model wektoryzacji, odpowiedni do zadań w języku angielskim i innych językach."
|
1315
|
+
},
|
1316
|
+
"text-embedding-3-small": {
|
1317
|
+
"description": "Nowej generacji model Embedding, efektywny i ekonomiczny, odpowiedni do wyszukiwania wiedzy, aplikacji RAG i innych scenariuszy."
|
1318
|
+
},
|
1310
1319
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1311
1320
|
"description": "StripedHyena Nous (7B) oferuje zwiększoną moc obliczeniową dzięki efektywnym strategiom i architekturze modelu."
|
1312
1321
|
},
|
1322
|
+
"tts-1": {
|
1323
|
+
"description": "Najnowocześniejszy model tekstu na mowę, zoptymalizowany pod kątem szybkości w scenariuszach w czasie rzeczywistym."
|
1324
|
+
},
|
1325
|
+
"tts-1-hd": {
|
1326
|
+
"description": "Najnowocześniejszy model tekstu na mowę, zoptymalizowany pod kątem jakości."
|
1327
|
+
},
|
1313
1328
|
"upstage/SOLAR-10.7B-Instruct-v1.0": {
|
1314
1329
|
"description": "Upstage SOLAR Instruct v1 (11B) jest przeznaczony do precyzyjnych zadań poleceniowych, oferując doskonałe możliwości przetwarzania języka."
|
1315
1330
|
},
|
1316
1331
|
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
|
1317
1332
|
"description": "Claude 3.5 Sonnet podnosi standardy branżowe, przewyższając modele konkurencji oraz Claude 3 Opus, osiągając doskonałe wyniki w szerokim zakresie ocen, przy zachowaniu prędkości i kosztów naszych modeli średniego poziomu."
|
1318
1333
|
},
|
1334
|
+
"whisper-1": {
|
1335
|
+
"description": "Uniwersalny model rozpoznawania mowy, obsługujący rozpoznawanie mowy w wielu językach, tłumaczenie mowy i rozpoznawanie języków."
|
1336
|
+
},
|
1319
1337
|
"wizardlm2": {
|
1320
1338
|
"description": "WizardLM 2 to model językowy dostarczany przez Microsoft AI, który wyróżnia się w złożonych dialogach, wielojęzyczności, wnioskowaniu i inteligentnych asystentach."
|
1321
1339
|
},
|