@lobehub/chat 1.40.1 → 1.40.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (118) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/changelog/v1.json +18 -0
  3. package/package.json +1 -1
  4. package/src/app/(main)/changelog/page.tsx +3 -1
  5. package/src/app/(main)/chat/(workspace)/features/ChangelogModal.tsx +11 -0
  6. package/src/app/(main)/chat/(workspace)/page.tsx +8 -5
  7. package/src/app/(main)/discover/(detail)/model/[...slugs]/features/Actions.tsx +1 -1
  8. package/src/app/(main)/discover/(detail)/model/[...slugs]/features/Header.tsx +1 -1
  9. package/src/app/(main)/discover/(detail)/model/[...slugs]/features/InfoSidebar/SuggestionItem.tsx +2 -2
  10. package/src/app/(main)/discover/(detail)/model/[...slugs]/features/ProviderList/ProviderItem.tsx +1 -1
  11. package/src/app/(main)/discover/(detail)/provider/[slug]/features/ModelList/ModelItem.tsx +3 -3
  12. package/src/app/(main)/discover/(list)/models/features/Card.tsx +6 -2
  13. package/src/app/(main)/settings/llm/ProviderList/Cloudflare/index.tsx +1 -5
  14. package/src/app/(main)/settings/llm/components/ProviderModelList/ModelFetcher.tsx +2 -2
  15. package/src/app/@modal/(.)changelog/modal/page.tsx +3 -1
  16. package/src/components/Loading/BrandTextLoading/index.tsx +5 -0
  17. package/src/components/ModelSelect/index.tsx +7 -4
  18. package/src/config/__tests__/app.test.ts +6 -2
  19. package/src/config/app.ts +1 -2
  20. package/src/config/featureFlags/schema.ts +3 -0
  21. package/src/config/modelProviders/ai21.ts +2 -2
  22. package/src/config/modelProviders/ai360.ts +4 -4
  23. package/src/config/modelProviders/anthropic.ts +8 -8
  24. package/src/config/modelProviders/azure.ts +5 -5
  25. package/src/config/modelProviders/baichuan.ts +6 -6
  26. package/src/config/modelProviders/bedrock.ts +14 -14
  27. package/src/config/modelProviders/cloudflare.ts +12 -11
  28. package/src/config/modelProviders/deepseek.ts +1 -1
  29. package/src/config/modelProviders/fireworksai.ts +29 -27
  30. package/src/config/modelProviders/giteeai.ts +7 -7
  31. package/src/config/modelProviders/github.ts +29 -28
  32. package/src/config/modelProviders/google.ts +18 -19
  33. package/src/config/modelProviders/groq.ts +13 -13
  34. package/src/config/modelProviders/higress.ts +195 -194
  35. package/src/config/modelProviders/huggingface.ts +7 -7
  36. package/src/config/modelProviders/hunyuan.ts +25 -17
  37. package/src/config/modelProviders/internlm.ts +6 -4
  38. package/src/config/modelProviders/minimax.ts +5 -5
  39. package/src/config/modelProviders/mistral.ts +14 -16
  40. package/src/config/modelProviders/moonshot.ts +3 -3
  41. package/src/config/modelProviders/novita.ts +15 -15
  42. package/src/config/modelProviders/ollama.ts +46 -46
  43. package/src/config/modelProviders/openai.ts +23 -22
  44. package/src/config/modelProviders/openrouter.ts +20 -18
  45. package/src/config/modelProviders/perplexity.ts +7 -7
  46. package/src/config/modelProviders/qwen.ts +23 -25
  47. package/src/config/modelProviders/sensenova.ts +8 -8
  48. package/src/config/modelProviders/siliconcloud.ts +138 -92
  49. package/src/config/modelProviders/spark.ts +6 -6
  50. package/src/config/modelProviders/stepfun.ts +9 -9
  51. package/src/config/modelProviders/taichu.ts +2 -3
  52. package/src/config/modelProviders/togetherai.ts +57 -48
  53. package/src/config/modelProviders/upstage.ts +3 -3
  54. package/src/config/modelProviders/wenxin.ts +12 -12
  55. package/src/config/modelProviders/xai.ts +4 -4
  56. package/src/config/modelProviders/zeroone.ts +11 -11
  57. package/src/config/modelProviders/zhipu.ts +17 -16
  58. package/src/database/_deprecated/core/model.ts +1 -1
  59. package/src/database/_deprecated/models/sessionGroup.ts +4 -1
  60. package/src/database/client/migrations.json +2 -5
  61. package/src/database/migrations/meta/0012_snapshot.json +176 -518
  62. package/src/database/schemas/agent.ts +1 -1
  63. package/src/database/schemas/message.ts +1 -0
  64. package/src/database/schemas/session.ts +1 -0
  65. package/src/database/server/models/topic.ts +19 -17
  66. package/src/features/ChangelogModal/index.tsx +8 -2
  67. package/src/features/DebugUI/Content.tsx +0 -1
  68. package/src/features/PluginStore/index.tsx +2 -2
  69. package/src/features/User/UserPanel/useMenu.tsx +1 -1
  70. package/src/layout/GlobalProvider/AntdV5MonkeyPatch.tsx +4 -4
  71. package/src/libs/agent-runtime/google/index.ts +4 -3
  72. package/src/libs/agent-runtime/higress/index.ts +1 -1
  73. package/src/libs/agent-runtime/huggingface/index.ts +2 -4
  74. package/src/libs/agent-runtime/minimax/index.ts +5 -10
  75. package/src/libs/agent-runtime/mistral/index.ts +3 -6
  76. package/src/libs/agent-runtime/moonshot/index.ts +3 -6
  77. package/src/libs/agent-runtime/novita/__snapshots__/index.test.ts.snap +18 -18
  78. package/src/libs/agent-runtime/novita/index.ts +1 -1
  79. package/src/libs/agent-runtime/openai/__snapshots__/index.test.ts.snap +10 -10
  80. package/src/libs/agent-runtime/openrouter/__snapshots__/index.test.ts.snap +168 -168
  81. package/src/libs/agent-runtime/openrouter/index.ts +1 -1
  82. package/src/libs/agent-runtime/perplexity/index.ts +4 -4
  83. package/src/libs/agent-runtime/sensenova/index.ts +9 -3
  84. package/src/libs/agent-runtime/taichu/index.ts +4 -10
  85. package/src/libs/agent-runtime/utils/streams/minimax.test.ts +5 -2
  86. package/src/libs/agent-runtime/utils/streams/minimax.ts +4 -1
  87. package/src/libs/agent-runtime/zhipu/index.ts +12 -13
  88. package/src/libs/langchain/loaders/index.ts +2 -2
  89. package/src/libs/langchain/types.ts +9 -1
  90. package/src/locales/default/modelProvider.ts +1 -1
  91. package/src/migrations/FromV3ToV4/fixtures/ollama-output-v4.json +1 -1
  92. package/src/migrations/FromV6ToV7/types/v7.ts +0 -2
  93. package/src/server/globalConfig/genServerLLMConfig.test.ts +4 -4
  94. package/src/server/globalConfig/genServerLLMConfig.ts +29 -24
  95. package/src/server/globalConfig/index.ts +1 -2
  96. package/src/server/routers/edge/config/__snapshots__/index.test.ts.snap +9 -9
  97. package/src/server/routers/lambda/_template.ts +1 -1
  98. package/src/server/routers/lambda/knowledgeBase.ts +1 -1
  99. package/src/server/routers/lambda/session.ts +1 -1
  100. package/src/server/routers/lambda/sessionGroup.ts +1 -1
  101. package/src/server/routers/lambda/thread.ts +1 -1
  102. package/src/server/services/changelog/index.test.ts +4 -2
  103. package/src/server/services/changelog/index.ts +10 -2
  104. package/src/server/services/nextAuthUser/index.ts +1 -1
  105. package/src/store/serverConfig/selectors.test.ts +1 -0
  106. package/src/store/user/slices/modelList/__snapshots__/action.test.ts.snap +1 -1
  107. package/src/store/user/slices/modelList/action.test.ts +4 -4
  108. package/src/store/user/slices/modelList/reducers/customModelCard.test.ts +6 -6
  109. package/src/store/user/slices/modelList/selectors/modelProvider.ts +3 -2
  110. package/src/tools/dalle/Render/Item/index.tsx +1 -1
  111. package/src/types/files/index.ts +0 -1
  112. package/src/types/llm.ts +4 -5
  113. package/src/utils/__snapshots__/parseModels.test.ts.snap +2 -2
  114. package/src/utils/genUserLLMConfig.test.ts +4 -4
  115. package/src/utils/genUserLLMConfig.ts +6 -4
  116. package/src/utils/parseModels.test.ts +16 -16
  117. package/src/utils/parseModels.ts +1 -1
  118. package/src/utils/server/jwt.ts +2 -6
@@ -4,7 +4,9 @@ import { ModelProviderCard } from '@/types/llm';
4
4
  const SiliconCloud: ModelProviderCard = {
5
5
  chatModels: [
6
6
  {
7
- description: 'Hunyuan-Large 是业界最大的开源 Transformer 架构 MoE 模型,拥有 3890 亿总参数量和 520 亿激活参数量。',
7
+ contextWindowTokens: 32_768,
8
+ description:
9
+ 'Hunyuan-Large 是业界最大的开源 Transformer 架构 MoE 模型,拥有 3890 亿总参数量和 520 亿激活参数量。',
8
10
  displayName: 'Hunyuan A52B Instruct',
9
11
  enabled: true,
10
12
  id: 'Tencent/Hunyuan-A52B-Instruct',
@@ -13,10 +15,11 @@ const SiliconCloud: ModelProviderCard = {
13
15
  input: 21,
14
16
  output: 21,
15
17
  },
16
- tokens: 32_768,
17
18
  },
18
19
  {
19
- description: 'DeepSeek-V2.5 是 DeepSeek-V2-Chat 和 DeepSeek-Coder-V2-Instruct 的升级版本,集成了两个先前版本的通用和编码能力。该模型在多个方面进行了优化,包括写作和指令跟随能力,更好地与人类偏好保持一致。DeepSeek-V2.5 在各种评估基准上都取得了显著的提升,如 AlpacaEval 2.0、ArenaHard、AlignBench 和 MT-Bench 等',
20
+ contextWindowTokens: 32_768,
21
+ description:
22
+ 'DeepSeek-V2.5 是 DeepSeek-V2-Chat 和 DeepSeek-Coder-V2-Instruct 的升级版本,集成了两个先前版本的通用和编码能力。该模型在多个方面进行了优化,包括写作和指令跟随能力,更好地与人类偏好保持一致。DeepSeek-V2.5 在各种评估基准上都取得了显著的提升,如 AlpacaEval 2.0、ArenaHard、AlignBench 和 MT-Bench 等',
20
23
  displayName: 'DeepSeek V2.5',
21
24
  enabled: true,
22
25
  functionCall: true,
@@ -26,10 +29,11 @@ const SiliconCloud: ModelProviderCard = {
26
29
  input: 1.33,
27
30
  output: 1.33,
28
31
  },
29
- tokens: 32_768,
30
32
  },
31
33
  {
32
- description: 'DeepSeek-V2 是一个强大、经济高效的混合专家(MoE)语言模型。它在 8.1 万亿个 token 的高质量语料库上进行了预训练,并通过监督微调(SFT)和强化学习(RL)进一步提升了模型能力。与 DeepSeek 67B 相比, DeepSeek-V2 在性能更强的同时,节省了 42.5% 的训练成本,减少了 93.3% 的 KV 缓存,并将最大生成吞吐量提高到了 5.76 倍。该模型支持 128k 的上下文长度,在标准基准测试和开放式生成评估中都表现出色',
34
+ contextWindowTokens: 32_768,
35
+ description:
36
+ 'DeepSeek-V2 是一个强大、经济高效的混合专家(MoE)语言模型。它在 8.1 万亿个 token 的高质量语料库上进行了预训练,并通过监督微调(SFT)和强化学习(RL)进一步提升了模型能力。与 DeepSeek 67B 相比, DeepSeek-V2 在性能更强的同时,节省了 42.5% 的训练成本,减少了 93.3% 的 KV 缓存,并将最大生成吞吐量提高到了 5.76 倍。该模型支持 128k 的上下文长度,在标准基准测试和开放式生成评估中都表现出色',
33
37
  displayName: 'DeepSeek V2 Chat',
34
38
  id: 'deepseek-ai/DeepSeek-V2-Chat',
35
39
  pricing: {
@@ -37,10 +41,11 @@ const SiliconCloud: ModelProviderCard = {
37
41
  input: 1.33,
38
42
  output: 1.33,
39
43
  },
40
- tokens: 32_768,
41
44
  },
42
45
  {
43
- description: 'QwQ-32B-Preview是Qwen 最新的实验性研究模型,专注于提升AI推理能力。通过探索语言混合、递归推理等复杂机制,主要优势包括强大的推理分析能力、数学和编程能力。与此同时,也存在语言切换问题、推理循环、安全性考虑、其他能力方面的差异。',
46
+ contextWindowTokens: 32_768,
47
+ description:
48
+ 'QwQ-32B-Preview是Qwen 最新的实验性研究模型,专注于提升AI推理能力。通过探索语言混合、递归推理等复杂机制,主要优势包括强大的推理分析能力、数学和编程能力。与此同时,也存在语言切换问题、推理循环、安全性考虑、其他能力方面的差异。',
44
49
  displayName: 'QwQ 32B Preview',
45
50
  enabled: true,
46
51
  id: 'Qwen/QwQ-32B-Preview',
@@ -49,10 +54,11 @@ const SiliconCloud: ModelProviderCard = {
49
54
  input: 1.26,
50
55
  output: 1.26,
51
56
  },
52
- tokens: 32_768,
53
57
  },
54
58
  {
55
- description: 'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
59
+ contextWindowTokens: 32_768,
60
+ description:
61
+ 'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
56
62
  displayName: 'Qwen2.5 7B Instruct (Free)',
57
63
  enabled: true,
58
64
  functionCall: true,
@@ -62,10 +68,11 @@ const SiliconCloud: ModelProviderCard = {
62
68
  input: 0,
63
69
  output: 0,
64
70
  },
65
- tokens: 32_768,
66
71
  },
67
72
  {
68
- description: 'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
73
+ contextWindowTokens: 32_768,
74
+ description:
75
+ 'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
69
76
  displayName: 'Qwen2.5 7B Instruct (LoRA)',
70
77
  id: 'LoRA/Qwen/Qwen2.5-7B-Instruct',
71
78
  pricing: {
@@ -73,10 +80,11 @@ const SiliconCloud: ModelProviderCard = {
73
80
  input: 0.53,
74
81
  output: 0.53,
75
82
  },
76
- tokens: 32_768,
77
83
  },
78
84
  {
79
- description: 'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
85
+ contextWindowTokens: 32_768,
86
+ description:
87
+ 'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
80
88
  displayName: 'Qwen2.5 7B Instruct (Pro)',
81
89
  functionCall: true,
82
90
  id: 'Pro/Qwen/Qwen2.5-7B-Instruct',
@@ -85,10 +93,11 @@ const SiliconCloud: ModelProviderCard = {
85
93
  input: 0.35,
86
94
  output: 0.35,
87
95
  },
88
- tokens: 32_768,
89
96
  },
90
97
  {
91
- description: 'Qwen2.5-14B-Instruct 是阿里云发布的最新大语言模型系列之一。该 14B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
98
+ contextWindowTokens: 32_768,
99
+ description:
100
+ 'Qwen2.5-14B-Instruct 是阿里云发布的最新大语言模型系列之一。该 14B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
92
101
  displayName: 'Qwen2.5 14B Instruct',
93
102
  functionCall: true,
94
103
  id: 'Qwen/Qwen2.5-14B-Instruct',
@@ -97,10 +106,11 @@ const SiliconCloud: ModelProviderCard = {
97
106
  input: 0.7,
98
107
  output: 0.7,
99
108
  },
100
- tokens: 32_768,
101
109
  },
102
110
  {
103
- description: 'Qwen2.5-32B-Instruct 是阿里云发布的最新大语言模型系列之一。该 32B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
111
+ contextWindowTokens: 32_768,
112
+ description:
113
+ 'Qwen2.5-32B-Instruct 是阿里云发布的最新大语言模型系列之一。该 32B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
104
114
  displayName: 'Qwen2.5 32B Instruct',
105
115
  functionCall: true,
106
116
  id: 'Qwen/Qwen2.5-32B-Instruct',
@@ -109,10 +119,11 @@ const SiliconCloud: ModelProviderCard = {
109
119
  input: 1.26,
110
120
  output: 1.26,
111
121
  },
112
- tokens: 32_768,
113
122
  },
114
123
  {
115
- description: 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
124
+ contextWindowTokens: 32_768,
125
+ description:
126
+ 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
116
127
  displayName: 'Qwen2.5 72B Instruct',
117
128
  functionCall: true,
118
129
  id: 'Qwen/Qwen2.5-72B-Instruct',
@@ -121,10 +132,11 @@ const SiliconCloud: ModelProviderCard = {
121
132
  input: 4.13,
122
133
  output: 4.13,
123
134
  },
124
- tokens: 32_768,
125
135
  },
126
136
  {
127
- description: 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
137
+ contextWindowTokens: 32_768,
138
+ description:
139
+ 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
128
140
  displayName: 'Qwen2.5 72B Instruct (LoRA)',
129
141
  id: 'LoRA/Qwen/Qwen2.5-72B-Instruct',
130
142
  pricing: {
@@ -132,10 +144,11 @@ const SiliconCloud: ModelProviderCard = {
132
144
  input: 6.2,
133
145
  output: 6.2,
134
146
  },
135
- tokens: 32_768,
136
147
  },
137
148
  {
138
- description: 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
149
+ contextWindowTokens: 32_768,
150
+ description:
151
+ 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
139
152
  displayName: 'Qwen2.5 72B Instruct (Vendor-A)',
140
153
  functionCall: true,
141
154
  id: 'Vendor-A/Qwen/Qwen2.5-72B-Instruct',
@@ -144,10 +157,11 @@ const SiliconCloud: ModelProviderCard = {
144
157
  input: 1,
145
158
  output: 1,
146
159
  },
147
- tokens: 32_768,
148
160
  },
149
161
  {
150
- description: 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。它支持长达 128K tokens 的输入,可以生成超过 8K tokens 的长文本。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
162
+ contextWindowTokens: 131_072,
163
+ description:
164
+ 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。它支持长达 128K tokens 的输入,可以生成超过 8K tokens 的长文本。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
151
165
  displayName: 'Qwen2.5 72B Instruct 128K',
152
166
  enabled: true,
153
167
  functionCall: true,
@@ -157,10 +171,11 @@ const SiliconCloud: ModelProviderCard = {
157
171
  input: 4.13,
158
172
  output: 4.13,
159
173
  },
160
- tokens: 131_072,
161
174
  },
162
175
  {
163
- description: 'Qwen2.5-Coder-7B-Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础',
176
+ contextWindowTokens: 32_768,
177
+ description:
178
+ 'Qwen2.5-Coder-7B-Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础',
164
179
  displayName: 'Qwen2.5 Coder 7B Instruct (Free)',
165
180
  id: 'Qwen/Qwen2.5-Coder-7B-Instruct',
166
181
  pricing: {
@@ -168,10 +183,11 @@ const SiliconCloud: ModelProviderCard = {
168
183
  input: 0,
169
184
  output: 0,
170
185
  },
171
- tokens: 32_768,
172
186
  },
173
187
  {
174
- description: 'Qwen2.5-Coder-7B-Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础',
188
+ contextWindowTokens: 32_768,
189
+ description:
190
+ 'Qwen2.5-Coder-7B-Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础',
175
191
  displayName: 'Qwen2.5 Coder 7B Instruct (Pro)',
176
192
  id: 'Pro/Qwen/Qwen2.5-Coder-7B-Instruct',
177
193
  pricing: {
@@ -179,10 +195,11 @@ const SiliconCloud: ModelProviderCard = {
179
195
  input: 0.35,
180
196
  output: 0.35,
181
197
  },
182
- tokens: 32_768,
183
198
  },
184
199
  {
185
- description: 'Qwen2.5-Coder-32B-Instruct 是基于 Qwen2.5 开发的代码特定大语言模型。该模型通过 5.5 万亿 tokens 的训练,在代码生成、代码推理和代码修复方面都取得了显著提升。它是当前最先进的开源代码语言模型,编码能力可与 GPT-4 相媲美。模型不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长文本处理',
200
+ contextWindowTokens: 32_768,
201
+ description:
202
+ 'Qwen2.5-Coder-32B-Instruct 是基于 Qwen2.5 开发的代码特定大语言模型。该模型通过 5.5 万亿 tokens 的训练,在代码生成、代码推理和代码修复方面都取得了显著提升。它是当前最先进的开源代码语言模型,编码能力可与 GPT-4 相媲美。模型不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长文本处理',
186
203
  displayName: 'Qwen2.5 Coder 32B Instruct',
187
204
  id: 'Qwen/Qwen2.5-Coder-32B-Instruct',
188
205
  pricing: {
@@ -190,10 +207,11 @@ const SiliconCloud: ModelProviderCard = {
190
207
  input: 1.26,
191
208
  output: 1.26,
192
209
  },
193
- tokens: 32_768,
194
210
  },
195
211
  {
196
- description: 'Qwen2.5-Math-72B 是阿里云发布的 Qwen2.5-Math 系列数学大语言模型之一。该模型支持使用思维链(CoT)和工具集成推理(TIR)方法解决中文和英文数学问题。相比前代 Qwen2-Math 系列,Qwen2.5-Math 系列在中英文数学基准测试中取得了显著的性能提升。该模型在处理精确计算、符号操作和算法操作方面表现出色,尤其适合解决复杂的数学和算法推理任务',
212
+ contextWindowTokens: 4096,
213
+ description:
214
+ 'Qwen2.5-Math-72B 是阿里云发布的 Qwen2.5-Math 系列数学大语言模型之一。该模型支持使用思维链(CoT)和工具集成推理(TIR)方法解决中文和英文数学问题。相比前代 Qwen2-Math 系列,Qwen2.5-Math 系列在中英文数学基准测试中取得了显著的性能提升。该模型在处理精确计算、符号操作和算法操作方面表现出色,尤其适合解决复杂的数学和算法推理任务',
197
215
  displayName: 'Qwen2.5 Math 72B Instruct',
198
216
  id: 'Qwen/Qwen2.5-Math-72B-Instruct',
199
217
  pricing: {
@@ -201,10 +219,11 @@ const SiliconCloud: ModelProviderCard = {
201
219
  input: 4.13,
202
220
  output: 4.13,
203
221
  },
204
- tokens: 4096,
205
222
  },
206
223
  {
207
- description: 'Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少',
224
+ contextWindowTokens: 32_768,
225
+ description:
226
+ 'Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少',
208
227
  displayName: 'Qwen2 1.5B Instruct (Free)',
209
228
  id: 'Qwen/Qwen2-1.5B-Instruct',
210
229
  pricing: {
@@ -212,10 +231,11 @@ const SiliconCloud: ModelProviderCard = {
212
231
  input: 0,
213
232
  output: 0,
214
233
  },
215
- tokens: 32_768,
216
234
  },
217
235
  {
218
- description: 'Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少',
236
+ contextWindowTokens: 32_768,
237
+ description:
238
+ 'Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少',
219
239
  displayName: 'Qwen2 1.5B Instruct (Pro)',
220
240
  id: 'Pro/Qwen/Qwen2-1.5B-Instruct',
221
241
  pricing: {
@@ -223,10 +243,11 @@ const SiliconCloud: ModelProviderCard = {
223
243
  input: 0.14,
224
244
  output: 0.14,
225
245
  },
226
- tokens: 32_768,
227
246
  },
228
247
  {
229
- description: 'Qwen2-7B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 7B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力。Qwen2-7B-Instruct 在多项评测中均优于 Qwen1.5-7B-Chat,显示出显著的性能提升',
248
+ contextWindowTokens: 32_768,
249
+ description:
250
+ 'Qwen2-7B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 7B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力。Qwen2-7B-Instruct 在多项评测中均优于 Qwen1.5-7B-Chat,显示出显著的性能提升',
230
251
  displayName: 'Qwen2 7B Instruct (Free)',
231
252
  id: 'Qwen/Qwen2-7B-Instruct',
232
253
  pricing: {
@@ -234,10 +255,11 @@ const SiliconCloud: ModelProviderCard = {
234
255
  input: 0,
235
256
  output: 0,
236
257
  },
237
- tokens: 32_768,
238
258
  },
239
259
  {
240
- description: 'Qwen2-7B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 7B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力。Qwen2-7B-Instruct 在多项评测中均优于 Qwen1.5-7B-Chat,显示出显著的性能提升',
260
+ contextWindowTokens: 32_768,
261
+ description:
262
+ 'Qwen2-7B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 7B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力。Qwen2-7B-Instruct 在多项评测中均优于 Qwen1.5-7B-Chat,显示出显著的性能提升',
241
263
  displayName: 'Qwen2 7B Instruct (Pro)',
242
264
  id: 'Pro/Qwen/Qwen2-7B-Instruct',
243
265
  pricing: {
@@ -245,10 +267,11 @@ const SiliconCloud: ModelProviderCard = {
245
267
  input: 0.35,
246
268
  output: 0.35,
247
269
  },
248
- tokens: 32_768,
249
270
  },
250
271
  {
251
- description: 'Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力',
272
+ contextWindowTokens: 32_768,
273
+ description:
274
+ 'Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力',
252
275
  displayName: 'Qwen2 72B Instruct',
253
276
  id: 'Qwen/Qwen2-7B-Instruct',
254
277
  pricing: {
@@ -256,10 +279,11 @@ const SiliconCloud: ModelProviderCard = {
256
279
  input: 4.13,
257
280
  output: 4.13,
258
281
  },
259
- tokens: 32_768,
260
282
  },
261
283
  {
262
- description: 'Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力',
284
+ contextWindowTokens: 32_768,
285
+ description:
286
+ 'Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力',
263
287
  displayName: 'Qwen2 72B Instruct (Vendor-A)',
264
288
  id: 'Vendor-A/Qwen/Qwen2-7B-Instruct',
265
289
  pricing: {
@@ -267,10 +291,11 @@ const SiliconCloud: ModelProviderCard = {
267
291
  input: 1,
268
292
  output: 1,
269
293
  },
270
- tokens: 32_768,
271
294
  },
272
295
  {
273
- description: 'Qwen2-VL-7B-Instruct 是 Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能,包括 MathVista、DocVQA、RealWorldQA 和 MTVQA 等。Qwen2-VL 能够用于高质量的基于视频的问答、对话和内容创作,还具备复杂推理和决策能力,可以与移动设备、机器人等集成,基于视觉环境和文本指令进行自动操作。除了英语和中文,Qwen2-VL 现在还支持理解图像中不同语言的文本,包括大多数欧洲语言、日语、韩语、阿拉伯语和越南语等',
296
+ contextWindowTokens: 32_768,
297
+ description:
298
+ 'Qwen2-VL-7B-Instruct 是 Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能,包括 MathVista、DocVQA、RealWorldQA 和 MTVQA 等。Qwen2-VL 能够用于高质量的基于视频的问答、对话和内容创作,还具备复杂推理和决策能力,可以与移动设备、机器人等集成,基于视觉环境和文本指令进行自动操作。除了英语和中文,Qwen2-VL 现在还支持理解图像中不同语言的文本,包括大多数欧洲语言、日语、韩语、阿拉伯语和越南语等',
274
299
  displayName: 'Qwen2 VL 7B Instruct (Pro)',
275
300
  enabled: true,
276
301
  id: 'Pro/Qwen/Qwen2-VL-7B-Instruct',
@@ -279,11 +304,12 @@ const SiliconCloud: ModelProviderCard = {
279
304
  input: 0.35,
280
305
  output: 0.35,
281
306
  },
282
- tokens: 32_768,
283
307
  vision: true,
284
308
  },
285
309
  {
286
- description: 'Qwen2-VL 是 Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能,包括 MathVista、DocVQA、RealWorldQA 和 MTVQA 等。Qwen2-VL 能够理解超过 20 分钟的视频,用于高质量的基于视频的问答、对话和内容创作。它还具备复杂推理和决策能力,可以与移动设备、机器人等集成,基于视觉环境和文本指令进行自动操作。除了英语和中文,Qwen2-VL 现在还支持理解图像中不同语言的文本,包括大多数欧洲语言、日语、韩语、阿拉伯语和越南语等',
310
+ contextWindowTokens: 32_768,
311
+ description:
312
+ 'Qwen2-VL 是 Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能,包括 MathVista、DocVQA、RealWorldQA 和 MTVQA 等。Qwen2-VL 能够理解超过 20 分钟的视频,用于高质量的基于视频的问答、对话和内容创作。它还具备复杂推理和决策能力,可以与移动设备、机器人等集成,基于视觉环境和文本指令进行自动操作。除了英语和中文,Qwen2-VL 现在还支持理解图像中不同语言的文本,包括大多数欧洲语言、日语、韩语、阿拉伯语和越南语等',
287
313
  displayName: 'Qwen2 VL 72B Instruct',
288
314
  enabled: true,
289
315
  id: 'Qwen/Qwen2-VL-72B-Instruct',
@@ -292,11 +318,12 @@ const SiliconCloud: ModelProviderCard = {
292
318
  input: 4.13,
293
319
  output: 4.13,
294
320
  },
295
- tokens: 32_768,
296
321
  vision: true,
297
322
  },
298
323
  {
299
- description: 'InternLM2.5-7B-Chat 是一个开源的对话模型,基于 InternLM2 架构开发。该 7B 参数规模的模型专注于对话生成任务,支持中英双语交互。模型采用了最新的训练技术,旨在提供流畅、智能的对话体验。InternLM2.5-7B-Chat 适用于各种对话应用场景,包括但不限于智能客服、个人助手等领域',
324
+ contextWindowTokens: 32_768,
325
+ description:
326
+ 'InternLM2.5-7B-Chat 是一个开源的对话模型,基于 InternLM2 架构开发。该 7B 参数规模的模型专注于对话生成任务,支持中英双语交互。模型采用了最新的训练技术,旨在提供流畅、智能的对话体验。InternLM2.5-7B-Chat 适用于各种对话应用场景,包括但不限于智能客服、个人助手等领域',
300
327
  displayName: 'InternLM2.5 7B Chat (Free)',
301
328
  functionCall: true,
302
329
  id: 'internlm/internlm2_5-7b-chat',
@@ -305,10 +332,11 @@ const SiliconCloud: ModelProviderCard = {
305
332
  input: 0,
306
333
  output: 0,
307
334
  },
308
- tokens: 32_768,
309
335
  },
310
336
  {
311
- description: 'InternLM2.5-20B-Chat 是一个开源的大规模对话模型,基于 InternLM2 架构开发。该模型拥有 200 亿参数,在数学推理方面表现出色,超越了同量级的 Llama3 和 Gemma2-27B 模型。InternLM2.5-20B-Chat 在工具调用能力方面有显著提升,支持从上百个网页收集信息进行分析推理,并具备更强的指令理解、工具选择和结果反思能力。它适用于构建复杂智能体,可进行多轮工具调用以完成复杂任务',
337
+ contextWindowTokens: 32_768,
338
+ description:
339
+ 'InternLM2.5-20B-Chat 是一个开源的大规模对话模型,基于 InternLM2 架构开发。该模型拥有 200 亿参数,在数学推理方面表现出色,超越了同量级的 Llama3 和 Gemma2-27B 模型。InternLM2.5-20B-Chat 在工具调用能力方面有显著提升,支持从上百个网页收集信息进行分析推理,并具备更强的指令理解、工具选择和结果反思能力。它适用于构建复杂智能体,可进行多轮工具调用以完成复杂任务',
312
340
  displayName: 'InternLM2.5 20B Chat',
313
341
  functionCall: true,
314
342
  id: 'internlm/internlm2_5-20b-chat',
@@ -317,10 +345,11 @@ const SiliconCloud: ModelProviderCard = {
317
345
  input: 1,
318
346
  output: 1,
319
347
  },
320
- tokens: 32_768,
321
348
  },
322
349
  {
323
- description: 'InternVL2-8B 是 InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-300M-448px 视觉模型、MLP 投影层和 internlm2_5-7b-chat 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-8B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力',
350
+ contextWindowTokens: 32_768,
351
+ description:
352
+ 'InternVL2-8B 是 InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-300M-448px 视觉模型、MLP 投影层和 internlm2_5-7b-chat 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-8B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力',
324
353
  displayName: 'InternVL2 8B (Pro)',
325
354
  id: 'Pro/OpenGVLab/InternVL2-8B',
326
355
  pricing: {
@@ -328,11 +357,12 @@ const SiliconCloud: ModelProviderCard = {
328
357
  input: 0.35,
329
358
  output: 0.35,
330
359
  },
331
- tokens: 32_768,
332
360
  vision: true,
333
361
  },
334
362
  {
335
- description: 'InternVL2-26B 是 InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 internlm2-chat-20b 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-26B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力',
363
+ contextWindowTokens: 32_768,
364
+ description:
365
+ 'InternVL2-26B 是 InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 internlm2-chat-20b 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-26B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力',
336
366
  displayName: 'InternVL2 26B',
337
367
  id: 'OpenGVLab/InternVL2-26B',
338
368
  pricing: {
@@ -340,11 +370,12 @@ const SiliconCloud: ModelProviderCard = {
340
370
  input: 1,
341
371
  output: 1,
342
372
  },
343
- tokens: 32_768,
344
373
  vision: true,
345
374
  },
346
375
  {
347
- description: 'InternVL2-Llama3-76B 是 InternVL 2.0 系列中的大规模多模态模型。它由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 Hermes-2-Theta-Llama-3-70B 语言模型组成。该模型在各种视觉语言任务上表现出色,包括文档和图表理解、信息图表问答、场景文本理解和 OCR 任务等。InternVL2-Llama3-76B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力,在多项基准测试中达到或接近最先进的商业模型水平',
376
+ contextWindowTokens: 8192,
377
+ description:
378
+ 'InternVL2-Llama3-76B 是 InternVL 2.0 系列中的大规模多模态模型。它由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 Hermes-2-Theta-Llama-3-70B 语言模型组成。该模型在各种视觉语言任务上表现出色,包括文档和图表理解、信息图表问答、场景文本理解和 OCR 任务等。InternVL2-Llama3-76B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力,在多项基准测试中达到或接近最先进的商业模型水平',
348
379
  displayName: 'InternVL2 Llama3 76B',
349
380
  id: 'OpenGVLab/InternVL2-Llama3-76B',
350
381
  pricing: {
@@ -352,11 +383,12 @@ const SiliconCloud: ModelProviderCard = {
352
383
  input: 4.13,
353
384
  output: 4.13,
354
385
  },
355
- tokens: 8192,
356
386
  vision: true,
357
387
  },
358
388
  {
359
- description: 'GLM-4-9B-Chat 是智谱 AI 推出的 GLM-4 系列预训练模型中的开源版本。该模型在语义、数学、推理、代码和知识等多个方面表现出色。除了支持多轮对话外,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理等高级功能。模型支持 26 种语言,包括中文、英文、日语、韩语和德语等。在多项基准测试中,GLM-4-9B-Chat 展现了优秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。该模型支持最大 128K 的上下文长度,适用于学术研究和商业应用',
389
+ contextWindowTokens: 131_072,
390
+ description:
391
+ 'GLM-4-9B-Chat 是智谱 AI 推出的 GLM-4 系列预训练模型中的开源版本。该模型在语义、数学、推理、代码和知识等多个方面表现出色。除了支持多轮对话外,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理等高级功能。模型支持 26 种语言,包括中文、英文、日语、韩语和德语等。在多项基准测试中,GLM-4-9B-Chat 展现了优秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。该模型支持最大 128K 的上下文长度,适用于学术研究和商业应用',
360
392
  displayName: 'GLM-4 9B Chat (Free)',
361
393
  functionCall: true,
362
394
  id: 'THUDM/glm-4-9b-chat',
@@ -365,10 +397,11 @@ const SiliconCloud: ModelProviderCard = {
365
397
  input: 0,
366
398
  output: 0,
367
399
  },
368
- tokens: 131_072,
369
400
  },
370
401
  {
371
- description: 'GLM-4-9B-Chat 是智谱 AI 推出的 GLM-4 系列预训练模型中的开源版本。该模型在语义、数学、推理、代码和知识等多个方面表现出色。除了支持多轮对话外,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理等高级功能。模型支持 26 种语言,包括中文、英文、日语、韩语和德语等。在多项基准测试中,GLM-4-9B-Chat 展现了优秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。该模型支持最大 128K 的上下文长度,适用于学术研究和商业应用',
402
+ contextWindowTokens: 131_072,
403
+ description:
404
+ 'GLM-4-9B-Chat 是智谱 AI 推出的 GLM-4 系列预训练模型中的开源版本。该模型在语义、数学、推理、代码和知识等多个方面表现出色。除了支持多轮对话外,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理等高级功能。模型支持 26 种语言,包括中文、英文、日语、韩语和德语等。在多项基准测试中,GLM-4-9B-Chat 展现了优秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。该模型支持最大 128K 的上下文长度,适用于学术研究和商业应用',
372
405
  displayName: 'GLM-4 9B Chat (Pro)',
373
406
  functionCall: true,
374
407
  id: 'Pro/THUDM/glm-4-9b-chat',
@@ -377,10 +410,11 @@ const SiliconCloud: ModelProviderCard = {
377
410
  input: 0.6,
378
411
  output: 0.6,
379
412
  },
380
- tokens: 131_072,
381
413
  },
382
414
  {
383
- description: 'ChatGLM3-6B 是 ChatGLM 系列的开源模型,由智谱 AI 开发。该模型保留了前代模型的优秀特性,如对话流畅和部署门槛低,同时引入了新的特性。它采用了更多样的训练数据、更充分的训练步数和更合理的训练策略,在 10B 以下的预训练模型中表现出色。ChatGLM3-6B 支持多轮对话、工具调用、代码执行和 Agent 任务等复杂场景。除对话模型外,还开源了基础模型 ChatGLM-6B-Base 和长文本对话模型 ChatGLM3-6B-32K。该模型对学术研究完全开放,在登记后也允许免费商业使用',
415
+ contextWindowTokens: 32_768,
416
+ description:
417
+ 'ChatGLM3-6B 是 ChatGLM 系列的开源模型,由智谱 AI 开发。该模型保留了前代模型的优秀特性,如对话流畅和部署门槛低,同时引入了新的特性。它采用了更多样的训练数据、更充分的训练步数和更合理的训练策略,在 10B 以下的预训练模型中表现出色。ChatGLM3-6B 支持多轮对话、工具调用、代码执行和 Agent 任务等复杂场景。除对话模型外,还开源了基础模型 ChatGLM-6B-Base 和长文本对话模型 ChatGLM3-6B-32K。该模型对学术研究完全开放,在登记后也允许免费商业使用',
384
418
  displayName: 'ChatGLM3 6B (Free)',
385
419
  id: 'THUDM/chatglm3-6b',
386
420
  pricing: {
@@ -388,10 +422,11 @@ const SiliconCloud: ModelProviderCard = {
388
422
  input: 0,
389
423
  output: 0,
390
424
  },
391
- tokens: 32_768,
392
425
  },
393
426
  {
394
- description: 'Yi-1.5-6B-Chat 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型具有 4K、16K 和 32K 的上下文长度版本,预训练总量达到 3.6T 个 token',
427
+ contextWindowTokens: 4096,
428
+ description:
429
+ 'Yi-1.5-6B-Chat 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型具有 4K、16K 和 32K 的上下文长度版本,预训练总量达到 3.6T 个 token',
395
430
  displayName: 'Yi-1.5 6B Chat (Free)',
396
431
  id: '01-ai/Yi-1.5-6B-Chat',
397
432
  pricing: {
@@ -399,10 +434,11 @@ const SiliconCloud: ModelProviderCard = {
399
434
  input: 0,
400
435
  output: 0,
401
436
  },
402
- tokens: 4096,
403
437
  },
404
438
  {
405
- description: 'Yi-1.5-9B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在同等规模的开源模型中表现最佳',
439
+ contextWindowTokens: 16_384,
440
+ description:
441
+ 'Yi-1.5-9B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在同等规模的开源模型中表现最佳',
406
442
  displayName: 'Yi-1.5 9B Chat 16K (Free)',
407
443
  id: '01-ai/Yi-1.5-9B-Chat-16K',
408
444
  pricing: {
@@ -410,10 +446,11 @@ const SiliconCloud: ModelProviderCard = {
410
446
  input: 0,
411
447
  output: 0,
412
448
  },
413
- tokens: 16_384,
414
449
  },
415
450
  {
416
- description: 'Yi-1.5-34B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在大多数基准测试中与更大的模型相当或表现更佳,具有 16K 的上下文长度',
451
+ contextWindowTokens: 16_384,
452
+ description:
453
+ 'Yi-1.5-34B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在大多数基准测试中与更大的模型相当或表现更佳,具有 16K 的上下文长度',
417
454
  displayName: 'Yi-1.5 34B Chat 16K',
418
455
  id: '01-ai/Yi-1.5-34B-Chat-16K',
419
456
  pricing: {
@@ -421,10 +458,11 @@ const SiliconCloud: ModelProviderCard = {
421
458
  input: 1.26,
422
459
  output: 1.26,
423
460
  },
424
- tokens: 16_384,
425
461
  },
426
462
  {
427
- description: 'Gemma 是 Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新',
463
+ contextWindowTokens: 8192,
464
+ description:
465
+ 'Gemma 是 Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新',
428
466
  displayName: 'Gemma 2 9B (Free)',
429
467
  enabled: true,
430
468
  id: 'google/gemma-2-9b-it',
@@ -433,10 +471,11 @@ const SiliconCloud: ModelProviderCard = {
433
471
  input: 0,
434
472
  output: 0,
435
473
  },
436
- tokens: 8192,
437
474
  },
438
475
  {
439
- description: 'Gemma 是 Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新',
476
+ contextWindowTokens: 8192,
477
+ description:
478
+ 'Gemma 是 Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新',
440
479
  displayName: 'Gemma 2 9B (Pro)',
441
480
  id: 'Pro/google/gemma-2-9b-it',
442
481
  pricing: {
@@ -444,10 +483,11 @@ const SiliconCloud: ModelProviderCard = {
444
483
  input: 0.6,
445
484
  output: 0.6,
446
485
  },
447
- tokens: 8192,
448
486
  },
449
487
  {
450
- description: 'Gemma 是由 Google 开发的轻量级、最先进的开放模型系列,采用与 Gemini 模型相同的研究和技术构建。这些模型是仅解码器的大型语言模型,支持英语,提供预训练和指令微调两种变体的开放权重。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。其相对较小的规模使其能够部署在资源有限的环境中,如笔记本电脑、台式机或个人云基础设施,从而让所有人都能获得最先进的 AI 模型,促进创新',
488
+ contextWindowTokens: 8192,
489
+ description:
490
+ 'Gemma 是由 Google 开发的轻量级、最先进的开放模型系列,采用与 Gemini 模型相同的研究和技术构建。这些模型是仅解码器的大型语言模型,支持英语,提供预训练和指令微调两种变体的开放权重。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。其相对较小的规模使其能够部署在资源有限的环境中,如笔记本电脑、台式机或个人云基础设施,从而让所有人都能获得最先进的 AI 模型,促进创新',
451
491
  displayName: 'Gemma 2 27B',
452
492
  enabled: true,
453
493
  id: 'google/gemma-2-27b-it',
@@ -456,10 +496,11 @@ const SiliconCloud: ModelProviderCard = {
456
496
  input: 1.26,
457
497
  output: 1.26,
458
498
  },
459
- tokens: 8192,
460
499
  },
461
500
  {
462
- description: 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
501
+ contextWindowTokens: 32_768,
502
+ description:
503
+ 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
463
504
  displayName: 'Llama 3.1 8B Instruct (Free)',
464
505
  enabled: true,
465
506
  functionCall: true,
@@ -469,10 +510,11 @@ const SiliconCloud: ModelProviderCard = {
469
510
  input: 0,
470
511
  output: 0,
471
512
  },
472
- tokens: 32_768,
473
513
  },
474
514
  {
475
- description: 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
515
+ contextWindowTokens: 32_768,
516
+ description:
517
+ 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
476
518
  displayName: 'Llama 3.1 8B Instruct (Pro)',
477
519
  id: 'Pro/meta-llama/Meta-Llama-3.1-8B-Instruct',
478
520
  pricing: {
@@ -480,10 +522,11 @@ const SiliconCloud: ModelProviderCard = {
480
522
  input: 0.42,
481
523
  output: 0.42,
482
524
  },
483
- tokens: 32_768,
484
525
  },
485
526
  {
486
- description: 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 70B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
527
+ contextWindowTokens: 32_768,
528
+ description:
529
+ 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 70B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
487
530
  displayName: 'Llama 3.1 70B Instruct',
488
531
  enabled: true,
489
532
  functionCall: true,
@@ -493,10 +536,11 @@ const SiliconCloud: ModelProviderCard = {
493
536
  input: 4.13,
494
537
  output: 4.13,
495
538
  },
496
- tokens: 32_768,
497
539
  },
498
540
  {
499
- description: 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 405B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
541
+ contextWindowTokens: 32_768,
542
+ description:
543
+ 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 405B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
500
544
  displayName: 'Llama 3.1 405B Instruct',
501
545
  enabled: true,
502
546
  id: 'meta-llama/Meta-Llama-3.1-405B-Instruct',
@@ -505,10 +549,11 @@ const SiliconCloud: ModelProviderCard = {
505
549
  input: 21,
506
550
  output: 21,
507
551
  },
508
- tokens: 32_768,
509
552
  },
510
553
  {
511
- description: 'Llama-3.1-Nemotron-70B-Instruct 是由 NVIDIA 定制的大型语言模型,旨在提高 LLM 生成的响应对用户查询的帮助程度。该模型在 Arena Hard、AlpacaEval 2 LC 和 GPT-4-Turbo MT-Bench 等基准测试中表现出色,截至 2024 年 10 月 1 日,在所有三个自动对齐基准测试中排名第一。该模型使用 RLHF(特别是 REINFORCE)、Llama-3.1-Nemotron-70B-Reward 和 HelpSteer2-Preference 提示在 Llama-3.1-70B-Instruct 模型基础上进行训练',
554
+ contextWindowTokens: 32_768,
555
+ description:
556
+ 'Llama-3.1-Nemotron-70B-Instruct 是由 NVIDIA 定制的大型语言模型,旨在提高 LLM 生成的响应对用户查询的帮助程度。该模型在 Arena Hard、AlpacaEval 2 LC 和 GPT-4-Turbo MT-Bench 等基准测试中表现出色,截至 2024 年 10 月 1 日,在所有三个自动对齐基准测试中排名第一。该模型使用 RLHF(特别是 REINFORCE)、Llama-3.1-Nemotron-70B-Reward 和 HelpSteer2-Preference 提示在 Llama-3.1-70B-Instruct 模型基础上进行训练',
512
557
  displayName: 'Llama 3.1 Nemotron 70B Instruct',
513
558
  enabled: true,
514
559
  id: 'nvidia/Llama-3.1-Nemotron-70B-Instruct',
@@ -517,10 +562,11 @@ const SiliconCloud: ModelProviderCard = {
517
562
  input: 4.13,
518
563
  output: 4.13,
519
564
  },
520
- tokens: 32_768,
521
565
  },
522
566
  {
523
- description: 'TeleChat2大模型是由中国电信从0到1自主研发的生成式语义大模型,支持百科问答、代码生成、长文生成等功能,为用户提供对话咨询服务,能够与用户进行对话互动,回答问题,协助创作,高效便捷地帮助用户获取信息、知识和灵感。模型在幻觉问题、长文生成、逻辑理解等方面均有较出色表现。',
567
+ contextWindowTokens: 8192,
568
+ description:
569
+ 'TeleChat2大模型是由中国电信从0到1自主研发的生成式语义大模型,支持百科问答、代码生成、长文生成等功能,为用户提供对话咨询服务,能够与用户进行对话互动,回答问题,协助创作,高效便捷地帮助用户获取信息、知识和灵感。模型在幻觉问题、长文生成、逻辑理解等方面均有较出色表现。',
524
570
  displayName: 'TeleChat2',
525
571
  id: 'TeleAI/TeleChat2',
526
572
  pricing: {
@@ -528,10 +574,11 @@ const SiliconCloud: ModelProviderCard = {
528
574
  input: 1.33,
529
575
  output: 1.33,
530
576
  },
531
- tokens: 8192,
532
577
  },
533
578
  {
534
- description: 'TeleMM多模态大模型是由中国电信自主研发的多模态理解大模型,能够处理文本、图像等多种模态输入,支持图像理解、图表分析等功能,为用户提供跨模态的理解服务。模型能够与用户进行多模态交互,准确理解输入内容,回答问题、协助创作,并高效提供多模态信息和灵感支持。在细粒度感知,逻辑推理等多模态任务上有出色表现',
579
+ contextWindowTokens: 32_768,
580
+ description:
581
+ 'TeleMM多模态大模型是由中国电信自主研发的多模态理解大模型,能够处理文本、图像等多种模态输入,支持图像理解、图表分析等功能,为用户提供跨模态的理解服务。模型能够与用户进行多模态交互,准确理解输入内容,回答问题、协助创作,并高效提供多模态信息和灵感支持。在细粒度感知,逻辑推理等多模态任务上有出色表现',
535
582
  displayName: 'TeleMM',
536
583
  id: 'TeleAI/TeleMM',
537
584
  pricing: {
@@ -539,7 +586,6 @@ const SiliconCloud: ModelProviderCard = {
539
586
  input: 1.33,
540
587
  output: 1.33,
541
588
  },
542
- tokens: 32_768,
543
589
  vision: true,
544
590
  },
545
591
  ],