@lobehub/chat 1.40.1 → 1.40.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (118) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/changelog/v1.json +18 -0
  3. package/package.json +1 -1
  4. package/src/app/(main)/changelog/page.tsx +3 -1
  5. package/src/app/(main)/chat/(workspace)/features/ChangelogModal.tsx +11 -0
  6. package/src/app/(main)/chat/(workspace)/page.tsx +8 -5
  7. package/src/app/(main)/discover/(detail)/model/[...slugs]/features/Actions.tsx +1 -1
  8. package/src/app/(main)/discover/(detail)/model/[...slugs]/features/Header.tsx +1 -1
  9. package/src/app/(main)/discover/(detail)/model/[...slugs]/features/InfoSidebar/SuggestionItem.tsx +2 -2
  10. package/src/app/(main)/discover/(detail)/model/[...slugs]/features/ProviderList/ProviderItem.tsx +1 -1
  11. package/src/app/(main)/discover/(detail)/provider/[slug]/features/ModelList/ModelItem.tsx +3 -3
  12. package/src/app/(main)/discover/(list)/models/features/Card.tsx +6 -2
  13. package/src/app/(main)/settings/llm/ProviderList/Cloudflare/index.tsx +1 -5
  14. package/src/app/(main)/settings/llm/components/ProviderModelList/ModelFetcher.tsx +2 -2
  15. package/src/app/@modal/(.)changelog/modal/page.tsx +3 -1
  16. package/src/components/Loading/BrandTextLoading/index.tsx +5 -0
  17. package/src/components/ModelSelect/index.tsx +7 -4
  18. package/src/config/__tests__/app.test.ts +6 -2
  19. package/src/config/app.ts +1 -2
  20. package/src/config/featureFlags/schema.ts +3 -0
  21. package/src/config/modelProviders/ai21.ts +2 -2
  22. package/src/config/modelProviders/ai360.ts +4 -4
  23. package/src/config/modelProviders/anthropic.ts +8 -8
  24. package/src/config/modelProviders/azure.ts +5 -5
  25. package/src/config/modelProviders/baichuan.ts +6 -6
  26. package/src/config/modelProviders/bedrock.ts +14 -14
  27. package/src/config/modelProviders/cloudflare.ts +12 -11
  28. package/src/config/modelProviders/deepseek.ts +1 -1
  29. package/src/config/modelProviders/fireworksai.ts +29 -27
  30. package/src/config/modelProviders/giteeai.ts +7 -7
  31. package/src/config/modelProviders/github.ts +29 -28
  32. package/src/config/modelProviders/google.ts +18 -19
  33. package/src/config/modelProviders/groq.ts +13 -13
  34. package/src/config/modelProviders/higress.ts +195 -194
  35. package/src/config/modelProviders/huggingface.ts +7 -7
  36. package/src/config/modelProviders/hunyuan.ts +25 -17
  37. package/src/config/modelProviders/internlm.ts +6 -4
  38. package/src/config/modelProviders/minimax.ts +5 -5
  39. package/src/config/modelProviders/mistral.ts +14 -16
  40. package/src/config/modelProviders/moonshot.ts +3 -3
  41. package/src/config/modelProviders/novita.ts +15 -15
  42. package/src/config/modelProviders/ollama.ts +46 -46
  43. package/src/config/modelProviders/openai.ts +23 -22
  44. package/src/config/modelProviders/openrouter.ts +20 -18
  45. package/src/config/modelProviders/perplexity.ts +7 -7
  46. package/src/config/modelProviders/qwen.ts +23 -25
  47. package/src/config/modelProviders/sensenova.ts +8 -8
  48. package/src/config/modelProviders/siliconcloud.ts +138 -92
  49. package/src/config/modelProviders/spark.ts +6 -6
  50. package/src/config/modelProviders/stepfun.ts +9 -9
  51. package/src/config/modelProviders/taichu.ts +2 -3
  52. package/src/config/modelProviders/togetherai.ts +57 -48
  53. package/src/config/modelProviders/upstage.ts +3 -3
  54. package/src/config/modelProviders/wenxin.ts +12 -12
  55. package/src/config/modelProviders/xai.ts +4 -4
  56. package/src/config/modelProviders/zeroone.ts +11 -11
  57. package/src/config/modelProviders/zhipu.ts +17 -16
  58. package/src/database/_deprecated/core/model.ts +1 -1
  59. package/src/database/_deprecated/models/sessionGroup.ts +4 -1
  60. package/src/database/client/migrations.json +2 -5
  61. package/src/database/migrations/meta/0012_snapshot.json +176 -518
  62. package/src/database/schemas/agent.ts +1 -1
  63. package/src/database/schemas/message.ts +1 -0
  64. package/src/database/schemas/session.ts +1 -0
  65. package/src/database/server/models/topic.ts +19 -17
  66. package/src/features/ChangelogModal/index.tsx +8 -2
  67. package/src/features/DebugUI/Content.tsx +0 -1
  68. package/src/features/PluginStore/index.tsx +2 -2
  69. package/src/features/User/UserPanel/useMenu.tsx +1 -1
  70. package/src/layout/GlobalProvider/AntdV5MonkeyPatch.tsx +4 -4
  71. package/src/libs/agent-runtime/google/index.ts +4 -3
  72. package/src/libs/agent-runtime/higress/index.ts +1 -1
  73. package/src/libs/agent-runtime/huggingface/index.ts +2 -4
  74. package/src/libs/agent-runtime/minimax/index.ts +5 -10
  75. package/src/libs/agent-runtime/mistral/index.ts +3 -6
  76. package/src/libs/agent-runtime/moonshot/index.ts +3 -6
  77. package/src/libs/agent-runtime/novita/__snapshots__/index.test.ts.snap +18 -18
  78. package/src/libs/agent-runtime/novita/index.ts +1 -1
  79. package/src/libs/agent-runtime/openai/__snapshots__/index.test.ts.snap +10 -10
  80. package/src/libs/agent-runtime/openrouter/__snapshots__/index.test.ts.snap +168 -168
  81. package/src/libs/agent-runtime/openrouter/index.ts +1 -1
  82. package/src/libs/agent-runtime/perplexity/index.ts +4 -4
  83. package/src/libs/agent-runtime/sensenova/index.ts +9 -3
  84. package/src/libs/agent-runtime/taichu/index.ts +4 -10
  85. package/src/libs/agent-runtime/utils/streams/minimax.test.ts +5 -2
  86. package/src/libs/agent-runtime/utils/streams/minimax.ts +4 -1
  87. package/src/libs/agent-runtime/zhipu/index.ts +12 -13
  88. package/src/libs/langchain/loaders/index.ts +2 -2
  89. package/src/libs/langchain/types.ts +9 -1
  90. package/src/locales/default/modelProvider.ts +1 -1
  91. package/src/migrations/FromV3ToV4/fixtures/ollama-output-v4.json +1 -1
  92. package/src/migrations/FromV6ToV7/types/v7.ts +0 -2
  93. package/src/server/globalConfig/genServerLLMConfig.test.ts +4 -4
  94. package/src/server/globalConfig/genServerLLMConfig.ts +29 -24
  95. package/src/server/globalConfig/index.ts +1 -2
  96. package/src/server/routers/edge/config/__snapshots__/index.test.ts.snap +9 -9
  97. package/src/server/routers/lambda/_template.ts +1 -1
  98. package/src/server/routers/lambda/knowledgeBase.ts +1 -1
  99. package/src/server/routers/lambda/session.ts +1 -1
  100. package/src/server/routers/lambda/sessionGroup.ts +1 -1
  101. package/src/server/routers/lambda/thread.ts +1 -1
  102. package/src/server/services/changelog/index.test.ts +4 -2
  103. package/src/server/services/changelog/index.ts +10 -2
  104. package/src/server/services/nextAuthUser/index.ts +1 -1
  105. package/src/store/serverConfig/selectors.test.ts +1 -0
  106. package/src/store/user/slices/modelList/__snapshots__/action.test.ts.snap +1 -1
  107. package/src/store/user/slices/modelList/action.test.ts +4 -4
  108. package/src/store/user/slices/modelList/reducers/customModelCard.test.ts +6 -6
  109. package/src/store/user/slices/modelList/selectors/modelProvider.ts +3 -2
  110. package/src/tools/dalle/Render/Item/index.tsx +1 -1
  111. package/src/types/files/index.ts +0 -1
  112. package/src/types/llm.ts +4 -5
  113. package/src/utils/__snapshots__/parseModels.test.ts.snap +2 -2
  114. package/src/utils/genUserLLMConfig.test.ts +4 -4
  115. package/src/utils/genUserLLMConfig.ts +6 -4
  116. package/src/utils/parseModels.test.ts +16 -16
  117. package/src/utils/parseModels.ts +1 -1
  118. package/src/utils/server/jwt.ts +2 -6
@@ -4,6 +4,7 @@ const Higress: ModelProviderCard = {
4
4
  chatModels: [
5
5
  //qwen
6
6
  {
7
+ contextWindowTokens: 131_072,
7
8
  description: '通义千问超大规模语言模型,支持中文、英文等不同语言输入。',
8
9
  displayName: 'Qwen Turbo',
9
10
  enabled: true,
@@ -14,9 +15,9 @@ const Higress: ModelProviderCard = {
14
15
  input: 0.3,
15
16
  output: 0.6,
16
17
  },
17
- tokens: 131_072,
18
18
  },
19
19
  {
20
+ contextWindowTokens: 131_072,
20
21
  description: '通义千问超大规模语言模型增强版,支持中文、英文等不同语言输入。',
21
22
  displayName: 'Qwen Plus',
22
23
  enabled: true,
@@ -27,9 +28,9 @@ const Higress: ModelProviderCard = {
27
28
  input: 0.8,
28
29
  output: 2,
29
30
  },
30
- tokens: 131_072,
31
31
  },
32
32
  {
33
+ contextWindowTokens: 32_768,
33
34
  description:
34
35
  '通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入,当前通义千问2.5产品版本背后的API模型。',
35
36
  displayName: 'Qwen Max',
@@ -41,9 +42,9 @@ const Higress: ModelProviderCard = {
41
42
  input: 20,
42
43
  output: 60,
43
44
  },
44
- tokens: 32_768,
45
45
  },
46
46
  {
47
+ contextWindowTokens: 1_000_000,
47
48
  description:
48
49
  '通义千问超大规模语言模型,支持长文本上下文,以及基于长文档、多文档等多个场景的对话功能。',
49
50
  displayName: 'Qwen Long',
@@ -53,10 +54,10 @@ const Higress: ModelProviderCard = {
53
54
  input: 0.5,
54
55
  output: 2,
55
56
  },
56
- tokens: 1_000_000,
57
57
  },
58
58
  //后面几个qwen未知支持
59
59
  {
60
+ contextWindowTokens: 32_000,
60
61
  description:
61
62
  '通义千问大规模视觉语言模型增强版。大幅提升细节识别能力和文字识别能力,支持超百万像素分辨率和任意长宽比规格的图像。',
62
63
  displayName: 'Qwen VL Plus',
@@ -67,10 +68,10 @@ const Higress: ModelProviderCard = {
67
68
  input: 8,
68
69
  output: 8,
69
70
  },
70
- tokens: 32_000,
71
71
  vision: true,
72
72
  },
73
73
  {
74
+ contextWindowTokens: 32_000,
74
75
  description:
75
76
  '通义千问超大规模视觉语言模型。相比增强版,再次提升视觉推理能力和指令遵循能力,提供更高的视觉感知和认知水平。',
76
77
  displayName: 'Qwen VL Max',
@@ -81,10 +82,10 @@ const Higress: ModelProviderCard = {
81
82
  input: 20,
82
83
  output: 20,
83
84
  },
84
- tokens: 32_000,
85
85
  vision: true,
86
86
  },
87
87
  {
88
+ contextWindowTokens: 4096,
88
89
  description: '通义千问数学模型是专门用于数学解题的语言模型。',
89
90
  displayName: 'Qwen Math Turbo',
90
91
  id: 'qwen-math-turbo-latest',
@@ -93,9 +94,9 @@ const Higress: ModelProviderCard = {
93
94
  input: 2,
94
95
  output: 6,
95
96
  },
96
- tokens: 4096,
97
97
  },
98
98
  {
99
+ contextWindowTokens: 4096,
99
100
  description: '通义千问数学模型是专门用于数学解题的语言模型。',
100
101
  displayName: 'Qwen Math Plus',
101
102
  id: 'qwen-math-plus-latest',
@@ -104,9 +105,9 @@ const Higress: ModelProviderCard = {
104
105
  input: 4,
105
106
  output: 12,
106
107
  },
107
- tokens: 4096,
108
108
  },
109
109
  {
110
+ contextWindowTokens: 131_072,
110
111
  description: '通义千问代码模型。',
111
112
  displayName: 'Qwen Coder Turbo',
112
113
  id: 'qwen-coder-turbo-latest',
@@ -115,9 +116,9 @@ const Higress: ModelProviderCard = {
115
116
  input: 2,
116
117
  output: 6,
117
118
  },
118
- tokens: 131_072,
119
119
  },
120
120
  {
121
+ contextWindowTokens: 131_072,
121
122
  description: '通义千问2.5对外开源的7B规模的模型。',
122
123
  displayName: 'Qwen2.5 7B',
123
124
  functionCall: true,
@@ -127,9 +128,9 @@ const Higress: ModelProviderCard = {
127
128
  input: 1,
128
129
  output: 2,
129
130
  },
130
- tokens: 131_072,
131
131
  },
132
132
  {
133
+ contextWindowTokens: 131_072,
133
134
  description: '通义千问2.5对外开源的14B规模的模型。',
134
135
  displayName: 'Qwen2.5 14B',
135
136
  functionCall: true,
@@ -139,9 +140,9 @@ const Higress: ModelProviderCard = {
139
140
  input: 2,
140
141
  output: 6,
141
142
  },
142
- tokens: 131_072,
143
143
  },
144
144
  {
145
+ contextWindowTokens: 131_072,
145
146
  description: '通义千问2.5对外开源的32B规模的模型。',
146
147
  displayName: 'Qwen2.5 32B',
147
148
  functionCall: true,
@@ -151,9 +152,9 @@ const Higress: ModelProviderCard = {
151
152
  input: 3.5,
152
153
  output: 7,
153
154
  },
154
- tokens: 131_072,
155
155
  },
156
156
  {
157
+ contextWindowTokens: 131_072,
157
158
  description: '通义千问2.5对外开源的72B规模的模型。',
158
159
  displayName: 'Qwen2.5 72B',
159
160
  functionCall: true,
@@ -163,9 +164,9 @@ const Higress: ModelProviderCard = {
163
164
  input: 4,
164
165
  output: 12,
165
166
  },
166
- tokens: 131_072,
167
167
  },
168
168
  {
169
+ contextWindowTokens: 4096,
169
170
  description: 'Qwen-Math 模型具有强大的数学解题能力。',
170
171
  displayName: 'Qwen2.5 Math 1.5B',
171
172
  id: 'qwen2.5-math-1.5b-instruct',
@@ -174,9 +175,9 @@ const Higress: ModelProviderCard = {
174
175
  input: 0,
175
176
  output: 0,
176
177
  },
177
- tokens: 4096,
178
178
  },
179
179
  {
180
+ contextWindowTokens: 4096,
180
181
  description: 'Qwen-Math 模型具有强大的数学解题能力。',
181
182
  displayName: 'Qwen2.5 Math 7B',
182
183
  id: 'qwen2.5-math-7b-instruct',
@@ -185,9 +186,9 @@ const Higress: ModelProviderCard = {
185
186
  input: 1,
186
187
  output: 2,
187
188
  },
188
- tokens: 4096,
189
189
  },
190
190
  {
191
+ contextWindowTokens: 4096,
191
192
  description: 'Qwen-Math 模型具有强大的数学解题能力。',
192
193
  displayName: 'Qwen2.5 Math 72B',
193
194
  id: 'qwen2.5-math-72b-instruct',
@@ -196,9 +197,9 @@ const Higress: ModelProviderCard = {
196
197
  input: 4,
197
198
  output: 12,
198
199
  },
199
- tokens: 4096,
200
200
  },
201
201
  {
202
+ contextWindowTokens: 131_072,
202
203
  description: '通义千问代码模型开源版。',
203
204
  displayName: 'Qwen2.5 Coder 1.5B',
204
205
  id: 'qwen2.5-coder-1.5b-instruct',
@@ -207,9 +208,9 @@ const Higress: ModelProviderCard = {
207
208
  input: 0,
208
209
  output: 0,
209
210
  },
210
- tokens: 131_072,
211
211
  },
212
212
  {
213
+ contextWindowTokens: 131_072,
213
214
  description: '通义千问代码模型开源版。',
214
215
  displayName: 'Qwen2.5 Coder 7B',
215
216
  id: 'qwen2.5-coder-7b-instruct',
@@ -218,9 +219,9 @@ const Higress: ModelProviderCard = {
218
219
  input: 1,
219
220
  output: 2,
220
221
  },
221
- tokens: 131_072,
222
222
  },
223
223
  {
224
+ contextWindowTokens: 8000,
224
225
  description: '以 Qwen-7B 语言模型初始化,添加图像模型,图像输入分辨率为448的预训练模型。',
225
226
  displayName: 'Qwen VL',
226
227
  id: 'qwen-vl-v1',
@@ -229,10 +230,10 @@ const Higress: ModelProviderCard = {
229
230
  input: 0,
230
231
  output: 0,
231
232
  },
232
- tokens: 8000,
233
233
  vision: true,
234
234
  },
235
235
  {
236
+ contextWindowTokens: 8000,
236
237
  description: '通义千问VL支持灵活的交互方式,包括多图、多轮问答、创作等能力的模型。',
237
238
  displayName: 'Qwen VL Chat',
238
239
  id: 'qwen-vl-chat-v1',
@@ -241,40 +242,40 @@ const Higress: ModelProviderCard = {
241
242
  input: 0,
242
243
  output: 0,
243
244
  },
244
- tokens: 8000,
245
245
  vision: true,
246
246
  },
247
247
 
248
248
  //moonshot
249
249
  {
250
+ contextWindowTokens: 8192,
250
251
  description:
251
252
  'Moonshot V1 8K 专为生成短文本任务设计,具有高效的处理性能,能够处理8,192个tokens,非常适合简短对话、速记和快速内容生成。',
252
253
  displayName: 'Moonshot V1 8K',
253
254
  enabled: true,
254
255
  functionCall: true,
255
256
  id: 'moonshot-v1-8k',
256
- tokens: 8192,
257
257
  },
258
258
  {
259
+ contextWindowTokens: 32_768,
259
260
  description:
260
261
  'Moonshot V1 32K 提供中等长度的上下文处理能力,能够处理32,768个tokens,特别适合生成各种长文档和复杂对话,应用于内容创作、报告生成和对话系统等领域。',
261
262
  displayName: 'Moonshot V1 32K',
262
263
  enabled: true,
263
264
  functionCall: true,
264
265
  id: 'moonshot-v1-32k',
265
- tokens: 32_768,
266
266
  },
267
267
  {
268
+ contextWindowTokens: 128_000,
268
269
  description:
269
270
  'Moonshot V1 128K 是一款拥有超长上下文处理能力的模型,适用于生成超长文本,满足复杂的生成任务需求,能够处理多达128,000个tokens的内容,非常适合科研、学术和大型文档生成等应用场景。',
270
271
  displayName: 'Moonshot V1 128K',
271
272
  enabled: true,
272
273
  functionCall: true,
273
274
  id: 'moonshot-v1-128k',
274
- tokens: 128_000,
275
275
  },
276
276
  //百川智能
277
277
  {
278
+ contextWindowTokens: 32_768,
278
279
  description:
279
280
  '模型能力国内第一,在知识百科、长文本、生成创作等中文任务上超越国外主流模型。还具备行业领先的多模态能力,多项权威评测基准表现优异。',
280
281
  displayName: 'Baichuan 4',
@@ -287,7 +288,6 @@ const Higress: ModelProviderCard = {
287
288
  input: 100,
288
289
  output: 100,
289
290
  },
290
- tokens: 32_768,
291
291
  },
292
292
  {
293
293
  description: '',
@@ -318,6 +318,7 @@ const Higress: ModelProviderCard = {
318
318
  // tokens: 32_768,
319
319
  },
320
320
  {
321
+ contextWindowTokens: 32_768,
321
322
  description:
322
323
  '针对企业高频场景优化,效果大幅提升,高性价比。相对于Baichuan2模型,内容创作提升20%,知识问答提升17%, 角色扮演能力提升40%。整体效果比GPT3.5更优。',
323
324
  displayName: 'Baichuan 3 Turbo',
@@ -330,9 +331,9 @@ const Higress: ModelProviderCard = {
330
331
  input: 12,
331
332
  output: 12,
332
333
  },
333
- tokens: 32_768,
334
334
  },
335
335
  {
336
+ contextWindowTokens: 128_000,
336
337
  description:
337
338
  '具备 128K 超长上下文窗口,针对企业高频场景优化,效果大幅提升,高性价比。相对于Baichuan2模型,内容创作提升20%,知识问答提升17%, 角色扮演能力提升40%。整体效果比GPT3.5更优。',
338
339
  displayName: 'Baichuan 3 Turbo 128k',
@@ -344,9 +345,9 @@ const Higress: ModelProviderCard = {
344
345
  input: 24,
345
346
  output: 24,
346
347
  },
347
- tokens: 128_000,
348
348
  },
349
349
  {
350
+ contextWindowTokens: 32_768,
350
351
  description:
351
352
  '采用搜索增强技术实现大模型与领域知识、全网知识的全面链接。支持PDF、Word等多种文档上传及网址输入,信息获取及时、全面,输出结果准确、专业。',
352
353
  displayName: 'Baichuan 2 Turbo',
@@ -357,10 +358,10 @@ const Higress: ModelProviderCard = {
357
358
  input: 8,
358
359
  output: 8,
359
360
  },
360
- tokens: 32_768,
361
361
  },
362
362
  //零一万物
363
363
  {
364
+ contextWindowTokens: 16_384,
364
365
  description: '最新高性能模型,保证高质量输出同时,推理速度大幅提升。',
365
366
  displayName: 'Yi Lightning',
366
367
  enabled: true,
@@ -370,9 +371,9 @@ const Higress: ModelProviderCard = {
370
371
  input: 0.99,
371
372
  output: 0.99,
372
373
  },
373
- tokens: 16_384,
374
374
  },
375
375
  {
376
+ contextWindowTokens: 16_384,
376
377
  description: '小而精悍,轻量极速模型。提供强化数学运算和代码编写能力。',
377
378
  displayName: 'Yi Spark',
378
379
  enabled: true,
@@ -382,9 +383,9 @@ const Higress: ModelProviderCard = {
382
383
  input: 1,
383
384
  output: 1,
384
385
  },
385
- tokens: 16_384,
386
386
  },
387
387
  {
388
+ contextWindowTokens: 16_384,
388
389
  description: '中型尺寸模型升级微调,能力均衡,性价比高。深度优化指令遵循能力。',
389
390
  displayName: 'Yi Medium',
390
391
  enabled: true,
@@ -394,9 +395,9 @@ const Higress: ModelProviderCard = {
394
395
  input: 2.5,
395
396
  output: 2.5,
396
397
  },
397
- tokens: 16_384,
398
398
  },
399
399
  {
400
+ contextWindowTokens: 200_000,
400
401
  description: '200K 超长上下文窗口,提供长文本深度理解和生成能力。',
401
402
  displayName: 'Yi Medium 200K',
402
403
  enabled: true,
@@ -406,9 +407,9 @@ const Higress: ModelProviderCard = {
406
407
  input: 12,
407
408
  output: 12,
408
409
  },
409
- tokens: 200_000,
410
410
  },
411
411
  {
412
+ contextWindowTokens: 16_384,
412
413
  description: '超高性价比、卓越性能。根据性能和推理速度、成本,进行平衡性高精度调优。',
413
414
  displayName: 'Yi Large Turbo',
414
415
  enabled: true,
@@ -418,9 +419,9 @@ const Higress: ModelProviderCard = {
418
419
  input: 12,
419
420
  output: 12,
420
421
  },
421
- tokens: 16_384,
422
422
  },
423
423
  {
424
+ contextWindowTokens: 16_384,
424
425
  description:
425
426
  '基于 yi-large 超强模型的高阶服务,结合检索与生成技术提供精准答案,实时全网检索信息服务。',
426
427
  displayName: 'Yi Large RAG',
@@ -431,9 +432,9 @@ const Higress: ModelProviderCard = {
431
432
  input: 25,
432
433
  output: 25,
433
434
  },
434
- tokens: 16_384,
435
435
  },
436
436
  {
437
+ contextWindowTokens: 32_768,
437
438
  description:
438
439
  '在 yi-large 模型的基础上支持并强化了工具调用的能力,适用于各种需要搭建 agent 或 workflow 的业务场景。',
439
440
  displayName: 'Yi Large FC',
@@ -445,9 +446,9 @@ const Higress: ModelProviderCard = {
445
446
  input: 20,
446
447
  output: 20,
447
448
  },
448
- tokens: 32_768,
449
449
  },
450
450
  {
451
+ contextWindowTokens: 32_768,
451
452
  description: '全新千亿参数模型,提供超强问答及文本生成能力。',
452
453
  displayName: 'Yi Large',
453
454
  id: 'yi-large',
@@ -456,9 +457,9 @@ const Higress: ModelProviderCard = {
456
457
  input: 20,
457
458
  output: 20,
458
459
  },
459
- tokens: 32_768,
460
460
  },
461
461
  {
462
+ contextWindowTokens: 16_384,
462
463
  description: '复杂视觉任务模型,提供高性能图片理解、分析能力。',
463
464
  displayName: 'Yi Vision',
464
465
  enabled: true,
@@ -468,10 +469,10 @@ const Higress: ModelProviderCard = {
468
469
  input: 6,
469
470
  output: 6,
470
471
  },
471
- tokens: 16_384,
472
472
  vision: true,
473
473
  },
474
474
  {
475
+ contextWindowTokens: 16_384,
475
476
  description: '初期版本,推荐使用 yi-large(新版本)。',
476
477
  displayName: 'Yi Large Preview',
477
478
  id: 'yi-large-preview',
@@ -480,9 +481,9 @@ const Higress: ModelProviderCard = {
480
481
  input: 20,
481
482
  output: 20,
482
483
  },
483
- tokens: 16_384,
484
484
  },
485
485
  {
486
+ contextWindowTokens: 16_384,
486
487
  description: '轻量化版本,推荐使用 yi-lightning。',
487
488
  displayName: 'Yi Lightning Lite',
488
489
  id: 'yi-lightning-lite',
@@ -491,10 +492,10 @@ const Higress: ModelProviderCard = {
491
492
  input: 0.99,
492
493
  output: 0.99,
493
494
  },
494
- tokens: 16_384,
495
495
  },
496
496
  //智谱AI
497
497
  {
498
+ contextWindowTokens: 128_000,
498
499
  description: 'GLM-4-Flash 是处理简单任务的理想选择,速度最快且免费。',
499
500
  displayName: 'GLM-4-Flash',
500
501
  enabled: true,
@@ -505,9 +506,9 @@ const Higress: ModelProviderCard = {
505
506
  input: 0,
506
507
  output: 0,
507
508
  },
508
- tokens: 128_000,
509
509
  },
510
510
  {
511
+ contextWindowTokens: 128_000,
511
512
  description: 'GLM-4-FlashX 是Flash的增强版本,超快推理速度。',
512
513
  displayName: 'GLM-4-FlashX',
513
514
  enabled: true,
@@ -518,9 +519,9 @@ const Higress: ModelProviderCard = {
518
519
  input: 0.1,
519
520
  output: 0.1,
520
521
  },
521
- tokens: 128_000,
522
522
  },
523
523
  {
524
+ contextWindowTokens: 1_024_000,
524
525
  description: 'GLM-4-Long 支持超长文本输入,适合记忆型任务与大规模文档处理。',
525
526
  displayName: 'GLM-4-Long',
526
527
  functionCall: true,
@@ -530,9 +531,9 @@ const Higress: ModelProviderCard = {
530
531
  input: 1,
531
532
  output: 1,
532
533
  },
533
- tokens: 1_024_000,
534
534
  },
535
535
  {
536
+ contextWindowTokens: 128_000,
536
537
  description: 'GLM-4-Air 是性价比高的版本,性能接近GLM-4,提供快速度和实惠的价格。',
537
538
  displayName: 'GLM-4-Air',
538
539
  enabled: true,
@@ -543,9 +544,9 @@ const Higress: ModelProviderCard = {
543
544
  input: 1,
544
545
  output: 1,
545
546
  },
546
- tokens: 128_000,
547
547
  },
548
548
  {
549
+ contextWindowTokens: 8192,
549
550
  description: 'GLM-4-AirX 提供 GLM-4-Air 的高效版本,推理速度可达其2.6倍。',
550
551
  displayName: 'GLM-4-AirX',
551
552
  enabled: true,
@@ -556,9 +557,9 @@ const Higress: ModelProviderCard = {
556
557
  input: 10,
557
558
  output: 10,
558
559
  },
559
- tokens: 8192,
560
560
  },
561
561
  {
562
+ contextWindowTokens: 128_000,
562
563
  description:
563
564
  'GLM-4-AllTools 是一个多功能智能体模型,优化以支持复杂指令规划与工具调用,如网络浏览、代码解释和文本生成,适用于多任务执行。',
564
565
  displayName: 'GLM-4-AllTools',
@@ -569,9 +570,9 @@ const Higress: ModelProviderCard = {
569
570
  input: 100,
570
571
  output: 100,
571
572
  },
572
- tokens: 128_000,
573
573
  },
574
574
  {
575
+ contextWindowTokens: 128_000,
575
576
  description:
576
577
  'GLM-4-Plus 作为高智能旗舰,具备强大的处理长文本和复杂任务的能力,性能全面提升。',
577
578
  displayName: 'GLM-4-Plus',
@@ -583,9 +584,9 @@ const Higress: ModelProviderCard = {
583
584
  input: 50,
584
585
  output: 50,
585
586
  },
586
- tokens: 128_000,
587
587
  },
588
588
  {
589
+ contextWindowTokens: 128_000,
589
590
  description: 'GLM-4-0520 是最新模型版本,专为高度复杂和多样化任务设计,表现卓越。',
590
591
  displayName: 'GLM-4-0520',
591
592
  functionCall: true,
@@ -595,9 +596,9 @@ const Higress: ModelProviderCard = {
595
596
  input: 100,
596
597
  output: 100,
597
598
  },
598
- tokens: 128_000,
599
599
  },
600
600
  {
601
+ contextWindowTokens: 128_000,
601
602
  description: 'GLM-4 是发布于2024年1月的旧旗舰版本,目前已被更强的 GLM-4-0520 取代。',
602
603
  displayName: 'GLM-4',
603
604
  functionCall: true,
@@ -607,9 +608,9 @@ const Higress: ModelProviderCard = {
607
608
  input: 100,
608
609
  output: 100,
609
610
  },
610
- tokens: 128_000,
611
611
  },
612
612
  {
613
+ contextWindowTokens: 8192,
613
614
  description: 'GLM-4V-Plus 具备对视频内容及多图片的理解能力,适合多模态任务。',
614
615
  displayName: 'GLM-4V-Plus',
615
616
  enabled: true,
@@ -619,10 +620,10 @@ const Higress: ModelProviderCard = {
619
620
  input: 10,
620
621
  output: 10,
621
622
  },
622
- tokens: 8192,
623
623
  vision: true,
624
624
  },
625
625
  {
626
+ contextWindowTokens: 2048,
626
627
  description: 'GLM-4V 提供强大的图像理解与推理能力,支持多种视觉任务。',
627
628
  displayName: 'GLM-4V',
628
629
  id: 'glm-4v',
@@ -631,10 +632,10 @@ const Higress: ModelProviderCard = {
631
632
  input: 50,
632
633
  output: 50,
633
634
  },
634
- tokens: 2048,
635
635
  vision: true,
636
636
  },
637
637
  {
638
+ contextWindowTokens: 4096,
638
639
  description: 'CharGLM-3 专为角色扮演与情感陪伴设计,支持超长多轮记忆与个性化对话,应用广泛。',
639
640
  displayName: 'CharGLM-3',
640
641
  id: 'charglm-3',
@@ -643,9 +644,9 @@ const Higress: ModelProviderCard = {
643
644
  input: 15,
644
645
  output: 15,
645
646
  },
646
- tokens: 4096,
647
647
  },
648
648
  {
649
+ contextWindowTokens: 8192,
649
650
  description: 'Emohaa 是心理模型,具备专业咨询能力,帮助用户理解情感问题。',
650
651
  displayName: 'Emohaa',
651
652
  id: 'emohaa',
@@ -654,10 +655,10 @@ const Higress: ModelProviderCard = {
654
655
  input: 15,
655
656
  output: 15,
656
657
  },
657
- tokens: 8192,
658
658
  },
659
659
  //360智脑
660
660
  {
661
+ contextWindowTokens: 8192,
661
662
  description:
662
663
  '360GPT2 Pro 是 360 公司推出的高级自然语言处理模型,具备卓越的文本生成和理解能力,尤其在生成与创作领域表现出色,能够处理复杂的语言转换和角色演绎任务。',
663
664
  displayName: '360GPT2 Pro',
@@ -669,9 +670,9 @@ const Higress: ModelProviderCard = {
669
670
  input: 5,
670
671
  output: 5,
671
672
  },
672
- tokens: 8192,
673
673
  },
674
674
  {
675
+ contextWindowTokens: 8192,
675
676
  description:
676
677
  '360GPT Pro 作为 360 AI 模型系列的重要成员,以高效的文本处理能力满足多样化的自然语言应用场景,支持长文本理解和多轮对话等功能。',
677
678
  displayName: '360GPT Pro',
@@ -684,9 +685,9 @@ const Higress: ModelProviderCard = {
684
685
  input: 5,
685
686
  output: 5,
686
687
  },
687
- tokens: 8192,
688
688
  },
689
689
  {
690
+ contextWindowTokens: 8192,
690
691
  description:
691
692
  '360GPT Turbo 提供强大的计算和对话能力,具备出色的语义理解和生成效率,是企业和开发者理想的智能助理解决方案。',
692
693
  displayName: '360GPT Turbo',
@@ -698,9 +699,9 @@ const Higress: ModelProviderCard = {
698
699
  input: 2,
699
700
  output: 2,
700
701
  },
701
- tokens: 8192,
702
702
  },
703
703
  {
704
+ contextWindowTokens: 8192,
704
705
  description:
705
706
  '360GPT Turbo Responsibility 8K 强调语义安全和责任导向,专为对内容安全有高度要求的应用场景设计,确保用户体验的准确性与稳健性。',
706
707
  displayName: '360GPT Turbo Responsibility 8K',
@@ -712,10 +713,10 @@ const Higress: ModelProviderCard = {
712
713
  input: 2,
713
714
  output: 2,
714
715
  },
715
- tokens: 8192,
716
716
  },
717
717
  //文心一言
718
718
  {
719
+ contextWindowTokens: 8192,
719
720
  description:
720
721
  '百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。',
721
722
  displayName: 'ERNIE 3.5 8K',
@@ -726,9 +727,9 @@ const Higress: ModelProviderCard = {
726
727
  input: 0.8,
727
728
  output: 2,
728
729
  },
729
- tokens: 8192,
730
730
  },
731
731
  {
732
+ contextWindowTokens: 8192,
732
733
  description:
733
734
  '百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。',
734
735
  displayName: 'ERNIE 3.5 8K Preview',
@@ -738,9 +739,9 @@ const Higress: ModelProviderCard = {
738
739
  input: 0.8,
739
740
  output: 2,
740
741
  },
741
- tokens: 8192,
742
742
  },
743
743
  {
744
+ contextWindowTokens: 128_000,
744
745
  description:
745
746
  '百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。',
746
747
  displayName: 'ERNIE 3.5 128K',
@@ -751,9 +752,9 @@ const Higress: ModelProviderCard = {
751
752
  input: 0.8,
752
753
  output: 2,
753
754
  },
754
- tokens: 128_000,
755
755
  },
756
756
  {
757
+ contextWindowTokens: 8192,
757
758
  description:
758
759
  '百度自研的旗舰级超大规模⼤语⾔模型,相较ERNIE 3.5实现了模型能力全面升级,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。',
759
760
  displayName: 'ERNIE 4.0 8K',
@@ -764,9 +765,9 @@ const Higress: ModelProviderCard = {
764
765
  input: 30,
765
766
  output: 90,
766
767
  },
767
- tokens: 8192,
768
768
  },
769
769
  {
770
+ contextWindowTokens: 8192,
770
771
  description:
771
772
  '百度自研的旗舰级超大规模⼤语⾔模型,相较ERNIE 3.5实现了模型能力全面升级,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。',
772
773
  displayName: 'ERNIE 4.0 8K Preview',
@@ -776,9 +777,9 @@ const Higress: ModelProviderCard = {
776
777
  input: 30,
777
778
  output: 90,
778
779
  },
779
- tokens: 8192,
780
780
  },
781
781
  {
782
+ contextWindowTokens: 8192,
782
783
  description:
783
784
  '百度自研的旗舰级超大规模⼤语⾔模型,综合效果表现出色,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。相较于ERNIE 4.0在性能表现上更优秀',
784
785
  displayName: 'ERNIE 4.0 Turbo 8K',
@@ -789,9 +790,9 @@ const Higress: ModelProviderCard = {
789
790
  input: 20,
790
791
  output: 60,
791
792
  },
792
- tokens: 8192,
793
793
  },
794
794
  {
795
+ contextWindowTokens: 8192,
795
796
  description:
796
797
  '百度自研的旗舰级超大规模⼤语⾔模型,综合效果表现出色,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。相较于ERNIE 4.0在性能表现上更优秀',
797
798
  displayName: 'ERNIE 4.0 Turbo 8K Preview',
@@ -801,9 +802,9 @@ const Higress: ModelProviderCard = {
801
802
  input: 20,
802
803
  output: 60,
803
804
  },
804
- tokens: 8192,
805
805
  },
806
806
  {
807
+ contextWindowTokens: 128_000,
807
808
  description:
808
809
  '百度自研的轻量级大语言模型,兼顾优异的模型效果与推理性能,效果比ERNIE Lite更优,适合低算力AI加速卡推理使用。',
809
810
  displayName: 'ERNIE Lite Pro 128K',
@@ -814,9 +815,9 @@ const Higress: ModelProviderCard = {
814
815
  input: 0.2,
815
816
  output: 0.4,
816
817
  },
817
- tokens: 128_000,
818
818
  },
819
819
  {
820
+ contextWindowTokens: 128_000,
820
821
  description:
821
822
  '百度2024年最新发布的自研高性能大语言模型,通用能力优异,效果比ERNIE Speed更优,适合作为基座模型进行精调,更好地处理特定场景问题,同时具备极佳的推理性能。',
822
823
  displayName: 'ERNIE Speed Pro 128K',
@@ -827,9 +828,9 @@ const Higress: ModelProviderCard = {
827
828
  input: 0.3,
828
829
  output: 0.6,
829
830
  },
830
- tokens: 128_000,
831
831
  },
832
832
  {
833
+ contextWindowTokens: 128_000,
833
834
  description:
834
835
  '百度2024年最新发布的自研高性能大语言模型,通用能力优异,适合作为基座模型进行精调,更好地处理特定场景问题,同时具备极佳的推理性能。',
835
836
  displayName: 'ERNIE Speed 128K',
@@ -839,9 +840,9 @@ const Higress: ModelProviderCard = {
839
840
  input: 0,
840
841
  output: 0,
841
842
  },
842
- tokens: 128_000,
843
843
  },
844
844
  {
845
+ contextWindowTokens: 8192,
845
846
  description:
846
847
  '百度自研的垂直场景大语言模型,适合游戏NPC、客服对话、对话角色扮演等应用场景,人设风格更为鲜明、一致,指令遵循能力更强,推理性能更优。',
847
848
  displayName: 'ERNIE Character 8K',
@@ -851,10 +852,10 @@ const Higress: ModelProviderCard = {
851
852
  input: 4,
852
853
  output: 8,
853
854
  },
854
- tokens: 8192,
855
855
  },
856
856
  //混元
857
857
  {
858
+ contextWindowTokens: 256_000,
858
859
  description:
859
860
  '升级为 MOE 结构,上下文窗口为 256k ,在 NLP,代码,数学,行业等多项评测集上领先众多开源模型。',
860
861
  displayName: 'Hunyuan Lite',
@@ -866,9 +867,9 @@ const Higress: ModelProviderCard = {
866
867
  input: 0,
867
868
  output: 0,
868
869
  },
869
- tokens: 256_000,
870
870
  },
871
871
  {
872
+ contextWindowTokens: 32_000,
872
873
  description:
873
874
  '采用更优的路由策略,同时缓解了负载均衡和专家趋同的问题。长文方面,大海捞针指标达到99.9%。MOE-32K 性价比相对更高,在平衡效果、价格的同时,可对实现对长文本输入的处理。',
874
875
  displayName: 'Hunyuan Standard',
@@ -880,9 +881,9 @@ const Higress: ModelProviderCard = {
880
881
  input: 4.5,
881
882
  output: 5,
882
883
  },
883
- tokens: 32_000,
884
884
  },
885
885
  {
886
+ contextWindowTokens: 256_000,
886
887
  description:
887
888
  '采用更优的路由策略,同时缓解了负载均衡和专家趋同的问题。长文方面,大海捞针指标达到99.9%。MOE-256K 在长度和效果上进一步突破,极大的扩展了可输入长度。',
888
889
  displayName: 'Hunyuan Standard 256K',
@@ -894,9 +895,9 @@ const Higress: ModelProviderCard = {
894
895
  input: 15,
895
896
  output: 60,
896
897
  },
897
- tokens: 256_000,
898
898
  },
899
899
  {
900
+ contextWindowTokens: 32_000,
900
901
  description:
901
902
  '混元全新一代大语言模型的预览版,采用全新的混合专家模型(MoE)结构,相比hunyuan-pro推理效率更快,效果表现更强。',
902
903
  displayName: 'Hunyuan Turbo',
@@ -909,9 +910,9 @@ const Higress: ModelProviderCard = {
909
910
  input: 15,
910
911
  output: 50,
911
912
  },
912
- tokens: 32_000,
913
913
  },
914
914
  {
915
+ contextWindowTokens: 32_000,
915
916
  description:
916
917
  '万亿级参数规模 MOE-32K 长文模型。在各种 benchmark 上达到绝对领先的水平,复杂指令和推理,具备复杂数学能力,支持 functioncall,在多语言翻译、金融法律医疗等领域应用重点优化。',
917
918
  displayName: 'Hunyuan Pro',
@@ -924,7 +925,6 @@ const Higress: ModelProviderCard = {
924
925
  input: 30,
925
926
  output: 100,
926
927
  },
927
- tokens: 32_000,
928
928
  },
929
929
  {
930
930
  description: '',
@@ -941,6 +941,7 @@ const Higress: ModelProviderCard = {
941
941
  // tokens: 32_000,
942
942
  },
943
943
  {
944
+ contextWindowTokens: 8000,
944
945
  description: '混元最新多模态模型,支持图片+文本输入生成文本内容。',
945
946
  displayName: 'Hunyuan Vision',
946
947
  enabled: true,
@@ -951,10 +952,10 @@ const Higress: ModelProviderCard = {
951
952
  input: 18,
952
953
  output: 18,
953
954
  },
954
- tokens: 8000,
955
955
  vision: true,
956
956
  },
957
957
  {
958
+ contextWindowTokens: 8000,
958
959
  description:
959
960
  '混元最新代码生成模型,经过 200B 高质量代码数据增训基座模型,迭代半年高质量 SFT 数据训练,上下文长窗口长度增大到 8K,五大语言代码生成自动评测指标上位居前列;五大语言10项考量各方面综合代码任务人工高质量评测上,性能处于第一梯队',
960
961
  displayName: 'Hunyuan Code',
@@ -965,9 +966,9 @@ const Higress: ModelProviderCard = {
965
966
  input: 4,
966
967
  output: 8,
967
968
  },
968
- tokens: 8000,
969
969
  },
970
970
  {
971
+ contextWindowTokens: 32_000,
971
972
  description:
972
973
  '混元最新 MOE 架构 FunctionCall 模型,经过高质量的 FunctionCall 数据训练,上下文窗口达 32K,在多个维度的评测指标上处于领先。',
973
974
  displayName: 'Hunyuan FunctionCall',
@@ -979,9 +980,9 @@ const Higress: ModelProviderCard = {
979
980
  input: 4,
980
981
  output: 8,
981
982
  },
982
- tokens: 32_000,
983
983
  },
984
984
  {
985
+ contextWindowTokens: 8000,
985
986
  description:
986
987
  '混元最新版角色扮演模型,混元官方精调训练推出的角色扮演模型,基于混元模型结合角色扮演场景数据集进行增训,在角色扮演场景具有更好的基础效果。',
987
988
  displayName: 'Hunyuan Role',
@@ -992,10 +993,10 @@ const Higress: ModelProviderCard = {
992
993
  input: 4,
993
994
  output: 8,
994
995
  },
995
- tokens: 8000,
996
996
  },
997
997
  //阶跃星辰
998
998
  {
999
+ contextWindowTokens: 8000,
999
1000
  description: '高速模型,适合实时对话。',
1000
1001
  displayName: 'Step 1 Flash',
1001
1002
  enabled: true,
@@ -1006,9 +1007,9 @@ const Higress: ModelProviderCard = {
1006
1007
  input: 1,
1007
1008
  output: 4,
1008
1009
  },
1009
- tokens: 8000,
1010
1010
  },
1011
1011
  {
1012
+ contextWindowTokens: 8000,
1012
1013
  description: '小型模型,适合轻量级任务。',
1013
1014
  displayName: 'Step 1 8K',
1014
1015
  enabled: true,
@@ -1019,9 +1020,9 @@ const Higress: ModelProviderCard = {
1019
1020
  input: 5,
1020
1021
  output: 20,
1021
1022
  },
1022
- tokens: 8000,
1023
1023
  },
1024
1024
  {
1025
+ contextWindowTokens: 32_000,
1025
1026
  description: '支持中等长度的对话,适用于多种应用场景。',
1026
1027
  displayName: 'Step 1 32K',
1027
1028
  enabled: true,
@@ -1032,9 +1033,9 @@ const Higress: ModelProviderCard = {
1032
1033
  input: 15,
1033
1034
  output: 70,
1034
1035
  },
1035
- tokens: 32_000,
1036
1036
  },
1037
1037
  {
1038
+ contextWindowTokens: 128_000,
1038
1039
  description: '平衡性能与成本,适合一般场景。',
1039
1040
  displayName: 'Step 1 128K',
1040
1041
  enabled: true,
@@ -1045,9 +1046,9 @@ const Higress: ModelProviderCard = {
1045
1046
  input: 40,
1046
1047
  output: 200,
1047
1048
  },
1048
- tokens: 128_000,
1049
1049
  },
1050
1050
  {
1051
+ contextWindowTokens: 256_000,
1051
1052
  description: '具备超长上下文处理能力,尤其适合长文档分析。',
1052
1053
  displayName: 'Step 1 256K',
1053
1054
  functionCall: true,
@@ -1057,9 +1058,9 @@ const Higress: ModelProviderCard = {
1057
1058
  input: 95,
1058
1059
  output: 300,
1059
1060
  },
1060
- tokens: 256_000,
1061
1061
  },
1062
1062
  {
1063
+ contextWindowTokens: 16_000,
1063
1064
  description: '支持大规模上下文交互,适合复杂对话场景。',
1064
1065
  displayName: 'Step 2 16K',
1065
1066
  enabled: true,
@@ -1070,9 +1071,9 @@ const Higress: ModelProviderCard = {
1070
1071
  input: 38,
1071
1072
  output: 120,
1072
1073
  },
1073
- tokens: 16_000,
1074
1074
  },
1075
1075
  {
1076
+ contextWindowTokens: 8000,
1076
1077
  description: '小型视觉模型,适合基本的图文任务。',
1077
1078
  displayName: 'Step 1V 8K',
1078
1079
  enabled: true,
@@ -1083,10 +1084,10 @@ const Higress: ModelProviderCard = {
1083
1084
  input: 5,
1084
1085
  output: 20,
1085
1086
  },
1086
- tokens: 8000,
1087
1087
  vision: true,
1088
1088
  },
1089
1089
  {
1090
+ contextWindowTokens: 32_000,
1090
1091
  description: '支持视觉输入,增强多模态交互体验。',
1091
1092
  displayName: 'Step 1V 32K',
1092
1093
  enabled: true,
@@ -1097,10 +1098,10 @@ const Higress: ModelProviderCard = {
1097
1098
  input: 15,
1098
1099
  output: 70,
1099
1100
  },
1100
- tokens: 32_000,
1101
1101
  vision: true,
1102
1102
  },
1103
1103
  {
1104
+ contextWindowTokens: 32_000,
1104
1105
  description: '该模型拥有强大的视频理解能力。',
1105
1106
  displayName: 'Step 1.5V Mini',
1106
1107
  enabled: true,
@@ -1110,10 +1111,10 @@ const Higress: ModelProviderCard = {
1110
1111
  input: 8,
1111
1112
  output: 35,
1112
1113
  },
1113
- tokens: 32_000,
1114
1114
  vision: true,
1115
1115
  },
1116
1116
  {
1117
+ contextWindowTokens: 8192,
1117
1118
  description:
1118
1119
  'Spark Lite 是一款轻量级大语言模型,具备极低的延迟与高效的处理能力,完全免费开放,支持实时在线搜索功能。其快速响应的特性使其在低算力设备上的推理应用和模型微调中表现出色,为用户带来出色的成本效益和智能体验,尤其在知识问答、内容生成及搜索场景下表现不俗。',
1119
1120
  displayName: 'Spark Lite',
@@ -1121,9 +1122,9 @@ const Higress: ModelProviderCard = {
1121
1122
  functionCall: false,
1122
1123
  id: 'lite',
1123
1124
  maxOutput: 4096,
1124
- tokens: 8192,
1125
1125
  },
1126
1126
  {
1127
+ contextWindowTokens: 8192,
1127
1128
  description:
1128
1129
  'Spark Pro 是一款为专业领域优化的高性能大语言模型,专注数学、编程、医疗、教育等多个领域,并支持联网搜索及内置天气、日期等插件。其优化后模型在复杂知识问答、语言理解及高层次文本创作中展现出色表现和高效性能,是适合专业应用场景的理想选择。',
1129
1130
  displayName: 'Spark Pro',
@@ -1131,9 +1132,9 @@ const Higress: ModelProviderCard = {
1131
1132
  functionCall: false,
1132
1133
  id: 'generalv3',
1133
1134
  maxOutput: 8192,
1134
- tokens: 8192,
1135
1135
  },
1136
1136
  {
1137
+ contextWindowTokens: 131_072,
1137
1138
  description:
1138
1139
  'Spark Pro 128K 配置了特大上下文处理能力,能够处理多达128K的上下文信息,特别适合需通篇分析和长期逻辑关联处理的长文内容,可在复杂文本沟通中提供流畅一致的逻辑与多样的引用支持。',
1139
1140
  displayName: 'Spark Pro 128K',
@@ -1141,9 +1142,9 @@ const Higress: ModelProviderCard = {
1141
1142
  functionCall: false,
1142
1143
  id: 'pro-128k',
1143
1144
  maxOutput: 4096,
1144
- tokens: 131_072,
1145
1145
  },
1146
1146
  {
1147
+ contextWindowTokens: 8192,
1147
1148
  description:
1148
1149
  'Spark Max 为功能最为全面的版本,支持联网搜索及众多内置插件。其全面优化的核心能力以及系统角色设定和函数调用功能,使其在各种复杂应用场景中的表现极为优异和出色。',
1149
1150
  displayName: 'Spark Max',
@@ -1151,9 +1152,9 @@ const Higress: ModelProviderCard = {
1151
1152
  functionCall: false,
1152
1153
  id: 'generalv3.5',
1153
1154
  maxOutput: 8192,
1154
- tokens: 8192,
1155
1155
  },
1156
1156
  {
1157
+ contextWindowTokens: 32_768,
1157
1158
  description:
1158
1159
  'Spark Max 32K 配置了大上下文处理能力,更强的上下文理解和逻辑推理能力,支持32K tokens的文本输入,适用于长文档阅读、私有知识问答等场景',
1159
1160
  displayName: 'Spark Max 32K',
@@ -1161,9 +1162,9 @@ const Higress: ModelProviderCard = {
1161
1162
  functionCall: false,
1162
1163
  id: 'max-32k',
1163
1164
  maxOutput: 8192,
1164
- tokens: 32_768,
1165
1165
  },
1166
1166
  {
1167
+ contextWindowTokens: 8192,
1167
1168
  description:
1168
1169
  'Spark Ultra 是星火大模型系列中最为强大的版本,在升级联网搜索链路同时,提升对文本内容的理解和总结能力。它是用于提升办公生产力和准确响应需求的全方位解决方案,是引领行业的智能产品。',
1169
1170
  displayName: 'Spark 4.0 Ultra',
@@ -1171,10 +1172,10 @@ const Higress: ModelProviderCard = {
1171
1172
  functionCall: false,
1172
1173
  id: '4.0Ultra',
1173
1174
  maxOutput: 8192,
1174
- tokens: 8192,
1175
1175
  },
1176
1176
  //openai
1177
1177
  {
1178
+ contextWindowTokens: 128_000,
1178
1179
  description:
1179
1180
  'o1-mini是一款针对编程、数学和科学应用场景而设计的快速、经济高效的推理模型。该模型具有128K上下文和2023年10月的知识截止日期。',
1180
1181
  displayName: 'OpenAI o1-mini',
@@ -1186,9 +1187,9 @@ const Higress: ModelProviderCard = {
1186
1187
  output: 12,
1187
1188
  },
1188
1189
  releasedAt: '2024-09-12',
1189
- tokens: 128_000,
1190
1190
  },
1191
1191
  {
1192
+ contextWindowTokens: 128_000,
1192
1193
  description:
1193
1194
  'o1是OpenAI新的推理模型,适用于需要广泛通用知识的复杂任务。该模型具有128K上下文和2023年10月的知识截止日期。',
1194
1195
  displayName: 'OpenAI o1-preview',
@@ -1200,9 +1201,9 @@ const Higress: ModelProviderCard = {
1200
1201
  output: 60,
1201
1202
  },
1202
1203
  releasedAt: '2024-09-12',
1203
- tokens: 128_000,
1204
1204
  },
1205
1205
  {
1206
+ contextWindowTokens: 128_000,
1206
1207
  description:
1207
1208
  'GPT-4o mini是OpenAI在GPT-4 Omni之后推出的最新模型,支持图文输入并输出文本。作为他们最先进的小型模型,它比其他近期的前沿模型便宜很多,并且比GPT-3.5 Turbo便宜超过60%。它保持了最先进的智能,同时具有显著的性价比。GPT-4o mini在MMLU测试中获得了 82% 的得分,目前在聊天偏好上排名高于 GPT-4。',
1208
1209
  displayName: 'GPT-4o mini',
@@ -1214,10 +1215,10 @@ const Higress: ModelProviderCard = {
1214
1215
  input: 0.15,
1215
1216
  output: 0.6,
1216
1217
  },
1217
- tokens: 128_000,
1218
1218
  vision: true,
1219
1219
  },
1220
1220
  {
1221
+ contextWindowTokens: 128_000,
1221
1222
  description:
1222
1223
  'ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。',
1223
1224
  displayName: 'GPT-4o',
@@ -1228,10 +1229,10 @@ const Higress: ModelProviderCard = {
1228
1229
  input: 2.5,
1229
1230
  output: 10,
1230
1231
  },
1231
- tokens: 128_000,
1232
1232
  vision: true,
1233
1233
  },
1234
1234
  {
1235
+ contextWindowTokens: 128_000,
1235
1236
  description:
1236
1237
  'ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。',
1237
1238
  displayName: 'GPT-4o 0806',
@@ -1241,10 +1242,10 @@ const Higress: ModelProviderCard = {
1241
1242
  input: 2.5,
1242
1243
  output: 10,
1243
1244
  },
1244
- tokens: 128_000,
1245
1245
  vision: true,
1246
1246
  },
1247
1247
  {
1248
+ contextWindowTokens: 128_000,
1248
1249
  description:
1249
1250
  'ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。',
1250
1251
  displayName: 'GPT-4o 0513',
@@ -1254,10 +1255,10 @@ const Higress: ModelProviderCard = {
1254
1255
  input: 5,
1255
1256
  output: 15,
1256
1257
  },
1257
- tokens: 128_000,
1258
1258
  vision: true,
1259
1259
  },
1260
1260
  {
1261
+ contextWindowTokens: 128_000,
1261
1262
  description:
1262
1263
  'ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。',
1263
1264
  displayName: 'ChatGPT-4o',
@@ -1267,10 +1268,10 @@ const Higress: ModelProviderCard = {
1267
1268
  input: 5,
1268
1269
  output: 15,
1269
1270
  },
1270
- tokens: 128_000,
1271
1271
  vision: true,
1272
1272
  },
1273
1273
  {
1274
+ contextWindowTokens: 128_000,
1274
1275
  description:
1275
1276
  '最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。',
1276
1277
  displayName: 'GPT-4 Turbo',
@@ -1280,10 +1281,10 @@ const Higress: ModelProviderCard = {
1280
1281
  input: 10,
1281
1282
  output: 30,
1282
1283
  },
1283
- tokens: 128_000,
1284
1284
  vision: true,
1285
1285
  },
1286
1286
  {
1287
+ contextWindowTokens: 128_000,
1287
1288
  description:
1288
1289
  '最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。',
1289
1290
  displayName: 'GPT-4 Turbo Vision 0409',
@@ -1293,10 +1294,10 @@ const Higress: ModelProviderCard = {
1293
1294
  input: 10,
1294
1295
  output: 30,
1295
1296
  },
1296
- tokens: 128_000,
1297
1297
  vision: true,
1298
1298
  },
1299
1299
  {
1300
+ contextWindowTokens: 128_000,
1300
1301
  description:
1301
1302
  '最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。',
1302
1303
  displayName: 'GPT-4 Turbo Preview',
@@ -1306,9 +1307,9 @@ const Higress: ModelProviderCard = {
1306
1307
  input: 10,
1307
1308
  output: 30,
1308
1309
  },
1309
- tokens: 128_000,
1310
1310
  },
1311
1311
  {
1312
+ contextWindowTokens: 128_000,
1312
1313
  description:
1313
1314
  '最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。',
1314
1315
  displayName: 'GPT-4 Turbo Preview 0125',
@@ -1318,9 +1319,9 @@ const Higress: ModelProviderCard = {
1318
1319
  input: 10,
1319
1320
  output: 30,
1320
1321
  },
1321
- tokens: 128_000,
1322
1322
  },
1323
1323
  {
1324
+ contextWindowTokens: 128_000,
1324
1325
  description:
1325
1326
  '最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。',
1326
1327
  displayName: 'GPT-4 Turbo Preview 1106',
@@ -1330,9 +1331,9 @@ const Higress: ModelProviderCard = {
1330
1331
  input: 10,
1331
1332
  output: 30,
1332
1333
  },
1333
- tokens: 128_000,
1334
1334
  },
1335
1335
  {
1336
+ contextWindowTokens: 8192,
1336
1337
  description:
1337
1338
  'GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。',
1338
1339
  displayName: 'GPT-4',
@@ -1342,9 +1343,9 @@ const Higress: ModelProviderCard = {
1342
1343
  input: 30,
1343
1344
  output: 60,
1344
1345
  },
1345
- tokens: 8192,
1346
1346
  },
1347
1347
  {
1348
+ contextWindowTokens: 8192,
1348
1349
  description:
1349
1350
  'GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。',
1350
1351
  displayName: 'GPT-4 0613',
@@ -1354,11 +1355,12 @@ const Higress: ModelProviderCard = {
1354
1355
  input: 30,
1355
1356
  output: 60,
1356
1357
  },
1357
- tokens: 8192,
1358
1358
  },
1359
1359
  {
1360
+ contextWindowTokens: 32_768,
1360
1361
  description:
1361
- 'GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。', // Will be discontinued on June 6, 2025
1362
+ 'GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。',
1363
+ // Will be discontinued on June 6, 2025
1362
1364
  displayName: 'GPT-4 32K',
1363
1365
  functionCall: true,
1364
1366
  id: 'gpt-4-32k',
@@ -1366,9 +1368,9 @@ const Higress: ModelProviderCard = {
1366
1368
  input: 60,
1367
1369
  output: 120,
1368
1370
  },
1369
- tokens: 32_768,
1370
1371
  },
1371
1372
  {
1373
+ contextWindowTokens: 32_768,
1372
1374
  // Will be discontinued on June 6, 2025
1373
1375
  description:
1374
1376
  'GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。',
@@ -1379,9 +1381,9 @@ const Higress: ModelProviderCard = {
1379
1381
  input: 60,
1380
1382
  output: 120,
1381
1383
  },
1382
- tokens: 32_768,
1383
1384
  },
1384
1385
  {
1386
+ contextWindowTokens: 16_385,
1385
1387
  description:
1386
1388
  'GPT 3.5 Turbo,适用于各种文本生成和理解任务,Currently points to gpt-3.5-turbo-0125',
1387
1389
  displayName: 'GPT-3.5 Turbo',
@@ -1391,9 +1393,9 @@ const Higress: ModelProviderCard = {
1391
1393
  input: 0.5,
1392
1394
  output: 1.5,
1393
1395
  },
1394
- tokens: 16_385,
1395
1396
  },
1396
1397
  {
1398
+ contextWindowTokens: 16_385,
1397
1399
  description:
1398
1400
  'GPT 3.5 Turbo,适用于各种文本生成和理解任务,Currently points to gpt-3.5-turbo-0125',
1399
1401
  displayName: 'GPT-3.5 Turbo 0125',
@@ -1403,9 +1405,9 @@ const Higress: ModelProviderCard = {
1403
1405
  input: 0.5,
1404
1406
  output: 1.5,
1405
1407
  },
1406
- tokens: 16_385,
1407
1408
  },
1408
1409
  {
1410
+ contextWindowTokens: 16_385,
1409
1411
  description:
1410
1412
  'GPT 3.5 Turbo,适用于各种文本生成和理解任务,Currently points to gpt-3.5-turbo-0125',
1411
1413
  displayName: 'GPT-3.5 Turbo 1106',
@@ -1415,9 +1417,9 @@ const Higress: ModelProviderCard = {
1415
1417
  input: 1,
1416
1418
  output: 2,
1417
1419
  },
1418
- tokens: 16_385,
1419
1420
  },
1420
1421
  {
1422
+ contextWindowTokens: 4096,
1421
1423
  description:
1422
1424
  'GPT 3.5 Turbo,适用于各种文本生成和理解任务,Currently points to gpt-3.5-turbo-0125',
1423
1425
  displayName: 'GPT-3.5 Turbo Instruct',
@@ -1426,10 +1428,10 @@ const Higress: ModelProviderCard = {
1426
1428
  input: 1.5,
1427
1429
  output: 2,
1428
1430
  },
1429
- tokens: 4096,
1430
1431
  },
1431
1432
  //azure
1432
1433
  {
1434
+ contextWindowTokens: 16_385,
1433
1435
  deploymentName: 'gpt-35-turbo',
1434
1436
  description:
1435
1437
  'GPT 3.5 Turbo,OpenAI提供的高效模型,适用于聊天和文本生成任务,支持并行函数调用。',
@@ -1438,66 +1440,66 @@ const Higress: ModelProviderCard = {
1438
1440
  functionCall: true,
1439
1441
  id: 'gpt-35-turbo',
1440
1442
  maxOutput: 4096,
1441
- tokens: 16_385,
1442
1443
  },
1443
1444
  {
1445
+ contextWindowTokens: 16_384,
1444
1446
  deploymentName: 'gpt-35-turbo-16k',
1445
1447
  description: 'GPT 3.5 Turbo 16k,高容量文本生成模型,适合复杂任务。',
1446
1448
  displayName: 'GPT 3.5 Turbo',
1447
1449
  functionCall: true,
1448
1450
  id: 'gpt-35-turbo-16k',
1449
- tokens: 16_384,
1450
1451
  },
1451
1452
  {
1453
+ contextWindowTokens: 128_000,
1452
1454
  deploymentName: 'gpt-4-turbo',
1453
1455
  description: 'GPT 4 Turbo,多模态模型,提供杰出的语言理解和生成能力,同时支持图像输入。',
1454
1456
  displayName: 'GPT 4 Turbo',
1455
1457
  enabled: true,
1456
1458
  functionCall: true,
1457
1459
  id: 'gpt-4',
1458
- tokens: 128_000,
1459
1460
  vision: true,
1460
1461
  },
1461
1462
  {
1463
+ contextWindowTokens: 128_000,
1462
1464
  deploymentName: 'gpt-4-vision',
1463
1465
  description: 'GPT-4 视觉预览版,专为图像分析和处理任务设计。',
1464
1466
  displayName: 'GPT 4 Turbo with Vision Preview',
1465
1467
  id: 'gpt-4-vision-preview',
1466
- tokens: 128_000,
1467
1468
  vision: true,
1468
1469
  },
1469
1470
  {
1471
+ contextWindowTokens: 128_000,
1470
1472
  deploymentName: 'gpt-4o-mini',
1471
1473
  description: 'GPT-4o Mini,小型高效模型,具备与GPT-4o相似的卓越性能。',
1472
1474
  displayName: 'GPT 4o Mini',
1473
1475
  enabled: true,
1474
1476
  functionCall: true,
1475
1477
  id: 'gpt-4o-mini',
1476
- tokens: 128_000,
1477
1478
  vision: true,
1478
1479
  },
1479
1480
  {
1481
+ contextWindowTokens: 128_000,
1480
1482
  deploymentName: 'gpt-4o',
1481
1483
  description: 'GPT-4o 是最新的多模态模型,结合高级文本和图像处理能力。',
1482
1484
  displayName: 'GPT 4o',
1483
1485
  enabled: true,
1484
1486
  functionCall: true,
1485
1487
  id: 'gpt-4o',
1486
- tokens: 128_000,
1487
1488
  vision: true,
1488
1489
  },
1489
1490
  //github
1490
1491
  {
1492
+ contextWindowTokens: 128_000,
1491
1493
  description: '比 o1-preview 更小、更快,成本低80%,在代码生成和小上下文操作方面表现良好。',
1492
1494
  displayName: 'OpenAI o1-mini',
1493
1495
  enabled: true,
1494
1496
  functionCall: false,
1495
1497
  id: 'o1-mini',
1496
1498
  maxOutput: 65_536,
1497
- tokens: 128_000,
1498
1499
  vision: true,
1499
1500
  },
1500
1501
  {
1502
+ contextWindowTokens: 128_000,
1501
1503
  description:
1502
1504
  '专注于高级推理和解决复杂问题,包括数学和科学任务。非常适合需要深度上下文理解和自主工作流程的应用。',
1503
1505
  displayName: 'OpenAI o1-preview',
@@ -1505,199 +1507,199 @@ const Higress: ModelProviderCard = {
1505
1507
  functionCall: false,
1506
1508
  id: 'o1-preview',
1507
1509
  maxOutput: 32_768,
1508
- tokens: 128_000,
1509
1510
  vision: true,
1510
1511
  },
1511
1512
  {
1513
+ contextWindowTokens: 128_000,
1512
1514
  description: '一种经济高效的AI解决方案,适用于多种文本和图像任务。',
1513
1515
  displayName: 'OpenAI GPT-4o mini',
1514
1516
  enabled: true,
1515
1517
  functionCall: true,
1516
1518
  id: 'gpt-4o-mini',
1517
1519
  maxOutput: 4096,
1518
- tokens: 128_000,
1519
1520
  vision: true,
1520
1521
  },
1521
1522
  {
1523
+ contextWindowTokens: 128_000,
1522
1524
  description: 'OpenAI GPT-4系列中最先进的多模态模型,可以处理文本和图像输入。',
1523
1525
  displayName: 'OpenAI GPT-4o',
1524
1526
  enabled: true,
1525
1527
  functionCall: true,
1526
1528
  id: 'gpt-4o',
1527
1529
  maxOutput: 4096,
1528
- tokens: 128_000,
1529
1530
  vision: true,
1530
1531
  },
1531
1532
  {
1533
+ contextWindowTokens: 262_144,
1532
1534
  description:
1533
1535
  '一个52B参数(12B活跃)的多语言模型,提供256K长上下文窗口、函数调用、结构化输出和基于事实的生成。',
1534
1536
  displayName: 'AI21 Jamba 1.5 Mini',
1535
1537
  functionCall: true,
1536
1538
  id: 'ai21-jamba-1.5-mini',
1537
1539
  maxOutput: 4096,
1538
- tokens: 262_144,
1539
1540
  },
1540
1541
  {
1542
+ contextWindowTokens: 262_144,
1541
1543
  description:
1542
1544
  '一个398B参数(94B活跃)的多语言模型,提供256K长上下文窗口、函数调用、结构化输出和基于事实的生成。',
1543
1545
  displayName: 'AI21 Jamba 1.5 Large',
1544
1546
  functionCall: true,
1545
1547
  id: 'ai21-jamba-1.5-large',
1546
1548
  maxOutput: 4096,
1547
- tokens: 262_144,
1548
1549
  },
1549
1550
  {
1551
+ contextWindowTokens: 131_072,
1550
1552
  description:
1551
1553
  'Command R是一个可扩展的生成模型,旨在针对RAG和工具使用,使企业能够实现生产级AI。',
1552
1554
  displayName: 'Cohere Command R',
1553
1555
  id: 'cohere-command-r',
1554
1556
  maxOutput: 4096,
1555
- tokens: 131_072,
1556
1557
  },
1557
1558
  {
1559
+ contextWindowTokens: 131_072,
1558
1560
  description: 'Command R+是一个最先进的RAG优化模型,旨在应对企业级工作负载。',
1559
1561
  displayName: 'Cohere Command R+',
1560
1562
  id: 'cohere-command-r-plus',
1561
1563
  maxOutput: 4096,
1562
- tokens: 131_072,
1563
1564
  },
1564
1565
  {
1566
+ contextWindowTokens: 131_072,
1565
1567
  description:
1566
1568
  'Mistral Nemo是一种尖端的语言模型(LLM),在其尺寸类别中拥有最先进的推理、世界知识和编码能力。',
1567
1569
  displayName: 'Mistral Nemo',
1568
1570
  id: 'mistral-nemo',
1569
1571
  maxOutput: 4096,
1570
- tokens: 131_072,
1571
1572
  },
1572
1573
  {
1574
+ contextWindowTokens: 131_072,
1573
1575
  description: 'Mistral Small可用于任何需要高效率和低延迟的基于语言的任务。',
1574
1576
  displayName: 'Mistral Small',
1575
1577
  id: 'mistral-small',
1576
1578
  maxOutput: 4096,
1577
- tokens: 131_072,
1578
1579
  },
1579
1580
  {
1581
+ contextWindowTokens: 131_072,
1580
1582
  description:
1581
1583
  'Mistral的旗舰模型,适合需要大规模推理能力或高度专业化的复杂任务(合成文本生成、代码生成、RAG或代理)。',
1582
1584
  displayName: 'Mistral Large',
1583
1585
  id: 'mistral-large',
1584
1586
  maxOutput: 4096,
1585
- tokens: 131_072,
1586
1587
  },
1587
1588
  {
1589
+ contextWindowTokens: 131_072,
1588
1590
  description: '在高分辨率图像上表现出色的图像推理能力,适用于视觉理解应用。',
1589
1591
  displayName: 'Llama 3.2 11B Vision',
1590
1592
  id: 'llama-3.2-11b-vision-instruct',
1591
1593
  maxOutput: 4096,
1592
- tokens: 131_072,
1593
1594
  vision: true,
1594
1595
  },
1595
1596
  {
1597
+ contextWindowTokens: 131_072,
1596
1598
  description: '适用于视觉理解代理应用的高级图像推理能力。',
1597
1599
  displayName: 'Llama 3.2 90B Vision',
1598
1600
  id: 'llama-3.2-90b-vision-instruct',
1599
1601
  maxOutput: 4096,
1600
- tokens: 131_072,
1601
1602
  vision: true,
1602
1603
  },
1603
1604
  {
1605
+ contextWindowTokens: 131_072,
1604
1606
  description:
1605
1607
  'Llama 3.1指令调优的文本模型,针对多语言对话用例进行了优化,在许多可用的开源和封闭聊天模型中,在常见行业基准上表现优异。',
1606
1608
  displayName: 'Meta Llama 3.1 8B',
1607
1609
  id: 'meta-llama-3.1-8b-instruct',
1608
1610
  maxOutput: 4096,
1609
- tokens: 131_072,
1610
1611
  },
1611
1612
  {
1613
+ contextWindowTokens: 131_072,
1612
1614
  description:
1613
1615
  'Llama 3.1指令调优的文本模型,针对多语言对话用例进行了优化,在许多可用的开源和封闭聊天模型中,在常见行业基准上表现优异。',
1614
1616
  displayName: 'Meta Llama 3.1 70B',
1615
1617
  id: 'meta-llama-3.1-70b-instruct',
1616
1618
  maxOutput: 4096,
1617
- tokens: 131_072,
1618
1619
  },
1619
1620
  {
1621
+ contextWindowTokens: 131_072,
1620
1622
  description:
1621
1623
  'Llama 3.1指令调优的文本模型,针对多语言对话用例进行了优化,在许多可用的开源和封闭聊天模型中,在常见行业基准上表现优异。',
1622
1624
  displayName: 'Meta Llama 3.1 405B',
1623
1625
  id: 'meta-llama-3.1-405b-instruct',
1624
1626
  maxOutput: 4096,
1625
- tokens: 131_072,
1626
1627
  },
1627
1628
  {
1629
+ contextWindowTokens: 8192,
1628
1630
  description: '一个多功能的80亿参数模型,针对对话和文本生成任务进行了优化。',
1629
1631
  displayName: 'Meta Llama 3 8B',
1630
1632
  id: 'meta-llama-3-8b-instruct',
1631
1633
  maxOutput: 4096,
1632
- tokens: 8192,
1633
1634
  },
1634
1635
  {
1636
+ contextWindowTokens: 8192,
1635
1637
  description: '一个强大的700亿参数模型,在推理、编码和广泛的语言应用方面表现出色。',
1636
1638
  displayName: 'Meta Llama 3 70B',
1637
1639
  id: 'meta-llama-3-70b-instruct',
1638
1640
  maxOutput: 4096,
1639
- tokens: 8192,
1640
1641
  },
1641
1642
  {
1643
+ contextWindowTokens: 131_072,
1642
1644
  description: 'Phi-3-mini模型的更新版。',
1643
1645
  displayName: 'Phi-3.5-mini 128K',
1644
1646
  id: 'Phi-3.5-mini-instruct',
1645
1647
  maxOutput: 4096,
1646
- tokens: 131_072,
1647
1648
  },
1648
1649
  {
1650
+ contextWindowTokens: 131_072,
1649
1651
  description: 'Phi-3-vision模型的更新版。',
1650
1652
  displayName: 'Phi-3.5-vision 128K',
1651
1653
  id: 'Phi-3.5-vision-instrust',
1652
1654
  maxOutput: 4096,
1653
- tokens: 131_072,
1654
1655
  vision: true,
1655
1656
  },
1656
1657
  {
1658
+ contextWindowTokens: 4096,
1657
1659
  description: 'Phi-3家族中最小的成员,针对质量和低延迟进行了优化。',
1658
1660
  displayName: 'Phi-3-mini 4K',
1659
1661
  id: 'Phi-3-mini-4k-instruct',
1660
1662
  maxOutput: 4096,
1661
- tokens: 4096,
1662
1663
  },
1663
1664
  {
1665
+ contextWindowTokens: 131_072,
1664
1666
  description: '相同的Phi-3-mini模型,但具有更大的上下文大小,适用于RAG或少量提示。',
1665
1667
  displayName: 'Phi-3-mini 128K',
1666
1668
  id: 'Phi-3-mini-128k-instruct',
1667
1669
  maxOutput: 4096,
1668
- tokens: 131_072,
1669
1670
  },
1670
1671
  {
1672
+ contextWindowTokens: 8192,
1671
1673
  description: '一个70亿参数模型,质量优于Phi-3-mini,重点关注高质量、推理密集型数据。',
1672
1674
  displayName: 'Phi-3-small 8K',
1673
1675
  id: 'Phi-3-small-8k-instruct',
1674
1676
  maxOutput: 4096,
1675
- tokens: 8192,
1676
1677
  },
1677
1678
  {
1679
+ contextWindowTokens: 131_072,
1678
1680
  description: '相同的Phi-3-small模型,但具有更大的上下文大小,适用于RAG或少量提示。',
1679
1681
  displayName: 'Phi-3-small 128K',
1680
1682
  id: 'Phi-3-small-128k-instruct',
1681
1683
  maxOutput: 4096,
1682
- tokens: 131_072,
1683
1684
  },
1684
1685
  {
1686
+ contextWindowTokens: 4096,
1685
1687
  description: '一个140亿参数模型,质量优于Phi-3-mini,重点关注高质量、推理密集型数据。',
1686
1688
  displayName: 'Phi-3-medium 4K',
1687
1689
  id: 'Phi-3-medium-4k-instruct',
1688
1690
  maxOutput: 4096,
1689
- tokens: 4096,
1690
1691
  },
1691
1692
  {
1693
+ contextWindowTokens: 131_072,
1692
1694
  description: '相同的Phi-3-medium模型,但具有更大的上下文大小,适用于RAG或少量提示。',
1693
1695
  displayName: 'Phi-3-medium 128K',
1694
1696
  id: 'Phi-3-medium-128k-instruct',
1695
1697
  maxOutput: 4096,
1696
- tokens: 131_072,
1697
1698
  },
1698
1699
 
1699
1700
  //groq
1700
1701
  {
1702
+ contextWindowTokens: 8192,
1701
1703
  description:
1702
1704
  'Llama 3.2 旨在处理结合视觉和文本数据的任务。它在图像描述和视觉问答等任务中表现出色,跨越了语言生成和视觉推理之间的鸿沟。',
1703
1705
  displayName: 'Llama 3.2 11B Vision (Preview)',
@@ -1708,10 +1710,10 @@ const Higress: ModelProviderCard = {
1708
1710
  input: 0.05,
1709
1711
  output: 0.08,
1710
1712
  },
1711
- tokens: 8192,
1712
1713
  vision: true,
1713
1714
  },
1714
1715
  {
1716
+ contextWindowTokens: 8192,
1715
1717
  description:
1716
1718
  'Llama 3.2 旨在处理结合视觉和文本数据的任务。它在图像描述和视觉问答等任务中表现出色,跨越了语言生成和视觉推理之间的鸿沟。',
1717
1719
  displayName: 'Llama 3.2 90B Vision (Preview)',
@@ -1722,10 +1724,10 @@ const Higress: ModelProviderCard = {
1722
1724
  input: 0.59,
1723
1725
  output: 0.79,
1724
1726
  },
1725
- tokens: 8192,
1726
1727
  vision: true,
1727
1728
  },
1728
1729
  {
1730
+ contextWindowTokens: 131_072,
1729
1731
  description:
1730
1732
  'Llama 3.1 8B 是一款高效能模型,提供了快速的文本生成能力,非常适合需要大规模效率和成本效益的应用场景。',
1731
1733
  displayName: 'Llama 3.1 8B',
@@ -1737,9 +1739,9 @@ const Higress: ModelProviderCard = {
1737
1739
  input: 0.05,
1738
1740
  output: 0.08,
1739
1741
  },
1740
- tokens: 131_072,
1741
1742
  },
1742
1743
  {
1744
+ contextWindowTokens: 131_072,
1743
1745
  description:
1744
1746
  'Llama 3.1 70B 提供更强大的AI推理能力,适合复杂应用,支持超多的计算处理并保证高效和准确率。',
1745
1747
  displayName: 'Llama 3.1 70B',
@@ -1751,7 +1753,6 @@ const Higress: ModelProviderCard = {
1751
1753
  input: 0.59,
1752
1754
  output: 0.79,
1753
1755
  },
1754
- tokens: 131_072,
1755
1756
  },
1756
1757
  /*
1757
1758
  // Offline due to overwhelming demand! Stay tuned for updates.
@@ -1763,6 +1764,7 @@ const Higress: ModelProviderCard = {
1763
1764
  },
1764
1765
  */
1765
1766
  {
1767
+ contextWindowTokens: 8192,
1766
1768
  description: 'Llama 3 Groq 8B Tool Use 是针对高效工具使用优化的模型,支持快速并行计算。',
1767
1769
  displayName: 'Llama 3 Groq 8B Tool Use (Preview)',
1768
1770
  functionCall: true,
@@ -1771,9 +1773,9 @@ const Higress: ModelProviderCard = {
1771
1773
  input: 0.19,
1772
1774
  output: 0.19,
1773
1775
  },
1774
- tokens: 8192,
1775
1776
  },
1776
1777
  {
1778
+ contextWindowTokens: 8192,
1777
1779
  description: 'Llama 3 Groq 70B Tool Use 提供强大的工具调用能力,支持复杂任务的高效处理。',
1778
1780
  displayName: 'Llama 3 Groq 70B Tool Use (Preview)',
1779
1781
  functionCall: true,
@@ -1782,9 +1784,9 @@ const Higress: ModelProviderCard = {
1782
1784
  input: 0.89,
1783
1785
  output: 0.89,
1784
1786
  },
1785
- tokens: 8192,
1786
1787
  },
1787
1788
  {
1789
+ contextWindowTokens: 8192,
1788
1790
  description: 'Meta Llama 3 8B 带来优质的推理效能,适合多场景应用需求。',
1789
1791
  displayName: 'Meta Llama 3 8B',
1790
1792
  functionCall: true,
@@ -1793,9 +1795,9 @@ const Higress: ModelProviderCard = {
1793
1795
  input: 0.05,
1794
1796
  output: 0.08,
1795
1797
  },
1796
- tokens: 8192,
1797
1798
  },
1798
1799
  {
1800
+ contextWindowTokens: 8192,
1799
1801
  description: 'Meta Llama 3 70B 提供无与伦比的复杂性处理能力,为高要求项目量身定制。',
1800
1802
  displayName: 'Meta Llama 3 70B',
1801
1803
  functionCall: true,
@@ -1804,9 +1806,9 @@ const Higress: ModelProviderCard = {
1804
1806
  input: 0.59,
1805
1807
  output: 0.79,
1806
1808
  },
1807
- tokens: 8192,
1808
1809
  },
1809
1810
  {
1811
+ contextWindowTokens: 8192,
1810
1812
  description: 'Gemma 2 9B 是一款优化用于特定任务和工具整合的模型。',
1811
1813
  displayName: 'Gemma 2 9B',
1812
1814
  enabled: true,
@@ -1816,9 +1818,9 @@ const Higress: ModelProviderCard = {
1816
1818
  input: 0.2,
1817
1819
  output: 0.2,
1818
1820
  },
1819
- tokens: 8192,
1820
1821
  },
1821
1822
  {
1823
+ contextWindowTokens: 8192,
1822
1824
  description: 'Gemma 7B 适合中小规模任务处理,兼具成本效益。',
1823
1825
  displayName: 'Gemma 7B',
1824
1826
  functionCall: true,
@@ -1827,9 +1829,9 @@ const Higress: ModelProviderCard = {
1827
1829
  input: 0.07,
1828
1830
  output: 0.07,
1829
1831
  },
1830
- tokens: 8192,
1831
1832
  },
1832
1833
  {
1834
+ contextWindowTokens: 32_768,
1833
1835
  description: 'Mixtral 8x7B 提供高容错的并行计算能力,适合复杂任务。',
1834
1836
  displayName: 'Mixtral 8x7B',
1835
1837
  functionCall: true,
@@ -1838,17 +1840,17 @@ const Higress: ModelProviderCard = {
1838
1840
  input: 0.24,
1839
1841
  output: 0.24,
1840
1842
  },
1841
- tokens: 32_768,
1842
1843
  },
1843
1844
  {
1845
+ contextWindowTokens: 4096,
1844
1846
  description: 'LLaVA 1.5 7B 提供视觉处理能力融合,通过视觉信息输入生成复杂输出。',
1845
1847
  displayName: 'LLaVA 1.5 7B',
1846
1848
  id: 'llava-v1.5-7b-4096-preview',
1847
- tokens: 4096,
1848
1849
  vision: true,
1849
1850
  },
1850
1851
  //deepseek
1851
1852
  {
1853
+ contextWindowTokens: 128_000,
1852
1854
  description:
1853
1855
  '融合通用与代码能力的全新开源模型, 不仅保留了原有 Chat 模型的通用对话能力和 Coder 模型的强大代码处理能力,还更好地对齐了人类偏好。此外,DeepSeek-V2.5 在写作任务、指令跟随等多个方面也实现了大幅提升。',
1854
1856
  displayName: 'DeepSeek V2.5',
@@ -1861,10 +1863,10 @@ const Higress: ModelProviderCard = {
1861
1863
  output: 0.28,
1862
1864
  },
1863
1865
  releasedAt: '2024-09-05',
1864
- tokens: 128_000,
1865
1866
  },
1866
1867
  //claude
1867
1868
  {
1869
+ contextWindowTokens: 200_000,
1868
1870
  description:
1869
1871
  'Claude 3.5 Haiku 是 Anthropic 最快的下一代模型。与 Claude 3 Haiku 相比,Claude 3.5 Haiku 在各项技能上都有所提升,并在许多智力基准测试中超越了上一代最大的模型 Claude 3 Opus。',
1870
1872
  displayName: 'Claude 3.5 Haiku',
@@ -1879,9 +1881,9 @@ const Higress: ModelProviderCard = {
1879
1881
  writeCacheInput: 1.25,
1880
1882
  },
1881
1883
  releasedAt: '2024-11-05',
1882
- tokens: 200_000,
1883
1884
  },
1884
1885
  {
1886
+ contextWindowTokens: 200_000,
1885
1887
  description:
1886
1888
  'Claude 3.5 Sonnet 提供了超越 Opus 的能力和比 Sonnet 更快的速度,同时保持与 Sonnet 相同的价格。Sonnet 特别擅长编程、数据科学、视觉处理、代理任务。',
1887
1889
  displayName: 'Claude 3.5 Sonnet',
@@ -1896,10 +1898,10 @@ const Higress: ModelProviderCard = {
1896
1898
  writeCacheInput: 3.75,
1897
1899
  },
1898
1900
  releasedAt: '2024-10-22',
1899
- tokens: 200_000,
1900
1901
  vision: true,
1901
1902
  },
1902
1903
  {
1904
+ contextWindowTokens: 200_000,
1903
1905
  description:
1904
1906
  'Claude 3.5 Sonnet 提供了超越 Opus 的能力和比 Sonnet 更快的速度,同时保持与 Sonnet 相同的价格。Sonnet 特别擅长编程、数据科学、视觉处理、代理任务。',
1905
1907
  displayName: 'Claude 3.5 Sonnet 0620',
@@ -1913,10 +1915,10 @@ const Higress: ModelProviderCard = {
1913
1915
  writeCacheInput: 3.75,
1914
1916
  },
1915
1917
  releasedAt: '2024-06-20',
1916
- tokens: 200_000,
1917
1918
  vision: true,
1918
1919
  },
1919
1920
  {
1921
+ contextWindowTokens: 200_000,
1920
1922
  description:
1921
1923
  'Claude 3 Haiku 是 Anthropic 的最快且最紧凑的模型,旨在实现近乎即时的响应。它具有快速且准确的定向性能。',
1922
1924
  displayName: 'Claude 3 Haiku',
@@ -1928,10 +1930,10 @@ const Higress: ModelProviderCard = {
1928
1930
  output: 1.25,
1929
1931
  },
1930
1932
  releasedAt: '2024-03-07',
1931
- tokens: 200_000,
1932
1933
  vision: true,
1933
1934
  },
1934
1935
  {
1936
+ contextWindowTokens: 200_000,
1935
1937
  description:
1936
1938
  'Claude 3 Sonnet 在智能和速度方面为企业工作负载提供了理想的平衡。它以更低的价格提供最大效用,可靠且适合大规模部署。',
1937
1939
  displayName: 'Claude 3 Sonnet',
@@ -1943,10 +1945,10 @@ const Higress: ModelProviderCard = {
1943
1945
  output: 15,
1944
1946
  },
1945
1947
  releasedAt: '2024-02-29',
1946
- tokens: 200_000,
1947
1948
  vision: true,
1948
1949
  },
1949
1950
  {
1951
+ contextWindowTokens: 200_000,
1950
1952
  description:
1951
1953
  'Claude 3 Opus 是 Anthropic 用于处理高度复杂任务的最强大模型。它在性能、智能、流畅性和理解力方面表现卓越。',
1952
1954
  displayName: 'Claude 3 Opus',
@@ -1959,10 +1961,10 @@ const Higress: ModelProviderCard = {
1959
1961
  output: 75,
1960
1962
  },
1961
1963
  releasedAt: '2024-02-29',
1962
- tokens: 200_000,
1963
1964
  vision: true,
1964
1965
  },
1965
1966
  {
1967
+ contextWindowTokens: 200_000,
1966
1968
  description:
1967
1969
  'Claude 2 为企业提供了关键能力的进步,包括业界领先的 200K token 上下文、大幅降低模型幻觉的发生率、系统提示以及一个新的测试功能:工具调用。',
1968
1970
  displayName: 'Claude 2.1',
@@ -1973,9 +1975,9 @@ const Higress: ModelProviderCard = {
1973
1975
  output: 24,
1974
1976
  },
1975
1977
  releasedAt: '2023-11-21',
1976
- tokens: 200_000,
1977
1978
  },
1978
1979
  {
1980
+ contextWindowTokens: 100_000,
1979
1981
  description:
1980
1982
  'Claude 2 为企业提供了关键能力的进步,包括业界领先的 200K token 上下文、大幅降低模型幻觉的发生率、系统提示以及一个新的测试功能:工具调用。',
1981
1983
  displayName: 'Claude 2.0',
@@ -1986,10 +1988,10 @@ const Higress: ModelProviderCard = {
1986
1988
  output: 24,
1987
1989
  },
1988
1990
  releasedAt: '2023-07-11',
1989
- tokens: 100_000,
1990
1991
  },
1991
1992
  //gemini
1992
1993
  {
1994
+ contextWindowTokens: 1_000_000 + 8192,
1993
1995
  description:
1994
1996
  'Gemini 1.5 Flash 是Google最新的多模态AI模型,具备快速处理能力,支持文本、图像和视频输入,适用于多种任务的高效扩展。',
1995
1997
  displayName: 'Gemini 1.5 Flash',
@@ -2002,10 +2004,10 @@ const Higress: ModelProviderCard = {
2002
2004
  input: 0.075,
2003
2005
  output: 0.3,
2004
2006
  },
2005
- tokens: 1_000_000 + 8192,
2006
2007
  vision: true,
2007
2008
  },
2008
2009
  {
2010
+ contextWindowTokens: 1_000_000 + 8192,
2009
2011
  description: 'Gemini 1.5 Flash 002 是一款高效的多模态模型,支持广泛应用的扩展。',
2010
2012
  displayName: 'Gemini 1.5 Flash 002',
2011
2013
  enabled: true,
@@ -2018,10 +2020,10 @@ const Higress: ModelProviderCard = {
2018
2020
  output: 0.3,
2019
2021
  },
2020
2022
  releasedAt: '2024-09-25',
2021
- tokens: 1_000_000 + 8192,
2022
2023
  vision: true,
2023
2024
  },
2024
2025
  {
2026
+ contextWindowTokens: 1_000_000 + 8192,
2025
2027
  description: 'Gemini 1.5 Flash 001 是一款高效的多模态模型,支持广泛应用的扩展。',
2026
2028
  displayName: 'Gemini 1.5 Flash 001',
2027
2029
  functionCall: true,
@@ -2032,10 +2034,10 @@ const Higress: ModelProviderCard = {
2032
2034
  input: 0.075,
2033
2035
  output: 0.3,
2034
2036
  },
2035
- tokens: 1_000_000 + 8192,
2036
2037
  vision: true,
2037
2038
  },
2038
2039
  {
2040
+ contextWindowTokens: 1_000_000 + 8192,
2039
2041
  description: 'Gemini 1.5 Flash 0827 提供了优化后的多模态处理能力,适用多种复杂任务场景。',
2040
2042
  displayName: 'Gemini 1.5 Flash 0827',
2041
2043
  functionCall: true,
@@ -2047,10 +2049,10 @@ const Higress: ModelProviderCard = {
2047
2049
  output: 0.3,
2048
2050
  },
2049
2051
  releasedAt: '2024-08-27',
2050
- tokens: 1_000_000 + 8192,
2051
2052
  vision: true,
2052
2053
  },
2053
2054
  {
2055
+ contextWindowTokens: 1_000_000 + 8192,
2054
2056
  description: 'Gemini 1.5 Flash 8B 是一款高效的多模态模型,支持广泛应用的扩展。',
2055
2057
  displayName: 'Gemini 1.5 Flash 8B',
2056
2058
  enabled: true,
@@ -2063,10 +2065,10 @@ const Higress: ModelProviderCard = {
2063
2065
  output: 0.3,
2064
2066
  },
2065
2067
  releasedAt: '2024-10-03',
2066
- tokens: 1_000_000 + 8192,
2067
2068
  vision: true,
2068
2069
  },
2069
2070
  {
2071
+ contextWindowTokens: 1_000_000 + 8192,
2070
2072
  description:
2071
2073
  'Gemini 1.5 Flash 8B 0924 是最新的实验性模型,在文本和多模态用例中都有显著的性能提升。',
2072
2074
  displayName: 'Gemini 1.5 Flash 8B 0924',
@@ -2079,10 +2081,10 @@ const Higress: ModelProviderCard = {
2079
2081
  output: 0.3,
2080
2082
  },
2081
2083
  releasedAt: '2024-09-24',
2082
- tokens: 1_000_000 + 8192,
2083
2084
  vision: true,
2084
2085
  },
2085
2086
  {
2087
+ contextWindowTokens: 2_000_000 + 8192,
2086
2088
  description:
2087
2089
  'Gemini 1.5 Pro 支持高达200万个tokens,是中型多模态模型的理想选择,适用于复杂任务的多方面支持。',
2088
2090
  displayName: 'Gemini 1.5 Pro',
@@ -2096,10 +2098,10 @@ const Higress: ModelProviderCard = {
2096
2098
  output: 10.5,
2097
2099
  },
2098
2100
  releasedAt: '2024-02-15',
2099
- tokens: 2_000_000 + 8192,
2100
2101
  vision: true,
2101
2102
  },
2102
2103
  {
2104
+ contextWindowTokens: 2_000_000 + 8192,
2103
2105
  description:
2104
2106
  'Gemini 1.5 Pro 002 是最新的生产就绪模型,提供更高质量的输出,特别在数学、长上下文和视觉任务方面有显著提升。',
2105
2107
  displayName: 'Gemini 1.5 Pro 002',
@@ -2113,10 +2115,10 @@ const Higress: ModelProviderCard = {
2113
2115
  output: 2.5,
2114
2116
  },
2115
2117
  releasedAt: '2024-09-24',
2116
- tokens: 2_000_000 + 8192,
2117
2118
  vision: true,
2118
2119
  },
2119
2120
  {
2121
+ contextWindowTokens: 2_000_000 + 8192,
2120
2122
  description: 'Gemini 1.5 Pro 001 是可扩展的多模态AI解决方案,支持广泛的复杂任务。',
2121
2123
  displayName: 'Gemini 1.5 Pro 001',
2122
2124
  functionCall: true,
@@ -2128,10 +2130,10 @@ const Higress: ModelProviderCard = {
2128
2130
  output: 10.5,
2129
2131
  },
2130
2132
  releasedAt: '2024-02-15',
2131
- tokens: 2_000_000 + 8192,
2132
2133
  vision: true,
2133
2134
  },
2134
2135
  {
2136
+ contextWindowTokens: 2_000_000 + 8192,
2135
2137
  description: 'Gemini 1.5 Pro 0827 结合最新优化技术,带来更高效的多模态数据处理能力。',
2136
2138
  displayName: 'Gemini 1.5 Pro 0827',
2137
2139
  functionCall: true,
@@ -2143,10 +2145,10 @@ const Higress: ModelProviderCard = {
2143
2145
  output: 10.5,
2144
2146
  },
2145
2147
  releasedAt: '2024-08-27',
2146
- tokens: 2_000_000 + 8192,
2147
2148
  vision: true,
2148
2149
  },
2149
2150
  {
2151
+ contextWindowTokens: 2_000_000 + 8192,
2150
2152
  description: 'Gemini 1.5 Pro 0801 提供出色的多模态处理能力,为应用开发带来更大灵活性。',
2151
2153
  displayName: 'Gemini 1.5 Pro 0801',
2152
2154
  functionCall: true,
@@ -2158,10 +2160,10 @@ const Higress: ModelProviderCard = {
2158
2160
  output: 10.5,
2159
2161
  },
2160
2162
  releasedAt: '2024-08-01',
2161
- tokens: 2_000_000 + 8192,
2162
2163
  vision: true,
2163
2164
  },
2164
2165
  {
2166
+ contextWindowTokens: 30_720 + 2048,
2165
2167
  description: 'Gemini 1.0 Pro 是Google的高性能AI模型,专为广泛任务扩展而设计。',
2166
2168
  displayName: 'Gemini 1.0 Pro',
2167
2169
  id: 'gemini-1.0-pro-latest',
@@ -2171,9 +2173,9 @@ const Higress: ModelProviderCard = {
2171
2173
  output: 1.5,
2172
2174
  },
2173
2175
  releasedAt: '2023-12-06',
2174
- tokens: 30_720 + 2048,
2175
2176
  },
2176
2177
  {
2178
+ contextWindowTokens: 30_720 + 2048,
2177
2179
  description:
2178
2180
  'Gemini 1.0 Pro 001 (Tuning) 提供稳定并可调优的性能,是复杂任务解决方案的理想选择。',
2179
2181
  displayName: 'Gemini 1.0 Pro 001 (Tuning)',
@@ -2185,9 +2187,9 @@ const Higress: ModelProviderCard = {
2185
2187
  output: 1.5,
2186
2188
  },
2187
2189
  releasedAt: '2023-12-06',
2188
- tokens: 30_720 + 2048,
2189
2190
  },
2190
2191
  {
2192
+ contextWindowTokens: 30_720 + 2048,
2191
2193
  description: 'Gemini 1.0 Pro 002 (Tuning) 提供出色的多模态支持,专注于复杂任务的有效解决。',
2192
2194
  displayName: 'Gemini 1.0 Pro 002 (Tuning)',
2193
2195
  id: 'gemini-1.0-pro-002',
@@ -2197,11 +2199,11 @@ const Higress: ModelProviderCard = {
2197
2199
  output: 1.5,
2198
2200
  },
2199
2201
  releasedAt: '2023-12-06',
2200
- tokens: 30_720 + 2048,
2201
2202
  },
2202
2203
  //mistral
2203
2204
 
2204
2205
  {
2206
+ contextWindowTokens: 128_000,
2205
2207
  description:
2206
2208
  'Mistral Nemo是一个与Nvidia合作开发的12B模型,提供出色的推理和编码性能,易于集成和替换。',
2207
2209
  displayName: 'Mistral Nemo',
@@ -2212,9 +2214,9 @@ const Higress: ModelProviderCard = {
2212
2214
  input: 0.15,
2213
2215
  output: 0.15,
2214
2216
  },
2215
- tokens: 128_000,
2216
2217
  },
2217
2218
  {
2219
+ contextWindowTokens: 128_000,
2218
2220
  description:
2219
2221
  'Mistral Small是成本效益高、快速且可靠的选项,适用于翻译、摘要和情感分析等用例。',
2220
2222
  displayName: 'Mistral Small',
@@ -2225,9 +2227,9 @@ const Higress: ModelProviderCard = {
2225
2227
  input: 0.2,
2226
2228
  output: 0.6,
2227
2229
  },
2228
- tokens: 128_000,
2229
2230
  },
2230
2231
  {
2232
+ contextWindowTokens: 128_000,
2231
2233
  description:
2232
2234
  'Mistral Large是旗舰大模型,擅长多语言任务、复杂推理和代码生成,是高端应用的理想选择。',
2233
2235
  displayName: 'Mistral Large',
@@ -2238,9 +2240,9 @@ const Higress: ModelProviderCard = {
2238
2240
  input: 2,
2239
2241
  output: 6,
2240
2242
  },
2241
- tokens: 128_000,
2242
2243
  },
2243
2244
  {
2245
+ contextWindowTokens: 32_768,
2244
2246
  description: 'Codestral是专注于代码生成的尖端生成模型,优化了中间填充和代码补全任务。',
2245
2247
  displayName: 'Codestral',
2246
2248
  id: 'codestral-latest',
@@ -2248,9 +2250,9 @@ const Higress: ModelProviderCard = {
2248
2250
  input: 0.2,
2249
2251
  output: 0.6,
2250
2252
  },
2251
- tokens: 32_768,
2252
2253
  },
2253
2254
  {
2255
+ contextWindowTokens: 128_000,
2254
2256
  description:
2255
2257
  'Pixtral 模型在图表和图理解、文档问答、多模态推理和指令遵循等任务上表现出强大的能力,能够以自然分辨率和宽高比摄入图像,还能够在长达 128K 令牌的长上下文窗口中处理任意数量的图像。',
2256
2258
  displayName: 'Pixtral 12B',
@@ -2260,10 +2262,10 @@ const Higress: ModelProviderCard = {
2260
2262
  input: 0.15,
2261
2263
  output: 0.15,
2262
2264
  },
2263
- tokens: 128_000,
2264
2265
  vision: true,
2265
2266
  },
2266
2267
  {
2268
+ contextWindowTokens: 128_000,
2267
2269
  description: 'Ministral 3B 是Mistral的世界顶级边缘模型。',
2268
2270
  displayName: 'Ministral 3B',
2269
2271
  id: 'ministral-3b-latest',
@@ -2271,9 +2273,9 @@ const Higress: ModelProviderCard = {
2271
2273
  input: 0.04,
2272
2274
  output: 0.04,
2273
2275
  },
2274
- tokens: 128_000,
2275
2276
  },
2276
2277
  {
2278
+ contextWindowTokens: 128_000,
2277
2279
  description: 'Ministral 8B 是Mistral的性价比极高的边缘模型。',
2278
2280
  displayName: 'Ministral 8B',
2279
2281
  id: 'ministral-8b-latest',
@@ -2281,9 +2283,9 @@ const Higress: ModelProviderCard = {
2281
2283
  input: 0.1,
2282
2284
  output: 0.1,
2283
2285
  },
2284
- tokens: 128_000,
2285
2286
  },
2286
2287
  {
2288
+ contextWindowTokens: 32_768,
2287
2289
  description:
2288
2290
  'Mistral 7B是一款紧凑但高性能的模型,擅长批量处理和简单任务,如分类和文本生成,具有良好的推理能力。',
2289
2291
  displayName: 'Mistral 7B',
@@ -2292,9 +2294,9 @@ const Higress: ModelProviderCard = {
2292
2294
  input: 0.25,
2293
2295
  output: 0.25,
2294
2296
  },
2295
- tokens: 32_768,
2296
2297
  },
2297
2298
  {
2299
+ contextWindowTokens: 32_768,
2298
2300
  description:
2299
2301
  'Mixtral 8x7B是一个稀疏专家模型,利用多个参数提高推理速度,适合处理多语言和代码生成任务。',
2300
2302
  displayName: 'Mixtral 8x7B',
@@ -2303,9 +2305,9 @@ const Higress: ModelProviderCard = {
2303
2305
  input: 0.7,
2304
2306
  output: 0.7,
2305
2307
  },
2306
- tokens: 32_768,
2307
2308
  },
2308
2309
  {
2310
+ contextWindowTokens: 65_536,
2309
2311
  description:
2310
2312
  'Mixtral 8x22B是一个更大的专家模型,专注于复杂任务,提供出色的推理能力和更高的吞吐量。',
2311
2313
  displayName: 'Mixtral 8x22B',
@@ -2315,9 +2317,9 @@ const Higress: ModelProviderCard = {
2315
2317
  input: 2,
2316
2318
  output: 6,
2317
2319
  },
2318
- tokens: 65_536,
2319
2320
  },
2320
2321
  {
2322
+ contextWindowTokens: 256_000,
2321
2323
  description:
2322
2324
  'Codestral Mamba是专注于代码生成的Mamba 2语言模型,为先进的代码和推理任务提供强力支持。',
2323
2325
  displayName: 'Codestral Mamba',
@@ -2326,44 +2328,43 @@ const Higress: ModelProviderCard = {
2326
2328
  input: 0.15,
2327
2329
  output: 0.15,
2328
2330
  },
2329
- tokens: 256_000,
2330
2331
  },
2331
2332
  //minimax
2332
2333
  {
2334
+ contextWindowTokens: 245_760,
2333
2335
  description: '适用于广泛的自然语言处理任务,包括文本生成、对话系统等。',
2334
2336
  displayName: 'abab6.5s',
2335
2337
  enabled: true,
2336
2338
  functionCall: true,
2337
2339
  id: 'abab6.5s-chat',
2338
- tokens: 245_760,
2339
2340
  },
2340
2341
  {
2342
+ contextWindowTokens: 8192,
2341
2343
  description: '专为多语种人设对话设计,支持英文及其他多种语言的高质量对话生成。',
2342
2344
  displayName: 'abab6.5g',
2343
2345
  enabled: true,
2344
2346
  functionCall: true,
2345
2347
  id: 'abab6.5g-chat',
2346
- tokens: 8192,
2347
2348
  },
2348
2349
  {
2350
+ contextWindowTokens: 8192,
2349
2351
  description: '针对中文人设对话场景优化,提供流畅且符合中文表达习惯的对话生成能力。',
2350
2352
  displayName: 'abab6.5t',
2351
2353
  enabled: true,
2352
2354
  functionCall: true,
2353
2355
  id: 'abab6.5t-chat',
2354
- tokens: 8192,
2355
2356
  },
2356
2357
  {
2358
+ contextWindowTokens: 16_384,
2357
2359
  description: '面向生产力场景,支持复杂任务处理和高效文本生成,适用于专业领域应用。',
2358
2360
  displayName: 'abab5.5',
2359
2361
  id: 'abab5.5-chat',
2360
- tokens: 16_384,
2361
2362
  },
2362
2363
  {
2364
+ contextWindowTokens: 8192,
2363
2365
  description: '专为中文人设对话场景设计,提供高质量的中文对话生成能力,适用于多种应用场景。',
2364
2366
  displayName: 'abab5.5s',
2365
2367
  id: 'abab5.5s-chat',
2366
- tokens: 8192,
2367
2368
  },
2368
2369
  //cohere
2369
2370
  {