@lobehub/chat 1.36.27 → 1.36.28
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +17 -0
- package/changelog/v1.json +5 -0
- package/locales/ar/common.json +37 -1
- package/locales/ar/models.json +27 -0
- package/locales/bg-BG/common.json +37 -1
- package/locales/bg-BG/models.json +27 -0
- package/locales/de-DE/common.json +37 -1
- package/locales/de-DE/models.json +27 -0
- package/locales/en-US/common.json +37 -1
- package/locales/en-US/models.json +27 -0
- package/locales/es-ES/common.json +37 -1
- package/locales/es-ES/models.json +27 -0
- package/locales/fa-IR/common.json +37 -1
- package/locales/fa-IR/models.json +27 -0
- package/locales/fr-FR/common.json +37 -1
- package/locales/fr-FR/models.json +27 -0
- package/locales/it-IT/common.json +37 -1
- package/locales/it-IT/models.json +27 -0
- package/locales/ja-JP/common.json +37 -1
- package/locales/ja-JP/models.json +27 -0
- package/locales/ko-KR/common.json +37 -1
- package/locales/ko-KR/models.json +27 -0
- package/locales/nl-NL/common.json +37 -1
- package/locales/nl-NL/models.json +27 -0
- package/locales/pl-PL/common.json +37 -1
- package/locales/pl-PL/models.json +27 -0
- package/locales/pt-BR/common.json +37 -1
- package/locales/pt-BR/models.json +27 -0
- package/locales/ru-RU/common.json +37 -1
- package/locales/ru-RU/models.json +27 -0
- package/locales/tr-TR/common.json +37 -1
- package/locales/tr-TR/models.json +27 -0
- package/locales/vi-VN/common.json +37 -1
- package/locales/vi-VN/models.json +27 -0
- package/locales/zh-CN/common.json +37 -1
- package/locales/zh-CN/models.json +28 -1
- package/locales/zh-TW/common.json +37 -1
- package/locales/zh-TW/models.json +27 -0
- package/package.json +1 -1
- package/src/app/loading/Content.tsx +14 -0
- package/src/app/loading/Redirect.tsx +28 -12
- package/src/app/loading/index.tsx +8 -3
- package/src/locales/default/common.ts +37 -1
- package/src/store/global/selectors.ts +5 -1
- package/src/app/loading/Client.tsx +0 -13
@@ -112,6 +112,12 @@
|
|
112
112
|
"Gryphe/MythoMax-L2-13b": {
|
113
113
|
"description": "MythoMax-L2 (13B) is een innovatief model, geschikt voor toepassingen in meerdere domeinen en complexe taken."
|
114
114
|
},
|
115
|
+
"InternVL2-8B": {
|
116
|
+
"description": "InternVL2-8B is een krachtig visueel taalmodel dat multimodale verwerking van afbeeldingen en tekst ondersteunt, in staat om afbeeldingsinhoud nauwkeurig te identificeren en relevante beschrijvingen of antwoorden te genereren."
|
117
|
+
},
|
118
|
+
"InternVL2.5-26B": {
|
119
|
+
"description": "InternVL2.5-26B is een krachtig visueel taalmodel dat multimodale verwerking van afbeeldingen en tekst ondersteunt, in staat om afbeeldingsinhoud nauwkeurig te identificeren en relevante beschrijvingen of antwoorden te genereren."
|
120
|
+
},
|
115
121
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
116
122
|
"description": "Qwen2.5-72B-Instruct is een van de nieuwste grote taalmodellen die door Alibaba Cloud is uitgebracht. Dit 72B-model heeft aanzienlijke verbeteringen in coderings- en wiskundige vaardigheden. Het model biedt ook meertalige ondersteuning, met meer dan 29 ondersteunde talen, waaronder Chinees en Engels. Het model heeft aanzienlijke verbeteringen in het volgen van instructies, het begrijpen van gestructureerde gegevens en het genereren van gestructureerde uitvoer (vooral JSON)."
|
117
123
|
},
|
@@ -233,9 +239,21 @@
|
|
233
239
|
"Qwen2-7B-Instruct": {
|
234
240
|
"description": "Qwen2 is de nieuwste serie van het Qwen-model, dat in staat is om de beste open-source modellen van gelijke grootte of zelfs grotere modellen te overtreffen. Qwen2 7B heeft aanzienlijke voordelen behaald in verschillende evaluaties, vooral op het gebied van code en begrip van het Chinees."
|
235
241
|
},
|
242
|
+
"Qwen2.5-14B-Instruct": {
|
243
|
+
"description": "Qwen2.5-14B-Instruct is een groot taalmodel met 14 miljard parameters, met uitstekende prestaties, geoptimaliseerd voor Chinese en meertalige scenario's, en ondersteunt toepassingen zoals intelligente vraag-en-antwoord en contentgeneratie."
|
244
|
+
},
|
245
|
+
"Qwen2.5-32B-Instruct": {
|
246
|
+
"description": "Qwen2.5-32B-Instruct is een groot taalmodel met 32 miljard parameters, met een evenwichtige prestatie, geoptimaliseerd voor Chinese en meertalige scenario's, en ondersteunt toepassingen zoals intelligente vraag-en-antwoord en contentgeneratie."
|
247
|
+
},
|
236
248
|
"Qwen2.5-72B-Instruct": {
|
237
249
|
"description": "Qwen2.5-72B-Instruct ondersteunt 16k context en genereert lange teksten van meer dan 8K. Het ondersteunt functieaanroepen en naadloze interactie met externe systemen, wat de flexibiliteit en schaalbaarheid aanzienlijk vergroot. De kennis van het model is duidelijk toegenomen en de coderings- en wiskundige vaardigheden zijn sterk verbeterd, met ondersteuning voor meer dan 29 talen."
|
238
250
|
},
|
251
|
+
"Qwen2.5-7B-Instruct": {
|
252
|
+
"description": "Qwen2.5-7B-Instruct is een groot taalmodel met 7 miljard parameters, dat function calls ondersteunt en naadloos kan interageren met externe systemen, wat de flexibiliteit en schaalbaarheid aanzienlijk vergroot. Geoptimaliseerd voor Chinese en meertalige scenario's, ondersteunt het toepassingen zoals intelligente vraag-en-antwoord en contentgeneratie."
|
253
|
+
},
|
254
|
+
"Qwen2.5-Coder-32B-Instruct": {
|
255
|
+
"description": "Qwen2.5-Coder-32B-Instruct is een groot taalmodel dat speciaal is ontworpen voor codegeneratie, codebegrip en efficiënte ontwikkelingsscenario's, met een toonaangevende parameteromvang van 32B, dat kan voldoen aan diverse programmeerbehoeften."
|
256
|
+
},
|
239
257
|
"SenseChat": {
|
240
258
|
"description": "Basisversie van het model (V4), met een contextlengte van 4K, heeft sterke algemene capaciteiten."
|
241
259
|
},
|
@@ -464,6 +482,9 @@
|
|
464
482
|
"claude-3-sonnet-20240229": {
|
465
483
|
"description": "Claude 3 Sonnet biedt een ideale balans tussen intelligentie en snelheid voor bedrijfswerkbelastingen. Het biedt maximale bruikbaarheid tegen een lagere prijs, betrouwbaar en geschikt voor grootschalige implementatie."
|
466
484
|
},
|
485
|
+
"code-raccoon-v1": {
|
486
|
+
"description": "Code Raccoon is een software-intelligente ontwikkelingsassistent gebaseerd op het SenseTime grote taalmodel, dat softwarebehoefteanalyse, architectuurontwerp, code schrijven, softwaretesten en andere fasen dekt, en voldoet aan de verschillende behoeften van gebruikers voor code schrijven en programmeerleren. Code Raccoon ondersteunt meer dan 90 populaire programmeertalen zoals Python, Java, JavaScript, C++, Go, SQL en populaire IDE's zoals VS Code en IntelliJ IDEA. In de praktijk kan Code Raccoon ontwikkelaars helpen om de programmeerefficiëntie met meer dan 50% te verhogen."
|
487
|
+
},
|
467
488
|
"codegeex-4": {
|
468
489
|
"description": "CodeGeeX-4 is een krachtige AI-programmeerassistent die slimme vraag- en antwoordmogelijkheden en code-aanvulling ondersteunt voor verschillende programmeertalen, waardoor de ontwikkelingssnelheid wordt verhoogd."
|
469
490
|
},
|
@@ -752,6 +773,12 @@
|
|
752
773
|
"gpt-4o-mini": {
|
753
774
|
"description": "GPT-4o mini is het nieuwste model van OpenAI, gelanceerd na GPT-4 Omni, en ondersteunt zowel tekst- als beeldinvoer met tekstuitvoer. Als hun meest geavanceerde kleine model is het veel goedkoper dan andere recente toonaangevende modellen en meer dan 60% goedkoper dan GPT-3.5 Turbo. Het behoudt de meest geavanceerde intelligentie met een aanzienlijke prijs-kwaliteitverhouding. GPT-4o mini behaalde 82% op de MMLU-test en staat momenteel hoger in chatvoorkeuren dan GPT-4."
|
754
775
|
},
|
776
|
+
"grok-2-1212": {
|
777
|
+
"description": "Dit model heeft verbeteringen aangebracht in nauwkeurigheid, instructievolging en meertalige capaciteiten."
|
778
|
+
},
|
779
|
+
"grok-2-vision-1212": {
|
780
|
+
"description": "Dit model heeft verbeteringen aangebracht in nauwkeurigheid, instructievolging en meertalige capaciteiten."
|
781
|
+
},
|
755
782
|
"grok-beta": {
|
756
783
|
"description": "Biedt prestaties vergelijkbaar met Grok 2, maar met hogere efficiëntie, snelheid en functionaliteit."
|
757
784
|
},
|
@@ -9,7 +9,10 @@
|
|
9
9
|
"title": "Witaj w {{name}}"
|
10
10
|
}
|
11
11
|
},
|
12
|
-
"
|
12
|
+
"appLoading": {
|
13
|
+
"goToChat": "Ładowanie strony czatu...",
|
14
|
+
"initializing": "Uruchamianie aplikacji..."
|
15
|
+
},
|
13
16
|
"autoGenerate": "Automatyczne generowanie",
|
14
17
|
"autoGenerateTooltip": "Automatyczne uzupełnianie opisu asystenta na podstawie sugestii",
|
15
18
|
"autoGenerateTooltipDisabled": "Proszę wprowadzić słowo kluczowe przed użyciem funkcji automatycznego uzupełniania",
|
@@ -20,6 +23,39 @@
|
|
20
23
|
"branchingDisable": "Funkcja „podtemat” jest dostępna tylko w wersji serwerowej. Aby skorzystać z tej funkcji, przełącz się na tryb wdrożenia serwera lub użyj LobeChat Cloud.",
|
21
24
|
"cancel": "Anuluj",
|
22
25
|
"changelog": "Dziennik zmian",
|
26
|
+
"clientDB": {
|
27
|
+
"autoInit": {
|
28
|
+
"title": "Inicjalizacja bazy danych PGlite"
|
29
|
+
},
|
30
|
+
"error": {
|
31
|
+
"desc": "Przepraszamy, wystąpił błąd podczas inicjalizacji bazy danych PGlite. Proszę kliknąć przycisk „Spróbuj ponownie”.<br><br> Jeśli problem nadal występuje, proszę <1>zgłosić problem</1>, a my jak najszybciej pomożemy w jego rozwiązaniu.",
|
32
|
+
"retry": "Spróbuj ponownie",
|
33
|
+
"title": "Niepowodzenie aktualizacji bazy danych"
|
34
|
+
},
|
35
|
+
"initing": {
|
36
|
+
"error": "Wystąpił błąd, proszę spróbować ponownie",
|
37
|
+
"idle": "Oczekiwanie na inicjalizację...",
|
38
|
+
"initializing": "Inicjalizowanie...",
|
39
|
+
"loadingDependencies": "Ładowanie zależności ({{progress}}%)...",
|
40
|
+
"loadingWasmModule": "Ładowanie modułu WASM ({{progress}}%)...",
|
41
|
+
"migrating": "Migracja danych...",
|
42
|
+
"ready": "Baza danych gotowa"
|
43
|
+
},
|
44
|
+
"modal": {
|
45
|
+
"desc": "Włącz klienta bazy danych PGlite, aby trwale przechowywać dane czatu w przeglądarce i korzystać z zaawansowanych funkcji, takich jak baza wiedzy",
|
46
|
+
"enable": "Włącz teraz",
|
47
|
+
"init": {
|
48
|
+
"desc": "Inicjalizacja bazy danych trwa, w zależności od jakości sieci może zająć od 5 do 30 sekund",
|
49
|
+
"title": "Inicjalizacja bazy danych PGlite"
|
50
|
+
},
|
51
|
+
"title": "Włącz bazę danych klienta"
|
52
|
+
},
|
53
|
+
"ready": {
|
54
|
+
"button": "Użyj teraz",
|
55
|
+
"desc": "Chcę użyć teraz",
|
56
|
+
"title": "Baza danych PGlite jest gotowa"
|
57
|
+
}
|
58
|
+
},
|
23
59
|
"close": "Zamknij",
|
24
60
|
"contact": "Skontaktuj się z nami",
|
25
61
|
"copy": "Kopiuj",
|
@@ -112,6 +112,12 @@
|
|
112
112
|
"Gryphe/MythoMax-L2-13b": {
|
113
113
|
"description": "MythoMax-L2 (13B) to innowacyjny model, idealny do zastosowań w wielu dziedzinach i złożonych zadań."
|
114
114
|
},
|
115
|
+
"InternVL2-8B": {
|
116
|
+
"description": "InternVL2-8B to potężny model językowy wizualny, wspierający przetwarzanie multimodalne obrazów i tekstu, zdolny do precyzyjnego rozpoznawania treści obrazów i generowania odpowiednich opisów lub odpowiedzi."
|
117
|
+
},
|
118
|
+
"InternVL2.5-26B": {
|
119
|
+
"description": "InternVL2.5-26B to potężny model językowy wizualny, wspierający przetwarzanie multimodalne obrazów i tekstu, zdolny do precyzyjnego rozpoznawania treści obrazów i generowania odpowiednich opisów lub odpowiedzi."
|
120
|
+
},
|
115
121
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
116
122
|
"description": "Qwen2.5-72B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 72B ma znacząco poprawione zdolności w zakresie kodowania i matematyki. Oferuje również wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model ten wykazuje znaczną poprawę w zakresie przestrzegania instrukcji, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
|
117
123
|
},
|
@@ -233,9 +239,21 @@
|
|
233
239
|
"Qwen2-7B-Instruct": {
|
234
240
|
"description": "Qwen2 to najnowsza seria modeli Qwen, która przewyższa najlepsze modele open source o podobnej skali, a nawet większe. Qwen2 7B osiągnęła znaczną przewagę w wielu testach, szczególnie w zakresie kodowania i rozumienia języka chińskiego."
|
235
241
|
},
|
242
|
+
"Qwen2.5-14B-Instruct": {
|
243
|
+
"description": "Qwen2.5-14B-Instruct to model językowy z 14 miliardami parametrów, o doskonałej wydajności, optymalizujący scenariusze w języku chińskim i wielojęzyczne, wspierający inteligentne odpowiedzi, generowanie treści i inne zastosowania."
|
244
|
+
},
|
245
|
+
"Qwen2.5-32B-Instruct": {
|
246
|
+
"description": "Qwen2.5-32B-Instruct to model językowy z 32 miliardami parametrów, o zrównoważonej wydajności, optymalizujący scenariusze w języku chińskim i wielojęzyczne, wspierający inteligentne odpowiedzi, generowanie treści i inne zastosowania."
|
247
|
+
},
|
236
248
|
"Qwen2.5-72B-Instruct": {
|
237
249
|
"description": "Qwen2.5-72B-Instruct obsługuje kontekst 16k, generując długie teksty przekraczające 8K. Wspiera wywołania funkcji i bezproblemową interakcję z systemami zewnętrznymi, znacznie zwiększając elastyczność i skalowalność. Wiedza modelu znacznie wzrosła, a jego zdolności w zakresie kodowania i matematyki uległy znacznemu poprawieniu, z obsługą ponad 29 języków."
|
238
250
|
},
|
251
|
+
"Qwen2.5-7B-Instruct": {
|
252
|
+
"description": "Qwen2.5-7B-Instruct to model językowy z 7 miliardami parametrów, wspierający wywołania funkcji i bezproblemową interakcję z systemami zewnętrznymi, znacznie zwiększając elastyczność i skalowalność. Optymalizuje scenariusze w języku chińskim i wielojęzyczne, wspierając inteligentne odpowiedzi, generowanie treści i inne zastosowania."
|
253
|
+
},
|
254
|
+
"Qwen2.5-Coder-32B-Instruct": {
|
255
|
+
"description": "Qwen2.5-Coder-32B-Instruct to duży model językowy zaprojektowany specjalnie do generowania kodu, rozumienia kodu i efektywnych scenariuszy rozwoju, wykorzystujący wiodącą w branży skalę 32B parametrów, zdolny do zaspokojenia różnorodnych potrzeb programistycznych."
|
256
|
+
},
|
239
257
|
"SenseChat": {
|
240
258
|
"description": "Podstawowa wersja modelu (V4), długość kontekstu 4K, silne zdolności ogólne."
|
241
259
|
},
|
@@ -464,6 +482,9 @@
|
|
464
482
|
"claude-3-sonnet-20240229": {
|
465
483
|
"description": "Claude 3 Sonnet zapewnia idealną równowagę między inteligencją a szybkością dla obciążeń roboczych w przedsiębiorstwach. Oferuje maksymalną użyteczność przy niższej cenie, jest niezawodny i odpowiedni do dużych wdrożeń."
|
466
484
|
},
|
485
|
+
"code-raccoon-v1": {
|
486
|
+
"description": "Code Raccoon to inteligentny asystent do rozwoju oprogramowania oparty na dużym modelu językowym SenseTime, obejmujący analizę wymagań oprogramowania, projektowanie architektury, pisanie kodu, testowanie oprogramowania i inne etapy, zaspokajający różnorodne potrzeby użytkowników w zakresie pisania kodu i nauki programowania. Code Raccoon wspiera ponad 90 popularnych języków programowania, takich jak Python, Java, JavaScript, C++, Go, SQL oraz popularne IDE, takie jak VS Code i IntelliJ IDEA. W praktyce Code Raccoon może pomóc programistom zwiększyć wydajność programowania o ponad 50%."
|
487
|
+
},
|
467
488
|
"codegeex-4": {
|
468
489
|
"description": "CodeGeeX-4 to potężny asystent programowania AI, obsługujący inteligentne pytania i odpowiedzi oraz uzupełnianie kodu w różnych językach programowania, zwiększając wydajność programistów."
|
469
490
|
},
|
@@ -752,6 +773,12 @@
|
|
752
773
|
"gpt-4o-mini": {
|
753
774
|
"description": "GPT-4o mini to najnowszy model OpenAI, wprowadzony po GPT-4 Omni, obsługujący wejścia tekstowe i wizualne oraz generujący tekst. Jako ich najnowocześniejszy model w małej skali, jest znacznie tańszy niż inne niedawno wprowadzone modele, a jego cena jest o ponad 60% niższa niż GPT-3.5 Turbo. Utrzymuje najnowocześniejszą inteligencję, jednocześnie oferując znaczną wartość za pieniądze. GPT-4o mini uzyskał wynik 82% w teście MMLU i obecnie zajmuje wyższą pozycję w preferencjach czatu niż GPT-4."
|
754
775
|
},
|
776
|
+
"grok-2-1212": {
|
777
|
+
"description": "Model ten poprawił dokładność, przestrzeganie instrukcji oraz zdolności wielojęzyczne."
|
778
|
+
},
|
779
|
+
"grok-2-vision-1212": {
|
780
|
+
"description": "Model ten poprawił dokładność, przestrzeganie instrukcji oraz zdolności wielojęzyczne."
|
781
|
+
},
|
755
782
|
"grok-beta": {
|
756
783
|
"description": "Oferuje wydajność porównywalną z Grok 2, ale z wyższą efektywnością, prędkością i funkcjonalnością."
|
757
784
|
},
|
@@ -9,7 +9,10 @@
|
|
9
9
|
"title": "Bem-vindo para experimentar {{name}}"
|
10
10
|
}
|
11
11
|
},
|
12
|
-
"
|
12
|
+
"appLoading": {
|
13
|
+
"goToChat": "Carregando página de chat...",
|
14
|
+
"initializing": "Iniciando aplicativo..."
|
15
|
+
},
|
13
16
|
"autoGenerate": "Auto completar",
|
14
17
|
"autoGenerateTooltip": "Auto completar descrição do assistente com base em sugestões",
|
15
18
|
"autoGenerateTooltipDisabled": "Por favor, preencha a dica antes de usar a função de preenchimento automático",
|
@@ -20,6 +23,39 @@
|
|
20
23
|
"branchingDisable": "A funcionalidade de \"subtópico\" está disponível apenas na versão do servidor. Se precisar dessa funcionalidade, mude para o modo de implantação no servidor ou use o LobeChat Cloud.",
|
21
24
|
"cancel": "Cancelar",
|
22
25
|
"changelog": "Registro de alterações",
|
26
|
+
"clientDB": {
|
27
|
+
"autoInit": {
|
28
|
+
"title": "Inicializando o banco de dados PGlite"
|
29
|
+
},
|
30
|
+
"error": {
|
31
|
+
"desc": "Desculpe, ocorreu uma exceção durante o processo de inicialização do banco de dados PGlite. Por favor, clique no botão 'Tentar Novamente'.<br><br> Se o erro persistir, por favor <1>envie um problema</1>, e nós iremos ajudá-lo o mais rápido possível",
|
32
|
+
"retry": "Tentar Novamente",
|
33
|
+
"title": "Falha na atualização do banco de dados"
|
34
|
+
},
|
35
|
+
"initing": {
|
36
|
+
"error": "Ocorreu um erro, por favor tente novamente",
|
37
|
+
"idle": "Aguardando inicialização...",
|
38
|
+
"initializing": "Inicializando...",
|
39
|
+
"loadingDependencies": "Carregando dependências({{progress}}%)...",
|
40
|
+
"loadingWasmModule": "Carregando módulo WASM({{progress}}%)...",
|
41
|
+
"migrating": "Migrando dados...",
|
42
|
+
"ready": "Banco de dados pronto"
|
43
|
+
},
|
44
|
+
"modal": {
|
45
|
+
"desc": "Ative o banco de dados cliente PGlite para armazenar dados de chat de forma persistente no seu navegador e usar recursos avançados como a base de conhecimento",
|
46
|
+
"enable": "Ativar agora",
|
47
|
+
"init": {
|
48
|
+
"desc": "Inicializando o banco de dados, pode levar de 5 a 30 segundos dependendo da rede",
|
49
|
+
"title": "Inicializando o banco de dados PGlite"
|
50
|
+
},
|
51
|
+
"title": "Ativar banco de dados cliente"
|
52
|
+
},
|
53
|
+
"ready": {
|
54
|
+
"button": "Usar agora",
|
55
|
+
"desc": "Pronto para uso",
|
56
|
+
"title": "Banco de dados PGlite pronto"
|
57
|
+
}
|
58
|
+
},
|
23
59
|
"close": "Fechar",
|
24
60
|
"contact": "Entre em contato",
|
25
61
|
"copy": "Copiar",
|
@@ -112,6 +112,12 @@
|
|
112
112
|
"Gryphe/MythoMax-L2-13b": {
|
113
113
|
"description": "MythoMax-L2 (13B) é um modelo inovador, adequado para aplicações em múltiplas áreas e tarefas complexas."
|
114
114
|
},
|
115
|
+
"InternVL2-8B": {
|
116
|
+
"description": "InternVL2-8B é um poderoso modelo de linguagem visual, que suporta processamento multimodal de imagens e textos, capaz de identificar com precisão o conteúdo da imagem e gerar descrições ou respostas relevantes."
|
117
|
+
},
|
118
|
+
"InternVL2.5-26B": {
|
119
|
+
"description": "InternVL2.5-26B é um poderoso modelo de linguagem visual, que suporta processamento multimodal de imagens e textos, capaz de identificar com precisão o conteúdo da imagem e gerar descrições ou respostas relevantes."
|
120
|
+
},
|
115
121
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
116
122
|
"description": "Qwen2.5-72B-Instruct é um dos mais recentes modelos de linguagem de grande escala lançados pela Alibaba Cloud. Este modelo de 72B apresenta melhorias significativas em áreas como codificação e matemática. O modelo também oferece suporte multilíngue, abrangendo mais de 29 idiomas, incluindo chinês e inglês. O modelo teve melhorias significativas em seguir instruções, entender dados estruturados e gerar saídas estruturadas (especialmente JSON)."
|
117
123
|
},
|
@@ -233,9 +239,21 @@
|
|
233
239
|
"Qwen2-7B-Instruct": {
|
234
240
|
"description": "Qwen2 é a mais recente série do modelo Qwen, capaz de superar modelos de código aberto de tamanho equivalente e até mesmo modelos de maior escala. O Qwen2 7B obteve vantagens significativas em várias avaliações, especialmente em compreensão de código e chinês."
|
235
241
|
},
|
242
|
+
"Qwen2.5-14B-Instruct": {
|
243
|
+
"description": "Qwen2.5-14B-Instruct é um grande modelo de linguagem com 14 bilhões de parâmetros, com desempenho excelente, otimizado para cenários em chinês e multilíngues, suportando aplicações como perguntas e respostas inteligentes e geração de conteúdo."
|
244
|
+
},
|
245
|
+
"Qwen2.5-32B-Instruct": {
|
246
|
+
"description": "Qwen2.5-32B-Instruct é um grande modelo de linguagem com 32 bilhões de parâmetros, com desempenho equilibrado, otimizado para cenários em chinês e multilíngues, suportando aplicações como perguntas e respostas inteligentes e geração de conteúdo."
|
247
|
+
},
|
236
248
|
"Qwen2.5-72B-Instruct": {
|
237
249
|
"description": "Qwen2.5-72B-Instruct suporta 16k de contexto, gerando textos longos com mais de 8K. Suporta chamadas de função e interação sem costura com sistemas externos, aumentando significativamente a flexibilidade e escalabilidade. O conhecimento do modelo aumentou consideravelmente, e suas habilidades em codificação e matemática melhoraram muito, com suporte a mais de 29 idiomas."
|
238
250
|
},
|
251
|
+
"Qwen2.5-7B-Instruct": {
|
252
|
+
"description": "Qwen2.5-7B-Instruct é um grande modelo de linguagem com 7 bilhões de parâmetros, que suporta chamadas de função e interação sem costura com sistemas externos, aumentando significativamente a flexibilidade e escalabilidade. Otimizado para cenários em chinês e multilíngues, suporta aplicações como perguntas e respostas inteligentes e geração de conteúdo."
|
253
|
+
},
|
254
|
+
"Qwen2.5-Coder-32B-Instruct": {
|
255
|
+
"description": "Qwen2.5-Coder-32B-Instruct é um grande modelo de linguagem projetado para geração de código, compreensão de código e cenários de desenvolvimento eficiente, com uma escala de 32 bilhões de parâmetros, atendendo a diversas necessidades de programação."
|
256
|
+
},
|
239
257
|
"SenseChat": {
|
240
258
|
"description": "Modelo da versão básica (V4), com comprimento de contexto de 4K, com capacidades gerais poderosas."
|
241
259
|
},
|
@@ -464,6 +482,9 @@
|
|
464
482
|
"claude-3-sonnet-20240229": {
|
465
483
|
"description": "Claude 3 Sonnet oferece um equilíbrio ideal entre inteligência e velocidade para cargas de trabalho empresariais. Ele fornece máxima utilidade a um custo mais baixo, sendo confiável e adequado para implantação em larga escala."
|
466
484
|
},
|
485
|
+
"code-raccoon-v1": {
|
486
|
+
"description": "O Código Raccoon é um assistente de desenvolvimento inteligente baseado no grande modelo de linguagem da SenseTime, cobrindo análise de requisitos de software, design de arquitetura, escrita de código, testes de software e outros aspectos, atendendo a diversas necessidades de escrita de código e aprendizado de programação. O Código Raccoon suporta mais de 90 linguagens de programação populares, como Python, Java, JavaScript, C++, Go, SQL, e IDEs populares como VS Code e IntelliJ IDEA. Na prática, o Código Raccoon pode ajudar os desenvolvedores a aumentar a eficiência da programação em mais de 50%."
|
487
|
+
},
|
467
488
|
"codegeex-4": {
|
468
489
|
"description": "O CodeGeeX-4 é um poderoso assistente de programação AI, suportando perguntas e respostas inteligentes e autocompletar em várias linguagens de programação, aumentando a eficiência do desenvolvimento."
|
469
490
|
},
|
@@ -752,6 +773,12 @@
|
|
752
773
|
"gpt-4o-mini": {
|
753
774
|
"description": "O GPT-4o mini é o mais recente modelo lançado pela OpenAI após o GPT-4 Omni, suportando entrada de texto e imagem e gerando texto como saída. Como seu modelo compacto mais avançado, ele é muito mais acessível do que outros modelos de ponta recentes, custando mais de 60% menos que o GPT-3.5 Turbo. Ele mantém uma inteligência de ponta, ao mesmo tempo que oferece um custo-benefício significativo. O GPT-4o mini obteve uma pontuação de 82% no teste MMLU e atualmente está classificado acima do GPT-4 em preferências de chat."
|
754
775
|
},
|
776
|
+
"grok-2-1212": {
|
777
|
+
"description": "Este modelo apresenta melhorias em precisão, conformidade com instruções e capacidade multilíngue."
|
778
|
+
},
|
779
|
+
"grok-2-vision-1212": {
|
780
|
+
"description": "Este modelo apresenta melhorias em precisão, conformidade com instruções e capacidade multilíngue."
|
781
|
+
},
|
755
782
|
"grok-beta": {
|
756
783
|
"description": "Apresenta desempenho equivalente ao Grok 2, mas com maior eficiência, velocidade e funcionalidades."
|
757
784
|
},
|
@@ -9,7 +9,10 @@
|
|
9
9
|
"title": "Добро пожаловать в {{name}}"
|
10
10
|
}
|
11
11
|
},
|
12
|
-
"
|
12
|
+
"appLoading": {
|
13
|
+
"goToChat": "Загрузка страницы чата...",
|
14
|
+
"initializing": "Запуск приложения..."
|
15
|
+
},
|
13
16
|
"autoGenerate": "Автозаполнение",
|
14
17
|
"autoGenerateTooltip": "Автоматическое дополнение описания агента на основе подсказок",
|
15
18
|
"autoGenerateTooltipDisabled": "Пожалуйста, введите подсказку перед использованием функции автозаполнения",
|
@@ -20,6 +23,39 @@
|
|
20
23
|
"branchingDisable": "Функция «Подтема» доступна только в серверной версии. Если вам нужна эта функция, переключитесь на серверный режим развертывания или используйте LobeChat Cloud.",
|
21
24
|
"cancel": "Отмена",
|
22
25
|
"changelog": "История изменений",
|
26
|
+
"clientDB": {
|
27
|
+
"autoInit": {
|
28
|
+
"title": "Инициализация базы данных PGlite"
|
29
|
+
},
|
30
|
+
"error": {
|
31
|
+
"desc": "К сожалению, произошла ошибка в процессе инициализации базы данных PGlite. Пожалуйста, нажмите кнопку «Повторить».<br><br> Если ошибка повторяется, пожалуйста, <1>сообщите о проблеме</1>, и мы поможем вам в кратчайшие сроки.",
|
32
|
+
"retry": "Повторить",
|
33
|
+
"title": "Ошибка обновления базы данных"
|
34
|
+
},
|
35
|
+
"initing": {
|
36
|
+
"error": "Произошла ошибка, пожалуйста, повторите попытку",
|
37
|
+
"idle": "Ожидание инициализации...",
|
38
|
+
"initializing": "Инициализация...",
|
39
|
+
"loadingDependencies": "Загрузка зависимостей ({{progress}}%)...",
|
40
|
+
"loadingWasmModule": "Загрузка модуля WASM ({{progress}}%)...",
|
41
|
+
"migrating": "Миграция данных...",
|
42
|
+
"ready": "База данных готова"
|
43
|
+
},
|
44
|
+
"modal": {
|
45
|
+
"desc": "Включите клиентскую базу данных PGlite для постоянного хранения данных чата в вашем браузере и использования таких расширенных функций, как база знаний.",
|
46
|
+
"enable": "Включить сейчас",
|
47
|
+
"init": {
|
48
|
+
"desc": "Идет инициализация базы данных, в зависимости от сети это может занять от 5 до 30 секунд.",
|
49
|
+
"title": "Инициализация базы данных PGlite"
|
50
|
+
},
|
51
|
+
"title": "Включить клиентскую базу данных"
|
52
|
+
},
|
53
|
+
"ready": {
|
54
|
+
"button": "Использовать сейчас",
|
55
|
+
"desc": "Использовать сейчас",
|
56
|
+
"title": "База данных PGlite готова"
|
57
|
+
}
|
58
|
+
},
|
23
59
|
"close": "Закрыть",
|
24
60
|
"contact": "Свяжитесь с нами",
|
25
61
|
"copy": "Копировать",
|
@@ -112,6 +112,12 @@
|
|
112
112
|
"Gryphe/MythoMax-L2-13b": {
|
113
113
|
"description": "MythoMax-L2 (13B) — это инновационная модель, подходящая для многообластных приложений и сложных задач."
|
114
114
|
},
|
115
|
+
"InternVL2-8B": {
|
116
|
+
"description": "InternVL2-8B — это мощная визуально-языковая модель, поддерживающая многомодальную обработку изображений и текста, способная точно распознавать содержимое изображений и генерировать соответствующие описания или ответы."
|
117
|
+
},
|
118
|
+
"InternVL2.5-26B": {
|
119
|
+
"description": "InternVL2.5-26B — это мощная визуально-языковая модель, поддерживающая многомодальную обработку изображений и текста, способная точно распознавать содержимое изображений и генерировать соответствующие описания или ответы."
|
120
|
+
},
|
115
121
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
116
122
|
"description": "Qwen2.5-72B-Instruct — это одна из последних языковых моделей, выпущенных Alibaba Cloud. Эта 72B модель значительно улучшила способности в области кодирования и математики. Модель также поддерживает множество языков, охватывающих более 29 языков, включая китайский и английский. Она значительно улучшила выполнение инструкций, понимание структурированных данных и генерацию структурированных выходных данных (особенно JSON)."
|
117
123
|
},
|
@@ -233,9 +239,21 @@
|
|
233
239
|
"Qwen2-7B-Instruct": {
|
234
240
|
"description": "Qwen2 — это последняя серия моделей Qwen, способная превосходить лучшие открытые модели сопоставимого размера и даже более крупные модели. Qwen2 7B демонстрирует значительные преимущества в нескольких тестах, особенно в понимании кода и китайского языка."
|
235
241
|
},
|
242
|
+
"Qwen2.5-14B-Instruct": {
|
243
|
+
"description": "Qwen2.5-14B-Instruct — это языковая модель с 14 миллиардами параметров, с отличными показателями производительности, оптимизированная для китайского и многоязычного контекста, поддерживает интеллектуальные ответы, генерацию контента и другие приложения."
|
244
|
+
},
|
245
|
+
"Qwen2.5-32B-Instruct": {
|
246
|
+
"description": "Qwen2.5-32B-Instruct — это языковая модель с 32 миллиардами параметров, с сбалансированными показателями производительности, оптимизированная для китайского и многоязычного контекста, поддерживает интеллектуальные ответы, генерацию контента и другие приложения."
|
247
|
+
},
|
236
248
|
"Qwen2.5-72B-Instruct": {
|
237
249
|
"description": "Qwen2.5-72B-Instruct поддерживает контекст до 16k, генерируя длинные тексты более 8K. Поддерживает вызовы функций и бесшовное взаимодействие с внешними системами, что значительно повышает гибкость и масштабируемость. Знания модели значительно увеличены, а способности в кодировании и математике значительно улучшены, поддерживает более 29 языков."
|
238
250
|
},
|
251
|
+
"Qwen2.5-7B-Instruct": {
|
252
|
+
"description": "Qwen2.5-7B-Instruct — это языковая модель с 7 миллиардами параметров, поддерживающая вызовы функций и бесшовное взаимодействие с внешними системами, что значительно повышает гибкость и масштабируемость. Оптимизирована для китайского и многоязычного контекста, поддерживает интеллектуальные ответы, генерацию контента и другие приложения."
|
253
|
+
},
|
254
|
+
"Qwen2.5-Coder-32B-Instruct": {
|
255
|
+
"description": "Qwen2.5-Coder-32B-Instruct — это крупная языковая модель, специально разработанная для генерации кода, понимания кода и эффективных сценариев разработки, с передовым масштабом параметров 32B, способная удовлетворить разнообразные потребности программирования."
|
256
|
+
},
|
239
257
|
"SenseChat": {
|
240
258
|
"description": "Базовая версия модели (V4), длина контекста 4K, обладает мощными универсальными возможностями."
|
241
259
|
},
|
@@ -464,6 +482,9 @@
|
|
464
482
|
"claude-3-sonnet-20240229": {
|
465
483
|
"description": "Claude 3 Sonnet обеспечивает идеальный баланс между интеллектом и скоростью для корпоративных рабочих нагрузок. Он предлагает максимальную полезность по более низкой цене, надежен и подходит для масштабного развертывания."
|
466
484
|
},
|
485
|
+
"code-raccoon-v1": {
|
486
|
+
"description": "Кодовый енот — это программный интеллектуальный помощник на основе языковой модели SenseTime, охватывающий такие этапы, как анализ требований к программному обеспечению, проектирование архитектуры, написание кода, тестирование программного обеспечения и т. д., удовлетворяющий различные потребности пользователей в написании кода и обучении программированию. Кодовый енот поддерживает более 90 популярных языков программирования, таких как Python, Java, JavaScript, C++, Go, SQL, а также популярные IDE, такие как VS Code и IntelliJ IDEA. В реальных приложениях кодовый енот может помочь разработчикам повысить эффективность программирования более чем на 50%."
|
487
|
+
},
|
467
488
|
"codegeex-4": {
|
468
489
|
"description": "CodeGeeX-4 — это мощный AI помощник по программированию, поддерживающий интеллектуальные ответы и автозаполнение кода на различных языках программирования, повышая эффективность разработки."
|
469
490
|
},
|
@@ -752,6 +773,12 @@
|
|
752
773
|
"gpt-4o-mini": {
|
753
774
|
"description": "GPT-4o mini — это последняя модель, выпущенная OpenAI после GPT-4 Omni, поддерживающая ввод изображений и текстов с выводом текста. Как их самый продвинутый компактный модель, она значительно дешевле других недавних передовых моделей и более чем на 60% дешевле GPT-3.5 Turbo. Она сохраняет передовой уровень интеллекта при значительном соотношении цена-качество. GPT-4o mini набрала 82% на тесте MMLU и в настоящее время занимает более высокое место в предпочтениях чата по сравнению с GPT-4."
|
754
775
|
},
|
776
|
+
"grok-2-1212": {
|
777
|
+
"description": "Модель улучшена в точности, соблюдении инструкций и многоязычных возможностях."
|
778
|
+
},
|
779
|
+
"grok-2-vision-1212": {
|
780
|
+
"description": "Модель улучшена в точности, соблюдении инструкций и многоязычных возможностях."
|
781
|
+
},
|
755
782
|
"grok-beta": {
|
756
783
|
"description": "Обладает производительностью, сопоставимой с Grok 2, но с большей эффективностью, скоростью и функциональностью."
|
757
784
|
},
|
@@ -9,7 +9,10 @@
|
|
9
9
|
"title": "{{name}}'i Denemek İçin Hoş Geldiniz"
|
10
10
|
}
|
11
11
|
},
|
12
|
-
"
|
12
|
+
"appLoading": {
|
13
|
+
"goToChat": "Sohbet sayfası yükleniyor...",
|
14
|
+
"initializing": "Uygulama başlatılıyor..."
|
15
|
+
},
|
13
16
|
"autoGenerate": "Otomatik Oluştur",
|
14
17
|
"autoGenerateTooltip": "Auto-generate agent description based on prompts",
|
15
18
|
"autoGenerateTooltipDisabled": "Otomatik tamamlama işlevini kullanmadan önce ipucu kelimesini girin",
|
@@ -20,6 +23,39 @@
|
|
20
23
|
"branchingDisable": "«Alt konu» özelliği yalnızca sunucu sürümünde mevcuttur. Bu özelliği kullanmak için lütfen sunucu dağıtım moduna geçin veya LobeChat Cloud'u kullanın.",
|
21
24
|
"cancel": "İptal",
|
22
25
|
"changelog": "Changelog",
|
26
|
+
"clientDB": {
|
27
|
+
"autoInit": {
|
28
|
+
"title": "PGlite veritabanı başlatılıyor"
|
29
|
+
},
|
30
|
+
"error": {
|
31
|
+
"desc": "Üzgünüz, PGlite veritabanı başlatma sürecinde bir hata oluştu. Lütfen 'Tekrar Dene' butonuna tıklayın.<br><br> Hala hata alıyorsanız, lütfen <1>bir sorun bildirin</1>, size en kısa sürede yardımcı olacağız.",
|
32
|
+
"retry": "Tekrar Dene",
|
33
|
+
"title": "Veritabanı güncellemesi başarısız"
|
34
|
+
},
|
35
|
+
"initing": {
|
36
|
+
"error": "Hata oluştu, lütfen tekrar deneyin",
|
37
|
+
"idle": "Başlatma bekleniyor...",
|
38
|
+
"initializing": "Başlatılıyor...",
|
39
|
+
"loadingDependencies": "Bağımlılıklar yükleniyor ({{progress}}%)...",
|
40
|
+
"loadingWasmModule": "WASM modülü yükleniyor ({{progress}}%)...",
|
41
|
+
"migrating": "Veri taşınıyor...",
|
42
|
+
"ready": "Veritabanı hazır"
|
43
|
+
},
|
44
|
+
"modal": {
|
45
|
+
"desc": "PGlite istemci veritabanını etkinleştirerek, tarayıcınızda sohbet verilerini kalıcı olarak depolayın ve bilgi bankası gibi gelişmiş özellikleri kullanın.",
|
46
|
+
"enable": "Hemen Etkinleştir",
|
47
|
+
"init": {
|
48
|
+
"desc": "Veritabanı başlatılıyor, ağ farklılıklarına bağlı olarak 5-30 saniye sürebilir.",
|
49
|
+
"title": "PGlite veritabanı başlatılıyor"
|
50
|
+
},
|
51
|
+
"title": "İstemci veritabanını aç"
|
52
|
+
},
|
53
|
+
"ready": {
|
54
|
+
"button": "Hemen Kullan",
|
55
|
+
"desc": "Hemen kullanmak istiyorum",
|
56
|
+
"title": "PGlite veritabanı hazır"
|
57
|
+
}
|
58
|
+
},
|
23
59
|
"close": "Kapat",
|
24
60
|
"contact": "Bize Ulaşın",
|
25
61
|
"copy": "Kopyala",
|
@@ -112,6 +112,12 @@
|
|
112
112
|
"Gryphe/MythoMax-L2-13b": {
|
113
113
|
"description": "MythoMax-L2 (13B), çok alanlı uygulamalar ve karmaşık görevler için uygun yenilikçi bir modeldir."
|
114
114
|
},
|
115
|
+
"InternVL2-8B": {
|
116
|
+
"description": "InternVL2-8B, güçlü bir görsel dil modelidir. Görüntü ve metinlerin çok modlu işlenmesini destekler, görüntü içeriğini hassas bir şekilde tanıyabilir ve ilgili açıklamalar veya yanıtlar üretebilir."
|
117
|
+
},
|
118
|
+
"InternVL2.5-26B": {
|
119
|
+
"description": "InternVL2.5-26B, güçlü bir görsel dil modelidir. Görüntü ve metinlerin çok modlu işlenmesini destekler, görüntü içeriğini hassas bir şekilde tanıyabilir ve ilgili açıklamalar veya yanıtlar üretebilir."
|
120
|
+
},
|
115
121
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
116
122
|
"description": "Qwen2.5-72B-Instruct, Alibaba Cloud tarafından yayınlanan en son büyük dil modeli serilerinden biridir. Bu 72B modeli, kodlama ve matematik gibi alanlarda önemli ölçüde geliştirilmiş yeteneklere sahiptir. Model ayrıca, Çince, İngilizce gibi 29'dan fazla dili kapsayan çok dilli destek sunmaktadır. Model, talimat takibi, yapılandırılmış verileri anlama ve yapılandırılmış çıktı (özellikle JSON) üretme konularında önemli iyileştirmeler göstermektedir."
|
117
123
|
},
|
@@ -233,9 +239,21 @@
|
|
233
239
|
"Qwen2-7B-Instruct": {
|
234
240
|
"description": "Qwen2, Qwen modelinin en yeni serisidir ve eşit ölçekli en iyi açık kaynak modelleri hatta daha büyük ölçekli modelleri aşabilmektedir. Qwen2 7B, birçok değerlendirmede belirgin bir avantaj elde etmiş, özellikle kod ve Çince anlama konusunda."
|
235
241
|
},
|
242
|
+
"Qwen2.5-14B-Instruct": {
|
243
|
+
"description": "Qwen2.5-14B-Instruct, 14 milyar parametreye sahip büyük bir dil modelidir. Performansı mükemmel olup, Çince ve çok dilli senaryoları optimize eder, akıllı soru-cevap, içerik üretimi gibi uygulamaları destekler."
|
244
|
+
},
|
245
|
+
"Qwen2.5-32B-Instruct": {
|
246
|
+
"description": "Qwen2.5-32B-Instruct, 32 milyar parametreye sahip büyük bir dil modelidir. Performans dengeli olup, Çince ve çok dilli senaryoları optimize eder, akıllı soru-cevap, içerik üretimi gibi uygulamaları destekler."
|
247
|
+
},
|
236
248
|
"Qwen2.5-72B-Instruct": {
|
237
249
|
"description": "Qwen2.5-72B-Instruct, 16k bağlamı destekler ve 8K'dan uzun metinler üretebilir. Fonksiyon çağrısı ile dış sistemlerle sorunsuz etkileşim sağlar, esneklik ve ölçeklenebilirliği büyük ölçüde artırır. Modelin bilgisi belirgin şekilde artmış ve kodlama ile matematik yetenekleri büyük ölçüde geliştirilmiştir, 29'dan fazla dil desteği sunmaktadır."
|
238
250
|
},
|
251
|
+
"Qwen2.5-7B-Instruct": {
|
252
|
+
"description": "Qwen2.5-7B-Instruct, 7 milyar parametreye sahip büyük bir dil modelidir. Fonksiyon çağrısı ile dış sistemlerle sorunsuz etkileşim destekler, esneklik ve ölçeklenebilirliği büyük ölçüde artırır. Çince ve çok dilli senaryoları optimize eder, akıllı soru-cevap, içerik üretimi gibi uygulamaları destekler."
|
253
|
+
},
|
254
|
+
"Qwen2.5-Coder-32B-Instruct": {
|
255
|
+
"description": "Qwen2.5-Coder-32B-Instruct, kod üretimi, kod anlama ve verimli geliştirme senaryoları için tasarlanmış büyük bir dil modelidir. Sektördeki en ileri 32B parametre ölçeğini kullanarak çeşitli programlama ihtiyaçlarını karşılayabilir."
|
256
|
+
},
|
239
257
|
"SenseChat": {
|
240
258
|
"description": "Temel sürüm model (V4), 4K bağlam uzunluğu ile genel yetenekleri güçlüdür."
|
241
259
|
},
|
@@ -464,6 +482,9 @@
|
|
464
482
|
"claude-3-sonnet-20240229": {
|
465
483
|
"description": "Claude 3 Sonnet, akıllı ve hızlı bir denge sunarak kurumsal iş yükleri için idealdir. Daha düşük bir fiyatla maksimum fayda sağlar, güvenilir ve büyük ölçekli dağıtım için uygundur."
|
466
484
|
},
|
485
|
+
"code-raccoon-v1": {
|
486
|
+
"description": "Kod Rakun, SenseTime büyük dil modeline dayanan bir yazılım akıllı geliştirme asistanıdır. Yazılım gereksinim analizi, mimari tasarım, kod yazımı, yazılım testi gibi aşamaları kapsar ve kullanıcıların kod yazma, programlama öğrenme gibi çeşitli ihtiyaçlarını karşılar. Kod Rakun, Python, Java, JavaScript, C++, Go, SQL gibi 90'dan fazla popüler programlama dilini ve VS Code, IntelliJ IDEA gibi popüler IDE'leri destekler. Gerçek uygulamalarda, Kod Rakun geliştiricilerin programlama verimliliğini %50'den fazla artırmasına yardımcı olabilir."
|
487
|
+
},
|
467
488
|
"codegeex-4": {
|
468
489
|
"description": "CodeGeeX-4, çeşitli programlama dillerinde akıllı soru-cevap ve kod tamamlama desteği sunan güçlü bir AI programlama asistanıdır, geliştirme verimliliğini artırır."
|
469
490
|
},
|
@@ -752,6 +773,12 @@
|
|
752
773
|
"gpt-4o-mini": {
|
753
774
|
"description": "GPT-4o mini, OpenAI'nin GPT-4 Omni'den sonra tanıttığı en yeni modeldir. Görsel ve metin girişi destekler ve metin çıktısı verir. En gelişmiş küçük model olarak, diğer son zamanlardaki öncü modellere göre çok daha ucuzdur ve GPT-3.5 Turbo'dan %60'tan fazla daha ucuzdur. En son teknolojiyi korurken, önemli bir maliyet etkinliği sunar. GPT-4o mini, MMLU testinde %82 puan almış olup, şu anda sohbet tercihleri açısından GPT-4'ün üzerinde yer almaktadır."
|
754
775
|
},
|
776
|
+
"grok-2-1212": {
|
777
|
+
"description": "Bu model, doğruluk, talimat takibi ve çok dilli yetenekler açısından geliştirilmiştir."
|
778
|
+
},
|
779
|
+
"grok-2-vision-1212": {
|
780
|
+
"description": "Bu model, doğruluk, talimat takibi ve çok dilli yetenekler açısından geliştirilmiştir."
|
781
|
+
},
|
755
782
|
"grok-beta": {
|
756
783
|
"description": "Grok 2 ile karşılaştırılabilir performansa sahip, ancak daha yüksek verimlilik, hız ve işlevsellik sunar."
|
757
784
|
},
|
@@ -9,7 +9,10 @@
|
|
9
9
|
"title": "Chào mừng bạn trải nghiệm {{name}}"
|
10
10
|
}
|
11
11
|
},
|
12
|
-
"
|
12
|
+
"appLoading": {
|
13
|
+
"goToChat": "Đang tải trang trò chuyện...",
|
14
|
+
"initializing": "Đang khởi động ứng dụng..."
|
15
|
+
},
|
13
16
|
"autoGenerate": "Tự động tạo",
|
14
17
|
"autoGenerateTooltip": "Tự động hoàn thành mô tả trợ lý dựa trên từ gợi ý",
|
15
18
|
"autoGenerateTooltipDisabled": "Vui lòng nhập từ gợi ý trước khi sử dụng tính năng tự động hoàn thành",
|
@@ -20,6 +23,39 @@
|
|
20
23
|
"branchingDisable": "Chức năng «Chủ đề con» chỉ có sẵn trong phiên bản máy chủ. Nếu bạn cần chức năng này, hãy chuyển sang chế độ triển khai máy chủ hoặc sử dụng LobeChat Cloud.",
|
21
24
|
"cancel": "Hủy",
|
22
25
|
"changelog": "Nhật ký cập nhật",
|
26
|
+
"clientDB": {
|
27
|
+
"autoInit": {
|
28
|
+
"title": "Khởi tạo cơ sở dữ liệu PGlite"
|
29
|
+
},
|
30
|
+
"error": {
|
31
|
+
"desc": "Rất tiếc, đã xảy ra sự cố trong quá trình khởi tạo cơ sở dữ liệu Pglite. Vui lòng nhấp vào nút 「Thử lại」.<br><br> Nếu vẫn gặp lỗi, vui lòng <1>gửi vấn đề</1> , chúng tôi sẽ giúp bạn kiểm tra ngay lập tức",
|
32
|
+
"retry": "Thử lại",
|
33
|
+
"title": "Cập nhật cơ sở dữ liệu không thành công"
|
34
|
+
},
|
35
|
+
"initing": {
|
36
|
+
"error": "Đã xảy ra lỗi, vui lòng thử lại",
|
37
|
+
"idle": "Đang chờ khởi tạo...",
|
38
|
+
"initializing": "Đang khởi tạo...",
|
39
|
+
"loadingDependencies": "Đang tải phụ thuộc({{progress}}%)...",
|
40
|
+
"loadingWasmModule": "Đang tải mô-đun WASM({{progress}}%)...",
|
41
|
+
"migrating": "Đang di chuyển dữ liệu...",
|
42
|
+
"ready": "Cơ sở dữ liệu đã sẵn sàng"
|
43
|
+
},
|
44
|
+
"modal": {
|
45
|
+
"desc": "Kích hoạt cơ sở dữ liệu khách hàng PGlite, lưu trữ dữ liệu trò chuyện của bạn trong trình duyệt và sử dụng các tính năng nâng cao như kho kiến thức",
|
46
|
+
"enable": "Kích hoạt ngay",
|
47
|
+
"init": {
|
48
|
+
"desc": "Đang khởi tạo cơ sở dữ liệu, thời gian có thể từ 5~30 giây tùy thuộc vào mạng",
|
49
|
+
"title": "Đang khởi tạo cơ sở dữ liệu PGlite"
|
50
|
+
},
|
51
|
+
"title": "Bật cơ sở dữ liệu khách hàng"
|
52
|
+
},
|
53
|
+
"ready": {
|
54
|
+
"button": "Sử dụng ngay",
|
55
|
+
"desc": "Sử dụng ngay",
|
56
|
+
"title": "Cơ sở dữ liệu PGlite đã sẵn sàng"
|
57
|
+
}
|
58
|
+
},
|
23
59
|
"close": "Đóng",
|
24
60
|
"contact": "Liên hệ chúng tôi",
|
25
61
|
"copy": "Sao chép",
|