@lobehub/chat 1.36.27 → 1.36.28
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +17 -0
- package/changelog/v1.json +5 -0
- package/locales/ar/common.json +37 -1
- package/locales/ar/models.json +27 -0
- package/locales/bg-BG/common.json +37 -1
- package/locales/bg-BG/models.json +27 -0
- package/locales/de-DE/common.json +37 -1
- package/locales/de-DE/models.json +27 -0
- package/locales/en-US/common.json +37 -1
- package/locales/en-US/models.json +27 -0
- package/locales/es-ES/common.json +37 -1
- package/locales/es-ES/models.json +27 -0
- package/locales/fa-IR/common.json +37 -1
- package/locales/fa-IR/models.json +27 -0
- package/locales/fr-FR/common.json +37 -1
- package/locales/fr-FR/models.json +27 -0
- package/locales/it-IT/common.json +37 -1
- package/locales/it-IT/models.json +27 -0
- package/locales/ja-JP/common.json +37 -1
- package/locales/ja-JP/models.json +27 -0
- package/locales/ko-KR/common.json +37 -1
- package/locales/ko-KR/models.json +27 -0
- package/locales/nl-NL/common.json +37 -1
- package/locales/nl-NL/models.json +27 -0
- package/locales/pl-PL/common.json +37 -1
- package/locales/pl-PL/models.json +27 -0
- package/locales/pt-BR/common.json +37 -1
- package/locales/pt-BR/models.json +27 -0
- package/locales/ru-RU/common.json +37 -1
- package/locales/ru-RU/models.json +27 -0
- package/locales/tr-TR/common.json +37 -1
- package/locales/tr-TR/models.json +27 -0
- package/locales/vi-VN/common.json +37 -1
- package/locales/vi-VN/models.json +27 -0
- package/locales/zh-CN/common.json +37 -1
- package/locales/zh-CN/models.json +28 -1
- package/locales/zh-TW/common.json +37 -1
- package/locales/zh-TW/models.json +27 -0
- package/package.json +1 -1
- package/src/app/loading/Content.tsx +14 -0
- package/src/app/loading/Redirect.tsx +28 -12
- package/src/app/loading/index.tsx +8 -3
- package/src/locales/default/common.ts +37 -1
- package/src/store/global/selectors.ts +5 -1
- package/src/app/loading/Client.tsx +0 -13
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,23 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.36.28](https://github.com/lobehub/lobe-chat/compare/v1.36.27...v1.36.28)
|
6
|
+
|
7
|
+
<sup>Released on **2024-12-16**</sup>
|
8
|
+
|
9
|
+
<br/>
|
10
|
+
|
11
|
+
<details>
|
12
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
13
|
+
|
14
|
+
</details>
|
15
|
+
|
16
|
+
<div align="right">
|
17
|
+
|
18
|
+
[](#readme-top)
|
19
|
+
|
20
|
+
</div>
|
21
|
+
|
5
22
|
### [Version 1.36.27](https://github.com/lobehub/lobe-chat/compare/v1.36.26...v1.36.27)
|
6
23
|
|
7
24
|
<sup>Released on **2024-12-16**</sup>
|
package/changelog/v1.json
CHANGED
package/locales/ar/common.json
CHANGED
@@ -9,7 +9,10 @@
|
|
9
9
|
"title": "مرحبًا بك في التجربة {{name}}"
|
10
10
|
}
|
11
11
|
},
|
12
|
-
"
|
12
|
+
"appLoading": {
|
13
|
+
"goToChat": "جارٍ تحميل صفحة الدردشة...",
|
14
|
+
"initializing": "جارٍ تشغيل التطبيق..."
|
15
|
+
},
|
13
16
|
"autoGenerate": "توليد تلقائي",
|
14
17
|
"autoGenerateTooltip": "إكمال تلقائي بناءً على الكلمات المقترحة لوصف المساعد",
|
15
18
|
"autoGenerateTooltipDisabled": "الرجاء إدخال كلمة تلميح قبل تفعيل وظيفة الإكمال التلقائي",
|
@@ -20,6 +23,39 @@
|
|
20
23
|
"branchingDisable": "ميزة \"الموضوع الفرعي\" متاحة فقط في إصدار الخادم. إذا كنت بحاجة إلى هذه الميزة، يرجى التبديل إلى وضع نشر الخادم أو استخدام LobeChat Cloud",
|
21
24
|
"cancel": "إلغاء",
|
22
25
|
"changelog": "سجل التغييرات",
|
26
|
+
"clientDB": {
|
27
|
+
"autoInit": {
|
28
|
+
"title": "تهيئة قاعدة بيانات PGlite"
|
29
|
+
},
|
30
|
+
"error": {
|
31
|
+
"desc": "نعتذر، حدث خطأ أثناء عملية تهيئة قاعدة بيانات Pglite. يرجى النقر على زر «إعادة المحاولة».<br><br> إذا استمرت المشكلة، يرجى <1>تقديم مشكلة</1>، وسنساعدك في حلها في أقرب وقت ممكن.",
|
32
|
+
"retry": "إعادة المحاولة",
|
33
|
+
"title": "فشل ترقية قاعدة البيانات"
|
34
|
+
},
|
35
|
+
"initing": {
|
36
|
+
"error": "حدث خطأ، يرجى إعادة المحاولة",
|
37
|
+
"idle": "في انتظار التهيئة...",
|
38
|
+
"initializing": "جارٍ التهيئة...",
|
39
|
+
"loadingDependencies": "جارٍ تحميل التبعيات ({{progress}}%)...",
|
40
|
+
"loadingWasmModule": "جارٍ تحميل وحدة WASM ({{progress}}%)...",
|
41
|
+
"migrating": "جارٍ ترحيل البيانات...",
|
42
|
+
"ready": "قاعدة البيانات جاهزة"
|
43
|
+
},
|
44
|
+
"modal": {
|
45
|
+
"desc": "قم بتمكين قاعدة بيانات عميل PGlite، لتخزين بيانات الدردشة بشكل دائم في متصفحك، واستخدام ميزات متقدمة مثل مكتبة المعرفة",
|
46
|
+
"enable": "تمكين الآن",
|
47
|
+
"init": {
|
48
|
+
"desc": "جارٍ تهيئة قاعدة البيانات، قد يستغرق الأمر من 5 إلى 30 ثانية حسب اختلاف الشبكة",
|
49
|
+
"title": "جارٍ تهيئة قاعدة بيانات PGlite"
|
50
|
+
},
|
51
|
+
"title": "فتح قاعدة بيانات العميل"
|
52
|
+
},
|
53
|
+
"ready": {
|
54
|
+
"button": "استخدم الآن",
|
55
|
+
"desc": "استخدم الآن",
|
56
|
+
"title": "قاعدة بيانات PGlite جاهزة"
|
57
|
+
}
|
58
|
+
},
|
23
59
|
"close": "إغلاق",
|
24
60
|
"contact": "اتصل بنا",
|
25
61
|
"copy": "نسخ",
|
package/locales/ar/models.json
CHANGED
@@ -112,6 +112,12 @@
|
|
112
112
|
"Gryphe/MythoMax-L2-13b": {
|
113
113
|
"description": "MythoMax-L2 (13B) هو نموذج مبتكر، مناسب لتطبيقات متعددة المجالات والمهام المعقدة."
|
114
114
|
},
|
115
|
+
"InternVL2-8B": {
|
116
|
+
"description": "InternVL2-8B هو نموذج قوي للغة البصرية، يدعم المعالجة متعددة الوسائط للصورة والنص، قادر على التعرف بدقة على محتوى الصورة وتوليد أوصاف أو إجابات ذات صلة."
|
117
|
+
},
|
118
|
+
"InternVL2.5-26B": {
|
119
|
+
"description": "InternVL2.5-26B هو نموذج قوي للغة البصرية، يدعم المعالجة متعددة الوسائط للصورة والنص، قادر على التعرف بدقة على محتوى الصورة وتوليد أوصاف أو إجابات ذات صلة."
|
120
|
+
},
|
115
121
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
116
122
|
"description": "Qwen2.5-72B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر دعمًا للغات متعددة، تغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. أظهر النموذج تحسينات ملحوظة في اتباع التعليمات، وفهم البيانات الهيكلية، وتوليد المخرجات الهيكلية (خاصة JSON)."
|
117
123
|
},
|
@@ -233,9 +239,21 @@
|
|
233
239
|
"Qwen2-7B-Instruct": {
|
234
240
|
"description": "Qwen2 هو أحدث سلسلة من نموذج Qwen، قادر على التفوق على النماذج مفتوحة المصدر ذات الحجم المماثل أو حتى النماذج الأكبر حجمًا، حقق Qwen2 7B مزايا ملحوظة في عدة تقييمات، خاصة في فهم الترميز والصينية."
|
235
241
|
},
|
242
|
+
"Qwen2.5-14B-Instruct": {
|
243
|
+
"description": "Qwen2.5-14B-Instruct هو نموذج لغوي كبير يحتوي على 14 مليار معلمة، يتميز بأداء ممتاز، تم تحسينه لمشاهد اللغة الصينية واللغات المتعددة، ويدعم التطبيقات مثل الأسئلة الذكية وتوليد المحتوى."
|
244
|
+
},
|
245
|
+
"Qwen2.5-32B-Instruct": {
|
246
|
+
"description": "Qwen2.5-32B-Instruct هو نموذج لغوي كبير يحتوي على 32 مليار معلمة، يتميز بأداء متوازن، تم تحسينه لمشاهد اللغة الصينية واللغات المتعددة، ويدعم التطبيقات مثل الأسئلة الذكية وتوليد المحتوى."
|
247
|
+
},
|
236
248
|
"Qwen2.5-72B-Instruct": {
|
237
249
|
"description": "يدعم Qwen2.5-72B-Instruct سياقًا يصل إلى 16 ألف، وينتج نصوصًا طويلة تتجاوز 8 آلاف. يدعم استدعاء الوظائف والتفاعل السلس مع الأنظمة الخارجية، مما يعزز بشكل كبير من المرونة وقابلية التوسع. لقد زادت معرفة النموذج بشكل ملحوظ، كما تحسنت قدراته في الترميز والرياضيات بشكل كبير، ويدعم أكثر من 29 لغة."
|
238
250
|
},
|
251
|
+
"Qwen2.5-7B-Instruct": {
|
252
|
+
"description": "Qwen2.5-7B-Instruct هو نموذج لغوي كبير يحتوي على 7 مليارات معلمة، يدعم الاتصال الوظيفي مع الأنظمة الخارجية بسلاسة، مما يعزز المرونة وقابلية التوسع بشكل كبير. تم تحسينه لمشاهد اللغة الصينية واللغات المتعددة، ويدعم التطبيقات مثل الأسئلة الذكية وتوليد المحتوى."
|
253
|
+
},
|
254
|
+
"Qwen2.5-Coder-32B-Instruct": {
|
255
|
+
"description": "Qwen2.5-Coder-32B-Instruct هو نموذج لغوي كبير مصمم خصيصًا لتوليد الشيفرات، وفهم الشيفرات، ومشاهد التطوير الفعالة، مع استخدام حجم 32B من المعلمات الرائدة في الصناعة، مما يلبي احتياجات البرمجة المتنوعة."
|
256
|
+
},
|
239
257
|
"SenseChat": {
|
240
258
|
"description": "نموذج الإصدار الأساسي (V4)، بطول سياق 4K، يمتلك قدرات قوية وعامة."
|
241
259
|
},
|
@@ -464,6 +482,9 @@
|
|
464
482
|
"claude-3-sonnet-20240229": {
|
465
483
|
"description": "Claude 3 Sonnet يوفر توازنًا مثاليًا بين الذكاء والسرعة لحمولات العمل المؤسسية. يقدم أقصى فائدة بسعر أقل، موثوق ومناسب للنشر على نطاق واسع."
|
466
484
|
},
|
485
|
+
"code-raccoon-v1": {
|
486
|
+
"description": "كود راكون هو مساعد ذكي لتطوير البرمجيات يعتمد على نموذج اللغة الكبير من SenseTime، يغطي مراحل تحليل متطلبات البرمجيات، وتصميم الهيكل، وكتابة الشيفرات، واختبار البرمجيات، لتلبية احتياجات المستخدمين في كتابة الشيفرات، وتعلم البرمجة، وغيرها من المتطلبات. يدعم كود راكون أكثر من 90 لغة برمجة رئيسية مثل Python وJava وJavaScript وC++ وGo وSQL، بالإضافة إلى IDEs الرئيسية مثل VS Code وIntelliJ IDEA. في التطبيقات العملية، يمكن أن يساعد كود راكون المطورين في زيادة كفاءة البرمجة بأكثر من 50%."
|
487
|
+
},
|
467
488
|
"codegeex-4": {
|
468
489
|
"description": "CodeGeeX-4 هو مساعد برمجي قوي، يدعم مجموعة متنوعة من لغات البرمجة في الإجابة الذكية وإكمال الشيفرة، مما يعزز من كفاءة التطوير."
|
469
490
|
},
|
@@ -752,6 +773,12 @@
|
|
752
773
|
"gpt-4o-mini": {
|
753
774
|
"description": "نموذج GPT-4o mini هو أحدث نموذج أطلقته OpenAI بعد GPT-4 Omni، ويدعم إدخال الصور والنصوص وإخراج النصوص. كأحد نماذجهم المتقدمة الصغيرة، فهو أرخص بكثير من النماذج الرائدة الأخرى في الآونة الأخيرة، وأرخص بأكثر من 60% من GPT-3.5 Turbo. يحتفظ بذكاء متقدم مع قيمة ممتازة. حصل GPT-4o mini على 82% في اختبار MMLU، وهو حاليًا يتفوق على GPT-4 في تفضيلات الدردشة."
|
754
775
|
},
|
776
|
+
"grok-2-1212": {
|
777
|
+
"description": "لقد تم تحسين هذا النموذج في الدقة، والامتثال للتعليمات، والقدرة على التعامل مع لغات متعددة."
|
778
|
+
},
|
779
|
+
"grok-2-vision-1212": {
|
780
|
+
"description": "لقد تم تحسين هذا النموذج في الدقة، والامتثال للتعليمات، والقدرة على التعامل مع لغات متعددة."
|
781
|
+
},
|
755
782
|
"grok-beta": {
|
756
783
|
"description": "يمتلك أداءً يعادل Grok 2، ولكنه يتمتع بكفاءة وسرعة ووظائف أعلى."
|
757
784
|
},
|
@@ -9,7 +9,10 @@
|
|
9
9
|
"title": "Добре дошли в {{name}}"
|
10
10
|
}
|
11
11
|
},
|
12
|
-
"
|
12
|
+
"appLoading": {
|
13
|
+
"goToChat": "Зареждане на страницата за чат...",
|
14
|
+
"initializing": "Стартиране на приложението..."
|
15
|
+
},
|
13
16
|
"autoGenerate": "Автоматично генериране",
|
14
17
|
"autoGenerateTooltip": "Автоматично генериране на описание на агент въз основа на подкани",
|
15
18
|
"autoGenerateTooltipDisabled": "Моля, попълнете подсказката, за да използвате функцията за автоматично допълване",
|
@@ -20,6 +23,39 @@
|
|
20
23
|
"branchingDisable": "Функцията „подтема“ е налична само в сървърната версия. Ако искате да използвате тази функция, моля, превключете на режим на сървърно разполагане или използвайте LobeChat Cloud.",
|
21
24
|
"cancel": "Отказ",
|
22
25
|
"changelog": "Дневник на промените",
|
26
|
+
"clientDB": {
|
27
|
+
"autoInit": {
|
28
|
+
"title": "Инициализиране на PGlite базата данни"
|
29
|
+
},
|
30
|
+
"error": {
|
31
|
+
"desc": "Много съжаляваме, възникна проблем по време на инициализацията на Pglite базата данни. Моля, натиснете бутона „Опитай отново“. <br><br> Ако проблемът продължава, моля <1>подайте запитване</1>, ние ще се опитаме да ви помогнем възможно най-скоро.",
|
32
|
+
"retry": "Опитай отново",
|
33
|
+
"title": "Неуспешно обновяване на базата данни"
|
34
|
+
},
|
35
|
+
"initing": {
|
36
|
+
"error": "Възникна грешка, моля опитайте отново",
|
37
|
+
"idle": "Изчакване на инициализация...",
|
38
|
+
"initializing": "Инициализиране...",
|
39
|
+
"loadingDependencies": "Зареждане на зависимости ({{progress}}%)...",
|
40
|
+
"loadingWasmModule": "Зареждане на WASM модула ({{progress}}%)...",
|
41
|
+
"migrating": "Мигриране на данни...",
|
42
|
+
"ready": "Базата данни е готова"
|
43
|
+
},
|
44
|
+
"modal": {
|
45
|
+
"desc": "Активирайте PGlite клиентската база данни, за да съхранявате данни за чата в браузъра си и да използвате разширени функции като база знания.",
|
46
|
+
"enable": "Активирайте сега",
|
47
|
+
"init": {
|
48
|
+
"desc": "Инициализиране на базата данни, времето за което може да варира от 5 до 30 секунди в зависимост от мрежата.",
|
49
|
+
"title": "Инициализиране на PGlite базата данни"
|
50
|
+
},
|
51
|
+
"title": "Активиране на клиентската база данни"
|
52
|
+
},
|
53
|
+
"ready": {
|
54
|
+
"button": "Използвайте сега",
|
55
|
+
"desc": "Искам да използвам веднага",
|
56
|
+
"title": "PGlite базата данни е готова"
|
57
|
+
}
|
58
|
+
},
|
23
59
|
"close": "Затвори",
|
24
60
|
"contact": "Свържете се с нас",
|
25
61
|
"copy": "Копирай",
|
@@ -112,6 +112,12 @@
|
|
112
112
|
"Gryphe/MythoMax-L2-13b": {
|
113
113
|
"description": "MythoMax-L2 (13B) е иновативен модел, подходящ за приложения в множество области и сложни задачи."
|
114
114
|
},
|
115
|
+
"InternVL2-8B": {
|
116
|
+
"description": "InternVL2-8B е мощен визуален езиков модел, който поддържа многомодално обработване на изображения и текст, способен да разпознава точно съдържанието на изображения и да генерира свързани описания или отговори."
|
117
|
+
},
|
118
|
+
"InternVL2.5-26B": {
|
119
|
+
"description": "InternVL2.5-26B е мощен визуален езиков модел, който поддържа многомодално обработване на изображения и текст, способен да разпознава точно съдържанието на изображения и да генерира свързани описания или отговори."
|
120
|
+
},
|
115
121
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
116
122
|
"description": "Qwen2.5-72B-Instruct е един от най-новите големи езикови модели, публикувани от Alibaba Cloud. Този 72B модел показва значителни подобрения в областите на кодирането и математиката. Моделът предлага многоезична поддръжка, обхващаща над 29 езика, включително китайски, английски и др. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
|
117
123
|
},
|
@@ -233,9 +239,21 @@
|
|
233
239
|
"Qwen2-7B-Instruct": {
|
234
240
|
"description": "Qwen2 е най-новата серия на модела Qwen, способен да надмине оптималните отворени модели с равен размер или дори по-големи модели. Qwen2 7B постига значителни предимства в множество тестове, особено в разбирането на код и китайския език."
|
235
241
|
},
|
242
|
+
"Qwen2.5-14B-Instruct": {
|
243
|
+
"description": "Qwen2.5-14B-Instruct е голям езиков модел с 14 милиарда параметри, с отлично представяне, оптимизиран за китайски и многоезични сценарии, поддържа интелигентни въпроси и отговори, генериране на съдържание и други приложения."
|
244
|
+
},
|
245
|
+
"Qwen2.5-32B-Instruct": {
|
246
|
+
"description": "Qwen2.5-32B-Instruct е голям езиков модел с 32 милиарда параметри, с балансирано представяне, оптимизиран за китайски и многоезични сценарии, поддържа интелигентни въпроси и отговори, генериране на съдържание и други приложения."
|
247
|
+
},
|
236
248
|
"Qwen2.5-72B-Instruct": {
|
237
249
|
"description": "Qwen2.5-72B-Instruct поддържа 16k контекст, генерира дълги текстове над 8K. Поддържа функция за извикване и безпроблемна интеграция с външни системи, значително увеличаваща гъвкавостта и разширяемостта. Моделът има значително увеличени знания и значително подобрени способности в кодиране и математика, с поддръжка на над 29 езика."
|
238
250
|
},
|
251
|
+
"Qwen2.5-7B-Instruct": {
|
252
|
+
"description": "Qwen2.5-7B-Instruct е голям езиков модел с 7 милиарда параметри, който поддържа безпроблемно взаимодействие с функции и външни системи, значително увеличавайки гъвкавостта и разширяемостта. Оптимизиран за китайски и многоезични сценарии, поддържа интелигентни въпроси и отговори, генериране на съдържание и други приложения."
|
253
|
+
},
|
254
|
+
"Qwen2.5-Coder-32B-Instruct": {
|
255
|
+
"description": "Qwen2.5-Coder-32B-Instruct е голям езиков модел, проектиран специално за генериране на код, разбиране на код и ефективни сценарии за разработка, с водеща в индустрията параметрична стойност от 32B, способен да отговори на разнообразни програмни нужди."
|
256
|
+
},
|
239
257
|
"SenseChat": {
|
240
258
|
"description": "Основна версия на модела (V4), с контекстна дължина 4K, с мощни общи способности."
|
241
259
|
},
|
@@ -464,6 +482,9 @@
|
|
464
482
|
"claude-3-sonnet-20240229": {
|
465
483
|
"description": "Claude 3 Sonnet предлага идеален баланс между интелигентност и скорост за корпоративни работни натоварвания. Той предлага максимална полезност на по-ниска цена, надежден и подходящ за мащабно внедряване."
|
466
484
|
},
|
485
|
+
"code-raccoon-v1": {
|
486
|
+
"description": "Кодово енотче е софтуерен интелигентен помощник за разработка, базиран на голям езиков модел на SenseTime, обхващащ етапите на анализ на софтуерни изисквания, проектиране на архитектура, писане на код и софтуерно тестване, отговарящ на нуждите на потребителите за писане на код и обучение по програмиране. Кодово енотче поддържа над 90 основни програмни езика, включително Python, Java, JavaScript, C++, Go, SQL и основни IDE като VS Code и IntelliJ IDEA. В практическото приложение, Кодово енотче може да помогне на разработчиците да увеличат ефективността на програмирането с над 50%."
|
487
|
+
},
|
467
488
|
"codegeex-4": {
|
468
489
|
"description": "CodeGeeX-4 е мощен AI помощник за програмиране, който поддържа интелигентни въпроси и отговори и автоматично допълване на код за различни програмни езици, повишавайки ефективността на разработката."
|
469
490
|
},
|
@@ -752,6 +773,12 @@
|
|
752
773
|
"gpt-4o-mini": {
|
753
774
|
"description": "GPT-4o mini е най-новият модел на OpenAI, след GPT-4 Omni, който поддържа текстово и визуално въвеждане и генерира текст. Като най-напредналият им малък модел, той е значително по-евтин от другите нови модели и е с над 60% по-евтин от GPT-3.5 Turbo. Запазва най-съвременната интелигентност, като същевременно предлага значителна стойност за парите. GPT-4o mini получи 82% на теста MMLU и в момента е с по-висок рейтинг от GPT-4 по предпочитания за чат."
|
754
775
|
},
|
776
|
+
"grok-2-1212": {
|
777
|
+
"description": "Този модел е подобрен по отношение на точност, спазване на инструкции и многоезични способности."
|
778
|
+
},
|
779
|
+
"grok-2-vision-1212": {
|
780
|
+
"description": "Този модел е подобрен по отношение на точност, спазване на инструкции и многоезични способности."
|
781
|
+
},
|
755
782
|
"grok-beta": {
|
756
783
|
"description": "С производителност, сравнима с Grok 2, но с по-висока ефективност, скорост и функции."
|
757
784
|
},
|
@@ -9,7 +9,10 @@
|
|
9
9
|
"title": "Willkommen bei {{name}}"
|
10
10
|
}
|
11
11
|
},
|
12
|
-
"
|
12
|
+
"appLoading": {
|
13
|
+
"goToChat": "Lade die Chat-Seite...",
|
14
|
+
"initializing": "Anwendung wird gestartet..."
|
15
|
+
},
|
13
16
|
"autoGenerate": "Automatisch generieren",
|
14
17
|
"autoGenerateTooltip": "Assistentenbeschreibung automatisch auf Basis von Vorschlägen vervollständigen",
|
15
18
|
"autoGenerateTooltipDisabled": "Bitte geben Sie einen Hinweis ein, um die automatische Vervollständigung zu aktivieren",
|
@@ -20,6 +23,39 @@
|
|
20
23
|
"branchingDisable": "Die Funktion „Unterthema“ ist nur in der Serverversion verfügbar. Wenn Sie diese Funktion benötigen, wechseln Sie bitte in den Serverbereitstellungsmodus oder verwenden Sie LobeChat Cloud.",
|
21
24
|
"cancel": "Abbrechen",
|
22
25
|
"changelog": "Änderungsprotokoll",
|
26
|
+
"clientDB": {
|
27
|
+
"autoInit": {
|
28
|
+
"title": "Initialisiere PGlite-Datenbank"
|
29
|
+
},
|
30
|
+
"error": {
|
31
|
+
"desc": "Es tut uns leid, während der Initialisierung der Pglite-Datenbank ist ein Fehler aufgetreten. Bitte klicken Sie auf die Schaltfläche „Erneut versuchen“. <br><br> Wenn der Fehler weiterhin besteht, <1>reichen Sie ein Problem ein</1>, und wir werden Ihnen umgehend helfen.",
|
32
|
+
"retry": "Erneut versuchen",
|
33
|
+
"title": "Datenbank-Upgrade fehlgeschlagen"
|
34
|
+
},
|
35
|
+
"initing": {
|
36
|
+
"error": "Ein Fehler ist aufgetreten, bitte versuchen Sie es erneut",
|
37
|
+
"idle": "Warte auf die Initialisierung...",
|
38
|
+
"initializing": "Wird initialisiert...",
|
39
|
+
"loadingDependencies": "Lade Abhängigkeiten ({ {progress}}%)...",
|
40
|
+
"loadingWasmModule": "Lade WASM-Modul ({ {progress}}%)...",
|
41
|
+
"migrating": "Daten werden migriert...",
|
42
|
+
"ready": "Datenbank ist bereit"
|
43
|
+
},
|
44
|
+
"modal": {
|
45
|
+
"desc": "Aktivieren Sie die PGlite-Clientdatenbank, um Chatdaten in Ihrem Browser dauerhaft zu speichern und erweiterte Funktionen wie Wissensdatenbanken zu nutzen.",
|
46
|
+
"enable": "Jetzt aktivieren",
|
47
|
+
"init": {
|
48
|
+
"desc": "Die Datenbank wird initialisiert, je nach Netzwerkbedingungen kann dies 5 bis 30 Sekunden dauern.",
|
49
|
+
"title": "Initialisiere PGlite-Datenbank"
|
50
|
+
},
|
51
|
+
"title": "Clientdatenbank aktivieren"
|
52
|
+
},
|
53
|
+
"ready": {
|
54
|
+
"button": "Jetzt verwenden",
|
55
|
+
"desc": "Jetzt verwenden",
|
56
|
+
"title": "PGlite-Datenbank ist bereit"
|
57
|
+
}
|
58
|
+
},
|
23
59
|
"close": "Schließen",
|
24
60
|
"contact": "Kontakt",
|
25
61
|
"copy": "Kopieren",
|
@@ -112,6 +112,12 @@
|
|
112
112
|
"Gryphe/MythoMax-L2-13b": {
|
113
113
|
"description": "MythoMax-L2 (13B) ist ein innovatives Modell, das sich für Anwendungen in mehreren Bereichen und komplexe Aufgaben eignet."
|
114
114
|
},
|
115
|
+
"InternVL2-8B": {
|
116
|
+
"description": "InternVL2-8B ist ein leistungsstarkes visuelles Sprachmodell, das multimodale Verarbeitung von Bildern und Text unterstützt und in der Lage ist, Bildinhalte präzise zu erkennen und relevante Beschreibungen oder Antworten zu generieren."
|
117
|
+
},
|
118
|
+
"InternVL2.5-26B": {
|
119
|
+
"description": "InternVL2.5-26B ist ein leistungsstarkes visuelles Sprachmodell, das multimodale Verarbeitung von Bildern und Text unterstützt und in der Lage ist, Bildinhalte präzise zu erkennen und relevante Beschreibungen oder Antworten zu generieren."
|
120
|
+
},
|
115
121
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
116
122
|
"description": "Qwen2.5-72B-Instruct ist eines der neuesten großen Sprachmodelle, die von Alibaba Cloud veröffentlicht wurden. Dieses 72B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Es zeigt signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis strukturierter Daten und in der Generierung strukturierter Ausgaben (insbesondere JSON)."
|
117
123
|
},
|
@@ -233,9 +239,21 @@
|
|
233
239
|
"Qwen2-7B-Instruct": {
|
234
240
|
"description": "Qwen2 ist die neueste Reihe des Qwen-Modells, das in der Lage ist, die besten Open-Source-Modelle ähnlicher Größe oder sogar größerer Modelle zu übertreffen. Qwen2 7B hat in mehreren Bewertungen signifikante Vorteile erzielt, insbesondere im Bereich Code und Verständnis der chinesischen Sprache."
|
235
241
|
},
|
242
|
+
"Qwen2.5-14B-Instruct": {
|
243
|
+
"description": "Qwen2.5-14B-Instruct ist ein großes Sprachmodell mit 14 Milliarden Parametern, das hervorragende Leistungen bietet, für chinesische und mehrsprachige Szenarien optimiert ist und Anwendungen wie intelligente Fragen und Antworten sowie Inhaltserstellung unterstützt."
|
244
|
+
},
|
245
|
+
"Qwen2.5-32B-Instruct": {
|
246
|
+
"description": "Qwen2.5-32B-Instruct ist ein großes Sprachmodell mit 32 Milliarden Parametern, das eine ausgewogene Leistung bietet, für chinesische und mehrsprachige Szenarien optimiert ist und Anwendungen wie intelligente Fragen und Antworten sowie Inhaltserstellung unterstützt."
|
247
|
+
},
|
236
248
|
"Qwen2.5-72B-Instruct": {
|
237
249
|
"description": "Qwen2.5-72B-Instruct unterstützt 16k Kontext und generiert lange Texte über 8K. Es unterstützt Funktionsaufrufe und nahtlose Interaktionen mit externen Systemen, was die Flexibilität und Skalierbarkeit erheblich verbessert. Das Wissen des Modells hat deutlich zugenommen, und die Codierungs- und mathematischen Fähigkeiten wurden erheblich verbessert, mit Unterstützung für über 29 Sprachen."
|
238
250
|
},
|
251
|
+
"Qwen2.5-7B-Instruct": {
|
252
|
+
"description": "Qwen2.5-7B-Instruct ist ein großes Sprachmodell mit 7 Milliarden Parametern, das Funktionsaufrufe unterstützt und nahtlos mit externen Systemen interagiert, was die Flexibilität und Skalierbarkeit erheblich erhöht. Es ist für chinesische und mehrsprachige Szenarien optimiert und unterstützt Anwendungen wie intelligente Fragen und Antworten sowie Inhaltserstellung."
|
253
|
+
},
|
254
|
+
"Qwen2.5-Coder-32B-Instruct": {
|
255
|
+
"description": "Qwen2.5-Coder-32B-Instruct ist ein großes Sprachmodell, das speziell für die Codegenerierung, das Verständnis von Code und effiziente Entwicklungsszenarien entwickelt wurde. Es verwendet eine branchenführende Parametergröße von 32B und kann vielfältige Programmieranforderungen erfüllen."
|
256
|
+
},
|
239
257
|
"SenseChat": {
|
240
258
|
"description": "Basisversion des Modells (V4) mit 4K Kontextlänge, die über starke allgemeine Fähigkeiten verfügt."
|
241
259
|
},
|
@@ -464,6 +482,9 @@
|
|
464
482
|
"claude-3-sonnet-20240229": {
|
465
483
|
"description": "Claude 3 Sonnet bietet eine ideale Balance zwischen Intelligenz und Geschwindigkeit für Unternehmensarbeitslasten. Es bietet maximalen Nutzen zu einem niedrigeren Preis, ist zuverlässig und für großflächige Bereitstellungen geeignet."
|
466
484
|
},
|
485
|
+
"code-raccoon-v1": {
|
486
|
+
"description": "Code-Raccoon ist ein intelligenter Softwareentwicklungsassistent, der auf dem großen Sprachmodell von SenseTime basiert und Softwareanforderungsanalyse, Architekturdesign, Codeerstellung, Softwaretests und andere Bereiche abdeckt, um die Bedürfnisse der Benutzer beim Programmieren und Lernen zu erfüllen. Code-Raccoon unterstützt über 90 gängige Programmiersprachen wie Python, Java, JavaScript, C++, Go, SQL sowie gängige IDEs wie VS Code und IntelliJ IDEA. In der praktischen Anwendung kann Code-Raccoon Entwicklern helfen, die Programmierproduktivität um über 50 % zu steigern."
|
487
|
+
},
|
467
488
|
"codegeex-4": {
|
468
489
|
"description": "CodeGeeX-4 ist ein leistungsstarker AI-Programmierassistent, der intelligente Fragen und Codevervollständigung in verschiedenen Programmiersprachen unterstützt und die Entwicklungseffizienz steigert."
|
469
490
|
},
|
@@ -752,6 +773,12 @@
|
|
752
773
|
"gpt-4o-mini": {
|
753
774
|
"description": "GPT-4o mini ist das neueste Modell von OpenAI, das nach GPT-4 Omni veröffentlicht wurde und sowohl Text- als auch Bildinput unterstützt. Als ihr fortschrittlichstes kleines Modell ist es viel günstiger als andere neueste Modelle und kostet über 60 % weniger als GPT-3.5 Turbo. Es behält die fortschrittliche Intelligenz bei und bietet gleichzeitig ein hervorragendes Preis-Leistungs-Verhältnis. GPT-4o mini erzielte 82 % im MMLU-Test und rangiert derzeit in den Chat-Präferenzen über GPT-4."
|
754
775
|
},
|
776
|
+
"grok-2-1212": {
|
777
|
+
"description": "Dieses Modell hat Verbesserungen in Bezug auf Genauigkeit, Befolgung von Anweisungen und Mehrsprachigkeit erfahren."
|
778
|
+
},
|
779
|
+
"grok-2-vision-1212": {
|
780
|
+
"description": "Dieses Modell hat Verbesserungen in Bezug auf Genauigkeit, Befolgung von Anweisungen und Mehrsprachigkeit erfahren."
|
781
|
+
},
|
755
782
|
"grok-beta": {
|
756
783
|
"description": "Bietet eine Leistung, die mit Grok 2 vergleichbar ist, jedoch mit höherer Effizienz, Geschwindigkeit und Funktionalität."
|
757
784
|
},
|
@@ -9,7 +9,10 @@
|
|
9
9
|
"title": "Launch {{name}}"
|
10
10
|
}
|
11
11
|
},
|
12
|
-
"
|
12
|
+
"appLoading": {
|
13
|
+
"goToChat": "Loading chat page...",
|
14
|
+
"initializing": "Starting application..."
|
15
|
+
},
|
13
16
|
"autoGenerate": "Auto Generate",
|
14
17
|
"autoGenerateTooltip": "Auto-generate assistant description based on prompts",
|
15
18
|
"autoGenerateTooltipDisabled": "Please enter a tooltip before using the autocomplete feature",
|
@@ -20,6 +23,39 @@
|
|
20
23
|
"branchingDisable": "The 'Subtopic' feature is only available in the server version. If you need this feature, please switch to server deployment mode or use LobeChat Cloud.",
|
21
24
|
"cancel": "Cancel",
|
22
25
|
"changelog": "Changelog",
|
26
|
+
"clientDB": {
|
27
|
+
"autoInit": {
|
28
|
+
"title": "Initializing PGlite Database"
|
29
|
+
},
|
30
|
+
"error": {
|
31
|
+
"desc": "We apologize, an exception occurred during the PGlite database initialization process. Please click the 'Retry' button.<br><br> If the error persists, please <1>submit an issue</1>, and we will assist you as soon as possible.",
|
32
|
+
"retry": "Retry",
|
33
|
+
"title": "Database Upgrade Failed"
|
34
|
+
},
|
35
|
+
"initing": {
|
36
|
+
"error": "An error occurred, please try again",
|
37
|
+
"idle": "Waiting for initialization...",
|
38
|
+
"initializing": "Initializing...",
|
39
|
+
"loadingDependencies": "Loading dependencies ({{progress}}%)...",
|
40
|
+
"loadingWasmModule": "Loading WASM module ({{progress}}%)...",
|
41
|
+
"migrating": "Migrating data...",
|
42
|
+
"ready": "Database is ready"
|
43
|
+
},
|
44
|
+
"modal": {
|
45
|
+
"desc": "Enable the PGlite client database to persistently store chat data in your browser and use advanced features like knowledge base.",
|
46
|
+
"enable": "Enable Now",
|
47
|
+
"init": {
|
48
|
+
"desc": "Initializing the database, which may take 5 to 30 seconds depending on network conditions.",
|
49
|
+
"title": "Initializing PGlite Database"
|
50
|
+
},
|
51
|
+
"title": "Enable Client Database"
|
52
|
+
},
|
53
|
+
"ready": {
|
54
|
+
"button": "Use Now",
|
55
|
+
"desc": "Ready to use",
|
56
|
+
"title": "PGlite Database is Ready"
|
57
|
+
}
|
58
|
+
},
|
23
59
|
"close": "Close",
|
24
60
|
"contact": "Contact Us",
|
25
61
|
"copy": "Copy",
|
@@ -112,6 +112,12 @@
|
|
112
112
|
"Gryphe/MythoMax-L2-13b": {
|
113
113
|
"description": "MythoMax-L2 (13B) is an innovative model suitable for multi-domain applications and complex tasks."
|
114
114
|
},
|
115
|
+
"InternVL2-8B": {
|
116
|
+
"description": "InternVL2-8B is a powerful visual language model that supports multimodal processing of images and text, capable of accurately recognizing image content and generating relevant descriptions or answers."
|
117
|
+
},
|
118
|
+
"InternVL2.5-26B": {
|
119
|
+
"description": "InternVL2.5-26B is a powerful visual language model that supports multimodal processing of images and text, capable of accurately recognizing image content and generating relevant descriptions or answers."
|
120
|
+
},
|
115
121
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
116
122
|
"description": "Qwen2.5-72B-Instruct is one of the latest large language models released by Alibaba Cloud. This 72B model shows significant improvements in coding and mathematics. It also provides multilingual support, covering over 29 languages, including Chinese and English. The model has made notable advancements in instruction following, understanding structured data, and generating structured outputs, especially JSON."
|
117
123
|
},
|
@@ -233,9 +239,21 @@
|
|
233
239
|
"Qwen2-7B-Instruct": {
|
234
240
|
"description": "Qwen2 is the latest series of the Qwen model, capable of outperforming optimal open-source models of similar size and even larger models. Qwen2 7B has achieved significant advantages in multiple evaluations, especially in coding and Chinese comprehension."
|
235
241
|
},
|
242
|
+
"Qwen2.5-14B-Instruct": {
|
243
|
+
"description": "Qwen2.5-14B-Instruct is a large language model with 14 billion parameters, delivering excellent performance, optimized for Chinese and multilingual scenarios, and supporting applications such as intelligent Q&A and content generation."
|
244
|
+
},
|
245
|
+
"Qwen2.5-32B-Instruct": {
|
246
|
+
"description": "Qwen2.5-32B-Instruct is a large language model with 32 billion parameters, offering balanced performance, optimized for Chinese and multilingual scenarios, and supporting applications such as intelligent Q&A and content generation."
|
247
|
+
},
|
236
248
|
"Qwen2.5-72B-Instruct": {
|
237
249
|
"description": "Qwen2.5-72B-Instruct supports 16k context and generates long texts exceeding 8K. It enables seamless interaction with external systems through function calls, greatly enhancing flexibility and scalability. The model's knowledge has significantly increased, and its coding and mathematical abilities have been greatly improved, with multilingual support for over 29 languages."
|
238
250
|
},
|
251
|
+
"Qwen2.5-7B-Instruct": {
|
252
|
+
"description": "Qwen2.5-7B-Instruct is a large language model with 7 billion parameters, supporting function calls and seamless interaction with external systems, greatly enhancing flexibility and scalability. It is optimized for Chinese and multilingual scenarios, supporting applications such as intelligent Q&A and content generation."
|
253
|
+
},
|
254
|
+
"Qwen2.5-Coder-32B-Instruct": {
|
255
|
+
"description": "Qwen2.5-Coder-32B-Instruct is a large language model specifically designed for code generation, code understanding, and efficient development scenarios, featuring an industry-leading 32 billion parameters to meet diverse programming needs."
|
256
|
+
},
|
239
257
|
"SenseChat": {
|
240
258
|
"description": "Basic version model (V4) with a context length of 4K, featuring strong general capabilities."
|
241
259
|
},
|
@@ -464,6 +482,9 @@
|
|
464
482
|
"claude-3-sonnet-20240229": {
|
465
483
|
"description": "Claude 3 Sonnet provides an ideal balance of intelligence and speed for enterprise workloads. It offers maximum utility at a lower price, reliable and suitable for large-scale deployment."
|
466
484
|
},
|
485
|
+
"code-raccoon-v1": {
|
486
|
+
"description": "Code Raccoon is a software intelligent development assistant based on the SenseTime large language model, covering software requirement analysis, architecture design, code writing, software testing, and more, meeting various user needs for code writing and programming learning. Code Raccoon supports over 90 mainstream programming languages, including Python, Java, JavaScript, C++, Go, SQL, and popular IDEs like VS Code and IntelliJ IDEA. In practical applications, Code Raccoon can help developers improve programming efficiency by over 50%."
|
487
|
+
},
|
467
488
|
"codegeex-4": {
|
468
489
|
"description": "CodeGeeX-4 is a powerful AI programming assistant that supports intelligent Q&A and code completion in various programming languages, enhancing development efficiency."
|
469
490
|
},
|
@@ -752,6 +773,12 @@
|
|
752
773
|
"gpt-4o-mini": {
|
753
774
|
"description": "GPT-4o mini is the latest model released by OpenAI after GPT-4 Omni, supporting both image and text input while outputting text. As their most advanced small model, it is significantly cheaper than other recent cutting-edge models, costing over 60% less than GPT-3.5 Turbo. It maintains state-of-the-art intelligence while offering remarkable cost-effectiveness. GPT-4o mini scored 82% on the MMLU test and currently ranks higher than GPT-4 in chat preferences."
|
754
775
|
},
|
776
|
+
"grok-2-1212": {
|
777
|
+
"description": "This model has improved in accuracy, instruction adherence, and multilingual capabilities."
|
778
|
+
},
|
779
|
+
"grok-2-vision-1212": {
|
780
|
+
"description": "This model has improved in accuracy, instruction adherence, and multilingual capabilities."
|
781
|
+
},
|
755
782
|
"grok-beta": {
|
756
783
|
"description": "Offers performance comparable to Grok 2 but with higher efficiency, speed, and functionality."
|
757
784
|
},
|
@@ -9,7 +9,10 @@
|
|
9
9
|
"title": "Bienvenido a {{name}}"
|
10
10
|
}
|
11
11
|
},
|
12
|
-
"
|
12
|
+
"appLoading": {
|
13
|
+
"goToChat": "Cargando página de chat...",
|
14
|
+
"initializing": "Iniciando la aplicación..."
|
15
|
+
},
|
13
16
|
"autoGenerate": "Generación automática",
|
14
17
|
"autoGenerateTooltip": "Completar automáticamente la descripción del asistente basándose en las sugerencias",
|
15
18
|
"autoGenerateTooltipDisabled": "Por favor, complete la palabra clave antes de usar la función de autocompletar",
|
@@ -20,6 +23,39 @@
|
|
20
23
|
"branchingDisable": "La función de «subtemas» solo está disponible en la versión del servidor. Si necesita esta función, cambie al modo de implementación del servidor o utilice LobeChat Cloud.",
|
21
24
|
"cancel": "Cancelar",
|
22
25
|
"changelog": "Registro de cambios",
|
26
|
+
"clientDB": {
|
27
|
+
"autoInit": {
|
28
|
+
"title": "Inicializando la base de datos PGlite"
|
29
|
+
},
|
30
|
+
"error": {
|
31
|
+
"desc": "Lo sentimos, ha ocurrido un error durante el proceso de inicialización de la base de datos Pglite. Por favor, haga clic en el botón 'Reintentar'.<br><br> Si el problema persiste, por favor <1>envíe un problema</1>, y estaremos encantados de ayudarle a resolverlo lo antes posible.",
|
32
|
+
"retry": "Reintentar",
|
33
|
+
"title": "Error en la actualización de la base de datos"
|
34
|
+
},
|
35
|
+
"initing": {
|
36
|
+
"error": "Ha ocurrido un error, por favor reintente",
|
37
|
+
"idle": "Esperando la inicialización...",
|
38
|
+
"initializing": "Inicializando...",
|
39
|
+
"loadingDependencies": "Cargando dependencias ({{progress}}%)...",
|
40
|
+
"loadingWasmModule": "Cargando módulo WASM ({{progress}}%)...",
|
41
|
+
"migrating": "Migrando datos...",
|
42
|
+
"ready": "La base de datos está lista"
|
43
|
+
},
|
44
|
+
"modal": {
|
45
|
+
"desc": "Habilite la base de datos del cliente PGlite para almacenar de forma persistente los datos del chat en su navegador y utilizar características avanzadas como la base de conocimientos.",
|
46
|
+
"enable": "Habilitar ahora",
|
47
|
+
"init": {
|
48
|
+
"desc": "Inicializando la base de datos, el tiempo puede variar de 5 a 30 segundos dependiendo de la red.",
|
49
|
+
"title": "Inicializando la base de datos PGlite"
|
50
|
+
},
|
51
|
+
"title": "Activar la base de datos del cliente"
|
52
|
+
},
|
53
|
+
"ready": {
|
54
|
+
"button": "Usar ahora",
|
55
|
+
"desc": "Listo para usar",
|
56
|
+
"title": "La base de datos PGlite está lista"
|
57
|
+
}
|
58
|
+
},
|
23
59
|
"close": "Cerrar",
|
24
60
|
"contact": "Contacto",
|
25
61
|
"copy": "Copiar",
|
@@ -112,6 +112,12 @@
|
|
112
112
|
"Gryphe/MythoMax-L2-13b": {
|
113
113
|
"description": "MythoMax-L2 (13B) es un modelo innovador, adecuado para aplicaciones en múltiples campos y tareas complejas."
|
114
114
|
},
|
115
|
+
"InternVL2-8B": {
|
116
|
+
"description": "InternVL2-8B es un potente modelo de lenguaje visual, que admite el procesamiento multimodal de imágenes y texto, capaz de identificar con precisión el contenido de las imágenes y generar descripciones o respuestas relacionadas."
|
117
|
+
},
|
118
|
+
"InternVL2.5-26B": {
|
119
|
+
"description": "InternVL2.5-26B es un potente modelo de lenguaje visual, que admite el procesamiento multimodal de imágenes y texto, capaz de identificar con precisión el contenido de las imágenes y generar descripciones o respuestas relacionadas."
|
120
|
+
},
|
115
121
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
116
122
|
"description": "Qwen2.5-72B-Instruct es uno de los últimos modelos de lenguaje a gran escala lanzados por Alibaba Cloud. Este modelo de 72B ha mejorado significativamente en áreas como codificación y matemáticas. También ofrece soporte multilingüe, abarcando más de 29 idiomas, incluidos chino e inglés. El modelo ha mostrado mejoras significativas en el seguimiento de instrucciones, comprensión de datos estructurados y generación de salidas estructuradas (especialmente JSON)."
|
117
123
|
},
|
@@ -233,9 +239,21 @@
|
|
233
239
|
"Qwen2-7B-Instruct": {
|
234
240
|
"description": "Qwen2 es la última serie del modelo Qwen, capaz de superar a los modelos de código abierto de tamaño equivalente e incluso a modelos de mayor tamaño. Qwen2 7B ha logrado ventajas significativas en múltiples evaluaciones, especialmente en comprensión de código y chino."
|
235
241
|
},
|
242
|
+
"Qwen2.5-14B-Instruct": {
|
243
|
+
"description": "Qwen2.5-14B-Instruct es un modelo de lenguaje grande de 14 mil millones de parámetros, con un rendimiento excelente, optimizado para escenarios en chino y multilingües, que admite aplicaciones de preguntas y respuestas inteligentes, generación de contenido, entre otros."
|
244
|
+
},
|
245
|
+
"Qwen2.5-32B-Instruct": {
|
246
|
+
"description": "Qwen2.5-32B-Instruct es un modelo de lenguaje grande de 32 mil millones de parámetros, con un rendimiento equilibrado, optimizado para escenarios en chino y multilingües, que admite aplicaciones de preguntas y respuestas inteligentes, generación de contenido, entre otros."
|
247
|
+
},
|
236
248
|
"Qwen2.5-72B-Instruct": {
|
237
249
|
"description": "Qwen2.5-72B-Instruct admite un contexto de 16k, generando textos largos de más de 8K. Soporta llamadas a funciones e interacción sin problemas con sistemas externos, lo que mejora enormemente la flexibilidad y escalabilidad. El conocimiento del modelo ha aumentado significativamente, y se ha mejorado considerablemente la capacidad de codificación y matemáticas, con soporte para más de 29 idiomas."
|
238
250
|
},
|
251
|
+
"Qwen2.5-7B-Instruct": {
|
252
|
+
"description": "Qwen2.5-7B-Instruct es un modelo de lenguaje grande de 7 mil millones de parámetros, que admite llamadas a funciones e interacción sin problemas con sistemas externos, mejorando enormemente la flexibilidad y escalabilidad. Optimizado para escenarios en chino y multilingües, admite aplicaciones de preguntas y respuestas inteligentes, generación de contenido, entre otros."
|
253
|
+
},
|
254
|
+
"Qwen2.5-Coder-32B-Instruct": {
|
255
|
+
"description": "Qwen2.5-Coder-32B-Instruct es un modelo de lenguaje grande diseñado específicamente para la generación de código, comprensión de código y escenarios de desarrollo eficiente, con una escala de 32B parámetros, líder en la industria, capaz de satisfacer diversas necesidades de programación."
|
256
|
+
},
|
239
257
|
"SenseChat": {
|
240
258
|
"description": "Modelo de versión básica (V4), longitud de contexto de 4K, con potentes capacidades generales."
|
241
259
|
},
|
@@ -464,6 +482,9 @@
|
|
464
482
|
"claude-3-sonnet-20240229": {
|
465
483
|
"description": "Claude 3 Sonnet proporciona un equilibrio ideal entre inteligencia y velocidad para cargas de trabajo empresariales. Ofrece la máxima utilidad a un costo más bajo, siendo fiable y adecuado para implementaciones a gran escala."
|
466
484
|
},
|
485
|
+
"code-raccoon-v1": {
|
486
|
+
"description": "Code Raccoon es un asistente de desarrollo inteligente basado en el modelo de lenguaje grande de SenseTime, que abarca análisis de requisitos de software, diseño de arquitectura, escritura de código, pruebas de software y más, satisfaciendo diversas necesidades de escritura de código y aprendizaje de programación. Code Raccoon admite más de 90 lenguajes de programación populares como Python, Java, JavaScript, C++, Go, SQL, y entornos de desarrollo integrados como VS Code, IntelliJ IDEA, entre otros. En la práctica, Code Raccoon puede ayudar a los desarrolladores a mejorar la eficiencia de programación en más del 50%."
|
487
|
+
},
|
467
488
|
"codegeex-4": {
|
468
489
|
"description": "CodeGeeX-4 es un potente asistente de programación AI, que admite preguntas y respuestas inteligentes y autocompletado de código en varios lenguajes de programación, mejorando la eficiencia del desarrollo."
|
469
490
|
},
|
@@ -752,6 +773,12 @@
|
|
752
773
|
"gpt-4o-mini": {
|
753
774
|
"description": "GPT-4o mini es el último modelo lanzado por OpenAI después de GPT-4 Omni, que admite entradas de texto e imagen y genera texto como salida. Como su modelo más avanzado de menor tamaño, es mucho más económico que otros modelos de vanguardia recientes y es más de un 60% más barato que GPT-3.5 Turbo. Mantiene una inteligencia de vanguardia mientras ofrece una relación calidad-precio significativa. GPT-4o mini obtuvo un puntaje del 82% en la prueba MMLU y actualmente se clasifica por encima de GPT-4 en preferencias de chat."
|
754
775
|
},
|
776
|
+
"grok-2-1212": {
|
777
|
+
"description": "Este modelo ha mejorado en precisión, cumplimiento de instrucciones y capacidades multilingües."
|
778
|
+
},
|
779
|
+
"grok-2-vision-1212": {
|
780
|
+
"description": "Este modelo ha mejorado en precisión, cumplimiento de instrucciones y capacidades multilingües."
|
781
|
+
},
|
755
782
|
"grok-beta": {
|
756
783
|
"description": "Ofrece un rendimiento comparable al de Grok 2, pero con mayor eficiencia, velocidad y funcionalidad."
|
757
784
|
},
|