@lobehub/chat 1.35.0 → 1.35.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/docs/changelog/2024-07-19-gpt-4o-mini.mdx +32 -0
- package/docs/changelog/2024-07-19-gpt-4o-mini.zh-CN.mdx +5 -4
- package/docs/changelog/2024-08-02-lobe-chat-database-docker.mdx +36 -0
- package/docs/changelog/2024-08-02-lobe-chat-database-docker.zh-CN.mdx +0 -1
- package/docs/changelog/2024-08-21-file-upload-and-knowledge-base.mdx +30 -0
- package/docs/changelog/2024-08-21-file-upload-and-knowledge-base.zh-CN.mdx +0 -1
- package/docs/changelog/2024-09-13-openai-o1-models.mdx +31 -0
- package/docs/changelog/2024-09-20-artifacts.mdx +55 -0
- package/docs/changelog/2024-09-20-artifacts.zh-CN.mdx +3 -2
- package/docs/changelog/2024-10-27-pin-assistant.mdx +33 -0
- package/docs/changelog/2024-10-27-pin-assistant.zh-CN.mdx +0 -1
- package/docs/changelog/2024-11-06-share-text-json.mdx +24 -0
- package/docs/changelog/2024-11-06-share-text-json.zh-CN.mdx +3 -1
- package/docs/changelog/2024-11-25-november-providers.mdx +5 -5
- package/docs/changelog/2024-11-25-november-providers.zh-CN.mdx +5 -5
- package/docs/changelog/2024-11-27-forkable-chat.mdx +26 -0
- package/docs/changelog/2024-11-27-forkable-chat.zh-CN.mdx +16 -9
- package/docs/changelog/index.json +5 -5
- package/docs/self-hosting/environment-variables/analytics.mdx +1 -1
- package/locales/ar/modelProvider.json +4 -4
- package/locales/ar/models.json +94 -7
- package/locales/bg-BG/modelProvider.json +9 -9
- package/locales/bg-BG/models.json +94 -7
- package/locales/de-DE/modelProvider.json +4 -4
- package/locales/de-DE/models.json +94 -7
- package/locales/en-US/chat.json +1 -1
- package/locales/en-US/modelProvider.json +1 -1
- package/locales/en-US/models.json +94 -7
- package/locales/es-ES/modelProvider.json +4 -4
- package/locales/es-ES/models.json +94 -7
- package/locales/fa-IR/models.json +94 -7
- package/locales/fr-FR/modelProvider.json +23 -23
- package/locales/fr-FR/models.json +94 -7
- package/locales/it-IT/models.json +94 -7
- package/locales/ja-JP/modelProvider.json +9 -9
- package/locales/ja-JP/models.json +94 -7
- package/locales/ko-KR/modelProvider.json +9 -9
- package/locales/ko-KR/models.json +94 -7
- package/locales/nl-NL/modelProvider.json +23 -23
- package/locales/nl-NL/models.json +94 -7
- package/locales/pl-PL/modelProvider.json +27 -27
- package/locales/pl-PL/models.json +94 -7
- package/locales/pt-BR/modelProvider.json +4 -4
- package/locales/pt-BR/models.json +94 -7
- package/locales/ru-RU/modelProvider.json +4 -4
- package/locales/ru-RU/models.json +94 -7
- package/locales/tr-TR/models.json +94 -7
- package/locales/vi-VN/models.json +94 -7
- package/locales/zh-CN/models.json +121 -34
- package/locales/zh-TW/models.json +94 -7
- package/package.json +1 -1
- package/src/config/modelProviders/ollama.ts +84 -35
@@ -2,6 +2,9 @@
|
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
3
|
"description": "Yi-1.5 34B biedt superieure prestaties in de industrie met rijke trainingsvoorbeelden."
|
4
4
|
},
|
5
|
+
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
+
"description": "Yi-1.5-6B-Chat is een variant van de Yi-1.5-serie, die behoort tot de open-source chatmodellen. Yi-1.5 is een upgrade van Yi, die is voorgetraind op 500B hoogwaardige corpus en is fijn afgesteld op meer dan 3M diverse voorbeelden. In vergelijking met Yi presteert Yi-1.5 beter in coderings-, wiskundige, redenerings- en instructievolgcapaciteiten, terwijl het uitstekende taalbegrip, algemene redenering en leesbegrip behoudt. Dit model heeft versies met contextlengtes van 4K, 16K en 32K, met een totale voortraining van 3.6T tokens."
|
7
|
+
},
|
5
8
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
6
9
|
"description": "Yi-1.5 9B ondersteunt 16K tokens en biedt efficiënte, vloeiende taalgeneratiecapaciteiten."
|
7
10
|
},
|
@@ -91,6 +94,12 @@
|
|
91
94
|
"Gryphe/MythoMax-L2-13b": {
|
92
95
|
"description": "MythoMax-L2 (13B) is een innovatief model, geschikt voor toepassingen in meerdere domeinen en complexe taken."
|
93
96
|
},
|
97
|
+
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
98
|
+
"description": "Qwen2.5-72B-Instruct is een van de nieuwste grote taalmodellen die door Alibaba Cloud is uitgebracht. Dit 72B-model heeft aanzienlijke verbeteringen in coderings- en wiskundige vaardigheden. Het model biedt ook meertalige ondersteuning, met meer dan 29 ondersteunde talen, waaronder Chinees en Engels. Het model heeft aanzienlijke verbeteringen in het volgen van instructies, het begrijpen van gestructureerde gegevens en het genereren van gestructureerde uitvoer (vooral JSON)."
|
99
|
+
},
|
100
|
+
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
101
|
+
"description": "Qwen2.5-7B-Instruct is een van de nieuwste grote taalmodellen die door Alibaba Cloud is uitgebracht. Dit 7B-model heeft aanzienlijke verbeteringen in coderings- en wiskundige vaardigheden. Het model biedt ook meertalige ondersteuning, met meer dan 29 ondersteunde talen, waaronder Chinees en Engels. Het model heeft aanzienlijke verbeteringen in het volgen van instructies, het begrijpen van gestructureerde gegevens en het genereren van gestructureerde uitvoer (vooral JSON)."
|
102
|
+
},
|
94
103
|
"Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
95
104
|
"description": "Hermes 2 Mixtral 8x7B DPO is een zeer flexibele multi-model combinatie, ontworpen om een uitstekende creatieve ervaring te bieden."
|
96
105
|
},
|
@@ -98,9 +107,6 @@
|
|
98
107
|
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
99
108
|
"description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) is een hoogprecisie instructiemodel, geschikt voor complexe berekeningen."
|
100
109
|
},
|
101
|
-
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
102
|
-
"description": "Nous Hermes-2 Yi (34B) biedt geoptimaliseerde taaloutput en diverse toepassingsmogelijkheden."
|
103
|
-
},
|
104
110
|
"OpenGVLab/InternVL2-26B": {
|
105
111
|
"description": "InternVL2 toont uitstekende prestaties bij diverse visuele taaltaken, waaronder document- en grafiekbegrip, scène-tekstbegrip, OCR, en het oplossen van wetenschappelijke en wiskundige problemen."
|
106
112
|
},
|
@@ -134,18 +140,42 @@
|
|
134
140
|
"Pro/OpenGVLab/InternVL2-8B": {
|
135
141
|
"description": "InternVL2 toont uitstekende prestaties bij diverse visuele taaltaken, waaronder document- en grafiekbegrip, scène-tekstbegrip, OCR, en het oplossen van wetenschappelijke en wiskundige problemen."
|
136
142
|
},
|
143
|
+
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
144
|
+
"description": "Qwen2-1.5B-Instruct is een instructie-fijn afgesteld groot taalmodel in de Qwen2-serie, met een parameter grootte van 1.5B. Dit model is gebaseerd op de Transformer-architectuur en maakt gebruik van technieken zoals de SwiGLU-activeringsfunctie, aandacht QKV-bias en groepsquery-aandacht. Het presteert uitstekend in taalbegrip, generatie, meertalige capaciteiten, codering, wiskunde en redenering in verschillende benchmarktests, en overtreft de meeste open-source modellen. In vergelijking met Qwen1.5-1.8B-Chat toont Qwen2-1.5B-Instruct aanzienlijke prestatieverbeteringen in tests zoals MMLU, HumanEval, GSM8K, C-Eval en IFEval, ondanks een iets lager aantal parameters."
|
145
|
+
},
|
146
|
+
"Pro/Qwen/Qwen2-7B-Instruct": {
|
147
|
+
"description": "Qwen2-7B-Instruct is een instructie-fijn afgesteld groot taalmodel in de Qwen2-serie, met een parameter grootte van 7B. Dit model is gebaseerd op de Transformer-architectuur en maakt gebruik van technieken zoals de SwiGLU-activeringsfunctie, aandacht QKV-bias en groepsquery-aandacht. Het kan grote invoer verwerken. Dit model presteert uitstekend in taalbegrip, generatie, meertalige capaciteiten, codering, wiskunde en redenering in verschillende benchmarktests, en overtreft de meeste open-source modellen, en toont in sommige taken een concurrentievermogen vergelijkbaar met dat van propriëtaire modellen. Qwen2-7B-Instruct presteert beter dan Qwen1.5-7B-Chat in verschillende evaluaties, wat aanzienlijke prestatieverbeteringen aantoont."
|
148
|
+
},
|
137
149
|
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
138
150
|
"description": "Qwen2-VL is de nieuwste iteratie van het Qwen-VL-model, dat de toonaangevende prestaties behaalde in benchmarktests voor visueel begrip."
|
139
151
|
},
|
140
|
-
"Qwen/
|
141
|
-
"description": "
|
152
|
+
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
153
|
+
"description": "Qwen2.5-7B-Instruct is een van de nieuwste grote taalmodellen die door Alibaba Cloud is uitgebracht. Dit 7B-model heeft aanzienlijke verbeteringen in coderings- en wiskundige vaardigheden. Het model biedt ook meertalige ondersteuning, met meer dan 29 ondersteunde talen, waaronder Chinees en Engels. Het model heeft aanzienlijke verbeteringen in het volgen van instructies, het begrijpen van gestructureerde gegevens en het genereren van gestructureerde uitvoer (vooral JSON)."
|
154
|
+
},
|
155
|
+
"Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
|
156
|
+
"description": "Qwen2.5-Coder-7B-Instruct is de nieuwste versie van de code-specifieke grote taalmodelreeks die door Alibaba Cloud is uitgebracht. Dit model is aanzienlijk verbeterd in codegeneratie, redenering en herstelcapaciteiten door training met 55 biljoen tokens, gebaseerd op Qwen2.5. Het versterkt niet alleen de coderingscapaciteiten, maar behoudt ook de voordelen van wiskundige en algemene vaardigheden. Het model biedt een meer uitgebreide basis voor praktische toepassingen zoals code-agenten."
|
157
|
+
},
|
158
|
+
"Pro/THUDM/glm-4-9b-chat": {
|
159
|
+
"description": "GLM-4-9B-Chat is de open-source versie van het GLM-4-serie voorgetrainde model, gelanceerd door Zhipu AI. Dit model presteert uitstekend in semantiek, wiskunde, redenering, code en kennis. Naast ondersteuning voor meerdaagse gesprekken, beschikt GLM-4-9B-Chat ook over geavanceerde functies zoals webbrowser, code-uitvoering, aangepaste tool-aanroepen (Function Call) en lange tekstredenering. Het model ondersteunt 26 talen, waaronder Chinees, Engels, Japans, Koreaans en Duits. In verschillende benchmarktests toont GLM-4-9B-Chat uitstekende prestaties, zoals AlignBench-v2, MT-Bench, MMLU en C-Eval. Dit model ondersteunt een maximale contextlengte van 128K, geschikt voor academisch onderzoek en commerciële toepassingen."
|
142
160
|
},
|
143
|
-
"
|
144
|
-
"description": "
|
161
|
+
"Pro/google/gemma-2-9b-it": {
|
162
|
+
"description": "Gemma is een van de lichtgewicht, state-of-the-art open modelseries ontwikkeld door Google. Het is een groot taalmodel met alleen decodering, dat Engels ondersteunt en open gewichten, voorgetrainde varianten en instructie-fijn afgestelde varianten biedt. Het Gemma-model is geschikt voor verschillende tekstgeneratietaken, waaronder vraag-en-antwoord, samenvattingen en redenering. Dit 9B-model is getraind met 8 biljoen tokens. De relatief kleine omvang maakt het mogelijk om in omgevingen met beperkte middelen te worden geïmplementeerd, zoals laptops, desktops of uw eigen cloudinfrastructuur, waardoor meer mensen toegang hebben tot geavanceerde AI-modellen en innovatie wordt bevorderd."
|
163
|
+
},
|
164
|
+
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
165
|
+
"description": "Meta Llama 3.1 is een familie van meertalige grote taalmodellen ontwikkeld door Meta, inclusief voorgetrainde en instructie-fijn afgestelde varianten met parameter groottes van 8B, 70B en 405B. Dit 8B instructie-fijn afgestelde model is geoptimaliseerd voor meertalige gespreksscenario's en presteert uitstekend in verschillende industriële benchmarktests. Het model is getraind met meer dan 150 biljoen tokens van openbare gegevens en maakt gebruik van technieken zoals supervisie-fijn afstemming en versterkend leren met menselijke feedback om de bruikbaarheid en veiligheid van het model te verbeteren. Llama 3.1 ondersteunt tekstgeneratie en codegeneratie, met een kennisafkapdatum van december 2023."
|
166
|
+
},
|
167
|
+
"Qwen/QwQ-32B-Preview": {
|
168
|
+
"description": "QwQ-32B-Preview is het nieuwste experimentele onderzoeksmodel van Qwen, gericht op het verbeteren van AI-redeneringscapaciteiten. Door het verkennen van complexe mechanismen zoals taalmixing en recursieve redenering, zijn de belangrijkste voordelen onder andere krachtige redeneringsanalyses, wiskundige en programmeervaardigheden. Tegelijkertijd zijn er ook problemen met taalwisseling, redeneringscycli, veiligheidskwesties en verschillen in andere capaciteiten."
|
169
|
+
},
|
170
|
+
"Qwen/Qwen2-1.5B-Instruct": {
|
171
|
+
"description": "Qwen2-1.5B-Instruct is een instructie-fijn afgesteld groot taalmodel in de Qwen2-serie, met een parameter grootte van 1.5B. Dit model is gebaseerd op de Transformer-architectuur en maakt gebruik van technieken zoals de SwiGLU-activeringsfunctie, aandacht QKV-bias en groepsquery-aandacht. Het presteert uitstekend in taalbegrip, generatie, meertalige capaciteiten, codering, wiskunde en redenering in verschillende benchmarktests, en overtreft de meeste open-source modellen. In vergelijking met Qwen1.5-1.8B-Chat toont Qwen2-1.5B-Instruct aanzienlijke prestatieverbeteringen in tests zoals MMLU, HumanEval, GSM8K, C-Eval en IFEval, ondanks een iets lager aantal parameters."
|
145
172
|
},
|
146
173
|
"Qwen/Qwen2-72B-Instruct": {
|
147
174
|
"description": "Qwen2 is een geavanceerd algemeen taalmodel dat verschillende soorten instructies ondersteunt."
|
148
175
|
},
|
176
|
+
"Qwen/Qwen2-7B-Instruct": {
|
177
|
+
"description": "Qwen2-72B-Instruct is een instructie-fijn afgesteld groot taalmodel in de Qwen2-serie, met een parameter grootte van 72B. Dit model is gebaseerd op de Transformer-architectuur en maakt gebruik van technieken zoals de SwiGLU-activeringsfunctie, aandacht QKV-bias en groepsquery-aandacht. Het kan grote invoer verwerken. Dit model presteert uitstekend in taalbegrip, generatie, meertalige capaciteiten, codering, wiskunde en redenering in verschillende benchmarktests, en overtreft de meeste open-source modellen, en toont in sommige taken een concurrentievermogen vergelijkbaar met dat van propriëtaire modellen."
|
178
|
+
},
|
149
179
|
"Qwen/Qwen2-VL-72B-Instruct": {
|
150
180
|
"description": "Qwen2-VL is de nieuwste iteratie van het Qwen-VL-model, dat de toonaangevende prestaties behaalde in benchmarktests voor visueel begrip."
|
151
181
|
},
|
@@ -173,6 +203,9 @@
|
|
173
203
|
"Qwen/Qwen2.5-Coder-32B-Instruct": {
|
174
204
|
"description": "Qwen2.5-Coder richt zich op het schrijven van code."
|
175
205
|
},
|
206
|
+
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
207
|
+
"description": "Qwen2.5-Coder-7B-Instruct is de nieuwste versie van de code-specifieke grote taalmodelreeks die door Alibaba Cloud is uitgebracht. Dit model is aanzienlijk verbeterd in codegeneratie, redenering en herstelcapaciteiten door training met 55 biljoen tokens, gebaseerd op Qwen2.5. Het versterkt niet alleen de coderingscapaciteiten, maar behoudt ook de voordelen van wiskundige en algemene vaardigheden. Het model biedt een meer uitgebreide basis voor praktische toepassingen zoals code-agenten."
|
208
|
+
},
|
176
209
|
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
177
210
|
"description": "Qwen2.5-Math richt zich op het oplossen van wiskundige vraagstukken en biedt professionele antwoorden op moeilijke vragen."
|
178
211
|
},
|
@@ -209,12 +242,27 @@
|
|
209
242
|
"SenseChat-Turbo": {
|
210
243
|
"description": "Geschikt voor snelle vraag-en-antwoord en modelafstemming."
|
211
244
|
},
|
245
|
+
"THUDM/chatglm3-6b": {
|
246
|
+
"description": "ChatGLM3-6B is het open-source model van de ChatGLM-serie, ontwikkeld door Zhipu AI. Dit model behoudt de uitstekende kenmerken van de vorige generatie, zoals vloeiende gesprekken en lage implementatiedrempels, terwijl het nieuwe functies introduceert. Het maakt gebruik van meer diverse trainingsdata, een groter aantal trainingsstappen en een meer redelijke trainingsstrategie, en presteert uitstekend onder de voorgetrainde modellen van minder dan 10B. ChatGLM3-6B ondersteunt complexe scenario's zoals meerdaagse gesprekken, tool-aanroepen, code-uitvoering en agenttaken. Naast het gespreksmodel zijn ook het basismodel ChatGLM-6B-Base en het lange tekstgespreksmodel ChatGLM3-6B-32K open-source gemaakt. Dit model is volledig open voor academisch onderzoek en staat ook gratis commercieel gebruik toe na registratie."
|
247
|
+
},
|
212
248
|
"THUDM/glm-4-9b-chat": {
|
213
249
|
"description": "GLM-4 9B is de open-source versie die een geoptimaliseerde gesprekservaring biedt voor gespreksapplicaties."
|
214
250
|
},
|
251
|
+
"TeleAI/TeleChat2": {
|
252
|
+
"description": "Het TeleChat2-model is een generatief semantisch groot model dat van de grond af aan is ontwikkeld door China Telecom, en ondersteunt functies zoals encyclopedische vraag-en-antwoord, codegeneratie en lange tekstgeneratie, en biedt gebruikers gespreksadviesdiensten. Het kan met gebruikers communiceren, vragen beantwoorden, helpen bij creatie en efficiënt en gemakkelijk informatie, kennis en inspiratie bieden. Het model presteert goed in het omgaan met hallucinatieproblemen, lange tekstgeneratie en logische begrip."
|
253
|
+
},
|
254
|
+
"TeleAI/TeleMM": {
|
255
|
+
"description": "Het TeleMM multimodale grote model is een door China Telecom ontwikkeld model voor multimodale begrip, dat verschillende modaliteiten zoals tekst en afbeeldingen kan verwerken, en ondersteunt functies zoals beeldbegrip en grafiekanalyse, en biedt gebruikers cross-modale begripdiensten. Het model kan met gebruikers communiceren in meerdere modaliteiten, de invoer nauwkeurig begrijpen, vragen beantwoorden, helpen bij creatie en efficiënt multimodale informatie en inspiratie bieden. Het presteert uitstekend in multimodale taken zoals fijne perceptie en logische redenering."
|
256
|
+
},
|
215
257
|
"Tencent/Hunyuan-A52B-Instruct": {
|
216
258
|
"description": "Hunyuan-Large is het grootste open source Transformer-architectuur MoE-model in de industrie, met een totaal van 389 miljard parameters en 52 miljard geactiveerde parameters."
|
217
259
|
},
|
260
|
+
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
261
|
+
"description": "Qwen2-72B-Instruct is een instructie-fijn afgesteld groot taalmodel in de Qwen2-serie, met een parameter grootte van 72B. Dit model is gebaseerd op de Transformer-architectuur en maakt gebruik van technieken zoals de SwiGLU-activeringsfunctie, aandacht QKV-bias en groepsquery-aandacht. Het kan grote invoer verwerken. Dit model presteert uitstekend in taalbegrip, generatie, meertalige capaciteiten, codering, wiskunde en redenering in verschillende benchmarktests, en overtreft de meeste open-source modellen, en toont in sommige taken een concurrentievermogen vergelijkbaar met dat van propriëtaire modellen."
|
262
|
+
},
|
263
|
+
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
264
|
+
"description": "Qwen2.5-72B-Instruct is een van de nieuwste grote taalmodellen die door Alibaba Cloud is uitgebracht. Dit 72B-model heeft aanzienlijke verbeteringen in coderings- en wiskundige vaardigheden. Het model biedt ook meertalige ondersteuning, met meer dan 29 ondersteunde talen, waaronder Chinees en Engels. Het model heeft aanzienlijke verbeteringen in het volgen van instructies, het begrijpen van gestructureerde gegevens en het genereren van gestructureerde uitvoer (vooral JSON)."
|
265
|
+
},
|
218
266
|
"Yi-34B-Chat": {
|
219
267
|
"description": "Yi-1.5-34B heeft de uitstekende algemene taalvaardigheden van de oorspronkelijke modelserie behouden en heeft door incrementele training van 500 miljard hoogwaardige tokens de wiskundige logica en codevaardigheden aanzienlijk verbeterd."
|
220
268
|
},
|
@@ -290,9 +338,15 @@
|
|
290
338
|
"accounts/fireworks/models/phi-3-vision-128k-instruct": {
|
291
339
|
"description": "Phi 3 Vision instructiemodel, een lichtgewicht multimodaal model dat complexe visuele en tekstuele informatie kan verwerken, met sterke redeneercapaciteiten."
|
292
340
|
},
|
341
|
+
"accounts/fireworks/models/qwen-qwq-32b-preview": {
|
342
|
+
"description": "Het QwQ-model is een experimenteel onderzoeksmodel ontwikkeld door het Qwen-team, gericht op het verbeteren van de AI-redeneringscapaciteiten."
|
343
|
+
},
|
293
344
|
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
294
345
|
"description": "Qwen2.5 is een serie decoder-only taalmodellen ontwikkeld door het Alibaba Qwen-team. Deze modellen zijn beschikbaar in verschillende groottes, waaronder 0.5B, 1.5B, 3B, 7B, 14B, 32B en 72B, met zowel een basisversie als een instructieversie."
|
295
346
|
},
|
347
|
+
"accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
|
348
|
+
"description": "Qwen2.5 Coder 32B Instruct is de nieuwste versie van de code-specifieke grote taalmodelreeks die door Alibaba Cloud is uitgebracht. Dit model is aanzienlijk verbeterd in codegeneratie, redenering en herstelcapaciteiten door training met 55 biljoen tokens, gebaseerd op Qwen2.5. Het versterkt niet alleen de coderingscapaciteiten, maar behoudt ook de voordelen van wiskundige en algemene vaardigheden. Het model biedt een meer uitgebreide basis voor praktische toepassingen zoals code-agenten."
|
349
|
+
},
|
296
350
|
"accounts/fireworks/models/starcoder-16b": {
|
297
351
|
"description": "StarCoder 15.5B model, ondersteunt geavanceerde programmeertaken, met verbeterde meertalige capaciteiten, geschikt voor complexe codegeneratie en -begrip."
|
298
352
|
},
|
@@ -392,6 +446,9 @@
|
|
392
446
|
"codellama": {
|
393
447
|
"description": "Code Llama is een LLM dat zich richt op codegeneratie en -discussie, met brede ondersteuning voor programmeertalen, geschikt voor ontwikkelaarsomgevingen."
|
394
448
|
},
|
449
|
+
"codellama/CodeLlama-34b-Instruct-hf": {
|
450
|
+
"description": "Code Llama is een LLM die zich richt op codegeneratie en -discussie, met uitgebreide ondersteuning voor programmeertalen, geschikt voor ontwikkelaarsomgevingen."
|
451
|
+
},
|
395
452
|
"codellama:13b": {
|
396
453
|
"description": "Code Llama is een LLM dat zich richt op codegeneratie en -discussie, met brede ondersteuning voor programmeertalen, geschikt voor ontwikkelaarsomgevingen."
|
397
454
|
},
|
@@ -428,6 +485,9 @@
|
|
428
485
|
"databricks/dbrx-instruct": {
|
429
486
|
"description": "DBRX Instruct biedt betrouwbare instructieverwerkingscapaciteiten en ondersteunt toepassingen in verschillende sectoren."
|
430
487
|
},
|
488
|
+
"deepseek-ai/DeepSeek-V2-Chat": {
|
489
|
+
"description": "DeepSeek-V2 is een krachtig en kosteneffectief hybride expert (MoE) taalmodel. Het is voorgetraind op een hoogwaardige corpus van 81 biljoen tokens en verder verbeterd door middel van supervisie-fijnafstemming (SFT) en versterkend leren (RL). In vergelijking met DeepSeek 67B bespaart DeepSeek-V2 42,5% van de trainingskosten, vermindert 93,3% van de KV-cache en verhoogt de maximale generatiedoorvoer met 5,76 keer. Dit model ondersteunt een contextlengte van 128k en presteert uitstekend in standaard benchmarktests en open generatieve evaluaties."
|
490
|
+
},
|
431
491
|
"deepseek-ai/DeepSeek-V2.5": {
|
432
492
|
"description": "DeepSeek V2.5 combineert de uitstekende kenmerken van eerdere versies en versterkt de algemene en coderingscapaciteiten."
|
433
493
|
},
|
@@ -682,6 +742,9 @@
|
|
682
742
|
},
|
683
743
|
"jamba-1.5-large": {},
|
684
744
|
"jamba-1.5-mini": {},
|
745
|
+
"learnlm-1.5-pro-experimental": {
|
746
|
+
"description": "LearnLM is een experimenteel, taak-specifiek taalmodel dat is getraind volgens de principes van de leerwetenschap, en kan systeeminstructies volgen in onderwijs- en leeromgevingen, en fungeert als een expertmentor."
|
747
|
+
},
|
685
748
|
"lite": {
|
686
749
|
"description": "Spark Lite is een lichtgewicht groot taalmodel met extreem lage latentie en efficiënte verwerkingscapaciteit. Het is volledig gratis en open, en ondersteunt realtime online zoekfunctionaliteit. De snelle respons maakt het uitermate geschikt voor inferentie op apparaten met lage rekenkracht en modelafstemming, wat gebruikers uitstekende kosteneffectiviteit en een slimme ervaring biedt, vooral in kennisvragen, contentgeneratie en zoekscenario's."
|
687
750
|
},
|
@@ -872,6 +935,9 @@
|
|
872
935
|
"description": "Meta Llama 3 is een open groot taalmodel (LLM) gericht op ontwikkelaars, onderzoekers en bedrijven, ontworpen om hen te helpen bij het bouwen, experimenteren en verantwoordelijk opschalen van hun generatieve AI-ideeën. Als onderdeel van het basis systeem voor wereldwijde gemeenschapsinnovatie is het zeer geschikt voor apparaten met beperkte rekenkracht en middelen, edge-apparaten en snellere trainingstijden."
|
873
936
|
},
|
874
937
|
"microsoft/Phi-3.5-mini-instruct": {},
|
938
|
+
"microsoft/WizardLM-2-8x22B": {
|
939
|
+
"description": "WizardLM 2 is een taalmodel van Microsoft AI dat uitblinkt in complexe gesprekken, meertaligheid, redenering en intelligente assistenttoepassingen."
|
940
|
+
},
|
875
941
|
"microsoft/wizardlm 2-7b": {
|
876
942
|
"description": "WizardLM 2 7B is het nieuwste snelle en lichte model van Microsoft AI, met prestaties die bijna 10 keer beter zijn dan de huidige toonaangevende open-source modellen."
|
877
943
|
},
|
@@ -956,6 +1022,9 @@
|
|
956
1022
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
957
1023
|
"description": "Llama 3.1 Nemotron 70B is een op maat gemaakt groot taalmodel van NVIDIA, ontworpen om de hulp te verbeteren die LLM-gebaseerde reacties bieden op gebruikersvragen."
|
958
1024
|
},
|
1025
|
+
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1026
|
+
"description": "Llama 3.1 Nemotron 70B is een op maat gemaakt groot taalmodel van NVIDIA, ontworpen om de hulp van LLM-gegenereerde reacties op gebruikersvragen te verbeteren. Dit model presteert uitstekend in benchmarktests zoals Arena Hard, AlpacaEval 2 LC en GPT-4-Turbo MT-Bench, en staat per 1 oktober 2024 op de eerste plaats in alle drie de automatische afstemmingsbenchmarktests. Het model is getraind met RLHF (met name REINFORCE), Llama-3.1-Nemotron-70B-Reward en HelpSteer2-Preference prompts op basis van het Llama-3.1-70B-Instruct model."
|
1027
|
+
},
|
959
1028
|
"o1-mini": {
|
960
1029
|
"description": "o1-mini is een snel en kosteneffectief redeneermodel dat is ontworpen voor programmeer-, wiskunde- en wetenschappelijke toepassingen. Dit model heeft een context van 128K en een kennisafkapdatum van oktober 2023."
|
961
1030
|
},
|
@@ -1052,6 +1121,9 @@
|
|
1052
1121
|
"qwen2": {
|
1053
1122
|
"description": "Qwen2 is Alibaba's nieuwe generatie grootschalig taalmodel, ondersteunt diverse toepassingsbehoeften met uitstekende prestaties."
|
1054
1123
|
},
|
1124
|
+
"qwen2.5": {
|
1125
|
+
"description": "Qwen2.5 is de nieuwe generatie grootschalig taalmodel van Alibaba, dat uitstekende prestaties levert ter ondersteuning van diverse toepassingsbehoeften."
|
1126
|
+
},
|
1055
1127
|
"qwen2.5-14b-instruct": {
|
1056
1128
|
"description": "Het 14B model van Tongyi Qianwen 2.5 is open source beschikbaar."
|
1057
1129
|
},
|
@@ -1076,6 +1148,15 @@
|
|
1076
1148
|
"qwen2.5-math-7b-instruct": {
|
1077
1149
|
"description": "Het Qwen-Math model heeft krachtige capaciteiten voor het oplossen van wiskundige problemen."
|
1078
1150
|
},
|
1151
|
+
"qwen2.5:0.5b": {
|
1152
|
+
"description": "Qwen2.5 is de nieuwe generatie grootschalig taalmodel van Alibaba, dat uitstekende prestaties levert ter ondersteuning van diverse toepassingsbehoeften."
|
1153
|
+
},
|
1154
|
+
"qwen2.5:1.5b": {
|
1155
|
+
"description": "Qwen2.5 is de nieuwe generatie grootschalig taalmodel van Alibaba, dat uitstekende prestaties levert ter ondersteuning van diverse toepassingsbehoeften."
|
1156
|
+
},
|
1157
|
+
"qwen2.5:72b": {
|
1158
|
+
"description": "Qwen2.5 is de nieuwe generatie grootschalig taalmodel van Alibaba, dat uitstekende prestaties levert ter ondersteuning van diverse toepassingsbehoeften."
|
1159
|
+
},
|
1079
1160
|
"qwen2:0.5b": {
|
1080
1161
|
"description": "Qwen2 is Alibaba's nieuwe generatie grootschalig taalmodel, ondersteunt diverse toepassingsbehoeften met uitstekende prestaties."
|
1081
1162
|
},
|
@@ -1085,6 +1166,12 @@
|
|
1085
1166
|
"qwen2:72b": {
|
1086
1167
|
"description": "Qwen2 is Alibaba's nieuwe generatie grootschalig taalmodel, ondersteunt diverse toepassingsbehoeften met uitstekende prestaties."
|
1087
1168
|
},
|
1169
|
+
"qwq": {
|
1170
|
+
"description": "QwQ is een experimenteel onderzoeksmodel dat zich richt op het verbeteren van de AI-redeneringscapaciteiten."
|
1171
|
+
},
|
1172
|
+
"qwq-32b-preview": {
|
1173
|
+
"description": "Het QwQ-model is een experimenteel onderzoeksmodel ontwikkeld door het Qwen-team, gericht op het verbeteren van de AI-redeneringscapaciteiten."
|
1174
|
+
},
|
1088
1175
|
"solar-1-mini-chat": {
|
1089
1176
|
"description": "Solar Mini is een compact LLM dat beter presteert dan GPT-3.5, met sterke meertalige capaciteiten, ondersteunt Engels en Koreaans, en biedt een efficiënte en compacte oplossing."
|
1090
1177
|
},
|
@@ -88,10 +88,10 @@
|
|
88
88
|
"title": "Nazwa własnego modelu"
|
89
89
|
},
|
90
90
|
"download": {
|
91
|
-
"desc": "Ollama
|
92
|
-
"remainingTime": "
|
93
|
-
"speed": "
|
94
|
-
"title": "
|
91
|
+
"desc": "Ollama pobiera ten model, proszę nie zamykać tej strony. Wznowienie pobierania nastąpi od miejsca przerwania",
|
92
|
+
"remainingTime": "Pozostały czas",
|
93
|
+
"speed": "Prędkość pobierania",
|
94
|
+
"title": "Pobieranie modelu {{model}}"
|
95
95
|
},
|
96
96
|
"endpoint": {
|
97
97
|
"desc": "Wprowadź adres rest API Ollama, jeśli lokalnie nie określono, pozostaw puste",
|
@@ -99,37 +99,37 @@
|
|
99
99
|
},
|
100
100
|
"setup": {
|
101
101
|
"cors": {
|
102
|
-
"description": "
|
102
|
+
"description": "Z powodu ograniczeń bezpieczeństwa przeglądarki, musisz skonfigurować CORS dla Ollama, aby móc go używać.",
|
103
103
|
"linux": {
|
104
|
-
"env": "
|
105
|
-
"reboot": "
|
106
|
-
"systemd": "
|
104
|
+
"env": "Dodaj `Environment` w sekcji [Service], dodaj zmienną środowiskową OLLAMA_ORIGINS:",
|
105
|
+
"reboot": "Przeładuj systemd i uruchom ponownie Ollama",
|
106
|
+
"systemd": "Użyj systemd, aby edytować usługę ollama:"
|
107
107
|
},
|
108
|
-
"macos": "
|
109
|
-
"reboot": "
|
110
|
-
"title": "
|
111
|
-
"windows": "
|
108
|
+
"macos": "Otwórz aplikację „Terminal” i wklej poniższe polecenie, a następnie naciśnij Enter",
|
109
|
+
"reboot": "Proszę ponownie uruchomić usługę Ollama po zakończeniu",
|
110
|
+
"title": "Konfiguracja Ollama do zezwolenia na dostęp CORS",
|
111
|
+
"windows": "Na Windowsie, kliknij „Panel sterowania”, aby edytować zmienne środowiskowe systemu. Utwórz nową zmienną środowiskową o nazwie „OLLAMA_ORIGINS” dla swojego konta użytkownika, ustaw wartość na *, a następnie kliknij „OK/Zastosuj”, aby zapisać"
|
112
112
|
},
|
113
113
|
"install": {
|
114
|
-
"description": "
|
115
|
-
"docker": "
|
114
|
+
"description": "Proszę upewnić się, że Ollama jest uruchomione, jeśli nie pobrałeś Ollama, odwiedź oficjalną stronę <1>pobierz</1>",
|
115
|
+
"docker": "Jeśli wolisz używać Dockera, Ollama również oferuje oficjalny obraz Dockera, który możesz pobrać za pomocą poniższego polecenia:",
|
116
116
|
"linux": {
|
117
|
-
"command": "
|
118
|
-
"manual": "
|
117
|
+
"command": "Zainstaluj za pomocą poniższego polecenia:",
|
118
|
+
"manual": "Alternatywnie, możesz zapoznać się z <1>podręcznikiem instalacji ręcznej dla Linuxa</1>, aby zainstalować samodzielnie"
|
119
119
|
},
|
120
|
-
"title": "
|
121
|
-
"windowsTab": "Windows (
|
120
|
+
"title": "Zainstaluj i uruchom aplikację Ollama lokalnie",
|
121
|
+
"windowsTab": "Windows (wersja podglądowa)"
|
122
|
+
},
|
123
|
+
"unlock": {
|
124
|
+
"cancel": "Anuluj pobieranie",
|
125
|
+
"confirm": "Pobierz",
|
126
|
+
"description": "Wprowadź etykietę modelu Ollama, aby kontynuować sesję",
|
127
|
+
"downloaded": "{{completed}} / {{total}}",
|
128
|
+
"starting": "Rozpoczynanie pobierania...",
|
129
|
+
"title": "Pobierz określony model Ollama"
|
122
130
|
}
|
123
131
|
},
|
124
|
-
"title": "Ollama"
|
125
|
-
"unlock": {
|
126
|
-
"cancel": "Cancel Download",
|
127
|
-
"confirm": "Download",
|
128
|
-
"description": "Enter your Ollama model tag to continue the session",
|
129
|
-
"downloaded": "{{completed}} / {{total}}",
|
130
|
-
"starting": "Starting download...",
|
131
|
-
"title": "Download specified Ollama model"
|
132
|
-
}
|
132
|
+
"title": "Ollama"
|
133
133
|
},
|
134
134
|
"sensenova": {
|
135
135
|
"sensenovaAccessKeyID": {
|
@@ -2,6 +2,9 @@
|
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
3
|
"description": "Yi-1.5 34B, dzięki bogatym próbom treningowym, oferuje doskonałe wyniki w zastosowaniach branżowych."
|
4
4
|
},
|
5
|
+
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
+
"description": "Yi-1.5-6B-Chat to wariant serii Yi-1.5, należący do otwartych modeli czatu. Yi-1.5 to ulepszona wersja Yi, która była nieprzerwanie trenowana na 500B wysokiej jakości korpusie i dostosowywana na 3M zróżnicowanych próbkach. W porównaniu do Yi, Yi-1.5 wykazuje lepsze zdolności w zakresie kodowania, matematyki, wnioskowania i przestrzegania instrukcji, jednocześnie zachowując doskonałe umiejętności rozumienia języka, wnioskowania ogólnego i rozumienia tekstu. Model ten oferuje wersje o długości kontekstu 4K, 16K i 32K, a całkowita liczba tokenów w pretreningu wynosi 3.6T."
|
7
|
+
},
|
5
8
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
6
9
|
"description": "Yi-1.5 9B obsługuje 16K tokenów, oferując wydajne i płynne zdolności generowania języka."
|
7
10
|
},
|
@@ -91,6 +94,12 @@
|
|
91
94
|
"Gryphe/MythoMax-L2-13b": {
|
92
95
|
"description": "MythoMax-L2 (13B) to innowacyjny model, idealny do zastosowań w wielu dziedzinach i złożonych zadań."
|
93
96
|
},
|
97
|
+
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
98
|
+
"description": "Qwen2.5-72B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 72B ma znacząco poprawione zdolności w zakresie kodowania i matematyki. Oferuje również wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model ten wykazuje znaczną poprawę w zakresie przestrzegania instrukcji, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
|
99
|
+
},
|
100
|
+
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
101
|
+
"description": "Qwen2.5-7B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 7B ma znacząco poprawione zdolności w zakresie kodowania i matematyki. Oferuje również wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model ten wykazuje znaczną poprawę w zakresie przestrzegania instrukcji, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
|
102
|
+
},
|
94
103
|
"Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
95
104
|
"description": "Hermes 2 Mixtral 8x7B DPO to wysoce elastyczna fuzja wielu modeli, mająca na celu zapewnienie doskonałego doświadczenia twórczego."
|
96
105
|
},
|
@@ -98,9 +107,6 @@
|
|
98
107
|
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
99
108
|
"description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) to model poleceń o wysokiej precyzji, idealny do złożonych obliczeń."
|
100
109
|
},
|
101
|
-
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
102
|
-
"description": "Nous Hermes-2 Yi (34B) oferuje zoptymalizowane wyjście językowe i różnorodne możliwości zastosowania."
|
103
|
-
},
|
104
110
|
"OpenGVLab/InternVL2-26B": {
|
105
111
|
"description": "InternVL2 pokazuje wyjątkowe wyniki w różnych zadaniach językowych i wizualnych, w tym zrozumieniu dokumentów i wykresów, zrozumieniu tekstu w scenach, OCR, rozwiązywaniu problemów naukowych i matematycznych."
|
106
112
|
},
|
@@ -134,18 +140,42 @@
|
|
134
140
|
"Pro/OpenGVLab/InternVL2-8B": {
|
135
141
|
"description": "InternVL2 pokazuje wyjątkowe wyniki w różnych zadaniach językowych i wizualnych, w tym zrozumieniu dokumentów i wykresów, zrozumieniu tekstu w scenach, OCR, rozwiązywaniu problemów naukowych i matematycznych."
|
136
142
|
},
|
143
|
+
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
144
|
+
"description": "Qwen2-1.5B-Instruct to model dużego języka z serii Qwen2, dostosowany do instrukcji, o rozmiarze parametrów wynoszącym 1.5B. Model ten oparty jest na architekturze Transformer, wykorzystując funkcję aktywacji SwiGLU, przesunięcia QKV w uwadze oraz grupowe zapytania uwagi. Wykazuje doskonałe wyniki w wielu testach benchmarkowych dotyczących rozumienia języka, generowania, zdolności wielojęzycznych, kodowania, matematyki i wnioskowania, przewyższając większość modeli open-source. W porównaniu do Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct wykazuje znaczną poprawę wydajności w testach MMLU, HumanEval, GSM8K, C-Eval i IFEval, mimo że ma nieco mniejszą liczbę parametrów."
|
145
|
+
},
|
146
|
+
"Pro/Qwen/Qwen2-7B-Instruct": {
|
147
|
+
"description": "Qwen2-7B-Instruct to model dużego języka z serii Qwen2, dostosowany do instrukcji, o rozmiarze parametrów wynoszącym 7B. Model ten oparty jest na architekturze Transformer, wykorzystując funkcję aktywacji SwiGLU, przesunięcia QKV w uwadze oraz grupowe zapytania uwagi. Może obsługiwać duże wejścia. Model ten wykazuje doskonałe wyniki w wielu testach benchmarkowych dotyczących rozumienia języka, generowania, zdolności wielojęzycznych, kodowania, matematyki i wnioskowania, przewyższając większość modeli open-source i wykazując konkurencyjność z modelami własnościowymi w niektórych zadaniach. Qwen2-7B-Instruct wykazuje znaczną poprawę wydajności w wielu ocenach w porównaniu do Qwen1.5-7B-Chat."
|
148
|
+
},
|
137
149
|
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
138
150
|
"description": "Qwen2-VL to najnowsza iteracja modelu Qwen-VL, osiągająca najnowocześniejsze wyniki w benchmarkach zrozumienia wizualnego."
|
139
151
|
},
|
140
|
-
"Qwen/
|
141
|
-
"description": "
|
152
|
+
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
153
|
+
"description": "Qwen2.5-7B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 7B ma znacząco poprawione zdolności w zakresie kodowania i matematyki. Oferuje również wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model ten wykazuje znaczną poprawę w zakresie przestrzegania instrukcji, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
|
154
|
+
},
|
155
|
+
"Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
|
156
|
+
"description": "Qwen2.5-Coder-7B-Instruct to najnowsza wersja serii dużych modeli językowych specyficznych dla kodu wydana przez Alibaba Cloud. Model ten, oparty na Qwen2.5, został przeszkolony na 55 bilionach tokenów, znacznie poprawiając zdolności generowania kodu, wnioskowania i naprawy. Wzmacnia on nie tylko zdolności kodowania, ale także utrzymuje przewagę w zakresie matematyki i ogólnych umiejętności. Model ten stanowi bardziej kompleksową podstawę dla rzeczywistych zastosowań, takich jak inteligentne agenty kodowe."
|
157
|
+
},
|
158
|
+
"Pro/THUDM/glm-4-9b-chat": {
|
159
|
+
"description": "GLM-4-9B-Chat to otwarta wersja modelu pretrenowanego z serii GLM-4, wydana przez Zhipu AI. Model ten wykazuje doskonałe wyniki w zakresie semantyki, matematyki, wnioskowania, kodu i wiedzy. Oprócz wsparcia dla wieloetapowych rozmów, GLM-4-9B-Chat oferuje również zaawansowane funkcje, takie jak przeglądanie stron internetowych, wykonywanie kodu, wywoływanie niestandardowych narzędzi (Function Call) oraz wnioskowanie z długich tekstów. Model obsługuje 26 języków, w tym chiński, angielski, japoński, koreański i niemiecki. W wielu testach benchmarkowych, takich jak AlignBench-v2, MT-Bench, MMLU i C-Eval, GLM-4-9B-Chat wykazuje doskonałą wydajność. Model obsługuje maksymalną długość kontekstu 128K, co czyni go odpowiednim do badań akademickich i zastosowań komercyjnych."
|
142
160
|
},
|
143
|
-
"
|
144
|
-
"description": "
|
161
|
+
"Pro/google/gemma-2-9b-it": {
|
162
|
+
"description": "Gemma to jedna z lekkich, nowoczesnych otwartych serii modeli opracowanych przez Google. Jest to duży model językowy z jedynie dekoderem, wspierający język angielski, oferujący otwarte wagi, pretrenowane warianty oraz warianty dostosowane do instrukcji. Model Gemma nadaje się do różnych zadań generowania tekstu, w tym pytania-odpowiedzi, streszczenia i wnioskowania. Model 9B został przeszkolony na 8 bilionach tokenów. Jego stosunkowo mała skala umożliwia wdrożenie w środowiskach o ograniczonych zasobach, takich jak laptopy, komputery stacjonarne lub własna infrastruktura chmurowa, co umożliwia większej liczbie osób dostęp do nowoczesnych modeli AI i wspiera innowacje."
|
163
|
+
},
|
164
|
+
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
165
|
+
"description": "Meta Llama 3.1 to rodzina dużych modeli językowych opracowanych przez Meta, obejmująca pretrenowane i dostosowane do instrukcji warianty o rozmiarach parametrów 8B, 70B i 405B. Model 8B dostosowany do instrukcji został zoptymalizowany do scenariuszy rozmów wielojęzycznych, osiągając doskonałe wyniki w wielu branżowych testach benchmarkowych. Trening modelu wykorzystał ponad 150 bilionów tokenów danych publicznych oraz zastosował techniki takie jak nadzorowane dostrajanie i uczenie przez wzmacnianie z ludzkim feedbackiem, aby zwiększyć użyteczność i bezpieczeństwo modelu. Llama 3.1 wspiera generowanie tekstu i kodu, a data graniczna wiedzy to grudzień 2023 roku."
|
166
|
+
},
|
167
|
+
"Qwen/QwQ-32B-Preview": {
|
168
|
+
"description": "QwQ-32B-Preview to najnowszy eksperymentalny model badawczy Qwen, skoncentrowany na zwiększeniu zdolności wnioskowania AI. Poprzez eksplorację złożonych mechanizmów, takich jak mieszanie języków i wnioskowanie rekurencyjne, główne zalety obejmują silne zdolności analizy wnioskowania, matematyki i programowania. Jednocześnie występują problemy z przełączaniem języków, cyklami wnioskowania, kwestiami bezpieczeństwa oraz różnicami w innych zdolnościach."
|
169
|
+
},
|
170
|
+
"Qwen/Qwen2-1.5B-Instruct": {
|
171
|
+
"description": "Qwen2-1.5B-Instruct to model dużego języka z serii Qwen2, dostosowany do instrukcji, o rozmiarze parametrów wynoszącym 1.5B. Model ten oparty jest na architekturze Transformer, wykorzystując funkcję aktywacji SwiGLU, przesunięcia QKV w uwadze oraz grupowe zapytania uwagi. Wykazuje doskonałe wyniki w wielu testach benchmarkowych dotyczących rozumienia języka, generowania, zdolności wielojęzycznych, kodowania, matematyki i wnioskowania, przewyższając większość modeli open-source. W porównaniu do Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct wykazuje znaczną poprawę wydajności w testach MMLU, HumanEval, GSM8K, C-Eval i IFEval, mimo że ma nieco mniejszą liczbę parametrów."
|
145
172
|
},
|
146
173
|
"Qwen/Qwen2-72B-Instruct": {
|
147
174
|
"description": "Qwen2 to zaawansowany uniwersalny model językowy, wspierający różne typy poleceń."
|
148
175
|
},
|
176
|
+
"Qwen/Qwen2-7B-Instruct": {
|
177
|
+
"description": "Qwen2-72B-Instruct to model dużego języka z serii Qwen2, dostosowany do instrukcji, o rozmiarze parametrów wynoszącym 72B. Model ten oparty jest na architekturze Transformer, wykorzystując funkcję aktywacji SwiGLU, przesunięcia QKV w uwadze oraz grupowe zapytania uwagi. Może obsługiwać duże wejścia. Model ten wykazuje doskonałe wyniki w wielu testach benchmarkowych dotyczących rozumienia języka, generowania, zdolności wielojęzycznych, kodowania, matematyki i wnioskowania, przewyższając większość modeli open-source i wykazując konkurencyjność z modelami własnościowymi w niektórych zadaniach."
|
178
|
+
},
|
149
179
|
"Qwen/Qwen2-VL-72B-Instruct": {
|
150
180
|
"description": "Qwen2-VL to najnowsza iteracja modelu Qwen-VL, osiągająca najnowocześniejsze wyniki w benchmarkach zrozumienia wizualnego."
|
151
181
|
},
|
@@ -173,6 +203,9 @@
|
|
173
203
|
"Qwen/Qwen2.5-Coder-32B-Instruct": {
|
174
204
|
"description": "Qwen2.5-Coder koncentruje się na pisaniu kodu."
|
175
205
|
},
|
206
|
+
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
207
|
+
"description": "Qwen2.5-Coder-7B-Instruct to najnowsza wersja serii dużych modeli językowych specyficznych dla kodu wydana przez Alibaba Cloud. Model ten, oparty na Qwen2.5, został przeszkolony na 55 bilionach tokenów, znacznie poprawiając zdolności generowania kodu, wnioskowania i naprawy. Wzmacnia on nie tylko zdolności kodowania, ale także utrzymuje przewagę w zakresie matematyki i ogólnych umiejętności. Model ten stanowi bardziej kompleksową podstawę dla rzeczywistych zastosowań, takich jak inteligentne agenty kodowe."
|
208
|
+
},
|
176
209
|
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
177
210
|
"description": "Qwen2.5-Math koncentruje się na rozwiązywaniu problemów w dziedzinie matematyki, oferując profesjonalne odpowiedzi na trudne pytania."
|
178
211
|
},
|
@@ -209,12 +242,27 @@
|
|
209
242
|
"SenseChat-Turbo": {
|
210
243
|
"description": "Idealny do szybkich odpowiedzi i scenariuszy dostosowywania modelu."
|
211
244
|
},
|
245
|
+
"THUDM/chatglm3-6b": {
|
246
|
+
"description": "ChatGLM3-6B to otwarty model z serii ChatGLM, opracowany przez Zhipu AI. Model ten zachowuje doskonałe cechy poprzednich modeli, takie jak płynność rozmowy i niski próg wdrożenia, jednocześnie wprowadzając nowe funkcje. Wykorzystuje bardziej zróżnicowane dane treningowe, większą liczbę kroków treningowych i bardziej rozsądne strategie treningowe, osiągając doskonałe wyniki w modelach pretrenowanych poniżej 10B. ChatGLM3-6B obsługuje złożone scenariusze, takie jak wieloetapowe rozmowy, wywoływanie narzędzi, wykonywanie kodu i zadania agenta. Oprócz modelu konwersacyjnego, udostępniono również podstawowy model ChatGLM-6B-Base oraz model do rozmów długotematycznych ChatGLM3-6B-32K. Model jest całkowicie otwarty dla badań akademickich i pozwala na bezpłatne wykorzystanie komercyjne po rejestracji."
|
247
|
+
},
|
212
248
|
"THUDM/glm-4-9b-chat": {
|
213
249
|
"description": "GLM-4 9B to otwarta wersja, oferująca zoptymalizowane doświadczenie dialogowe dla aplikacji konwersacyjnych."
|
214
250
|
},
|
251
|
+
"TeleAI/TeleChat2": {
|
252
|
+
"description": "Model TeleChat2 to generatywny model semantyczny opracowany przez China Telecom, który wspiera funkcje takie jak pytania i odpowiedzi encyklopedyczne, generowanie kodu oraz generowanie długich tekstów, oferując użytkownikom usługi konsultacyjne. Model ten potrafi prowadzić interakcje z użytkownikami, odpowiadać na pytania, wspierać twórczość oraz efektywnie pomagać w pozyskiwaniu informacji, wiedzy i inspiracji. Model wykazuje dobre wyniki w zakresie problemów z halucynacjami, generowaniem długich tekstów oraz rozumieniem logicznym."
|
253
|
+
},
|
254
|
+
"TeleAI/TeleMM": {
|
255
|
+
"description": "Model TeleMM to model wielomodalny opracowany przez China Telecom, który potrafi przetwarzać różne rodzaje wejść, takie jak tekst i obrazy, wspierając funkcje rozumienia obrazów oraz analizy wykresów, oferując użytkownikom usługi rozumienia międzymodalnego. Model ten potrafi prowadzić interakcje wielomodalne z użytkownikami, dokładnie rozumiejąc wprowadzone treści, odpowiadając na pytania, wspierając twórczość oraz efektywnie dostarczając informacji i inspiracji w różnych modalnościach. Wykazuje doskonałe wyniki w zadaniach wielomodalnych, takich jak precyzyjne postrzeganie i rozumowanie logiczne."
|
256
|
+
},
|
215
257
|
"Tencent/Hunyuan-A52B-Instruct": {
|
216
258
|
"description": "Hunyuan-Large to największy w branży otwarty model Transformer MoE, z 389 miliardami parametrów ogółem i 52 miliardami aktywowanych parametrów."
|
217
259
|
},
|
260
|
+
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
261
|
+
"description": "Qwen2-72B-Instruct to model dużego języka z serii Qwen2, dostosowany do instrukcji, o rozmiarze parametrów wynoszącym 72B. Model ten oparty jest na architekturze Transformer, wykorzystując funkcję aktywacji SwiGLU, przesunięcia QKV w uwadze oraz grupowe zapytania uwagi. Może obsługiwać duże wejścia. Model ten wykazuje doskonałe wyniki w wielu testach benchmarkowych dotyczących rozumienia języka, generowania, zdolności wielojęzycznych, kodowania, matematyki i wnioskowania, przewyższając większość modeli open-source i wykazując konkurencyjność z modelami własnościowymi w niektórych zadaniach."
|
262
|
+
},
|
263
|
+
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
264
|
+
"description": "Qwen2.5-72B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 72B ma znacząco poprawione zdolności w zakresie kodowania i matematyki. Oferuje również wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model ten wykazuje znaczną poprawę w zakresie przestrzegania instrukcji, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
|
265
|
+
},
|
218
266
|
"Yi-34B-Chat": {
|
219
267
|
"description": "Yi-1.5-34B, zachowując doskonałe ogólne zdolności językowe oryginalnej serii modeli, znacznie poprawił zdolności logiczne i kodowania dzięki dodatkowym treningom na 500 miliardach wysokiej jakości tokenów."
|
220
268
|
},
|
@@ -290,9 +338,15 @@
|
|
290
338
|
"accounts/fireworks/models/phi-3-vision-128k-instruct": {
|
291
339
|
"description": "Model Phi 3 Vision Instruct, lekki model multimodalny, zdolny do przetwarzania złożonych informacji wizualnych i tekstowych, z silnymi zdolnościami wnioskowania."
|
292
340
|
},
|
341
|
+
"accounts/fireworks/models/qwen-qwq-32b-preview": {
|
342
|
+
"description": "Model QwQ to eksperymentalny model badawczy opracowany przez zespół Qwen, skoncentrowany na zwiększeniu zdolności wnioskowania AI."
|
343
|
+
},
|
293
344
|
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
294
345
|
"description": "Qwen2.5 to seria modeli językowych opracowana przez zespół Qwen na chmurze Alibaba, która zawiera jedynie dekodery. Modele te występują w różnych rozmiarach, w tym 0.5B, 1.5B, 3B, 7B, 14B, 32B i 72B, i oferują dwie wersje: bazową (base) i instruktażową (instruct)."
|
295
346
|
},
|
347
|
+
"accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
|
348
|
+
"description": "Qwen2.5 Coder 32B Instruct to najnowsza wersja serii dużych modeli językowych specyficznych dla kodu wydana przez Alibaba Cloud. Model ten, oparty na Qwen2.5, został przeszkolony na 55 bilionach tokenów, znacznie poprawiając zdolności generowania kodu, wnioskowania i naprawy. Wzmacnia on nie tylko zdolności kodowania, ale także utrzymuje przewagę w zakresie matematyki i ogólnych umiejętności. Model ten stanowi bardziej kompleksową podstawę dla rzeczywistych zastosowań, takich jak inteligentne agenty kodowe."
|
349
|
+
},
|
296
350
|
"accounts/fireworks/models/starcoder-16b": {
|
297
351
|
"description": "Model StarCoder 15.5B, wspierający zaawansowane zadania programistyczne, z wzmocnionymi możliwościami wielojęzycznymi, idealny do złożonego generowania i rozumienia kodu."
|
298
352
|
},
|
@@ -392,6 +446,9 @@
|
|
392
446
|
"codellama": {
|
393
447
|
"description": "Code Llama to model LLM skoncentrowany na generowaniu i dyskusji kodu, łączący wsparcie dla szerokiego zakresu języków programowania, odpowiedni do środowisk deweloperskich."
|
394
448
|
},
|
449
|
+
"codellama/CodeLlama-34b-Instruct-hf": {
|
450
|
+
"description": "Code Llama to LLM skoncentrowany na generowaniu i omawianiu kodu, z szerokim wsparciem dla różnych języków programowania, odpowiedni dla środowisk deweloperskich."
|
451
|
+
},
|
395
452
|
"codellama:13b": {
|
396
453
|
"description": "Code Llama to model LLM skoncentrowany na generowaniu i dyskusji kodu, łączący wsparcie dla szerokiego zakresu języków programowania, odpowiedni do środowisk deweloperskich."
|
397
454
|
},
|
@@ -428,6 +485,9 @@
|
|
428
485
|
"databricks/dbrx-instruct": {
|
429
486
|
"description": "DBRX Instruct oferuje wysoką niezawodność w przetwarzaniu poleceń, wspierając różne branże."
|
430
487
|
},
|
488
|
+
"deepseek-ai/DeepSeek-V2-Chat": {
|
489
|
+
"description": "DeepSeek-V2 to potężny, ekonomiczny model językowy typu mieszany ekspert (MoE). Został wstępnie przeszkolony na wysokiej jakości korpusie danych liczącym 8,1 biliona tokenów, a jego zdolności zostały dodatkowo poprawione dzięki nadzorowanemu dostrajaniu (SFT) i uczeniu przez wzmacnianie (RL). W porównaniu do DeepSeek 67B, DeepSeek-V2 osiąga lepszą wydajność, oszczędzając 42,5% kosztów szkolenia, redukując 93,3% pamięci podręcznej KV i zwiększając maksymalną przepustowość generacji do 5,76 razy. Model obsługuje długość kontekstu 128k i osiąga doskonałe wyniki w standardowych testach benchmarkowych oraz w otwartych ocenach generacji."
|
490
|
+
},
|
431
491
|
"deepseek-ai/DeepSeek-V2.5": {
|
432
492
|
"description": "DeepSeek V2.5 łączy doskonałe cechy wcześniejszych wersji, wzmacniając zdolności ogólne i kodowania."
|
433
493
|
},
|
@@ -682,6 +742,9 @@
|
|
682
742
|
},
|
683
743
|
"jamba-1.5-large": {},
|
684
744
|
"jamba-1.5-mini": {},
|
745
|
+
"learnlm-1.5-pro-experimental": {
|
746
|
+
"description": "LearnLM to eksperymentalny model językowy, specyficzny dla zadań, przeszkolony zgodnie z zasadami nauki o uczeniu się, który może przestrzegać systemowych instrukcji w scenariuszach nauczania i uczenia się, pełniąc rolę eksperta mentora."
|
747
|
+
},
|
685
748
|
"lite": {
|
686
749
|
"description": "Spark Lite to lekki model językowy o dużej skali, charakteryzujący się niezwykle niskim opóźnieniem i wysoką wydajnością przetwarzania, całkowicie darmowy i otwarty, wspierający funkcje wyszukiwania w czasie rzeczywistym. Jego cechy szybkiej reakcji sprawiają, że doskonale sprawdza się w zastosowaniach inferencyjnych na urządzeniach o niskiej mocy obliczeniowej oraz w dostosowywaniu modeli, oferując użytkownikom znakomity stosunek kosztów do korzyści oraz inteligentne doświadczenie, szczególnie w kontekście pytań i odpowiedzi, generowania treści oraz wyszukiwania."
|
687
750
|
},
|
@@ -872,6 +935,9 @@
|
|
872
935
|
"description": "Meta Llama 3 to otwarty duży model językowy (LLM) skierowany do deweloperów, badaczy i przedsiębiorstw, mający na celu pomoc w budowaniu, eksperymentowaniu i odpowiedzialnym rozwijaniu ich pomysłów na generatywną sztuczną inteligencję. Jako część podstawowego systemu innowacji globalnej społeczności, jest idealny dla urządzeń o ograniczonej mocy obliczeniowej i zasobach, a także dla szybszego czasu szkolenia."
|
873
936
|
},
|
874
937
|
"microsoft/Phi-3.5-mini-instruct": {},
|
938
|
+
"microsoft/WizardLM-2-8x22B": {
|
939
|
+
"description": "WizardLM 2 to model językowy oferowany przez Microsoft AI, który wyróżnia się w złożonych rozmowach, wielojęzyczności, wnioskowaniu i jako inteligentny asystent."
|
940
|
+
},
|
875
941
|
"microsoft/wizardlm 2-7b": {
|
876
942
|
"description": "WizardLM 2 7B to najnowszy szybki i lekki model AI od Microsoftu, osiągający wydajność bliską 10-krotności istniejących wiodących modeli open source."
|
877
943
|
},
|
@@ -956,6 +1022,9 @@
|
|
956
1022
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
957
1023
|
"description": "Llama 3.1 Nemotron 70B to duży model językowy stworzony przez NVIDIA, zaprojektowany w celu zwiększenia użyteczności odpowiedzi generowanych przez LLM dla zapytań użytkowników."
|
958
1024
|
},
|
1025
|
+
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1026
|
+
"description": "Llama 3.1 Nemotron 70B to dostosowany przez NVIDIA duży model językowy, mający na celu zwiększenie użyteczności odpowiedzi generowanych przez LLM w odpowiedzi na zapytania użytkowników. Model ten osiągnął doskonałe wyniki w testach benchmarkowych, takich jak Arena Hard, AlpacaEval 2 LC i GPT-4-Turbo MT-Bench, zajmując pierwsze miejsce we wszystkich trzech automatycznych testach do 1 października 2024 roku. Model został przeszkolony przy użyciu RLHF (szczególnie REINFORCE), Llama-3.1-Nemotron-70B-Reward i HelpSteer2-Preference na bazie modelu Llama-3.1-70B-Instruct."
|
1027
|
+
},
|
959
1028
|
"o1-mini": {
|
960
1029
|
"description": "o1-mini to szybki i ekonomiczny model wnioskowania zaprojektowany z myślą o programowaniu, matematyce i zastosowaniach naukowych. Model ten ma kontekst 128K i datę graniczną wiedzy z października 2023 roku."
|
961
1030
|
},
|
@@ -1052,6 +1121,9 @@
|
|
1052
1121
|
"qwen2": {
|
1053
1122
|
"description": "Qwen2 to nowa generacja dużego modelu językowego Alibaba, wspierająca różnorodne potrzeby aplikacyjne dzięki doskonałej wydajności."
|
1054
1123
|
},
|
1124
|
+
"qwen2.5": {
|
1125
|
+
"description": "Qwen2.5 to nowa generacja dużego modelu językowego Alibaba, który wspiera różnorodne potrzeby aplikacyjne dzięki doskonałej wydajności."
|
1126
|
+
},
|
1055
1127
|
"qwen2.5-14b-instruct": {
|
1056
1128
|
"description": "Model Qwen 2.5 o skali 14B, udostępniony na zasadzie open source."
|
1057
1129
|
},
|
@@ -1076,6 +1148,15 @@
|
|
1076
1148
|
"qwen2.5-math-7b-instruct": {
|
1077
1149
|
"description": "Model Qwen-Math, który ma silne zdolności rozwiązywania problemów matematycznych."
|
1078
1150
|
},
|
1151
|
+
"qwen2.5:0.5b": {
|
1152
|
+
"description": "Qwen2.5 to nowa generacja dużego modelu językowego Alibaba, który wspiera różnorodne potrzeby aplikacyjne dzięki doskonałej wydajności."
|
1153
|
+
},
|
1154
|
+
"qwen2.5:1.5b": {
|
1155
|
+
"description": "Qwen2.5 to nowa generacja dużego modelu językowego Alibaba, który wspiera różnorodne potrzeby aplikacyjne dzięki doskonałej wydajności."
|
1156
|
+
},
|
1157
|
+
"qwen2.5:72b": {
|
1158
|
+
"description": "Qwen2.5 to nowa generacja dużego modelu językowego Alibaba, który wspiera różnorodne potrzeby aplikacyjne dzięki doskonałej wydajności."
|
1159
|
+
},
|
1079
1160
|
"qwen2:0.5b": {
|
1080
1161
|
"description": "Qwen2 to nowa generacja dużego modelu językowego Alibaba, wspierająca różnorodne potrzeby aplikacyjne dzięki doskonałej wydajności."
|
1081
1162
|
},
|
@@ -1085,6 +1166,12 @@
|
|
1085
1166
|
"qwen2:72b": {
|
1086
1167
|
"description": "Qwen2 to nowa generacja dużego modelu językowego Alibaba, wspierająca różnorodne potrzeby aplikacyjne dzięki doskonałej wydajności."
|
1087
1168
|
},
|
1169
|
+
"qwq": {
|
1170
|
+
"description": "QwQ to eksperymentalny model badawczy, skoncentrowany na zwiększeniu zdolności wnioskowania AI."
|
1171
|
+
},
|
1172
|
+
"qwq-32b-preview": {
|
1173
|
+
"description": "Model QwQ to eksperymentalny model badawczy opracowany przez zespół Qwen, skoncentrowany na zwiększeniu zdolności wnioskowania AI."
|
1174
|
+
},
|
1088
1175
|
"solar-1-mini-chat": {
|
1089
1176
|
"description": "Solar Mini to kompaktowy LLM, przewyższający GPT-3.5, z silnymi zdolnościami wielojęzycznymi, wspierający język angielski i koreański, oferujący wydajne i małe rozwiązanie."
|
1090
1177
|
},
|
@@ -88,10 +88,10 @@
|
|
88
88
|
"title": "Nomes dos Modelos Personalizados"
|
89
89
|
},
|
90
90
|
"download": {
|
91
|
-
"desc": "Ollama
|
92
|
-
"remainingTime": "
|
93
|
-
"speed": "
|
94
|
-
"title": "
|
91
|
+
"desc": "Ollama está baixando este modelo, por favor, evite fechar esta página. O download será retomado do ponto em que parou.",
|
92
|
+
"remainingTime": "Tempo restante",
|
93
|
+
"speed": "Velocidade de download",
|
94
|
+
"title": "Baixando o modelo {{model}} "
|
95
95
|
},
|
96
96
|
"endpoint": {
|
97
97
|
"desc": "Insira o endereço do proxy de interface da Ollama, se não foi especificado localmente, pode deixar em branco",
|