@lobehub/chat 1.35.0 → 1.35.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/docs/changelog/2024-07-19-gpt-4o-mini.mdx +32 -0
- package/docs/changelog/2024-07-19-gpt-4o-mini.zh-CN.mdx +5 -4
- package/docs/changelog/2024-08-02-lobe-chat-database-docker.mdx +36 -0
- package/docs/changelog/2024-08-02-lobe-chat-database-docker.zh-CN.mdx +0 -1
- package/docs/changelog/2024-08-21-file-upload-and-knowledge-base.mdx +30 -0
- package/docs/changelog/2024-08-21-file-upload-and-knowledge-base.zh-CN.mdx +0 -1
- package/docs/changelog/2024-09-13-openai-o1-models.mdx +31 -0
- package/docs/changelog/2024-09-20-artifacts.mdx +55 -0
- package/docs/changelog/2024-09-20-artifacts.zh-CN.mdx +3 -2
- package/docs/changelog/2024-10-27-pin-assistant.mdx +33 -0
- package/docs/changelog/2024-10-27-pin-assistant.zh-CN.mdx +0 -1
- package/docs/changelog/2024-11-06-share-text-json.mdx +24 -0
- package/docs/changelog/2024-11-06-share-text-json.zh-CN.mdx +3 -1
- package/docs/changelog/2024-11-25-november-providers.mdx +5 -5
- package/docs/changelog/2024-11-25-november-providers.zh-CN.mdx +5 -5
- package/docs/changelog/2024-11-27-forkable-chat.mdx +26 -0
- package/docs/changelog/2024-11-27-forkable-chat.zh-CN.mdx +16 -9
- package/docs/changelog/index.json +5 -5
- package/docs/self-hosting/environment-variables/analytics.mdx +1 -1
- package/locales/ar/modelProvider.json +4 -4
- package/locales/ar/models.json +94 -7
- package/locales/bg-BG/modelProvider.json +9 -9
- package/locales/bg-BG/models.json +94 -7
- package/locales/de-DE/modelProvider.json +4 -4
- package/locales/de-DE/models.json +94 -7
- package/locales/en-US/chat.json +1 -1
- package/locales/en-US/modelProvider.json +1 -1
- package/locales/en-US/models.json +94 -7
- package/locales/es-ES/modelProvider.json +4 -4
- package/locales/es-ES/models.json +94 -7
- package/locales/fa-IR/models.json +94 -7
- package/locales/fr-FR/modelProvider.json +23 -23
- package/locales/fr-FR/models.json +94 -7
- package/locales/it-IT/models.json +94 -7
- package/locales/ja-JP/modelProvider.json +9 -9
- package/locales/ja-JP/models.json +94 -7
- package/locales/ko-KR/modelProvider.json +9 -9
- package/locales/ko-KR/models.json +94 -7
- package/locales/nl-NL/modelProvider.json +23 -23
- package/locales/nl-NL/models.json +94 -7
- package/locales/pl-PL/modelProvider.json +27 -27
- package/locales/pl-PL/models.json +94 -7
- package/locales/pt-BR/modelProvider.json +4 -4
- package/locales/pt-BR/models.json +94 -7
- package/locales/ru-RU/modelProvider.json +4 -4
- package/locales/ru-RU/models.json +94 -7
- package/locales/tr-TR/models.json +94 -7
- package/locales/vi-VN/models.json +94 -7
- package/locales/zh-CN/models.json +121 -34
- package/locales/zh-TW/models.json +94 -7
- package/package.json +1 -1
- package/src/config/modelProviders/ollama.ts +84 -35
@@ -2,6 +2,9 @@
|
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
3
|
"description": "Yi-1.5 34B bietet mit umfangreichen Trainingsbeispielen überlegene Leistungen in der Branchenanwendung."
|
4
4
|
},
|
5
|
+
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
+
"description": "Yi-1.5-6B-Chat ist eine Variante der Yi-1.5-Serie und gehört zu den Open-Source-Chatmodellen. Yi-1.5 ist die verbesserte Version von Yi, die auf 500B hochwertigen Korpora kontinuierlich vortrainiert wurde und auf 3M diversifizierten Feinabstimmungsbeispielen feinabgestimmt wurde. Im Vergleich zu Yi zeigt Yi-1.5 stärkere Fähigkeiten in Codierung, Mathematik, Inferenz und Befolgung von Anweisungen, während es hervorragende Sprachverständnis-, Alltagswissen- und Leseverständnisfähigkeiten bewahrt. Das Modell bietet Versionen mit Kontextlängen von 4K, 16K und 32K, mit einer Gesamtanzahl von 3,6T Tokens im Vortraining."
|
7
|
+
},
|
5
8
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
6
9
|
"description": "Yi-1.5 9B unterstützt 16K Tokens und bietet effiziente, flüssige Sprachgenerierungsfähigkeiten."
|
7
10
|
},
|
@@ -91,6 +94,12 @@
|
|
91
94
|
"Gryphe/MythoMax-L2-13b": {
|
92
95
|
"description": "MythoMax-L2 (13B) ist ein innovatives Modell, das sich für Anwendungen in mehreren Bereichen und komplexe Aufgaben eignet."
|
93
96
|
},
|
97
|
+
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
98
|
+
"description": "Qwen2.5-72B-Instruct ist eines der neuesten großen Sprachmodelle, die von Alibaba Cloud veröffentlicht wurden. Dieses 72B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Es zeigt signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis strukturierter Daten und in der Generierung strukturierter Ausgaben (insbesondere JSON)."
|
99
|
+
},
|
100
|
+
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
101
|
+
"description": "Qwen2.5-7B-Instruct ist eines der neuesten großen Sprachmodelle, die von Alibaba Cloud veröffentlicht wurden. Dieses 7B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Es zeigt signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis strukturierter Daten und in der Generierung strukturierter Ausgaben (insbesondere JSON)."
|
102
|
+
},
|
94
103
|
"Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
95
104
|
"description": "Hermes 2 Mixtral 8x7B DPO ist eine hochflexible Multi-Modell-Kombination, die darauf abzielt, außergewöhnliche kreative Erlebnisse zu bieten."
|
96
105
|
},
|
@@ -98,9 +107,6 @@
|
|
98
107
|
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
99
108
|
"description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) ist ein hochpräzises Anweisungsmodell, das für komplexe Berechnungen geeignet ist."
|
100
109
|
},
|
101
|
-
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
102
|
-
"description": "Nous Hermes-2 Yi (34B) bietet optimierte Sprachausgaben und vielfältige Anwendungsmöglichkeiten."
|
103
|
-
},
|
104
110
|
"OpenGVLab/InternVL2-26B": {
|
105
111
|
"description": "InternVL2 zeigt herausragende Leistungen in verschiedenen visuellen Sprachaufgaben, einschließlich Dokumenten- und Diagrammverständnis, Szenentexterkennung, OCR, wissenschaftlicher und mathematischer Problemlösung."
|
106
112
|
},
|
@@ -134,18 +140,42 @@
|
|
134
140
|
"Pro/OpenGVLab/InternVL2-8B": {
|
135
141
|
"description": "InternVL2 zeigt herausragende Leistungen in verschiedenen visuellen Sprachaufgaben, einschließlich Dokumenten- und Diagrammverständnis, Szenentexterkennung, OCR, wissenschaftlicher und mathematischer Problemlösung."
|
136
142
|
},
|
143
|
+
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
144
|
+
"description": "Qwen2-1.5B-Instruct ist das anweisungsfeinabgestimmte große Sprachmodell der Qwen2-Serie mit einer Parametergröße von 1,5B. Dieses Modell basiert auf der Transformer-Architektur und verwendet Technologien wie die SwiGLU-Aktivierungsfunktion, QKV-Offsets und gruppierte Abfrageaufmerksamkeit. Es zeigt hervorragende Leistungen in der Sprachverständnis, -generierung, Mehrsprachigkeit, Codierung, Mathematik und Inferenz in mehreren Benchmark-Tests und übertrifft die meisten Open-Source-Modelle. Im Vergleich zu Qwen1.5-1.8B-Chat zeigt Qwen2-1.5B-Instruct in Tests wie MMLU, HumanEval, GSM8K, C-Eval und IFEval signifikante Leistungsverbesserungen, obwohl die Parameteranzahl etwas geringer ist."
|
145
|
+
},
|
146
|
+
"Pro/Qwen/Qwen2-7B-Instruct": {
|
147
|
+
"description": "Qwen2-7B-Instruct ist das anweisungsfeinabgestimmte große Sprachmodell der Qwen2-Serie mit einer Parametergröße von 7B. Dieses Modell basiert auf der Transformer-Architektur und verwendet Technologien wie die SwiGLU-Aktivierungsfunktion, QKV-Offsets und gruppierte Abfrageaufmerksamkeit. Es kann große Eingaben verarbeiten. Das Modell zeigt hervorragende Leistungen in der Sprachverständnis, -generierung, Mehrsprachigkeit, Codierung, Mathematik und Inferenz in mehreren Benchmark-Tests und übertrifft die meisten Open-Source-Modelle und zeigt in bestimmten Aufgaben eine vergleichbare Wettbewerbsfähigkeit mit proprietären Modellen. Qwen2-7B-Instruct übertrifft Qwen1.5-7B-Chat in mehreren Bewertungen und zeigt signifikante Leistungsverbesserungen."
|
148
|
+
},
|
137
149
|
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
138
150
|
"description": "Qwen2-VL ist die neueste Iteration des Qwen-VL-Modells, das in visuellen Verständnis-Benchmarks erstklassige Leistungen erzielt."
|
139
151
|
},
|
140
|
-
"Qwen/
|
141
|
-
"description": "
|
152
|
+
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
153
|
+
"description": "Qwen2.5-7B-Instruct ist eines der neuesten großen Sprachmodelle, die von Alibaba Cloud veröffentlicht wurden. Dieses 7B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Es zeigt signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis strukturierter Daten und in der Generierung strukturierter Ausgaben (insbesondere JSON)."
|
154
|
+
},
|
155
|
+
"Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
|
156
|
+
"description": "Qwen2.5-Coder-7B-Instruct ist die neueste Version der von Alibaba Cloud veröffentlichten Reihe von code-spezifischen großen Sprachmodellen. Dieses Modell basiert auf Qwen2.5 und wurde mit 55 Billionen Tokens trainiert, um die Fähigkeiten zur Codegenerierung, Inferenz und Fehlerbehebung erheblich zu verbessern. Es verbessert nicht nur die Codierungsfähigkeiten, sondern bewahrt auch die Vorteile in Mathematik und allgemeinen Fähigkeiten. Das Modell bietet eine umfassendere Grundlage für praktische Anwendungen wie Code-Agenten."
|
157
|
+
},
|
158
|
+
"Pro/THUDM/glm-4-9b-chat": {
|
159
|
+
"description": "GLM-4-9B-Chat ist die Open-Source-Version des GLM-4-Modells, das von Zhizhu AI eingeführt wurde. Dieses Modell zeigt hervorragende Leistungen in den Bereichen Semantik, Mathematik, Inferenz, Code und Wissen. Neben der Unterstützung für mehrstufige Dialoge bietet GLM-4-9B-Chat auch fortgeschrittene Funktionen wie Web-Browsing, Code-Ausführung, benutzerdefinierte Tool-Aufrufe (Function Call) und langes Textverständnis. Das Modell unterstützt 26 Sprachen, darunter Chinesisch, Englisch, Japanisch, Koreanisch und Deutsch. In mehreren Benchmark-Tests zeigt GLM-4-9B-Chat hervorragende Leistungen, wie AlignBench-v2, MT-Bench, MMLU und C-Eval. Das Modell unterstützt eine maximale Kontextlänge von 128K und ist für akademische Forschung und kommerzielle Anwendungen geeignet."
|
142
160
|
},
|
143
|
-
"
|
144
|
-
"description": "
|
161
|
+
"Pro/google/gemma-2-9b-it": {
|
162
|
+
"description": "Gemma ist eines der leichtgewichtigen, hochmodernen offenen Modellserien, die von Google entwickelt wurden. Es handelt sich um ein großes Sprachmodell mit nur Decoder, das Englisch unterstützt und offene Gewichte, vortrainierte Varianten und anweisungsfeinabgestimmte Varianten bietet. Das Gemma-Modell eignet sich für verschiedene Textgenerierungsaufgaben, einschließlich Fragen und Antworten, Zusammenfassungen und Inferenz. Dieses 9B-Modell wurde mit 80 Billionen Tokens trainiert. Seine relativ kleine Größe ermöglicht es, in ressourcenbeschränkten Umgebungen wie Laptops, Desktop-Computern oder Ihrer eigenen Cloud-Infrastruktur bereitgestellt zu werden, wodurch mehr Menschen Zugang zu modernsten KI-Modellen erhalten und Innovationen gefördert werden."
|
163
|
+
},
|
164
|
+
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
165
|
+
"description": "Meta Llama 3.1 ist eine Familie von mehrsprachigen großen Sprachmodellen, die von Meta entwickelt wurden und vortrainierte sowie anweisungsfeinabgestimmte Varianten mit 8B, 70B und 405B Parametern umfasst. Dieses 8B-Anweisungsfeinabgestimmte Modell wurde für mehrsprachige Dialogszenarien optimiert und zeigt in mehreren Branchen-Benchmark-Tests hervorragende Leistungen. Das Modelltraining verwendete über 150 Billionen Tokens aus öffentlichen Daten und nutzte Techniken wie überwachte Feinabstimmung und verstärkendes Lernen mit menschlichem Feedback, um die Nützlichkeit und Sicherheit des Modells zu verbessern. Llama 3.1 unterstützt Text- und Codegenerierung, mit einem Wissensstichtag von Dezember 2023."
|
166
|
+
},
|
167
|
+
"Qwen/QwQ-32B-Preview": {
|
168
|
+
"description": "QwQ-32B-Preview ist das neueste experimentelle Forschungsmodell von Qwen, das sich auf die Verbesserung der KI-Inferenzfähigkeiten konzentriert. Durch die Erforschung komplexer Mechanismen wie Sprachmischung und rekursive Inferenz bietet es Hauptvorteile wie starke Analysefähigkeiten, mathematische und Programmierfähigkeiten. Gleichzeitig gibt es Herausforderungen wie Sprachwechsel, Inferenzzyklen, Sicherheitsüberlegungen und Unterschiede in anderen Fähigkeiten."
|
169
|
+
},
|
170
|
+
"Qwen/Qwen2-1.5B-Instruct": {
|
171
|
+
"description": "Qwen2-1.5B-Instruct ist das anweisungsfeinabgestimmte große Sprachmodell der Qwen2-Serie mit einer Parametergröße von 1,5B. Dieses Modell basiert auf der Transformer-Architektur und verwendet Technologien wie die SwiGLU-Aktivierungsfunktion, QKV-Offsets und gruppierte Abfrageaufmerksamkeit. Es zeigt hervorragende Leistungen in der Sprachverständnis, -generierung, Mehrsprachigkeit, Codierung, Mathematik und Inferenz in mehreren Benchmark-Tests und übertrifft die meisten Open-Source-Modelle. Im Vergleich zu Qwen1.5-1.8B-Chat zeigt Qwen2-1.5B-Instruct in Tests wie MMLU, HumanEval, GSM8K, C-Eval und IFEval signifikante Leistungsverbesserungen, obwohl die Parameteranzahl etwas geringer ist."
|
145
172
|
},
|
146
173
|
"Qwen/Qwen2-72B-Instruct": {
|
147
174
|
"description": "Qwen2 ist ein fortschrittliches allgemeines Sprachmodell, das eine Vielzahl von Anweisungsarten unterstützt."
|
148
175
|
},
|
176
|
+
"Qwen/Qwen2-7B-Instruct": {
|
177
|
+
"description": "Qwen2-72B-Instruct ist das anweisungsfeinabgestimmte große Sprachmodell der Qwen2-Serie mit einer Parametergröße von 72B. Dieses Modell basiert auf der Transformer-Architektur und verwendet Technologien wie die SwiGLU-Aktivierungsfunktion, QKV-Offsets und gruppierte Abfrageaufmerksamkeit. Es kann große Eingaben verarbeiten. Das Modell zeigt hervorragende Leistungen in der Sprachverständnis, -generierung, Mehrsprachigkeit, Codierung, Mathematik und Inferenz in mehreren Benchmark-Tests und übertrifft die meisten Open-Source-Modelle und zeigt in bestimmten Aufgaben eine vergleichbare Wettbewerbsfähigkeit mit proprietären Modellen."
|
178
|
+
},
|
149
179
|
"Qwen/Qwen2-VL-72B-Instruct": {
|
150
180
|
"description": "Qwen2-VL ist die neueste Iteration des Qwen-VL-Modells, das in visuellen Verständnis-Benchmarks erstklassige Leistungen erzielt."
|
151
181
|
},
|
@@ -173,6 +203,9 @@
|
|
173
203
|
"Qwen/Qwen2.5-Coder-32B-Instruct": {
|
174
204
|
"description": "Qwen2.5-Coder konzentriert sich auf das Programmieren."
|
175
205
|
},
|
206
|
+
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
207
|
+
"description": "Qwen2.5-Coder-7B-Instruct ist die neueste Version der von Alibaba Cloud veröffentlichten Reihe von code-spezifischen großen Sprachmodellen. Dieses Modell basiert auf Qwen2.5 und wurde mit 55 Billionen Tokens trainiert, um die Fähigkeiten zur Codegenerierung, Inferenz und Fehlerbehebung erheblich zu verbessern. Es verbessert nicht nur die Codierungsfähigkeiten, sondern bewahrt auch die Vorteile in Mathematik und allgemeinen Fähigkeiten. Das Modell bietet eine umfassendere Grundlage für praktische Anwendungen wie Code-Agenten."
|
208
|
+
},
|
176
209
|
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
177
210
|
"description": "Qwen2.5-Math konzentriert sich auf die Problemlösung im Bereich Mathematik und bietet professionelle Lösungen für schwierige Aufgaben."
|
178
211
|
},
|
@@ -209,12 +242,27 @@
|
|
209
242
|
"SenseChat-Turbo": {
|
210
243
|
"description": "Geeignet für schnelle Fragen und Antworten sowie Szenarien zur Feinabstimmung des Modells."
|
211
244
|
},
|
245
|
+
"THUDM/chatglm3-6b": {
|
246
|
+
"description": "ChatGLM3-6B ist das Open-Source-Modell der ChatGLM-Serie, das von Zhizhu AI entwickelt wurde. Dieses Modell bewahrt die hervorragenden Eigenschaften der Vorgängermodelle, wie flüssige Dialoge und niedrige Bereitstellungskosten, während es neue Funktionen einführt. Es verwendet vielfältigere Trainingsdaten, eine größere Anzahl an Trainingsschritten und eine sinnvollere Trainingsstrategie und zeigt hervorragende Leistungen unter den vortrainierten Modellen mit weniger als 10B. ChatGLM3-6B unterstützt mehrstufige Dialoge, Tool-Aufrufe, Code-Ausführung und Agentenaufgaben in komplexen Szenarien. Neben dem Dialogmodell wurden auch das Basis-Modell ChatGLM-6B-Base und das lange Textdialogmodell ChatGLM3-6B-32K als Open Source veröffentlicht. Dieses Modell ist vollständig für akademische Forschung geöffnet und erlaubt auch kostenlose kommerzielle Nutzung nach Registrierung."
|
247
|
+
},
|
212
248
|
"THUDM/glm-4-9b-chat": {
|
213
249
|
"description": "GLM-4 9B ist die Open-Source-Version, die ein optimiertes Dialogerlebnis für Konversationsanwendungen bietet."
|
214
250
|
},
|
251
|
+
"TeleAI/TeleChat2": {
|
252
|
+
"description": "Das TeleChat2-Modell ist ein generatives semantisches Großmodell, das von China Telecom von Grund auf neu entwickelt wurde und Funktionen wie Enzyklopädiefragen, Codegenerierung und lange Textgenerierung unterstützt. Es bietet Benutzern Beratungsdienste, ermöglicht Dialoginteraktionen mit Benutzern, beantwortet Fragen, unterstützt bei der Erstellung und hilft Benutzern effizient und bequem, Informationen, Wissen und Inspiration zu erhalten. Das Modell zeigt hervorragende Leistungen in den Bereichen Halluzinationsprobleme, lange Textgenerierung und logisches Verständnis."
|
253
|
+
},
|
254
|
+
"TeleAI/TeleMM": {
|
255
|
+
"description": "Das TeleMM-Modell ist ein multimodales Großmodell, das von China Telecom entwickelt wurde und in der Lage ist, Texte, Bilder und andere Modalitäten zu verarbeiten. Es unterstützt Funktionen wie Bildverständnis und Diagrammanalyse und bietet Benutzern multimodale Verständnisdienste. Das Modell kann mit Benutzern multimodal interagieren, den Eingabeinhalt genau verstehen, Fragen beantworten, bei der Erstellung helfen und effizient multimodale Informationen und Inspirationsunterstützung bereitstellen. Es zeigt hervorragende Leistungen in multimodalen Aufgaben wie feinkörniger Wahrnehmung und logischem Schlussfolgern."
|
256
|
+
},
|
215
257
|
"Tencent/Hunyuan-A52B-Instruct": {
|
216
258
|
"description": "Hunyuan-Large ist das größte Open-Source-Transformer-Architektur MoE-Modell der Branche mit insgesamt 389 Milliarden Parametern und 52 Milliarden aktiven Parametern."
|
217
259
|
},
|
260
|
+
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
261
|
+
"description": "Qwen2-72B-Instruct ist das anweisungsfeinabgestimmte große Sprachmodell der Qwen2-Serie mit einer Parametergröße von 72B. Dieses Modell basiert auf der Transformer-Architektur und verwendet Technologien wie die SwiGLU-Aktivierungsfunktion, QKV-Offsets und gruppierte Abfrageaufmerksamkeit. Es kann große Eingaben verarbeiten. Das Modell zeigt hervorragende Leistungen in der Sprachverständnis, -generierung, Mehrsprachigkeit, Codierung, Mathematik und Inferenz in mehreren Benchmark-Tests und übertrifft die meisten Open-Source-Modelle und zeigt in bestimmten Aufgaben eine vergleichbare Wettbewerbsfähigkeit mit proprietären Modellen."
|
262
|
+
},
|
263
|
+
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
264
|
+
"description": "Qwen2.5-72B-Instruct ist eines der neuesten großen Sprachmodelle, die von Alibaba Cloud veröffentlicht wurden. Dieses 72B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Es zeigt signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis strukturierter Daten und in der Generierung strukturierter Ausgaben (insbesondere JSON)."
|
265
|
+
},
|
218
266
|
"Yi-34B-Chat": {
|
219
267
|
"description": "Yi-1.5-34B hat die hervorragenden allgemeinen Sprachfähigkeiten des ursprünglichen Modells beibehalten und durch inkrementelles Training von 500 Milliarden hochwertigen Tokens die mathematische Logik und Codierungsfähigkeiten erheblich verbessert."
|
220
268
|
},
|
@@ -290,9 +338,15 @@
|
|
290
338
|
"accounts/fireworks/models/phi-3-vision-128k-instruct": {
|
291
339
|
"description": "Das Phi 3 Vision Instruct-Modell ist ein leichtgewichtiges multimodales Modell, das komplexe visuelle und textuelle Informationen verarbeiten kann und über starke Schlussfolgerungsfähigkeiten verfügt."
|
292
340
|
},
|
341
|
+
"accounts/fireworks/models/qwen-qwq-32b-preview": {
|
342
|
+
"description": "Das QwQ-Modell ist ein experimentelles Forschungsmodell, das vom Qwen-Team entwickelt wurde und sich auf die Verbesserung der KI-Inferenzfähigkeiten konzentriert."
|
343
|
+
},
|
293
344
|
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
294
345
|
"description": "Qwen2.5 ist eine Reihe von Sprachmodellen mit ausschließlich Decodern, die vom Alibaba Cloud Qwen-Team entwickelt wurde. Diese Modelle sind in verschiedenen Größen erhältlich, darunter 0.5B, 1.5B, 3B, 7B, 14B, 32B und 72B, mit Basis- und instruct-Varianten."
|
295
346
|
},
|
347
|
+
"accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
|
348
|
+
"description": "Qwen2.5 Coder 32B Instruct ist die neueste Version der von Alibaba Cloud veröffentlichten Reihe von code-spezifischen großen Sprachmodellen. Dieses Modell basiert auf Qwen2.5 und wurde mit 55 Billionen Tokens trainiert, um die Fähigkeiten zur Codegenerierung, Inferenz und Fehlerbehebung erheblich zu verbessern. Es verbessert nicht nur die Codierungsfähigkeiten, sondern bewahrt auch die Vorteile in Mathematik und allgemeinen Fähigkeiten. Das Modell bietet eine umfassendere Grundlage für praktische Anwendungen wie Code-Agenten."
|
349
|
+
},
|
296
350
|
"accounts/fireworks/models/starcoder-16b": {
|
297
351
|
"description": "Das StarCoder 15.5B-Modell unterstützt fortgeschrittene Programmieraufgaben und hat verbesserte mehrsprachige Fähigkeiten, die sich für komplexe Codegenerierung und -verständnis eignen."
|
298
352
|
},
|
@@ -392,6 +446,9 @@
|
|
392
446
|
"codellama": {
|
393
447
|
"description": "Code Llama ist ein LLM, das sich auf die Codegenerierung und -diskussion konzentriert und eine breite Unterstützung für Programmiersprachen bietet, die sich für Entwicklerumgebungen eignet."
|
394
448
|
},
|
449
|
+
"codellama/CodeLlama-34b-Instruct-hf": {
|
450
|
+
"description": "Code Llama ist ein LLM, das sich auf die Codegenerierung und -diskussion konzentriert und eine breite Unterstützung für Programmiersprachen bietet, die für Entwicklerumgebungen geeignet ist."
|
451
|
+
},
|
395
452
|
"codellama:13b": {
|
396
453
|
"description": "Code Llama ist ein LLM, das sich auf die Codegenerierung und -diskussion konzentriert und eine breite Unterstützung für Programmiersprachen bietet, die sich für Entwicklerumgebungen eignet."
|
397
454
|
},
|
@@ -428,6 +485,9 @@
|
|
428
485
|
"databricks/dbrx-instruct": {
|
429
486
|
"description": "DBRX Instruct bietet zuverlässige Anweisungsverarbeitungsfähigkeiten und unterstützt Anwendungen in verschiedenen Branchen."
|
430
487
|
},
|
488
|
+
"deepseek-ai/DeepSeek-V2-Chat": {
|
489
|
+
"description": "DeepSeek-V2 ist ein leistungsstarkes, kosteneffizientes hybrides Expertenmodell (MoE). Es wurde auf einem hochwertigen Korpus von 81 Billionen Tokens vortrainiert und durch überwachte Feinabstimmung (SFT) und verstärkendes Lernen (RL) weiter verbessert. Im Vergleich zu DeepSeek 67B bietet DeepSeek-V2 eine stärkere Leistung, spart 42,5 % der Trainingskosten, reduziert den KV-Cache um 93,3 % und erhöht die maximale Generierungsdurchsatzrate um das 5,76-fache. Dieses Modell unterstützt eine Kontextlänge von 128k und schneidet sowohl in Standard-Benchmark-Tests als auch in offenen Generierungsbewertungen hervorragend ab."
|
490
|
+
},
|
431
491
|
"deepseek-ai/DeepSeek-V2.5": {
|
432
492
|
"description": "DeepSeek V2.5 vereint die hervorragenden Merkmale früherer Versionen und verbessert die allgemeinen und kodierenden Fähigkeiten."
|
433
493
|
},
|
@@ -682,6 +742,9 @@
|
|
682
742
|
},
|
683
743
|
"jamba-1.5-large": {},
|
684
744
|
"jamba-1.5-mini": {},
|
745
|
+
"learnlm-1.5-pro-experimental": {
|
746
|
+
"description": "LearnLM ist ein experimentelles, aufgabenorientiertes Sprachmodell, das darauf trainiert wurde, den Prinzipien der Lernwissenschaft zu entsprechen und in Lehr- und Lernszenarien systematische Anweisungen zu befolgen, als Expertenmentor zu fungieren usw."
|
747
|
+
},
|
685
748
|
"lite": {
|
686
749
|
"description": "Spark Lite ist ein leichtgewichtiges großes Sprachmodell mit extrem niedriger Latenz und effizienter Verarbeitung, das vollständig kostenlos und offen ist und Echtzeitsuchfunktionen unterstützt. Seine schnelle Reaktionsfähigkeit macht es besonders geeignet für Inferenzanwendungen und Modellanpassungen auf Geräten mit geringer Rechenleistung und bietet den Nutzern ein hervorragendes Kosten-Nutzen-Verhältnis sowie ein intelligentes Erlebnis, insbesondere in den Bereichen Wissensabfragen, Inhaltserstellung und Suchszenarien."
|
687
750
|
},
|
@@ -872,6 +935,9 @@
|
|
872
935
|
"description": "Meta Llama 3 ist ein offenes großes Sprachmodell (LLM), das sich an Entwickler, Forscher und Unternehmen richtet und ihnen hilft, ihre Ideen für generative KI zu entwickeln, zu experimentieren und verantwortungsbewusst zu skalieren. Als Teil eines globalen Innovationssystems ist es besonders geeignet für Umgebungen mit begrenzter Rechenleistung und Ressourcen, für Edge-Geräte und schnellere Trainingszeiten."
|
873
936
|
},
|
874
937
|
"microsoft/Phi-3.5-mini-instruct": {},
|
938
|
+
"microsoft/WizardLM-2-8x22B": {
|
939
|
+
"description": "WizardLM 2 ist ein Sprachmodell von Microsoft AI, das in komplexen Dialogen, Mehrsprachigkeit, Inferenz und intelligenten Assistenten besonders gut abschneidet."
|
940
|
+
},
|
875
941
|
"microsoft/wizardlm 2-7b": {
|
876
942
|
"description": "WizardLM 2 7B ist das neueste schnelle und leichte Modell von Microsoft AI, dessen Leistung fast zehnmal so hoch ist wie die bestehender führender Open-Source-Modelle."
|
877
943
|
},
|
@@ -956,6 +1022,9 @@
|
|
956
1022
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
957
1023
|
"description": "Llama 3.1 Nemotron 70B ist ein großes Sprachmodell, das von NVIDIA maßgeschneidert wurde, um die Hilfe von LLM-generierten Antworten auf Benutzeranfragen zu erhöhen."
|
958
1024
|
},
|
1025
|
+
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1026
|
+
"description": "Llama 3.1 Nemotron 70B ist ein von NVIDIA maßgeschneidertes großes Sprachmodell, das darauf abzielt, die Hilfsfähigkeit der von LLM generierten Antworten auf Benutzeranfragen zu verbessern. Dieses Modell hat in Benchmark-Tests wie Arena Hard, AlpacaEval 2 LC und GPT-4-Turbo MT-Bench hervorragende Leistungen gezeigt und belegt bis zum 1. Oktober 2024 den ersten Platz in allen drei automatischen Ausrichtungsbenchmarks. Das Modell wurde mit RLHF (insbesondere REINFORCE), Llama-3.1-Nemotron-70B-Reward und HelpSteer2-Preference-Prompts auf dem Llama-3.1-70B-Instruct-Modell trainiert."
|
1027
|
+
},
|
959
1028
|
"o1-mini": {
|
960
1029
|
"description": "o1-mini ist ein schnelles und kosteneffizientes Inferenzmodell, das für Programmier-, Mathematik- und Wissenschaftsanwendungen entwickelt wurde. Das Modell hat einen Kontext von 128K und einen Wissensstand bis Oktober 2023."
|
961
1030
|
},
|
@@ -1052,6 +1121,9 @@
|
|
1052
1121
|
"qwen2": {
|
1053
1122
|
"description": "Qwen2 ist das neue große Sprachmodell von Alibaba, das mit hervorragender Leistung eine Vielzahl von Anwendungsanforderungen unterstützt."
|
1054
1123
|
},
|
1124
|
+
"qwen2.5": {
|
1125
|
+
"description": "Qwen2.5 ist das neue, groß angelegte Sprachmodell der Alibaba-Gruppe, das hervorragende Leistungen zur Unterstützung vielfältiger Anwendungsbedürfnisse bietet."
|
1126
|
+
},
|
1055
1127
|
"qwen2.5-14b-instruct": {
|
1056
1128
|
"description": "Das 14B-Modell von Tongyi Qianwen 2.5 ist öffentlich zugänglich."
|
1057
1129
|
},
|
@@ -1076,6 +1148,15 @@
|
|
1076
1148
|
"qwen2.5-math-7b-instruct": {
|
1077
1149
|
"description": "Das Qwen-Math-Modell verfügt über starke Fähigkeiten zur Lösung mathematischer Probleme."
|
1078
1150
|
},
|
1151
|
+
"qwen2.5:0.5b": {
|
1152
|
+
"description": "Qwen2.5 ist das neue, groß angelegte Sprachmodell der Alibaba-Gruppe, das hervorragende Leistungen zur Unterstützung vielfältiger Anwendungsbedürfnisse bietet."
|
1153
|
+
},
|
1154
|
+
"qwen2.5:1.5b": {
|
1155
|
+
"description": "Qwen2.5 ist das neue, groß angelegte Sprachmodell der Alibaba-Gruppe, das hervorragende Leistungen zur Unterstützung vielfältiger Anwendungsbedürfnisse bietet."
|
1156
|
+
},
|
1157
|
+
"qwen2.5:72b": {
|
1158
|
+
"description": "Qwen2.5 ist das neue, groß angelegte Sprachmodell der Alibaba-Gruppe, das hervorragende Leistungen zur Unterstützung vielfältiger Anwendungsbedürfnisse bietet."
|
1159
|
+
},
|
1079
1160
|
"qwen2:0.5b": {
|
1080
1161
|
"description": "Qwen2 ist das neue große Sprachmodell von Alibaba, das mit hervorragender Leistung eine Vielzahl von Anwendungsanforderungen unterstützt."
|
1081
1162
|
},
|
@@ -1085,6 +1166,12 @@
|
|
1085
1166
|
"qwen2:72b": {
|
1086
1167
|
"description": "Qwen2 ist das neue große Sprachmodell von Alibaba, das mit hervorragender Leistung eine Vielzahl von Anwendungsanforderungen unterstützt."
|
1087
1168
|
},
|
1169
|
+
"qwq": {
|
1170
|
+
"description": "QwQ ist ein experimentelles Forschungsmodell, das sich auf die Verbesserung der KI-Inferenzfähigkeiten konzentriert."
|
1171
|
+
},
|
1172
|
+
"qwq-32b-preview": {
|
1173
|
+
"description": "Das QwQ-Modell ist ein experimentelles Forschungsmodell, das vom Qwen-Team entwickelt wurde und sich auf die Verbesserung der KI-Inferenzfähigkeiten konzentriert."
|
1174
|
+
},
|
1088
1175
|
"solar-1-mini-chat": {
|
1089
1176
|
"description": "Solar Mini ist ein kompaktes LLM, das besser als GPT-3.5 abschneidet und über starke Mehrsprachigkeitsfähigkeiten verfügt, unterstützt Englisch und Koreanisch und bietet eine effiziente, kompakte Lösung."
|
1090
1177
|
},
|
package/locales/en-US/chat.json
CHANGED
@@ -10,7 +10,7 @@
|
|
10
10
|
"generating": "Generating",
|
11
11
|
"inThread": "Cannot view in subtopic, please switch to the main conversation area to open",
|
12
12
|
"thinking": "Thinking",
|
13
|
-
"thought": "Thought
|
13
|
+
"thought": "Thought",
|
14
14
|
"unknownTitle": "Untitled Work"
|
15
15
|
},
|
16
16
|
"backToBottom": "Back to bottom",
|
@@ -90,7 +90,7 @@
|
|
90
90
|
"download": {
|
91
91
|
"desc": "Ollama is downloading the model. Please try not to close this page. The download will resume from where it left off if interrupted.",
|
92
92
|
"remainingTime": "Remaining Time",
|
93
|
-
"speed": "
|
93
|
+
"speed": "Speed",
|
94
94
|
"title": "Downloading model {{model}}"
|
95
95
|
},
|
96
96
|
"endpoint": {
|
@@ -2,6 +2,9 @@
|
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
3
|
"description": "Yi-1.5 34B delivers superior performance in industry applications with a wealth of training samples."
|
4
4
|
},
|
5
|
+
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
+
"description": "Yi-1.5-6B-Chat is a variant of the Yi-1.5 series, belonging to the open-source chat model. Yi-1.5 is an upgraded version of Yi, continuously pre-trained on 500B high-quality corpora and fine-tuned on over 3M diverse samples. Compared to Yi, Yi-1.5 demonstrates stronger capabilities in coding, mathematics, reasoning, and instruction following, while maintaining excellent language understanding, common sense reasoning, and reading comprehension abilities. The model is available in context length versions of 4K, 16K, and 32K, with a total pre-training volume reaching 3.6T tokens."
|
7
|
+
},
|
5
8
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
6
9
|
"description": "Yi-1.5 9B supports 16K tokens, providing efficient and smooth language generation capabilities."
|
7
10
|
},
|
@@ -91,6 +94,12 @@
|
|
91
94
|
"Gryphe/MythoMax-L2-13b": {
|
92
95
|
"description": "MythoMax-L2 (13B) is an innovative model suitable for multi-domain applications and complex tasks."
|
93
96
|
},
|
97
|
+
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
98
|
+
"description": "Qwen2.5-72B-Instruct is one of the latest large language models released by Alibaba Cloud. This 72B model shows significant improvements in coding and mathematics. It also provides multilingual support, covering over 29 languages, including Chinese and English. The model has made notable advancements in instruction following, understanding structured data, and generating structured outputs, especially JSON."
|
99
|
+
},
|
100
|
+
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
101
|
+
"description": "Qwen2.5-7B-Instruct is one of the latest large language models released by Alibaba Cloud. This 7B model shows significant improvements in coding and mathematics. It also provides multilingual support, covering over 29 languages, including Chinese and English. The model has made notable advancements in instruction following, understanding structured data, and generating structured outputs, especially JSON."
|
102
|
+
},
|
94
103
|
"Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
95
104
|
"description": "Hermes 2 Mixtral 8x7B DPO is a highly flexible multi-model fusion designed to provide an exceptional creative experience."
|
96
105
|
},
|
@@ -98,9 +107,6 @@
|
|
98
107
|
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
99
108
|
"description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) is a high-precision instruction model suitable for complex computations."
|
100
109
|
},
|
101
|
-
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
102
|
-
"description": "Nous Hermes-2 Yi (34B) provides optimized language output and diverse application possibilities."
|
103
|
-
},
|
104
110
|
"OpenGVLab/InternVL2-26B": {
|
105
111
|
"description": "InternVL2 demonstrates exceptional performance across various visual language tasks, including document and chart understanding, scene text understanding, OCR, and solving scientific and mathematical problems."
|
106
112
|
},
|
@@ -134,18 +140,42 @@
|
|
134
140
|
"Pro/OpenGVLab/InternVL2-8B": {
|
135
141
|
"description": "InternVL2 demonstrates exceptional performance across various visual language tasks, including document and chart understanding, scene text understanding, OCR, and solving scientific and mathematical problems."
|
136
142
|
},
|
143
|
+
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
144
|
+
"description": "Qwen2-1.5B-Instruct is an instruction-tuned large language model in the Qwen2 series, with a parameter size of 1.5B. This model is based on the Transformer architecture and employs techniques such as the SwiGLU activation function, attention QKV bias, and group query attention. It excels in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning across multiple benchmark tests, surpassing most open-source models. Compared to Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct shows significant performance improvements in tests such as MMLU, HumanEval, GSM8K, C-Eval, and IFEval, despite having slightly fewer parameters."
|
145
|
+
},
|
146
|
+
"Pro/Qwen/Qwen2-7B-Instruct": {
|
147
|
+
"description": "Qwen2-7B-Instruct is an instruction-tuned large language model in the Qwen2 series, with a parameter size of 7B. This model is based on the Transformer architecture and employs techniques such as the SwiGLU activation function, attention QKV bias, and group query attention. It can handle large-scale inputs. The model excels in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning across multiple benchmark tests, surpassing most open-source models and demonstrating competitive performance comparable to proprietary models in certain tasks. Qwen2-7B-Instruct outperforms Qwen1.5-7B-Chat in multiple evaluations, showing significant performance improvements."
|
148
|
+
},
|
137
149
|
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
138
150
|
"description": "Qwen2-VL is the latest iteration of the Qwen-VL model, achieving state-of-the-art performance in visual understanding benchmarks."
|
139
151
|
},
|
140
|
-
"Qwen/
|
141
|
-
"description": "
|
152
|
+
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
153
|
+
"description": "Qwen2.5-7B-Instruct is one of the latest large language models released by Alibaba Cloud. This 7B model shows significant improvements in coding and mathematics. It also provides multilingual support, covering over 29 languages, including Chinese and English. The model has made notable advancements in instruction following, understanding structured data, and generating structured outputs, especially JSON."
|
154
|
+
},
|
155
|
+
"Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
|
156
|
+
"description": "Qwen2.5-Coder-7B-Instruct is the latest version in Alibaba Cloud's series of code-specific large language models. This model significantly enhances code generation, reasoning, and repair capabilities based on Qwen2.5, trained on 55 trillion tokens. It not only improves coding abilities but also maintains advantages in mathematics and general capabilities, providing a more comprehensive foundation for practical applications such as code agents."
|
157
|
+
},
|
158
|
+
"Pro/THUDM/glm-4-9b-chat": {
|
159
|
+
"description": "GLM-4-9B-Chat is the open-source version of the GLM-4 series pre-trained models launched by Zhipu AI. This model excels in semantics, mathematics, reasoning, code, and knowledge. In addition to supporting multi-turn dialogues, GLM-4-9B-Chat also features advanced capabilities such as web browsing, code execution, custom tool invocation (Function Call), and long-text reasoning. The model supports 26 languages, including Chinese, English, Japanese, Korean, and German. In multiple benchmark tests, GLM-4-9B-Chat has demonstrated excellent performance, such as in AlignBench-v2, MT-Bench, MMLU, and C-Eval. The model supports a maximum context length of 128K, making it suitable for academic research and commercial applications."
|
142
160
|
},
|
143
|
-
"
|
144
|
-
"description": "
|
161
|
+
"Pro/google/gemma-2-9b-it": {
|
162
|
+
"description": "Gemma is one of Google's lightweight, state-of-the-art open model series. It is a large language model with a decoder-only architecture, supporting English, and providing open weights, pre-trained variants, and instruction-tuned variants. The Gemma model is suitable for various text generation tasks, including question answering, summarization, and reasoning. This 9B model is trained on 80 trillion tokens. Its relatively small size allows it to be deployed in resource-constrained environments, such as laptops, desktops, or your own cloud infrastructure, making cutting-edge AI models more accessible and fostering innovation."
|
163
|
+
},
|
164
|
+
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
165
|
+
"description": "Meta Llama 3.1 is a family of multilingual large language models developed by Meta, including pre-trained and instruction-tuned variants with parameter sizes of 8B, 70B, and 405B. This 8B instruction-tuned model is optimized for multilingual dialogue scenarios and performs excellently in multiple industry benchmark tests. The model is trained using over 150 trillion tokens of public data and employs techniques such as supervised fine-tuning and human feedback reinforcement learning to enhance the model's usefulness and safety. Llama 3.1 supports text generation and code generation, with a knowledge cutoff date of December 2023."
|
166
|
+
},
|
167
|
+
"Qwen/QwQ-32B-Preview": {
|
168
|
+
"description": "QwQ-32B-Preview is Qwen's latest experimental research model, focusing on enhancing AI reasoning capabilities. By exploring complex mechanisms such as language mixing and recursive reasoning, its main advantages include strong analytical reasoning, mathematical, and programming abilities. However, it also faces challenges such as language switching issues, reasoning loops, safety considerations, and differences in other capabilities."
|
169
|
+
},
|
170
|
+
"Qwen/Qwen2-1.5B-Instruct": {
|
171
|
+
"description": "Qwen2-1.5B-Instruct is an instruction-tuned large language model in the Qwen2 series, with a parameter size of 1.5B. This model is based on the Transformer architecture and employs techniques such as the SwiGLU activation function, attention QKV bias, and group query attention. It excels in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning across multiple benchmark tests, surpassing most open-source models. Compared to Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct shows significant performance improvements in tests such as MMLU, HumanEval, GSM8K, C-Eval, and IFEval, despite having slightly fewer parameters."
|
145
172
|
},
|
146
173
|
"Qwen/Qwen2-72B-Instruct": {
|
147
174
|
"description": "Qwen2 is an advanced general-purpose language model that supports various types of instructions."
|
148
175
|
},
|
176
|
+
"Qwen/Qwen2-7B-Instruct": {
|
177
|
+
"description": "Qwen2-72B-Instruct is an instruction-tuned large language model in the Qwen2 series, with a parameter size of 72B. This model is based on the Transformer architecture and employs techniques such as the SwiGLU activation function, attention QKV bias, and group query attention. It can handle large-scale inputs. The model excels in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning across multiple benchmark tests, surpassing most open-source models and demonstrating competitive performance comparable to proprietary models in certain tasks."
|
178
|
+
},
|
149
179
|
"Qwen/Qwen2-VL-72B-Instruct": {
|
150
180
|
"description": "Qwen2-VL is the latest iteration of the Qwen-VL model, achieving state-of-the-art performance in visual understanding benchmarks."
|
151
181
|
},
|
@@ -173,6 +203,9 @@
|
|
173
203
|
"Qwen/Qwen2.5-Coder-32B-Instruct": {
|
174
204
|
"description": "Qwen2.5-Coder focuses on code writing."
|
175
205
|
},
|
206
|
+
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
207
|
+
"description": "Qwen2.5-Coder-7B-Instruct is the latest version in Alibaba Cloud's series of code-specific large language models. This model significantly enhances code generation, reasoning, and repair capabilities based on Qwen2.5, trained on 55 trillion tokens. It not only improves coding abilities but also maintains advantages in mathematics and general capabilities, providing a more comprehensive foundation for practical applications such as code agents."
|
208
|
+
},
|
176
209
|
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
177
210
|
"description": "Qwen2.5-Math focuses on problem-solving in the field of mathematics, providing expert solutions for challenging problems."
|
178
211
|
},
|
@@ -209,12 +242,27 @@
|
|
209
242
|
"SenseChat-Turbo": {
|
210
243
|
"description": "Suitable for fast question answering and model fine-tuning scenarios."
|
211
244
|
},
|
245
|
+
"THUDM/chatglm3-6b": {
|
246
|
+
"description": "ChatGLM3-6B is an open-source model from the ChatGLM series, developed by Zhipu AI. This model retains the excellent features of its predecessor, such as smooth dialogue and low deployment barriers, while introducing new features. It utilizes more diverse training data, more extensive training steps, and more reasonable training strategies, performing exceptionally well among pre-trained models under 10B. ChatGLM3-6B supports multi-turn dialogues, tool invocation, code execution, and complex scenarios such as Agent tasks. In addition to the dialogue model, the foundational model ChatGLM-6B-Base and the long-text dialogue model ChatGLM3-6B-32K are also open-sourced. The model is fully open for academic research and allows free commercial use after registration."
|
247
|
+
},
|
212
248
|
"THUDM/glm-4-9b-chat": {
|
213
249
|
"description": "GLM-4 9B is an open-source version that provides an optimized conversational experience for chat applications."
|
214
250
|
},
|
251
|
+
"TeleAI/TeleChat2": {
|
252
|
+
"description": "The TeleChat2 large model is a generative semantic model independently developed from scratch by China Telecom, supporting functions such as encyclopedia Q&A, code generation, and long text generation, providing users with conversational consulting services. It can interact with users, answer questions, assist in creation, and efficiently help users obtain information, knowledge, and inspiration. The model performs well in areas such as hallucination issues, long text generation, and logical understanding."
|
253
|
+
},
|
254
|
+
"TeleAI/TeleMM": {
|
255
|
+
"description": "The TeleMM multimodal large model is a multimodal understanding model independently developed by China Telecom, capable of processing various modal inputs such as text and images, supporting functions like image understanding and chart analysis, providing users with cross-modal understanding services. The model can interact with users in a multimodal manner, accurately understand input content, answer questions, assist in creation, and efficiently provide multimodal information and inspiration support. It excels in fine-grained perception, logical reasoning, and other multimodal tasks."
|
256
|
+
},
|
215
257
|
"Tencent/Hunyuan-A52B-Instruct": {
|
216
258
|
"description": "Hunyuan-Large is the industry's largest open-source Transformer architecture MoE model, with a total of 389 billion parameters and 52 billion active parameters."
|
217
259
|
},
|
260
|
+
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
261
|
+
"description": "Qwen2-72B-Instruct is an instruction-tuned large language model in the Qwen2 series, with a parameter size of 72B. This model is based on the Transformer architecture and employs techniques such as the SwiGLU activation function, attention QKV bias, and group query attention. It can handle large-scale inputs. The model excels in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning across multiple benchmark tests, surpassing most open-source models and demonstrating competitive performance comparable to proprietary models in certain tasks."
|
262
|
+
},
|
263
|
+
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
264
|
+
"description": "Qwen2.5-72B-Instruct is one of the latest large language models released by Alibaba Cloud. This 72B model shows significant improvements in coding and mathematics. It also provides multilingual support, covering over 29 languages, including Chinese and English. The model has made notable advancements in instruction following, understanding structured data, and generating structured outputs, especially JSON."
|
265
|
+
},
|
218
266
|
"Yi-34B-Chat": {
|
219
267
|
"description": "Yi-1.5-34B significantly enhances mathematical logic and coding abilities by incrementally training on 500 billion high-quality tokens while maintaining the excellent general language capabilities of the original series."
|
220
268
|
},
|
@@ -290,9 +338,15 @@
|
|
290
338
|
"accounts/fireworks/models/phi-3-vision-128k-instruct": {
|
291
339
|
"description": "Phi 3 Vision instruction model, a lightweight multimodal model capable of handling complex visual and textual information, with strong reasoning abilities."
|
292
340
|
},
|
341
|
+
"accounts/fireworks/models/qwen-qwq-32b-preview": {
|
342
|
+
"description": "The QwQ model is an experimental research model developed by the Qwen team, focusing on enhancing AI reasoning capabilities."
|
343
|
+
},
|
293
344
|
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
294
345
|
"description": "Qwen2.5 is a series of decoder-only language models developed by the Alibaba Cloud Qwen team. These models come in different sizes including 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B, available in both base and instruct variants."
|
295
346
|
},
|
347
|
+
"accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
|
348
|
+
"description": "Qwen2.5 Coder 32B Instruct is the latest version in Alibaba Cloud's series of code-specific large language models. This model significantly enhances code generation, reasoning, and repair capabilities based on Qwen2.5, trained on 55 trillion tokens. It not only improves coding abilities but also maintains advantages in mathematics and general capabilities, providing a more comprehensive foundation for practical applications such as code agents."
|
349
|
+
},
|
296
350
|
"accounts/fireworks/models/starcoder-16b": {
|
297
351
|
"description": "StarCoder 15.5B model supports advanced programming tasks, enhanced multilingual capabilities, suitable for complex code generation and understanding."
|
298
352
|
},
|
@@ -392,6 +446,9 @@
|
|
392
446
|
"codellama": {
|
393
447
|
"description": "Code Llama is an LLM focused on code generation and discussion, combining extensive programming language support, suitable for developer environments."
|
394
448
|
},
|
449
|
+
"codellama/CodeLlama-34b-Instruct-hf": {
|
450
|
+
"description": "Code Llama is an LLM focused on code generation and discussion, with extensive support for various programming languages, suitable for developer environments."
|
451
|
+
},
|
395
452
|
"codellama:13b": {
|
396
453
|
"description": "Code Llama is an LLM focused on code generation and discussion, combining extensive programming language support, suitable for developer environments."
|
397
454
|
},
|
@@ -428,6 +485,9 @@
|
|
428
485
|
"databricks/dbrx-instruct": {
|
429
486
|
"description": "DBRX Instruct provides highly reliable instruction processing capabilities, supporting applications across multiple industries."
|
430
487
|
},
|
488
|
+
"deepseek-ai/DeepSeek-V2-Chat": {
|
489
|
+
"description": "DeepSeek-V2 is a powerful and cost-effective mixture of experts (MoE) language model. It has been pre-trained on a high-quality corpus of 81 trillion tokens and further enhanced through supervised fine-tuning (SFT) and reinforcement learning (RL). Compared to DeepSeek 67B, DeepSeek-V2 offers stronger performance while saving 42.5% in training costs, reducing KV cache by 93.3%, and increasing maximum generation throughput by 5.76 times. The model supports a context length of 128k and performs excellently in standard benchmark tests and open-ended generation evaluations."
|
490
|
+
},
|
431
491
|
"deepseek-ai/DeepSeek-V2.5": {
|
432
492
|
"description": "DeepSeek V2.5 combines the excellent features of previous versions, enhancing general and coding capabilities."
|
433
493
|
},
|
@@ -682,6 +742,9 @@
|
|
682
742
|
},
|
683
743
|
"jamba-1.5-large": {},
|
684
744
|
"jamba-1.5-mini": {},
|
745
|
+
"learnlm-1.5-pro-experimental": {
|
746
|
+
"description": "LearnLM is an experimental, task-specific language model trained to align with learning science principles, capable of following systematic instructions in teaching and learning scenarios, acting as an expert tutor, among other roles."
|
747
|
+
},
|
685
748
|
"lite": {
|
686
749
|
"description": "Spark Lite is a lightweight large language model with extremely low latency and efficient processing capabilities, completely free and open, supporting real-time online search functionality. Its quick response feature makes it excel in inference applications and model fine-tuning on low-power devices, providing users with excellent cost-effectiveness and intelligent experiences, particularly in knowledge Q&A, content generation, and search scenarios."
|
687
750
|
},
|
@@ -872,6 +935,9 @@
|
|
872
935
|
"description": "Meta Llama 3 is an open large language model (LLM) aimed at developers, researchers, and enterprises, designed to help them build, experiment, and responsibly scale their generative AI ideas. As part of a foundational system for global community innovation, it is particularly suitable for those with limited computational power and resources, edge devices, and faster training times."
|
873
936
|
},
|
874
937
|
"microsoft/Phi-3.5-mini-instruct": {},
|
938
|
+
"microsoft/WizardLM-2-8x22B": {
|
939
|
+
"description": "WizardLM 2 is a language model provided by Microsoft AI, excelling in complex dialogues, multilingual capabilities, reasoning, and intelligent assistant tasks."
|
940
|
+
},
|
875
941
|
"microsoft/wizardlm 2-7b": {
|
876
942
|
"description": "WizardLM 2 7B is Microsoft's latest lightweight AI model, performing nearly ten times better than existing leading open-source models."
|
877
943
|
},
|
@@ -956,6 +1022,9 @@
|
|
956
1022
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
957
1023
|
"description": "Llama 3.1 Nemotron 70B is a large language model customized by NVIDIA, designed to enhance the help provided by LLM-generated responses to user queries."
|
958
1024
|
},
|
1025
|
+
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1026
|
+
"description": "Llama 3.1 Nemotron 70B is a large language model customized by NVIDIA, designed to enhance the helpfulness of LLM-generated responses to user queries. The model has excelled in benchmark tests such as Arena Hard, AlpacaEval 2 LC, and GPT-4-Turbo MT-Bench, ranking first in all three automatic alignment benchmarks as of October 1, 2024. The model is trained using RLHF (specifically REINFORCE), Llama-3.1-Nemotron-70B-Reward, and HelpSteer2-Preference prompts based on the Llama-3.1-70B-Instruct model."
|
1027
|
+
},
|
959
1028
|
"o1-mini": {
|
960
1029
|
"description": "o1-mini is a fast and cost-effective reasoning model designed for programming, mathematics, and scientific applications. This model features a 128K context and has a knowledge cutoff date of October 2023."
|
961
1030
|
},
|
@@ -1052,6 +1121,9 @@
|
|
1052
1121
|
"qwen2": {
|
1053
1122
|
"description": "Qwen2 is Alibaba's next-generation large-scale language model, supporting diverse application needs with excellent performance."
|
1054
1123
|
},
|
1124
|
+
"qwen2.5": {
|
1125
|
+
"description": "Qwen2.5 is Alibaba's next-generation large-scale language model, supporting diverse application needs with outstanding performance."
|
1126
|
+
},
|
1055
1127
|
"qwen2.5-14b-instruct": {
|
1056
1128
|
"description": "The 14B model of Tongyi Qianwen 2.5 is open-sourced."
|
1057
1129
|
},
|
@@ -1076,6 +1148,15 @@
|
|
1076
1148
|
"qwen2.5-math-7b-instruct": {
|
1077
1149
|
"description": "The Qwen-Math model possesses strong capabilities for solving mathematical problems."
|
1078
1150
|
},
|
1151
|
+
"qwen2.5:0.5b": {
|
1152
|
+
"description": "Qwen2.5 is Alibaba's next-generation large-scale language model, supporting diverse application needs with outstanding performance."
|
1153
|
+
},
|
1154
|
+
"qwen2.5:1.5b": {
|
1155
|
+
"description": "Qwen2.5 is Alibaba's next-generation large-scale language model, supporting diverse application needs with outstanding performance."
|
1156
|
+
},
|
1157
|
+
"qwen2.5:72b": {
|
1158
|
+
"description": "Qwen2.5 is Alibaba's next-generation large-scale language model, supporting diverse application needs with outstanding performance."
|
1159
|
+
},
|
1079
1160
|
"qwen2:0.5b": {
|
1080
1161
|
"description": "Qwen2 is Alibaba's next-generation large-scale language model, supporting diverse application needs with excellent performance."
|
1081
1162
|
},
|
@@ -1085,6 +1166,12 @@
|
|
1085
1166
|
"qwen2:72b": {
|
1086
1167
|
"description": "Qwen2 is Alibaba's next-generation large-scale language model, supporting diverse application needs with excellent performance."
|
1087
1168
|
},
|
1169
|
+
"qwq": {
|
1170
|
+
"description": "QwQ is an experimental research model focused on improving AI reasoning capabilities."
|
1171
|
+
},
|
1172
|
+
"qwq-32b-preview": {
|
1173
|
+
"description": "The QwQ model is an experimental research model developed by the Qwen team, focusing on enhancing AI reasoning capabilities."
|
1174
|
+
},
|
1088
1175
|
"solar-1-mini-chat": {
|
1089
1176
|
"description": "Solar Mini is a compact LLM that outperforms GPT-3.5, featuring strong multilingual capabilities, supporting English and Korean, and providing an efficient and compact solution."
|
1090
1177
|
},
|
@@ -88,10 +88,10 @@
|
|
88
88
|
"title": "Nombre de modelos personalizados"
|
89
89
|
},
|
90
90
|
"download": {
|
91
|
-
"desc": "Ollama
|
92
|
-
"remainingTime": "
|
93
|
-
"speed": "
|
94
|
-
"title": "
|
91
|
+
"desc": "Ollama está descargando este modelo, por favor intenta no cerrar esta página. La descarga se reanudará desde donde se interrumpió",
|
92
|
+
"remainingTime": "Tiempo restante",
|
93
|
+
"speed": "Velocidad de descarga",
|
94
|
+
"title": "Descargando el modelo {{model}} "
|
95
95
|
},
|
96
96
|
"endpoint": {
|
97
97
|
"desc": "Introduce la dirección del proxy de la interfaz de Ollama, déjalo en blanco si no se ha especificado localmente",
|