@lobehub/chat 1.34.6 → 1.35.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/README.md +8 -8
  3. package/README.zh-CN.md +8 -8
  4. package/changelog/v1.json +18 -0
  5. package/docs/changelog/2024-07-19-gpt-4o-mini.mdx +32 -0
  6. package/docs/changelog/2024-07-19-gpt-4o-mini.zh-CN.mdx +5 -4
  7. package/docs/changelog/2024-08-02-lobe-chat-database-docker.mdx +36 -0
  8. package/docs/changelog/2024-08-02-lobe-chat-database-docker.zh-CN.mdx +0 -1
  9. package/docs/changelog/2024-08-21-file-upload-and-knowledge-base.mdx +30 -0
  10. package/docs/changelog/2024-08-21-file-upload-and-knowledge-base.zh-CN.mdx +0 -1
  11. package/docs/changelog/2024-09-13-openai-o1-models.mdx +31 -0
  12. package/docs/changelog/2024-09-20-artifacts.mdx +55 -0
  13. package/docs/changelog/2024-09-20-artifacts.zh-CN.mdx +3 -2
  14. package/docs/changelog/2024-10-27-pin-assistant.mdx +33 -0
  15. package/docs/changelog/2024-10-27-pin-assistant.zh-CN.mdx +0 -1
  16. package/docs/changelog/2024-11-06-share-text-json.mdx +24 -0
  17. package/docs/changelog/2024-11-06-share-text-json.zh-CN.mdx +3 -1
  18. package/docs/changelog/2024-11-25-november-providers.mdx +5 -5
  19. package/docs/changelog/2024-11-25-november-providers.zh-CN.mdx +5 -5
  20. package/docs/changelog/2024-11-27-forkable-chat.mdx +26 -0
  21. package/docs/changelog/2024-11-27-forkable-chat.zh-CN.mdx +16 -9
  22. package/docs/changelog/index.json +1 -1
  23. package/docs/self-hosting/environment-variables/analytics.mdx +31 -2
  24. package/locales/ar/models.json +94 -7
  25. package/locales/bg-BG/models.json +94 -7
  26. package/locales/de-DE/models.json +94 -7
  27. package/locales/en-US/models.json +94 -7
  28. package/locales/es-ES/models.json +94 -7
  29. package/locales/fa-IR/models.json +94 -7
  30. package/locales/fr-FR/models.json +94 -7
  31. package/locales/it-IT/models.json +94 -7
  32. package/locales/ja-JP/models.json +94 -7
  33. package/locales/ko-KR/models.json +94 -7
  34. package/locales/nl-NL/models.json +94 -7
  35. package/locales/pl-PL/models.json +94 -7
  36. package/locales/pt-BR/models.json +94 -7
  37. package/locales/ru-RU/models.json +94 -7
  38. package/locales/tr-TR/models.json +94 -7
  39. package/locales/vi-VN/models.json +94 -7
  40. package/locales/zh-CN/models.json +121 -34
  41. package/locales/zh-TW/models.json +94 -7
  42. package/package.json +2 -2
  43. package/src/config/modelProviders/ollama.ts +85 -35
  44. package/src/libs/agent-runtime/ollama/index.ts +25 -9
  45. package/src/libs/agent-runtime/utils/streams/ollama.test.ts +130 -46
  46. package/src/libs/agent-runtime/utils/streams/ollama.ts +19 -4
  47. package/src/server/modules/AgentRuntime/index.test.ts +2 -1
  48. package/src/server/modules/AgentRuntime/index.ts +7 -1
@@ -2,6 +2,9 @@
2
2
  "01-ai/Yi-1.5-34B-Chat-16K": {
3
3
  "description": "Yi-1.5 34B، يقدم أداءً ممتازًا في التطبيقات الصناعية بفضل مجموعة التدريب الغنية."
4
4
  },
5
+ "01-ai/Yi-1.5-6B-Chat": {
6
+ "description": "Yi-1.5-6B-Chat هو متغير من سلسلة Yi-1.5، وهو نموذج دردشة مفتوح المصدر. Yi-1.5 هو إصدار مطور من Yi، تم تدريبه على 500B من البيانات عالية الجودة، وتم تحسينه على 3M من عينات التعديل المتنوعة. مقارنةً بـ Yi، يظهر Yi-1.5 أداءً أقوى في الترميز، والرياضيات، والاستدلال، والامتثال للتعليمات، مع الحفاظ على قدرة ممتازة في فهم اللغة، والاستدلال العام، وفهم القراءة. يتوفر هذا النموذج بإصدارات بطول سياق 4K و16K و32K، مع إجمالي تدريب يصل إلى 3.6T توكن."
7
+ },
5
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
6
9
  "description": "Yi-1.5 9B يدعم 16K توكن، ويوفر قدرة توليد لغوية فعالة وسلسة."
7
10
  },
@@ -91,6 +94,12 @@
91
94
  "Gryphe/MythoMax-L2-13b": {
92
95
  "description": "MythoMax-L2 (13B) هو نموذج مبتكر، مناسب لتطبيقات متعددة المجالات والمهام المعقدة."
93
96
  },
97
+ "LoRA/Qwen/Qwen2.5-72B-Instruct": {
98
+ "description": "Qwen2.5-72B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر دعمًا للغات متعددة، تغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. أظهر النموذج تحسينات ملحوظة في اتباع التعليمات، وفهم البيانات الهيكلية، وتوليد المخرجات الهيكلية (خاصة JSON)."
99
+ },
100
+ "LoRA/Qwen/Qwen2.5-7B-Instruct": {
101
+ "description": "Qwen2.5-7B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر دعمًا للغات متعددة، تغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. أظهر النموذج تحسينات ملحوظة في اتباع التعليمات، وفهم البيانات الهيكلية، وتوليد المخرجات الهيكلية (خاصة JSON)."
102
+ },
94
103
  "Nous-Hermes-2-Mixtral-8x7B-DPO": {
95
104
  "description": "Hermes 2 Mixtral 8x7B DPO هو دمج متعدد النماذج مرن للغاية، يهدف إلى تقديم تجربة إبداعية ممتازة."
96
105
  },
@@ -98,9 +107,6 @@
98
107
  "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
99
108
  "description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) هو نموذج تعليمات عالي الدقة، مناسب للحسابات المعقدة."
100
109
  },
101
- "NousResearch/Nous-Hermes-2-Yi-34B": {
102
- "description": "Nous Hermes-2 Yi (34B) يوفر مخرجات لغوية محسنة وإمكانيات تطبيق متنوعة."
103
- },
104
110
  "OpenGVLab/InternVL2-26B": {
105
111
  "description": "أظهر InternVL2 أداءً رائعًا في مجموعة متنوعة من مهام اللغة البصرية، بما في ذلك فهم الوثائق والرسوم البيانية، وفهم النصوص في المشاهد، وOCR، وحل المشكلات العلمية والرياضية."
106
112
  },
@@ -134,18 +140,42 @@
134
140
  "Pro/OpenGVLab/InternVL2-8B": {
135
141
  "description": "أظهر InternVL2 أداءً رائعًا في مجموعة متنوعة من مهام اللغة البصرية، بما في ذلك فهم الوثائق والرسوم البيانية، وفهم النصوص في المشاهد، وOCR، وحل المشكلات العلمية والرياضية."
136
142
  },
143
+ "Pro/Qwen/Qwen2-1.5B-Instruct": {
144
+ "description": "Qwen2-1.5B-Instruct هو نموذج لغوي كبير تم تعديله وفقًا للتعليمات في سلسلة Qwen2، بحجم 1.5B. يعتمد هذا النموذج على بنية Transformer، ويستخدم تقنيات مثل دالة تنشيط SwiGLU، وتحويل QKV، والانتباه الجماعي. أظهر أداءً ممتازًا في فهم اللغة، والتوليد، والقدرات متعددة اللغات، والترميز، والرياضيات، والاستدلال في العديد من اختبارات المعايير، متجاوزًا معظم النماذج مفتوحة المصدر."
145
+ },
146
+ "Pro/Qwen/Qwen2-7B-Instruct": {
147
+ "description": "Qwen2-7B-Instruct هو نموذج لغوي كبير تم تعديله وفقًا للتعليمات في سلسلة Qwen2، بحجم 7B. يعتمد هذا النموذج على بنية Transformer، ويستخدم تقنيات مثل دالة تنشيط SwiGLU، وتحويل QKV، والانتباه الجماعي. يمكنه معالجة المدخلات الكبيرة. أظهر النموذج أداءً ممتازًا في فهم اللغة، والتوليد، والقدرات متعددة اللغات، والترميز، والرياضيات، والاستدلال في العديد من اختبارات المعايير، متجاوزًا معظم النماذج مفتوحة المصدر."
148
+ },
137
149
  "Pro/Qwen/Qwen2-VL-7B-Instruct": {
138
150
  "description": "Qwen2-VL هو النسخة الأحدث من نموذج Qwen-VL، وقد حقق أداءً متقدمًا في اختبارات الفهم البصري."
139
151
  },
140
- "Qwen/Qwen1.5-110B-Chat": {
141
- "description": "كنموذج تجريبي لـ Qwen2، يستخدم Qwen1.5 بيانات ضخمة لتحقيق وظائف حوارية أكثر دقة."
152
+ "Pro/Qwen/Qwen2.5-7B-Instruct": {
153
+ "description": "Qwen2.5-7B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر دعمًا للغات متعددة، تغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. أظهر النموذج تحسينات ملحوظة في اتباع التعليمات، وفهم البيانات الهيكلية، وتوليد المخرجات الهيكلية (خاصة JSON)."
154
+ },
155
+ "Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
156
+ "description": "Qwen2.5-Coder-7B-Instruct هو أحدث إصدار من سلسلة نماذج اللغة الكبيرة المحددة للشيفرة التي أصدرتها Alibaba Cloud. تم تحسين هذا النموذج بشكل كبير في توليد الشيفرة، والاستدلال، وإصلاح الأخطاء، من خلال تدريب على 55 تريليون توكن."
157
+ },
158
+ "Pro/THUDM/glm-4-9b-chat": {
159
+ "description": "GLM-4-9B-Chat هو الإصدار مفتوح المصدر من نموذج GLM-4 الذي أطلقته Zhizhu AI. أظهر هذا النموذج أداءً ممتازًا في مجالات الدلالات، والرياضيات، والاستدلال، والشيفرة، والمعرفة. بالإضافة إلى دعم المحادثات متعددة الجولات، يتمتع GLM-4-9B-Chat أيضًا بميزات متقدمة مثل تصفح الويب، وتنفيذ الشيفرة، واستدعاء الأدوات المخصصة (Function Call)، والاستدلال على النصوص الطويلة. يدعم النموذج 26 لغة، بما في ذلك الصينية، والإنجليزية، واليابانية، والكورية، والألمانية. أظهر GLM-4-9B-Chat أداءً ممتازًا في العديد من اختبارات المعايير مثل AlignBench-v2 وMT-Bench وMMLU وC-Eval. يدعم النموذج طول سياق يصل إلى 128K، مما يجعله مناسبًا للأبحاث الأكاديمية والتطبيقات التجارية."
142
160
  },
143
- "Qwen/Qwen1.5-72B-Chat": {
144
- "description": "Qwen 1.5 Chat (72B) يوفر استجابة سريعة وقدرة على الحوار الطبيعي، مناسب للبيئات متعددة اللغات."
161
+ "Pro/google/gemma-2-9b-it": {
162
+ "description": "Gemma هو أحد نماذج Google المتقدمة والخفيفة الوزن من سلسلة النماذج المفتوحة. إنه نموذج لغوي كبير يعتمد على فك الشيفرة فقط، يدعم اللغة الإنجليزية، ويقدم أوزان مفتوحة، ومتغيرات مدربة مسبقًا، ومتغيرات معدلة وفقًا للتعليمات. نموذج Gemma مناسب لمجموعة متنوعة من مهام توليد النصوص، بما في ذلك الأسئلة والأجوبة، والتلخيص، والاستدلال. تم تدريب هذا النموذج 9B على 8 تريليون توكن. حجمه النسبي الصغير يجعله مناسبًا للنشر في بيئات ذات موارد محدودة، مثل أجهزة الكمبيوتر المحمولة، وأجهزة الكمبيوتر المكتبية، أو البنية التحتية السحابية الخاصة بك، مما يتيح لمزيد من الأشخاص الوصول إلى نماذج الذكاء الاصطناعي المتقدمة وتعزيز الابتكار."
163
+ },
164
+ "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
165
+ "description": "Meta Llama 3.1 هو جزء من عائلة نماذج اللغة الكبيرة متعددة اللغات التي طورتها Meta، بما في ذلك متغيرات مدربة مسبقًا ومعدلة وفقًا للتعليمات بحجم 8B و70B و405B. تم تحسين هذا النموذج 8B وفقًا لمشاهدات المحادثات متعددة اللغات، وأظهر أداءً ممتازًا في العديد من اختبارات المعايير الصناعية. تم تدريب النموذج باستخدام أكثر من 15 تريليون توكن من البيانات العامة، واستخدم تقنيات مثل التعديل الخاضع للإشراف والتعلم المعزز من ردود الفعل البشرية لتحسين فائدة النموذج وأمانه. يدعم Llama 3.1 توليد النصوص وتوليد الشيفرة، مع تاريخ معرفة حتى ديسمبر 2023."
166
+ },
167
+ "Qwen/QwQ-32B-Preview": {
168
+ "description": "QwQ-32B-Preview هو أحدث نموذج بحث تجريبي من Qwen، يركز على تعزيز قدرات الاستدلال للذكاء الاصطناعي. من خلال استكشاف آليات معقدة مثل خلط اللغة والاستدلال التكراري، تشمل المزايا الرئيسية القدرة القوية على التحليل الاستدلالي، والقدرات الرياضية والبرمجية. في الوقت نفسه، هناك أيضًا مشكلات في تبديل اللغة، ودورات الاستدلال، واعتبارات الأمان، واختلافات في القدرات الأخرى."
169
+ },
170
+ "Qwen/Qwen2-1.5B-Instruct": {
171
+ "description": "Qwen2-1.5B-Instruct هو نموذج لغوي كبير تم تعديله وفقًا للتعليمات في سلسلة Qwen2، بحجم 1.5B. يعتمد هذا النموذج على بنية Transformer، ويستخدم تقنيات مثل دالة تنشيط SwiGLU، وتحويل QKV، والانتباه الجماعي. أظهر أداءً ممتازًا في فهم اللغة، والتوليد، والقدرات متعددة اللغات، والترميز، والرياضيات، والاستدلال في العديد من اختبارات المعايير، متجاوزًا معظم النماذج مفتوحة المصدر."
145
172
  },
146
173
  "Qwen/Qwen2-72B-Instruct": {
147
174
  "description": "Qwen2 هو نموذج لغوي عام متقدم، يدعم أنواع متعددة من التعليمات."
148
175
  },
176
+ "Qwen/Qwen2-7B-Instruct": {
177
+ "description": "Qwen2-72B-Instruct هو نموذج لغوي كبير تم تعديله وفقًا للتعليمات في سلسلة Qwen2، بحجم 72B. يعتمد هذا النموذج على بنية Transformer، ويستخدم تقنيات مثل دالة تنشيط SwiGLU، وتحويل QKV، والانتباه الجماعي. يمكنه معالجة المدخلات الكبيرة. أظهر النموذج أداءً ممتازًا في فهم اللغة، والتوليد، والقدرات متعددة اللغات، والترميز، والرياضيات، والاستدلال في العديد من اختبارات المعايير، متجاوزًا معظم النماذج مفتوحة المصدر."
178
+ },
149
179
  "Qwen/Qwen2-VL-72B-Instruct": {
150
180
  "description": "Qwen2-VL هو النسخة الأحدث من نموذج Qwen-VL، وقد حقق أداءً متقدمًا في اختبارات الفهم البصري."
151
181
  },
@@ -173,6 +203,9 @@
173
203
  "Qwen/Qwen2.5-Coder-32B-Instruct": {
174
204
  "description": "يركز Qwen2.5-Coder على كتابة الكود."
175
205
  },
206
+ "Qwen/Qwen2.5-Coder-7B-Instruct": {
207
+ "description": "Qwen2.5-Coder-7B-Instruct هو أحدث إصدار من سلسلة نماذج اللغة الكبيرة المحددة للشيفرة التي أصدرتها Alibaba Cloud. تم تحسين هذا النموذج بشكل كبير في توليد الشيفرة، والاستدلال، وإصلاح الأخطاء، من خلال تدريب على 55 تريليون توكن."
208
+ },
176
209
  "Qwen/Qwen2.5-Math-72B-Instruct": {
177
210
  "description": "Qwen2.5-Math يركز على حل المشكلات في مجال الرياضيات، ويقدم إجابات احترافية للأسئلة الصعبة."
178
211
  },
@@ -209,12 +242,27 @@
209
242
  "SenseChat-Turbo": {
210
243
  "description": "مناسب للأسئلة السريعة، وسيناريوهات ضبط النموذج."
211
244
  },
245
+ "THUDM/chatglm3-6b": {
246
+ "description": "ChatGLM3-6B هو نموذج مفتوح المصدر من سلسلة ChatGLM، تم تطويره بواسطة Zhizhu AI. يحتفظ هذا النموذج بخصائص الجيل السابق الممتازة، مثل سلاسة المحادثة وانخفاض عتبة النشر، بينما يقدم ميزات جديدة. تم تدريبه على بيانات تدريب أكثر تنوعًا، وعدد أكبر من خطوات التدريب، واستراتيجيات تدريب أكثر منطقية، مما يجعله نموذجًا ممتازًا بين النماذج المدربة مسبقًا التي تقل عن 10B. يدعم ChatGLM3-6B المحادثات متعددة الجولات، واستدعاء الأدوات، وتنفيذ الشيفرة، ومهام الوكلاء في سيناريوهات معقدة. بالإضافة إلى نموذج المحادثة، تم إصدار النموذج الأساسي ChatGLM-6B-Base ونموذج المحادثة الطويلة ChatGLM3-6B-32K. النموذج مفتوح بالكامل للأبحاث الأكاديمية، ويسمح بالاستخدام التجاري المجاني بعد التسجيل."
247
+ },
212
248
  "THUDM/glm-4-9b-chat": {
213
249
  "description": "GLM-4 9B هو إصدار مفتوح المصدر، يوفر تجربة حوار محسنة لتطبيقات الحوار."
214
250
  },
251
+ "TeleAI/TeleChat2": {
252
+ "description": "نموذج TeleChat2 هو نموذج كبير تم تطويره ذاتيًا من قبل China Telecom، يدعم وظائف مثل الأسئلة والأجوبة الموسوعية، وتوليد الشيفرة، وتوليد النصوص الطويلة، ويقدم خدمات استشارية للمستخدمين، مما يمكنه من التفاعل مع المستخدمين، والإجابة على الأسئلة، والمساعدة في الإبداع، وتوفير المعلومات والمعرفة والإلهام بكفاءة وسهولة. أظهر النموذج أداءً ممتازًا في معالجة مشكلات الهلوسة، وتوليد النصوص الطويلة، وفهم المنطق."
253
+ },
254
+ "TeleAI/TeleMM": {
255
+ "description": "نموذج TeleMM هو نموذج كبير لفهم متعدد الوسائط تم تطويره ذاتيًا من قبل China Telecom، يمكنه معالجة مدخلات متعددة الوسائط مثل النصوص والصور، ويدعم وظائف مثل فهم الصور، وتحليل الرسوم البيانية، مما يوفر خدمات فهم متعددة الوسائط للمستخدمين. يمكن للنموذج التفاعل مع المستخدمين بطرق متعددة الوسائط، وفهم المحتوى المدخل بدقة، والإجابة على الأسئلة، والمساعدة في الإبداع، وتوفير معلومات متعددة الوسائط ودعم الإلهام بكفاءة. أظهر أداءً ممتازًا في المهام متعددة الوسائط مثل الإدراك الدقيق، والاستدلال المنطقي."
256
+ },
215
257
  "Tencent/Hunyuan-A52B-Instruct": {
216
258
  "description": "Hunyuan-Large هو أكبر نموذج MoE مفتوح المصدر في الصناعة، مع 389 مليار إجمالي عدد المعلمات و52 مليار عدد المعلمات النشطة."
217
259
  },
260
+ "Vendor-A/Qwen/Qwen2-7B-Instruct": {
261
+ "description": "Qwen2-72B-Instruct هو نموذج لغوي كبير تم تعديله وفقًا للتعليمات في سلسلة Qwen2، بحجم 72B. يعتمد هذا النموذج على بنية Transformer، ويستخدم تقنيات مثل دالة تنشيط SwiGLU، وتحويل QKV، والانتباه الجماعي. يمكنه معالجة المدخلات الكبيرة. أظهر النموذج أداءً ممتازًا في فهم اللغة، والتوليد، والقدرات متعددة اللغات، والترميز، والرياضيات، والاستدلال في العديد من اختبارات المعايير، متجاوزًا معظم النماذج مفتوحة المصدر."
262
+ },
263
+ "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
264
+ "description": "Qwen2.5-72B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر دعمًا للغات متعددة، تغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. أظهر النموذج تحسينات ملحوظة في اتباع التعليمات، وفهم البيانات الهيكلية، وتوليد المخرجات الهيكلية (خاصة JSON)."
265
+ },
218
266
  "Yi-34B-Chat": {
219
267
  "description": "Yi-1.5-34B، مع الحفاظ على القدرات اللغوية العامة الممتازة للنموذج الأصلي، تم تدريبه بشكل إضافي على 500 مليار توكن عالي الجودة، مما أدى إلى تحسين كبير في المنطق الرياضي وقدرات الترميز."
220
268
  },
@@ -290,9 +338,15 @@
290
338
  "accounts/fireworks/models/phi-3-vision-128k-instruct": {
291
339
  "description": "نموذج Phi 3 Vision للتعليمات، نموذج متعدد الوسائط خفيف الوزن، قادر على معالجة معلومات بصرية ونصية معقدة، يتمتع بقدرة استدلال قوية."
292
340
  },
341
+ "accounts/fireworks/models/qwen-qwq-32b-preview": {
342
+ "description": "نموذج QwQ هو نموذج بحث تجريبي تم تطويره بواسطة فريق Qwen، يركز على تعزيز قدرات الاستدلال للذكاء الاصطناعي."
343
+ },
293
344
  "accounts/fireworks/models/qwen2p5-72b-instruct": {
294
345
  "description": "Qwen2.5 هي سلسلة من نماذج اللغة التي طورتها مجموعة Qwen من علي بابا، تحتوي فقط على شريحة فك شفرات. توفر هذه النماذج أحجامًا مختلفة، بما في ذلك 0.5B، 1.5B، 3B، 7B، 14B، 32B و72B، وتأتي بنسخ أساسية (base) ونماذج توجيهية (instruct)."
295
346
  },
347
+ "accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
348
+ "description": "Qwen2.5 Coder 32B Instruct هو أحدث إصدار من سلسلة نماذج اللغة الكبيرة المحددة للشيفرة التي أصدرتها Alibaba Cloud. تم تحسين هذا النموذج بشكل كبير في توليد الشيفرة، والاستدلال، وإصلاح الأخطاء، من خلال تدريب على 55 تريليون توكن."
349
+ },
296
350
  "accounts/fireworks/models/starcoder-16b": {
297
351
  "description": "نموذج StarCoder 15.5B، يدعم مهام البرمجة المتقدمة، مع تعزيز القدرة على التعامل مع لغات متعددة، مناسب لتوليد وفهم الشيفرات المعقدة."
298
352
  },
@@ -392,6 +446,9 @@
392
446
  "codellama": {
393
447
  "description": "Code Llama هو نموذج لغوي كبير يركز على توليد الشيفرة والنقاش، يجمع بين دعم مجموعة واسعة من لغات البرمجة، مناسب لبيئات المطورين."
394
448
  },
449
+ "codellama/CodeLlama-34b-Instruct-hf": {
450
+ "description": "Code Llama هو نموذج LLM يركز على توليد ومناقشة الشيفرة، يجمع بين دعم واسع للغات البرمجة، مناسب لبيئات المطورين."
451
+ },
395
452
  "codellama:13b": {
396
453
  "description": "Code Llama هو نموذج لغوي كبير يركز على توليد الشيفرة والنقاش، يجمع بين دعم مجموعة واسعة من لغات البرمجة، مناسب لبيئات المطورين."
397
454
  },
@@ -428,6 +485,9 @@
428
485
  "databricks/dbrx-instruct": {
429
486
  "description": "DBRX Instruct يوفر قدرة معالجة تعليمات موثوقة، يدعم تطبيقات متعددة الصناعات."
430
487
  },
488
+ "deepseek-ai/DeepSeek-V2-Chat": {
489
+ "description": "DeepSeek-V2 هو نموذج لغوي قوي وفعال من حيث التكلفة يعتمد على الخبراء المختلطين (MoE). تم تدريبه مسبقًا على مجموعة بيانات عالية الجودة تحتوي على 8.1 تريليون توكن، وتم تحسين قدراته من خلال التعديل الخاضع للإشراف (SFT) والتعلم المعزز (RL). مقارنةً بـ DeepSeek 67B، يوفر DeepSeek-V2 أداءً أقوى مع توفير 42.5% من تكاليف التدريب، وتقليل 93.3% من ذاكرة التخزين المؤقت KV، وزيادة الحد الأقصى لمعدل الإنتاج إلى 5.76 مرة. يدعم النموذج طول سياق يصل إلى 128k، ويظهر أداءً ممتازًا في اختبارات المعايير القياسية وتقييمات التوليد المفتوحة."
490
+ },
431
491
  "deepseek-ai/DeepSeek-V2.5": {
432
492
  "description": "DeepSeek V2.5 يجمع بين الميزات الممتازة للإصدارات السابقة، ويعزز القدرات العامة والترميز."
433
493
  },
@@ -682,6 +742,9 @@
682
742
  },
683
743
  "jamba-1.5-large": {},
684
744
  "jamba-1.5-mini": {},
745
+ "learnlm-1.5-pro-experimental": {
746
+ "description": "LearnLM هو نموذج لغوي تجريبي محدد المهام، تم تدريبه ليتماشى مع مبادئ علوم التعلم، يمكنه اتباع التعليمات النظامية في سيناريوهات التعليم والتعلم، ويعمل كمدرب خبير."
747
+ },
685
748
  "lite": {
686
749
  "description": "سبارك لايت هو نموذج لغوي كبير خفيف الوزن، يتميز بتأخير منخفض للغاية وكفاءة عالية في المعالجة، وهو مجاني تمامًا ومفتوح، ويدعم وظيفة البحث عبر الإنترنت في الوقت الحقيقي. تجعل خصائص استجابته السريعة منه مثاليًا لتطبيقات الاستدلال على الأجهزة ذات القدرة الحاسوبية المنخفضة وضبط النماذج، مما يوفر للمستخدمين قيمة ممتازة من حيث التكلفة وتجربة ذكية، خاصة في مجالات الأسئلة والأجوبة المعرفية، وتوليد المحتوى، وسيناريوهات البحث."
687
750
  },
@@ -872,6 +935,9 @@
872
935
  "description": "Meta Llama 3 هو نموذج لغوي كبير مفتوح (LLM) موجه للمطورين والباحثين والشركات، يهدف إلى مساعدتهم في بناء وتجربة وتوسيع أفكارهم في الذكاء الاصطناعي بشكل مسؤول. كجزء من نظام الابتكار المجتمعي العالمي، فهو مثالي للأجهزة ذات القدرة الحاسوبية والموارد المحدودة، والأجهزة الطرفية، وأوقات التدريب الأسرع."
873
936
  },
874
937
  "microsoft/Phi-3.5-mini-instruct": {},
938
+ "microsoft/WizardLM-2-8x22B": {
939
+ "description": "WizardLM 2 هو نموذج لغوي تقدمه Microsoft AI، يتميز بأداء ممتاز في المحادثات المعقدة، واللغات المتعددة، والاستدلال، ومساعدات الذكاء."
940
+ },
875
941
  "microsoft/wizardlm 2-7b": {
876
942
  "description": "WizardLM 2 7B هو أحدث نموذج خفيف الوزن وسريع من Microsoft AI، ويقترب أداؤه من 10 أضعاف النماذج الرائدة المفتوحة المصدر الحالية."
877
943
  },
@@ -956,6 +1022,9 @@
956
1022
  "nvidia/Llama-3.1-Nemotron-70B-Instruct": {
957
1023
  "description": "Llama 3.1 Nemotron 70B هو نموذج لغوي كبير مُخصص من NVIDIA، يهدف إلى تحسين استجابة LLM لمساعدة استفسارات المستخدمين."
958
1024
  },
1025
+ "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
1026
+ "description": "Llama 3.1 Nemotron 70B هو نموذج لغوي كبير مخصص من NVIDIA، يهدف إلى تحسين استجابة LLM لمساعدة استفسارات المستخدمين. لقد أظهر النموذج أداءً ممتازًا في اختبارات المعايير مثل Arena Hard وAlpacaEval 2 LC وGPT-4-Turbo MT-Bench، حيث احتل المرتبة الأولى في جميع اختبارات المحاذاة التلقائية الثلاثة حتى 1 أكتوبر 2024. تم تدريب النموذج باستخدام RLHF (خاصة REINFORCE) وLlama-3.1-Nemotron-70B-Reward وHelpSteer2-Preference على أساس نموذج Llama-3.1-70B-Instruct."
1027
+ },
959
1028
  "o1-mini": {
960
1029
  "description": "o1-mini هو نموذج استدلال سريع وفعال من حيث التكلفة مصمم لتطبيقات البرمجة والرياضيات والعلوم. يحتوي هذا النموذج على 128K من السياق وتاريخ انتهاء المعرفة في أكتوبر 2023."
961
1030
  },
@@ -1052,6 +1121,9 @@
1052
1121
  "qwen2": {
1053
1122
  "description": "Qwen2 هو نموذج لغوي كبير من الجيل الجديد من Alibaba، يدعم أداءً ممتازًا لتلبية احتياجات التطبيقات المتنوعة."
1054
1123
  },
1124
+ "qwen2.5": {
1125
+ "description": "Qwen2.5 هو الجيل الجديد من نماذج اللغة الكبيرة من Alibaba، يدعم احتياجات التطبيقات المتنوعة بأداء ممتاز."
1126
+ },
1055
1127
  "qwen2.5-14b-instruct": {
1056
1128
  "description": "نموذج Qwen 2.5 مفتوح المصدر بحجم 14B."
1057
1129
  },
@@ -1076,6 +1148,15 @@
1076
1148
  "qwen2.5-math-7b-instruct": {
1077
1149
  "description": "نموذج Qwen-Math يتمتع بقدرات قوية في حل المسائل الرياضية."
1078
1150
  },
1151
+ "qwen2.5:0.5b": {
1152
+ "description": "Qwen2.5 هو الجيل الجديد من نماذج اللغة الكبيرة من Alibaba، يدعم احتياجات التطبيقات المتنوعة بأداء ممتاز."
1153
+ },
1154
+ "qwen2.5:1.5b": {
1155
+ "description": "Qwen2.5 هو الجيل الجديد من نماذج اللغة الكبيرة من Alibaba، يدعم احتياجات التطبيقات المتنوعة بأداء ممتاز."
1156
+ },
1157
+ "qwen2.5:72b": {
1158
+ "description": "Qwen2.5 هو الجيل الجديد من نماذج اللغة الكبيرة من Alibaba، يدعم احتياجات التطبيقات المتنوعة بأداء ممتاز."
1159
+ },
1079
1160
  "qwen2:0.5b": {
1080
1161
  "description": "Qwen2 هو نموذج لغوي كبير من الجيل الجديد من Alibaba، يدعم أداءً ممتازًا لتلبية احتياجات التطبيقات المتنوعة."
1081
1162
  },
@@ -1085,6 +1166,12 @@
1085
1166
  "qwen2:72b": {
1086
1167
  "description": "Qwen2 هو نموذج لغوي كبير من الجيل الجديد من Alibaba، يدعم أداءً ممتازًا لتلبية احتياجات التطبيقات المتنوعة."
1087
1168
  },
1169
+ "qwq": {
1170
+ "description": "QwQ هو نموذج بحث تجريبي يركز على تحسين قدرات الاستدلال للذكاء الاصطناعي."
1171
+ },
1172
+ "qwq-32b-preview": {
1173
+ "description": "نموذج QwQ هو نموذج بحث تجريبي تم تطويره بواسطة فريق Qwen، يركز على تعزيز قدرات الاستدلال للذكاء الاصطناعي."
1174
+ },
1088
1175
  "solar-1-mini-chat": {
1089
1176
  "description": "Solar Mini هو نموذج LLM مدمج، يتفوق على GPT-3.5، ويتميز بقدرات متعددة اللغات، ويدعم الإنجليزية والكورية، ويقدم حلولًا فعالة وصغيرة الحجم."
1090
1177
  },
@@ -2,6 +2,9 @@
2
2
  "01-ai/Yi-1.5-34B-Chat-16K": {
3
3
  "description": "Yi-1.5 34B предлага отлични резултати в индустриалните приложения с богат набор от обучителни примери."
4
4
  },
5
+ "01-ai/Yi-1.5-6B-Chat": {
6
+ "description": "Yi-1.5-6B-Chat е вариант на Yi-1.5, който принадлежи към отворените модели за разговори. Yi-1.5 е подобрена версия на Yi, която е била предварително обучена на 500B висококачествени корпуси и е била фино настроена на 3M разнообразни примери. В сравнение с Yi, Yi-1.5 показва по-силни способности в кодирането, математиката, разсъжденията и следването на инструкции, като същевременно запазва отлични способности за разбиране на езика, разсъждения на общи познания и разбиране на текст. Моделът предлага версии с контекстна дължина от 4K, 16K и 32K, с общо количество предварително обучение от 3.6T токена."
7
+ },
5
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
6
9
  "description": "Yi-1.5 9B поддържа 16K токена, предоставяйки ефективни и плавни способности за генериране на език."
7
10
  },
@@ -91,6 +94,12 @@
91
94
  "Gryphe/MythoMax-L2-13b": {
92
95
  "description": "MythoMax-L2 (13B) е иновативен модел, подходящ за приложения в множество области и сложни задачи."
93
96
  },
97
+ "LoRA/Qwen/Qwen2.5-72B-Instruct": {
98
+ "description": "Qwen2.5-72B-Instruct е един от най-новите големи езикови модели, публикувани от Alibaba Cloud. Този 72B модел показва значителни подобрения в областите на кодирането и математиката. Моделът предлага многоезична поддръжка, обхващаща над 29 езика, включително китайски, английски и др. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
99
+ },
100
+ "LoRA/Qwen/Qwen2.5-7B-Instruct": {
101
+ "description": "Qwen2.5-7B-Instruct е един от най-новите големи езикови модели, публикувани от Alibaba Cloud. Този 7B модел показва значителни подобрения в областите на кодирането и математиката. Моделът предлага многоезична поддръжка, обхващаща над 29 езика, включително китайски, английски и др. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
102
+ },
94
103
  "Nous-Hermes-2-Mixtral-8x7B-DPO": {
95
104
  "description": "Hermes 2 Mixtral 8x7B DPO е високо гъвкава многомоделна комбинация, предназначена да предостави изключителен креативен опит."
96
105
  },
@@ -98,9 +107,6 @@
98
107
  "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
99
108
  "description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) е модел с висока точност за инструкции, подходящ за сложни изчисления."
100
109
  },
101
- "NousResearch/Nous-Hermes-2-Yi-34B": {
102
- "description": "Nous Hermes-2 Yi (34B) предлага оптимизирани езикови изходи и разнообразни възможности за приложение."
103
- },
104
110
  "OpenGVLab/InternVL2-26B": {
105
111
  "description": "InternVL2 демонстрира изключителни резултати в различни визуално-языкови задачи, включително разбиране на документи и графики, разбиране на текст в сцени, OCR, решаване на научни и математически проблеми."
106
112
  },
@@ -134,18 +140,42 @@
134
140
  "Pro/OpenGVLab/InternVL2-8B": {
135
141
  "description": "InternVL2 демонстрира изключителни резултати в различни визуално-языкови задачи, включително разбиране на документи и графики, разбиране на текст в сцени, OCR, решаване на научни и математически проблеми."
136
142
  },
143
+ "Pro/Qwen/Qwen2-1.5B-Instruct": {
144
+ "description": "Qwen2-1.5B-Instruct е голям езиков модел с параметри 1.5B от серията Qwen2, специално настроен за инструкции. Моделът е базиран на архитектурата Transformer и използва технологии като SwiGLU активационна функция, QKV отклонение за внимание и групова внимание. Той показва отлични резултати в множество бенчмаркове за разбиране на езика, генериране, многоезични способности, кодиране, математика и разсъждения, надминавайки повечето отворени модели. В сравнение с Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct показва значителни подобрения в тестовете MMLU, HumanEval, GSM8K, C-Eval и IFEval, въпреки че параметрите са малко по-малко."
145
+ },
146
+ "Pro/Qwen/Qwen2-7B-Instruct": {
147
+ "description": "Qwen2-7B-Instruct е голям езиков модел с параметри 7B от серията Qwen2, специално настроен за инструкции. Моделът е базиран на архитектурата Transformer и използва технологии като SwiGLU активационна функция, QKV отклонение за внимание и групова внимание. Той може да обработва големи входни данни. Моделът показва отлични резултати в множество бенчмаркове за разбиране на езика, генериране, многоезични способности, кодиране, математика и разсъждения, надминавайки повечето отворени модели и показвайки конкурентоспособност на определени задачи в сравнение с патентовани модели. Qwen2-7B-Instruct показва значителни подобрения в множество оценки в сравнение с Qwen1.5-7B-Chat."
148
+ },
137
149
  "Pro/Qwen/Qwen2-VL-7B-Instruct": {
138
150
  "description": "Qwen2-VL е най-новата итерация на модела Qwen-VL, който е постигнал водещи резултати в тестовете за визуално разбиране."
139
151
  },
140
- "Qwen/Qwen1.5-110B-Chat": {
141
- "description": "Като тестова версия на Qwen2, Qwen1.5 използва големи данни за постигане на по-точни диалогови функции."
152
+ "Pro/Qwen/Qwen2.5-7B-Instruct": {
153
+ "description": "Qwen2.5-7B-Instruct е един от най-новите големи езикови модели, публикувани от Alibaba Cloud. Този 7B модел показва значителни подобрения в областите на кодирането и математиката. Моделът предлага многоезична поддръжка, обхващаща над 29 езика, включително китайски, английски и др. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
154
+ },
155
+ "Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
156
+ "description": "Qwen2.5-Coder-7B-Instruct е най-новата версия на серията големи езикови модели, специфични за код, публикувана от Alibaba Cloud. Моделът значително подобрява способностите за генериране на код, разсъждения и корекции, след като е обучен с 55 трилиона токена на базата на Qwen2.5. Той не само подобрява кодовите умения, но и запазва предимствата в математиката и общите способности. Моделът предоставя по-пълна основа за практическите приложения като кодови интелигентни агенти."
157
+ },
158
+ "Pro/THUDM/glm-4-9b-chat": {
159
+ "description": "GLM-4-9B-Chat е отворената версия на предварително обучен модел от серията GLM-4, пусната от Zhizhu AI. Моделът показва отлични резултати в семантика, математика, разсъждения, код и знания. Освен че поддържа многократни разговори, GLM-4-9B-Chat предлага и напреднали функции като уеб браузинг, изпълнение на код, извикване на персонализирани инструменти (Function Call) и разсъждения с дълги текстове. Моделът поддържа 26 езика, включително китайски, английски, японски, корейски и немски. В множество бенчмаркове, GLM-4-9B-Chat показва отлична производителност, като AlignBench-v2, MT-Bench, MMLU и C-Eval. Моделът поддържа максимална контекстна дължина от 128K, подходящ за академични изследвания и търговски приложения."
142
160
  },
143
- "Qwen/Qwen1.5-72B-Chat": {
144
- "description": "Qwen 1.5 Chat (72B) предлага бързи отговори и естествени диалогови способности, подходящи за многоезични среди."
161
+ "Pro/google/gemma-2-9b-it": {
162
+ "description": "Gemma е един от най-новите леки, авангардни отворени модели, разработени от Google. Това е голям езиков модел с един декодер, който поддържа английски и предлага отворени тегла, предварително обучени варианти и варианти с фино настройване на инструкции. Моделът Gemma е подходящ за различни задачи по генериране на текст, включително въпроси и отговори, резюмиране и разсъждения. Този 9B модел е обучен с 8 трилиона токена. Неговият относително малък размер позволява внедряване в среди с ограничени ресурси, като лаптопи, настолни компютри или собствена облачна инфраструктура, което позволява на повече хора да имат достъп до авангардни AI модели и да насърчават иновации."
163
+ },
164
+ "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
165
+ "description": "Meta Llama 3.1 е семейство от многоезични големи езикови модели, разработени от Meta, включващо предварително обучени и модели с фино настройване с параметри 8B, 70B и 405B. Този 8B модел с фино настройване на инструкции е оптимизиран за многоезични разговорни сценарии и показва отлични резултати в множество индустриални бенчмаркове. Моделът е обучен с над 15 трилиона токена от публични данни и използва технологии като наблюдавано фино настройване и обучение с човешка обратна връзка, за да подобри полезността и безопасността на модела. Llama 3.1 поддържа генериране на текст и генериране на код, с дата на прекратяване на знанията до декември 2023 г."
166
+ },
167
+ "Qwen/QwQ-32B-Preview": {
168
+ "description": "QwQ-32B-Preview е най-новият експериментален изследователски модел на Qwen, който се фокусира върху подобряване на AI разсъдъчните способности. Чрез изследване на сложни механизми като езикови смеси и рекурсивно разсъждение, основните предимства включват мощни аналитични способности, математически и програмистки умения. В същото време съществуват проблеми с езиковото превключване, цикли на разсъждение, съображения за безопасност и разлики в други способности."
169
+ },
170
+ "Qwen/Qwen2-1.5B-Instruct": {
171
+ "description": "Qwen2-1.5B-Instruct е голям езиков модел с параметри 1.5B от серията Qwen2, специално настроен за инструкции. Моделът е базиран на архитектурата Transformer и използва технологии като SwiGLU активационна функция, QKV отклонение за внимание и групова внимание. Той показва отлични резултати в множество бенчмаркове за разбиране на езика, генериране, многоезични способности, кодиране, математика и разсъждения, надминавайки повечето отворени модели. В сравнение с Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct показва значителни подобрения в тестовете MMLU, HumanEval, GSM8K, C-Eval и IFEval, въпреки че параметрите са малко по-малко."
145
172
  },
146
173
  "Qwen/Qwen2-72B-Instruct": {
147
174
  "description": "Qwen2 е напреднал универсален езиков модел, поддържащ множество типове инструкции."
148
175
  },
176
+ "Qwen/Qwen2-7B-Instruct": {
177
+ "description": "Qwen2-72B-Instruct е голям езиков модел с параметри 72B от серията Qwen2, специално настроен за инструкции. Моделът е базиран на архитектурата Transformer и използва технологии като SwiGLU активационна функция, QKV отклонение за внимание и групова внимание. Той може да обработва големи входни данни. Моделът показва отлични резултати в множество бенчмаркове за разбиране на езика, генериране, многоезични способности, кодиране, математика и разсъждения, надминавайки повечето отворени модели и показвайки конкурентоспособност на определени задачи в сравнение с патентовани модели."
178
+ },
149
179
  "Qwen/Qwen2-VL-72B-Instruct": {
150
180
  "description": "Qwen2-VL е най-новата итерация на модела Qwen-VL, който е постигнал водещи резултати в тестовете за визуално разбиране."
151
181
  },
@@ -173,6 +203,9 @@
173
203
  "Qwen/Qwen2.5-Coder-32B-Instruct": {
174
204
  "description": "Qwen2.5-Coder се фокусира върху писането на код."
175
205
  },
206
+ "Qwen/Qwen2.5-Coder-7B-Instruct": {
207
+ "description": "Qwen2.5-Coder-7B-Instruct е най-новата версия на серията големи езикови модели, специфични за код, публикувана от Alibaba Cloud. Моделът значително подобрява способностите за генериране на код, разсъждения и корекции, след като е обучен с 55 трилиона токена на базата на Qwen2.5. Той не само подобрява кодовите умения, но и запазва предимствата в математиката и общите способности. Моделът предоставя по-пълна основа за практическите приложения като кодови интелигентни агенти."
208
+ },
176
209
  "Qwen/Qwen2.5-Math-72B-Instruct": {
177
210
  "description": "Qwen2.5-Math се фокусира върху решаването на математически проблеми, предоставяйки професионални отговори на трудни задачи."
178
211
  },
@@ -209,12 +242,27 @@
209
242
  "SenseChat-Turbo": {
210
243
  "description": "Подходящ за бързи въпроси и отговори, сцени на фино настройване на модела."
211
244
  },
245
+ "THUDM/chatglm3-6b": {
246
+ "description": "ChatGLM3-6B е отворен модел от серията ChatGLM, разработен от Zhizhu AI. Моделът запазва отличителните характеристики на предшествениците си, като плавност на разговора и ниски изисквания за внедряване, докато въвежда нови функции. Той използва по-разнообразни тренировъчни данни, по-пълноценни тренировъчни стъпки и по-разумни тренировъчни стратегии, показвайки отлични резултати сред предварително обучените модели под 10B. ChatGLM3-6B поддържа многократни разговори, извикване на инструменти, изпълнение на код и сложни сценарии на задачи на агенти. Освен модела за разговори, са отворени и основният модел ChatGLM-6B-Base и моделът за дълги текстови разговори ChatGLM3-6B-32K. Моделът е напълно отворен за академични изследвания и позволява безплатна търговска употреба след регистрация."
247
+ },
212
248
  "THUDM/glm-4-9b-chat": {
213
249
  "description": "GLM-4 9B е отворен код версия, предоставяща оптимизирано изживяване в разговорните приложения."
214
250
  },
251
+ "TeleAI/TeleChat2": {
252
+ "description": "TeleChat2 е голям модел, разработен от China Telecom, който предлага генеративен семантичен модел, поддържащ функции като енциклопедични въпроси и отговори, генериране на код и генериране на дълги текстове, предоставяйки услуги за консултации на потребителите, способни да взаимодействат с потребителите, да отговарят на въпроси и да помагат в творчеството, ефективно и удобно помагайки на потребителите да получат информация, знания и вдъхновение. Моделът показва отлични резултати в проблеми с илюзии, генериране на дълги текстове и логическо разбиране."
253
+ },
254
+ "TeleAI/TeleMM": {
255
+ "description": "TeleMM е многомодален голям модел, разработен от China Telecom, способен да обработва текст, изображения и други видове входни данни, поддържащ функции като разбиране на изображения и анализ на графики, предоставяйки услуги за разбиране на потребителите в различни модалности. Моделът може да взаимодейства с потребителите в многомодални сценарии, точно разбирайки входното съдържание, отговаряйки на въпроси, помагайки в творчеството и ефективно предоставяйки многомодална информация и вдъхновение. Моделът показва отлични резултати в задачи с фина перцепция и логическо разсъждение."
256
+ },
215
257
  "Tencent/Hunyuan-A52B-Instruct": {
216
258
  "description": "Hunyuan-Large е най-голямата отворена трансформаторна архитектура MoE в индустрията, с общо 3890 милиарда параметри и 52 милиарда активни параметри."
217
259
  },
260
+ "Vendor-A/Qwen/Qwen2-7B-Instruct": {
261
+ "description": "Qwen2-72B-Instruct е голям езиков модел с параметри 72B от серията Qwen2, специално настроен за инструкции. Моделът е базиран на архитектурата Transformer и използва технологии като SwiGLU активационна функция, QKV отклонение за внимание и групова внимание. Той може да обработва големи входни данни. Моделът показва отлични резултати в множество бенчмаркове за разбиране на езика, генериране, многоезични способности, кодиране, математика и разсъждения, надминавайки повечето отворени модели и показвайки конкурентоспособност на определени задачи в сравнение с патентовани модели."
262
+ },
263
+ "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
264
+ "description": "Qwen2.5-72B-Instruct е един от най-новите големи езикови модели, публикувани от Alibaba Cloud. Този 72B модел показва значителни подобрения в областите на кодирането и математиката. Моделът предлага многоезична поддръжка, обхващаща над 29 езика, включително китайски, английски и др. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
265
+ },
218
266
  "Yi-34B-Chat": {
219
267
  "description": "Yi-1.5-34B значително подобрява математическата логика и способностите в кодирането, като запазва отличните общи езикови способности на оригиналната серия модели, чрез инкрементално обучение с 500 милиарда висококачествени токени."
220
268
  },
@@ -290,9 +338,15 @@
290
338
  "accounts/fireworks/models/phi-3-vision-128k-instruct": {
291
339
  "description": "Phi 3 Vision модел за инструкции, лек мултимодален модел, способен да обработва сложна визуална и текстова информация, с високи способности за разсъждение."
292
340
  },
341
+ "accounts/fireworks/models/qwen-qwq-32b-preview": {
342
+ "description": "QwQ моделът е експериментален изследователски модел, разработен от екипа на Qwen, който се фокусира върху подобряване на AI разсъдъчните способности."
343
+ },
293
344
  "accounts/fireworks/models/qwen2p5-72b-instruct": {
294
345
  "description": "Qwen2.5 е серия от езикови модели, разработени от екипа на Alibaba Cloud Qwen, които съдържат само декодери. Тези модели предлагат различни размери, включително 0.5B, 1.5B, 3B, 7B, 14B, 32B и 72B, и разполагат с базови (base) и инструкти (instruct) варианти."
295
346
  },
347
+ "accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
348
+ "description": "Qwen2.5 Coder 32B Instruct е най-новата версия на серията големи езикови модели, специфични за код, публикувана от Alibaba Cloud. Моделът значително подобрява способностите за генериране на код, разсъждения и корекции, след като е обучен с 55 трилиона токена на базата на Qwen2.5. Той не само подобрява кодовите умения, но и запазва предимствата в математиката и общите способности. Моделът предоставя по-пълна основа за практическите приложения като кодови интелигентни агенти."
349
+ },
296
350
  "accounts/fireworks/models/starcoder-16b": {
297
351
  "description": "StarCoder 15.5B модел, поддържащ напреднали програмни задачи, с подобрени многоезични способности, подходящ за сложна генерация и разбиране на код."
298
352
  },
@@ -392,6 +446,9 @@
392
446
  "codellama": {
393
447
  "description": "Code Llama е LLM, фокусиран върху генерирането и обсъждането на код, комбиниращ широк спектър от поддръжка на програмни езици, подходящ за среда на разработчици."
394
448
  },
449
+ "codellama/CodeLlama-34b-Instruct-hf": {
450
+ "description": "Code Llama е LLM, фокусиран върху генерирането и обсъждането на код, с широка поддръжка на програмни езици, подходящ за среда на разработчици."
451
+ },
395
452
  "codellama:13b": {
396
453
  "description": "Code Llama е LLM, фокусиран върху генерирането и обсъждането на код, комбиниращ широк спектър от поддръжка на програмни езици, подходящ за среда на разработчици."
397
454
  },
@@ -428,6 +485,9 @@
428
485
  "databricks/dbrx-instruct": {
429
486
  "description": "DBRX Instruct предлага висока надеждност в обработката на инструкции, поддържаща приложения в множество индустрии."
430
487
  },
488
+ "deepseek-ai/DeepSeek-V2-Chat": {
489
+ "description": "DeepSeek-V2 е мощен и икономически ефективен хибриден експертен (MoE) езиков модел. Той е предварително обучен на висококачествен корпус от 81 трилиона токена и е допълнително подобрен чрез наблюдавано фино настройване (SFT) и обучение с подсилване (RL). В сравнение с DeepSeek 67B, DeepSeek-V2 постига по-добра производителност, спестявайки 42.5% от разходите за обучение, намалявайки KV кеша с 93.3% и увеличавайки максималната производителност на генериране с 5.76 пъти. Моделът поддържа контекстна дължина от 128k и показва отлични резултати в стандартни бенчмаркове и оценки на отворено генериране."
490
+ },
431
491
  "deepseek-ai/DeepSeek-V2.5": {
432
492
  "description": "DeepSeek V2.5 обединява отличителните характеристики на предишните версии, подобрявайки общите и кодиращите способности."
433
493
  },
@@ -682,6 +742,9 @@
682
742
  },
683
743
  "jamba-1.5-large": {},
684
744
  "jamba-1.5-mini": {},
745
+ "learnlm-1.5-pro-experimental": {
746
+ "description": "LearnLM е експериментален езиков модел, специфичен за задачи, обучен да отговаря на принципите на научното обучение, способен да следва системни инструкции в учебни и обучителни сценарии, да действа като експертен ментор и др."
747
+ },
685
748
  "lite": {
686
749
  "description": "Spark Lite е лек модел на голям език, с изключително ниска латентност и ефективна обработка, напълно безплатен и отворен, поддържащ функции за онлайн търсене в реално време. Неговите бързи отговори го правят отличен за приложения на нискомощни устройства и фина настройка на модели, предоставяйки на потребителите отлична рентабилност и интелигентно изживяване, особено в контекста на въпроси и отговори, генериране на съдържание и търсене."
687
750
  },
@@ -872,6 +935,9 @@
872
935
  "description": "Meta Llama 3 е отворен голям езиков модел (LLM), насочен към разработчици, изследователи и предприятия, предназначен да им помогне да изградят, експериментират и отговорно разширят своите идеи за генеративен ИИ. Като част от основната система на глобалната общност за иновации, той е особено подходящ за устройства с ограничени изчислителни ресурси и по-бързо време за обучение."
873
936
  },
874
937
  "microsoft/Phi-3.5-mini-instruct": {},
938
+ "microsoft/WizardLM-2-8x22B": {
939
+ "description": "WizardLM 2 е езиков модел, предоставен от Microsoft AI, който показва особени способности в сложни разговори, многоезичност, разсъждения и интелигентни асистенти."
940
+ },
875
941
  "microsoft/wizardlm 2-7b": {
876
942
  "description": "WizardLM 2 7B е най-новият бърз и лек модел на Microsoft AI, с производителност, близка до 10 пъти на съществуващите водещи отворени модели."
877
943
  },
@@ -956,6 +1022,9 @@
956
1022
  "nvidia/Llama-3.1-Nemotron-70B-Instruct": {
957
1023
  "description": "Llama 3.1 Nemotron 70B е голям езиков модел, персонализиран от NVIDIA с цел подобряване на отговорите на потребителските запитвания."
958
1024
  },
1025
+ "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
1026
+ "description": "Llama 3.1 Nemotron 70B е голям езиков модел, персонализиран от NVIDIA, предназначен да увеличи полезността на отговорите, генерирани от LLM на потребителските запитвания. Моделът показва отлични резултати в бенчмаркове като Arena Hard, AlpacaEval 2 LC и GPT-4-Turbo MT-Bench, като заема първо място в трите автоматизирани теста за подравняване към 1 октомври 2024 г. Моделът е обучен с RLHF (по-специално REINFORCE), Llama-3.1-Nemotron-70B-Reward и HelpSteer2-Preference подсказки на базата на Llama-3.1-70B-Instruct модела."
1027
+ },
959
1028
  "o1-mini": {
960
1029
  "description": "o1-mini е бърз и икономичен модел за изводи, проектиран за приложения в програмирането, математиката и науката. Моделът разполага с контекст от 128K и дата на знание до октомври 2023."
961
1030
  },
@@ -1052,6 +1121,9 @@
1052
1121
  "qwen2": {
1053
1122
  "description": "Qwen2 е новото поколение голям езиков модел на Alibaba, предлагащ отлична производителност за разнообразни приложения."
1054
1123
  },
1124
+ "qwen2.5": {
1125
+ "description": "Qwen2.5 е новото поколение мащабен езиков модел на Alibaba, който предлага отлична производителност, за да отговори на разнообразни приложни нужди."
1126
+ },
1055
1127
  "qwen2.5-14b-instruct": {
1056
1128
  "description": "Модел с мащаб 14B, отворен за обществеността от Qwen 2.5."
1057
1129
  },
@@ -1076,6 +1148,15 @@
1076
1148
  "qwen2.5-math-7b-instruct": {
1077
1149
  "description": "Моделът Qwen-Math притежава силни способности за решаване на математически задачи."
1078
1150
  },
1151
+ "qwen2.5:0.5b": {
1152
+ "description": "Qwen2.5 е новото поколение мащабен езиков модел на Alibaba, който предлага отлична производителност, за да отговори на разнообразни приложни нужди."
1153
+ },
1154
+ "qwen2.5:1.5b": {
1155
+ "description": "Qwen2.5 е новото поколение мащабен езиков модел на Alibaba, който предлага отлична производителност, за да отговори на разнообразни приложни нужди."
1156
+ },
1157
+ "qwen2.5:72b": {
1158
+ "description": "Qwen2.5 е новото поколение мащабен езиков модел на Alibaba, който предлага отлична производителност, за да отговори на разнообразни приложни нужди."
1159
+ },
1079
1160
  "qwen2:0.5b": {
1080
1161
  "description": "Qwen2 е новото поколение голям езиков модел на Alibaba, предлагащ отлична производителност за разнообразни приложения."
1081
1162
  },
@@ -1085,6 +1166,12 @@
1085
1166
  "qwen2:72b": {
1086
1167
  "description": "Qwen2 е новото поколение голям езиков модел на Alibaba, предлагащ отлична производителност за разнообразни приложения."
1087
1168
  },
1169
+ "qwq": {
1170
+ "description": "QwQ е експериментален изследователски модел, който се фокусира върху подобряване на AI разсъдъчните способности."
1171
+ },
1172
+ "qwq-32b-preview": {
1173
+ "description": "QwQ моделът е експериментален изследователски модел, разработен от екипа на Qwen, който се фокусира върху подобряване на AI разсъдъчните способности."
1174
+ },
1088
1175
  "solar-1-mini-chat": {
1089
1176
  "description": "Solar Mini е компактен LLM, с производителност над GPT-3.5, предлагащ мощни многоезични способности, поддържащ английски и корейски, предоставяйки ефективно и компактно решение."
1090
1177
  },