@lobehub/chat 1.34.6 → 1.35.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/README.md +8 -8
- package/README.zh-CN.md +8 -8
- package/changelog/v1.json +18 -0
- package/docs/changelog/2024-07-19-gpt-4o-mini.mdx +32 -0
- package/docs/changelog/2024-07-19-gpt-4o-mini.zh-CN.mdx +5 -4
- package/docs/changelog/2024-08-02-lobe-chat-database-docker.mdx +36 -0
- package/docs/changelog/2024-08-02-lobe-chat-database-docker.zh-CN.mdx +0 -1
- package/docs/changelog/2024-08-21-file-upload-and-knowledge-base.mdx +30 -0
- package/docs/changelog/2024-08-21-file-upload-and-knowledge-base.zh-CN.mdx +0 -1
- package/docs/changelog/2024-09-13-openai-o1-models.mdx +31 -0
- package/docs/changelog/2024-09-20-artifacts.mdx +55 -0
- package/docs/changelog/2024-09-20-artifacts.zh-CN.mdx +3 -2
- package/docs/changelog/2024-10-27-pin-assistant.mdx +33 -0
- package/docs/changelog/2024-10-27-pin-assistant.zh-CN.mdx +0 -1
- package/docs/changelog/2024-11-06-share-text-json.mdx +24 -0
- package/docs/changelog/2024-11-06-share-text-json.zh-CN.mdx +3 -1
- package/docs/changelog/2024-11-25-november-providers.mdx +5 -5
- package/docs/changelog/2024-11-25-november-providers.zh-CN.mdx +5 -5
- package/docs/changelog/2024-11-27-forkable-chat.mdx +26 -0
- package/docs/changelog/2024-11-27-forkable-chat.zh-CN.mdx +16 -9
- package/docs/changelog/index.json +1 -1
- package/docs/self-hosting/environment-variables/analytics.mdx +31 -2
- package/locales/ar/models.json +94 -7
- package/locales/bg-BG/models.json +94 -7
- package/locales/de-DE/models.json +94 -7
- package/locales/en-US/models.json +94 -7
- package/locales/es-ES/models.json +94 -7
- package/locales/fa-IR/models.json +94 -7
- package/locales/fr-FR/models.json +94 -7
- package/locales/it-IT/models.json +94 -7
- package/locales/ja-JP/models.json +94 -7
- package/locales/ko-KR/models.json +94 -7
- package/locales/nl-NL/models.json +94 -7
- package/locales/pl-PL/models.json +94 -7
- package/locales/pt-BR/models.json +94 -7
- package/locales/ru-RU/models.json +94 -7
- package/locales/tr-TR/models.json +94 -7
- package/locales/vi-VN/models.json +94 -7
- package/locales/zh-CN/models.json +121 -34
- package/locales/zh-TW/models.json +94 -7
- package/package.json +2 -2
- package/src/config/modelProviders/ollama.ts +85 -35
- package/src/libs/agent-runtime/ollama/index.ts +25 -9
- package/src/libs/agent-runtime/utils/streams/ollama.test.ts +130 -46
- package/src/libs/agent-runtime/utils/streams/ollama.ts +19 -4
- package/src/server/modules/AgentRuntime/index.test.ts +2 -1
- package/src/server/modules/AgentRuntime/index.ts +7 -1
@@ -1,9 +1,12 @@
|
|
1
1
|
{
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
|
-
"description": "Yi-1.5
|
3
|
+
"description": "Yi-1.5-34B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在大多数基准测试中与更大的模型相当或表现更佳,具有 16K 的上下文长度"
|
4
|
+
},
|
5
|
+
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
+
"description": "Yi-1.5-6B-Chat 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型具有 4K、16K 和 32K 的上下文长度版本,预训练总量达到 3.6T 个 token"
|
4
7
|
},
|
5
8
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
6
|
-
"description": "Yi-1.5
|
9
|
+
"description": "Yi-1.5-9B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在同等规模的开源模型中表现最佳"
|
7
10
|
},
|
8
11
|
"360gpt-pro": {
|
9
12
|
"description": "360GPT Pro 作为 360 AI 模型系列的重要成员,以高效的文本处理能力满足多样化的自然语言应用场景,支持长文本理解和多轮对话等功能。"
|
@@ -91,6 +94,12 @@
|
|
91
94
|
"Gryphe/MythoMax-L2-13b": {
|
92
95
|
"description": "MythoMax-L2 (13B) 是一种创新模型,适合多领域应用和复杂任务。"
|
93
96
|
},
|
97
|
+
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
98
|
+
"description": "Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升"
|
99
|
+
},
|
100
|
+
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
101
|
+
"description": "Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升"
|
102
|
+
},
|
94
103
|
"Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
95
104
|
"description": "Hermes 2 Mixtral 8x7B DPO 是一款高度灵活的多模型合并,旨在提供卓越的创造性体验。"
|
96
105
|
},
|
@@ -98,14 +107,11 @@
|
|
98
107
|
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
99
108
|
"description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) 是高精度的指令模型,适用于复杂计算。"
|
100
109
|
},
|
101
|
-
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
102
|
-
"description": "Nous Hermes-2 Yi (34B) 提供优化的语言输出和多样化的应用可能。"
|
103
|
-
},
|
104
110
|
"OpenGVLab/InternVL2-26B": {
|
105
|
-
"description": "InternVL2
|
111
|
+
"description": "InternVL2-26B 是 InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 internlm2-chat-20b 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-26B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力"
|
106
112
|
},
|
107
113
|
"OpenGVLab/InternVL2-Llama3-76B": {
|
108
|
-
"description": "InternVL2
|
114
|
+
"description": "InternVL2-Llama3-76B 是 InternVL 2.0 系列中的大规模多模态模型。它由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 Hermes-2-Theta-Llama-3-70B 语言模型组成。该模型在各种视觉语言任务上表现出色,包括文档和图表理解、信息图表问答、场景文本理解和 OCR 任务等。InternVL2-Llama3-76B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力,在多项基准测试中达到或接近最先进的商业模型水平"
|
109
115
|
},
|
110
116
|
"Phi-3-medium-128k-instruct": {
|
111
117
|
"description": "相同的Phi-3-medium模型,但具有更大的上下文大小,适用于RAG或少量提示。"
|
@@ -132,49 +138,76 @@
|
|
132
138
|
"description": "Phi-3-vision模型的更新版。"
|
133
139
|
},
|
134
140
|
"Pro/OpenGVLab/InternVL2-8B": {
|
135
|
-
"description": "InternVL2
|
141
|
+
"description": "InternVL2-8B 是 InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-300M-448px 视觉模型、MLP 投影层和 internlm2_5-7b-chat 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-8B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力"
|
142
|
+
},
|
143
|
+
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
144
|
+
"description": "Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少"
|
145
|
+
},
|
146
|
+
"Pro/Qwen/Qwen2-7B-Instruct": {
|
147
|
+
"description": "Qwen2-7B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 7B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力。Qwen2-7B-Instruct 在多项评测中均优于 Qwen1.5-7B-Chat,显示出显著的性能提升"
|
136
148
|
},
|
137
149
|
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
138
|
-
"description": "Qwen2-VL 是 Qwen-VL
|
150
|
+
"description": "Qwen2-VL-7B-Instruct 是 Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能,包括 MathVista、DocVQA、RealWorldQA 和 MTVQA 等。Qwen2-VL 能够用于高质量的基于视频的问答、对话和内容创作,还具备复杂推理和决策能力,可以与移动设备、机器人等集成,基于视觉环境和文本指令进行自动操作。除了英语和中文,Qwen2-VL 现在还支持理解图像中不同语言的文本,包括大多数欧洲语言、日语、韩语、阿拉伯语和越南语等"
|
151
|
+
},
|
152
|
+
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
153
|
+
"description": "Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升"
|
154
|
+
},
|
155
|
+
"Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
|
156
|
+
"description": "Qwen2.5-Coder-7B-Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础"
|
157
|
+
},
|
158
|
+
"Pro/THUDM/glm-4-9b-chat": {
|
159
|
+
"description": "GLM-4-9B-Chat 是智谱 AI 推出的 GLM-4 系列预训练模型中的开源版本。该模型在语义、数学、推理、代码和知识等多个方面表现出色。除了支持多轮对话外,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理等高级功能。模型支持 26 种语言,包括中文、英文、日语、韩语和德语等。在多项基准测试中,GLM-4-9B-Chat 展现了优秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。该模型支持最大 128K 的上下文长度,适用于学术研究和商业应用"
|
160
|
+
},
|
161
|
+
"Pro/google/gemma-2-9b-it": {
|
162
|
+
"description": "Gemma 是 Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新"
|
139
163
|
},
|
140
|
-
"
|
141
|
-
"description": "
|
164
|
+
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
165
|
+
"description": "Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月"
|
142
166
|
},
|
143
|
-
"Qwen/
|
144
|
-
"description": "Qwen
|
167
|
+
"Qwen/QwQ-32B-Preview": {
|
168
|
+
"description": "QwQ-32B-Preview是Qwen 最新的实验性研究模型,专注于提升AI推理能力。通过探索语言混合、递归推理等复杂机制,主要优势包括强大的推理分析能力、数学和编程能力。与此同时,也存在语言切换问题、推理循环、安全性考虑、其他能力方面的差异。"
|
169
|
+
},
|
170
|
+
"Qwen/Qwen2-1.5B-Instruct": {
|
171
|
+
"description": "Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少"
|
145
172
|
},
|
146
173
|
"Qwen/Qwen2-72B-Instruct": {
|
147
174
|
"description": "Qwen 2 Instruct (72B) 为企业级应用提供精准的指令理解和响应。"
|
148
175
|
},
|
176
|
+
"Qwen/Qwen2-7B-Instruct": {
|
177
|
+
"description": "Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力"
|
178
|
+
},
|
149
179
|
"Qwen/Qwen2-VL-72B-Instruct": {
|
150
|
-
"description": "Qwen2-VL 是 Qwen-VL
|
180
|
+
"description": "Qwen2-VL 是 Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能,包括 MathVista、DocVQA、RealWorldQA 和 MTVQA 等。Qwen2-VL 能够理解超过 20 分钟的视频,用于高质量的基于视频的问答、对话和内容创作。它还具备复杂推理和决策能力,可以与移动设备、机器人等集成,基于视觉环境和文本指令进行自动操作。除了英语和中文,Qwen2-VL 现在还支持理解图像中不同语言的文本,包括大多数欧洲语言、日语、韩语、阿拉伯语和越南语等"
|
151
181
|
},
|
152
182
|
"Qwen/Qwen2.5-14B-Instruct": {
|
153
|
-
"description": "Qwen2.5
|
183
|
+
"description": "Qwen2.5-14B-Instruct 是阿里云发布的最新大语言模型系列之一。该 14B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升"
|
154
184
|
},
|
155
185
|
"Qwen/Qwen2.5-32B-Instruct": {
|
156
|
-
"description": "Qwen2.5
|
186
|
+
"description": "Qwen2.5-32B-Instruct 是阿里云发布的最新大语言模型系列之一。该 32B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升"
|
157
187
|
},
|
158
188
|
"Qwen/Qwen2.5-72B-Instruct": {
|
159
|
-
"description": "
|
189
|
+
"description": "Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升"
|
160
190
|
},
|
161
191
|
"Qwen/Qwen2.5-72B-Instruct-128K": {
|
162
|
-
"description": "Qwen2.5
|
192
|
+
"description": "Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。它支持长达 128K tokens 的输入,可以生成超过 8K tokens 的长文本。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升"
|
163
193
|
},
|
164
194
|
"Qwen/Qwen2.5-72B-Instruct-Turbo": {
|
165
195
|
"description": "Qwen2.5 是全新的大型语言模型系列,旨在优化指令式任务的处理。"
|
166
196
|
},
|
167
197
|
"Qwen/Qwen2.5-7B-Instruct": {
|
168
|
-
"description": "Qwen2.5
|
198
|
+
"description": "Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升"
|
169
199
|
},
|
170
200
|
"Qwen/Qwen2.5-7B-Instruct-Turbo": {
|
171
201
|
"description": "Qwen2.5 是全新的大型语言模型系列,旨在优化指令式任务的处理。"
|
172
202
|
},
|
173
203
|
"Qwen/Qwen2.5-Coder-32B-Instruct": {
|
174
|
-
"description": "Qwen2.5-Coder
|
204
|
+
"description": "Qwen2.5-Coder-32B-Instruct 是基于 Qwen2.5 开发的代码特定大语言模型。该模型通过 5.5 万亿 tokens 的训练,在代码生成、代码推理和代码修复方面都取得了显著提升。它是当前最先进的开源代码语言模型,编码能力可与 GPT-4 相媲美。模型不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长文本处理"
|
205
|
+
},
|
206
|
+
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
207
|
+
"description": "Qwen2.5-Coder-7B-Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础"
|
175
208
|
},
|
176
209
|
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
177
|
-
"description": "Qwen2.5-Math
|
210
|
+
"description": "Qwen2.5-Math-72B 是阿里云发布的 Qwen2.5-Math 系列数学大语言模型之一。该模型支持使用思维链(CoT)和工具集成推理(TIR)方法解决中文和英文数学问题。相比前代 Qwen2-Math 系列,Qwen2.5-Math 系列在中英文数学基准测试中取得了显著的性能提升。该模型在处理精确计算、符号操作和算法操作方面表现出色,尤其适合解决复杂的数学和算法推理任务"
|
178
211
|
},
|
179
212
|
"Qwen2-72B-Instruct": {
|
180
213
|
"description": "Qwen2 是 Qwen 模型的最新系列,支持 128k 上下文,对比当前最优的开源模型,Qwen2-72B 在自然语言理解、知识、代码、数学及多语言等多项能力上均显著超越当前领先的模型。"
|
@@ -209,12 +242,27 @@
|
|
209
242
|
"SenseChat-Turbo": {
|
210
243
|
"description": "适用于快速问答、模型微调场景"
|
211
244
|
},
|
245
|
+
"THUDM/chatglm3-6b": {
|
246
|
+
"description": "ChatGLM3-6B 是 ChatGLM 系列的开源模型,由智谱 AI 开发。该模型保留了前代模型的优秀特性,如对话流畅和部署门槛低,同时引入了新的特性。它采用了更多样的训练数据、更充分的训练步数和更合理的训练策略,在 10B 以下的预训练模型中表现出色。ChatGLM3-6B 支持多轮对话、工具调用、代码执行和 Agent 任务等复杂场景。除对话模型外,还开源了基础模型 ChatGLM-6B-Base 和长文本对话模型 ChatGLM3-6B-32K。该模型对学术研究完全开放,在登记后也允许免费商业使用"
|
247
|
+
},
|
212
248
|
"THUDM/glm-4-9b-chat": {
|
213
|
-
"description": "GLM-4 9B
|
249
|
+
"description": "GLM-4-9B-Chat 是智谱 AI 推出的 GLM-4 系列预训练模型中的开源版本。该模型在语义、数学、推理、代码和知识等多个方面表现出色。除了支持多轮对话外,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理等高级功能。模型支持 26 种语言,包括中文、英文、日语、韩语和德语等。在多项基准测试中,GLM-4-9B-Chat 展现了优秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。该模型支持最大 128K 的上下文长度,适用于学术研究和商业应用"
|
250
|
+
},
|
251
|
+
"TeleAI/TeleChat2": {
|
252
|
+
"description": "TeleChat2大模型是由中国电信从0到1自主研发的生成式语义大模型,支持百科问答、代码生成、长文生成等功能,为用户提供对话咨询服务,能够与用户进行对话互动,回答问题,协助创作,高效便捷地帮助用户获取信息、知识和灵感。模型在幻觉问题、长文生成、逻辑理解等方面均有较出色表现。"
|
253
|
+
},
|
254
|
+
"TeleAI/TeleMM": {
|
255
|
+
"description": "TeleMM多模态大模型是由中国电信自主研发的多模态理解大模型,能够处理文本、图像等多种模态输入,支持图像理解、图表分析等功能,为用户提供跨模态的理解服务。模型能够与用户进行多模态交互,准确理解输入内容,回答问题、协助创作,并高效提供多模态信息和灵感支持。在细粒度感知,逻辑推理等多模态任务上有出色表现"
|
214
256
|
},
|
215
257
|
"Tencent/Hunyuan-A52B-Instruct": {
|
216
258
|
"description": "Hunyuan-Large 是业界最大的开源 Transformer 架构 MoE 模型,拥有 3890 亿总参数量和 520 亿激活参数量。"
|
217
259
|
},
|
260
|
+
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
261
|
+
"description": "Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力"
|
262
|
+
},
|
263
|
+
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
264
|
+
"description": "Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升"
|
265
|
+
},
|
218
266
|
"Yi-34B-Chat": {
|
219
267
|
"description": "Yi-1.5-34B 在保持原系列模型优秀的通用语言能力的前提下,通过增量训练 5 千亿高质量 token,大幅提高了数学逻辑、代码能力。"
|
220
268
|
},
|
@@ -290,9 +338,15 @@
|
|
290
338
|
"accounts/fireworks/models/phi-3-vision-128k-instruct": {
|
291
339
|
"description": "Phi-3-Vision-128K-Instruct 是一个轻量级的、最先进的开放多模态模型,它基于包括合成数据和经过筛选的公开网站在内的数据集构建,专注于非常高质量、推理密集型的数据,这些数据既包括文本也包括视觉。该模型属于 Phi-3 模型系列,其多模态版本支持 128K 的上下文长度(以标记为单位)。该模型经过严格的增强过程,结合了监督微调和直接偏好优化,以确保精确遵循指令和强大的安全措施。"
|
292
340
|
},
|
341
|
+
"accounts/fireworks/models/qwen-qwq-32b-preview": {
|
342
|
+
"description": "QwQ模型是由 Qwen 团队开发的实验性研究模型,专注于增强 AI 推理能力。"
|
343
|
+
},
|
293
344
|
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
294
345
|
"description": "Qwen2.5 是由阿里云 Qwen 团队开发的一系列仅包含解码器的语言模型。这些模型提供不同的大小,包括 0.5B、1.5B、3B、7B、14B、32B 和 72B,并且有基础版(base)和指令版(instruct)两种变体。"
|
295
346
|
},
|
347
|
+
"accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
|
348
|
+
"description": "Qwen2.5 Coder 32B Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础"
|
349
|
+
},
|
296
350
|
"accounts/fireworks/models/starcoder-16b": {
|
297
351
|
"description": "StarCoder 15.5B 模型,支持高级编程任务,多语言能力增强,适合复杂代码生成和理解。"
|
298
352
|
},
|
@@ -392,6 +446,9 @@
|
|
392
446
|
"codellama": {
|
393
447
|
"description": "Code Llama 是一款专注于代码生成和讨论的 LLM,结合广泛的编程语言支持,适用于开发者环境。"
|
394
448
|
},
|
449
|
+
"codellama/CodeLlama-34b-Instruct-hf": {
|
450
|
+
"description": "Code Llama 是一款专注于代码生成和讨论的 LLM,结合广泛的编程语言支持,适用于开发者环境。"
|
451
|
+
},
|
395
452
|
"codellama:13b": {
|
396
453
|
"description": "Code Llama 是一款专注于代码生成和讨论的 LLM,结合广泛的编程语言支持,适用于开发者环境。"
|
397
454
|
},
|
@@ -428,8 +485,11 @@
|
|
428
485
|
"databricks/dbrx-instruct": {
|
429
486
|
"description": "DBRX Instruct 提供高可靠性的指令处理能力,支持多行业应用。"
|
430
487
|
},
|
488
|
+
"deepseek-ai/DeepSeek-V2-Chat": {
|
489
|
+
"description": "DeepSeek-V2 是一个强大、经济高效的混合专家(MoE)语言模型。它在 8.1 万亿个 token 的高质量语料库上进行了预训练,并通过监督微调(SFT)和强化学习(RL)进一步提升了模型能力。与 DeepSeek 67B 相比, DeepSeek-V2 在性能更强的同时,节省了 42.5% 的训练成本,减少了 93.3% 的 KV 缓存,并将最大生成吞吐量提高到了 5.76 倍。该模型支持 128k 的上下文长度,在标准基准测试和开放式生成评估中都表现出色"
|
490
|
+
},
|
431
491
|
"deepseek-ai/DeepSeek-V2.5": {
|
432
|
-
"description": "DeepSeek V2.5
|
492
|
+
"description": "DeepSeek-V2.5 是 DeepSeek-V2-Chat 和 DeepSeek-Coder-V2-Instruct 的升级版本,集成了两个先前版本的通用和编码能力。该模型在多个方面进行了优化,包括写作和指令跟随能力,更好地与人类偏好保持一致。DeepSeek-V2.5 在各种评估基准上都取得了显著的提升,如 AlpacaEval 2.0、ArenaHard、AlignBench 和 MT-Bench 等"
|
433
493
|
},
|
434
494
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
435
495
|
"description": "DeepSeek LLM Chat (67B) 是创新的 AI 模型 提供深度语言理解和互动能力。"
|
@@ -480,7 +540,7 @@
|
|
480
540
|
"description": "Gemini 1.5 Flash 8B 0924 是最新的实验性模型,在文本和多模态用例中都有显著的性能提升。"
|
481
541
|
},
|
482
542
|
"gemini-1.5-flash-latest": {
|
483
|
-
"description": "Gemini 1.5 Flash 是Google最新的多模态AI模型,具备快速处理能力,支持文本、图像和视频输入,适用于多种任务的高效扩展。"
|
543
|
+
"description": "Gemini 1.5 Flash 是 Google 最新的多模态AI模型,具备快速处理能力,支持文本、图像和视频输入,适用于多种任务的高效扩展。"
|
484
544
|
},
|
485
545
|
"gemini-1.5-pro-001": {
|
486
546
|
"description": "Gemini 1.5 Pro 001 是可扩展的多模态AI解决方案,支持广泛的复杂任务。"
|
@@ -492,10 +552,10 @@
|
|
492
552
|
"description": "Gemini 1.5 Pro 支持高达200万个tokens,是中型多模态模型的理想选择,适用于复杂任务的多方面支持。"
|
493
553
|
},
|
494
554
|
"gemini-exp-1114": {
|
495
|
-
"description": "Gemini Exp 1114 是Google
|
555
|
+
"description": "Gemini Exp 1114 是 Google 的实验性多模态AI模型,对输出质量有一定改进。"
|
496
556
|
},
|
497
557
|
"gemini-exp-1121": {
|
498
|
-
"description": "Gemini Exp 1121 是Google最新的实验性多模态AI
|
558
|
+
"description": "Gemini Exp 1121 是 Google 最新的实验性多模态AI模型,拥有改进的编码、推理和视觉能力。"
|
499
559
|
},
|
500
560
|
"gemma-7b-it": {
|
501
561
|
"description": "Gemma 7B 适合中小规模任务处理,兼具成本效益。"
|
@@ -561,13 +621,13 @@
|
|
561
621
|
"description": "Gemini 1.5 Pro 结合最新优化技术,带来更高效的多模态数据处理能力。"
|
562
622
|
},
|
563
623
|
"google/gemma-2-27b-it": {
|
564
|
-
"description": "Gemma
|
624
|
+
"description": "Gemma 是由 Google 开发的轻量级、最先进的开放模型系列,采用与 Gemini 模型相同的研究和技术构建。这些模型是仅解码器的大型语言模型,支持英语,提供预训练和指令微调两种变体的开放权重。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。其相对较小的规模使其能够部署在资源有限的环境中,如笔记本电脑、台式机或个人云基础设施,从而让所有人都能获得最先进的 AI 模型,促进创新"
|
565
625
|
},
|
566
626
|
"google/gemma-2-2b-it": {
|
567
627
|
"description": "Google的轻量级指令调优模型"
|
568
628
|
},
|
569
629
|
"google/gemma-2-9b-it": {
|
570
|
-
"description": "Gemma
|
630
|
+
"description": "Gemma 是 Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新"
|
571
631
|
},
|
572
632
|
"google/gemma-2-9b-it:free": {
|
573
633
|
"description": "Gemma 2 是Google轻量化的开源文本模型系列。"
|
@@ -669,10 +729,10 @@
|
|
669
729
|
"description": "混元最新多模态模型,支持图片+文本输入生成文本内容。"
|
670
730
|
},
|
671
731
|
"internlm/internlm2_5-20b-chat": {
|
672
|
-
"description": "
|
732
|
+
"description": "InternLM2.5-20B-Chat 是一个开源的大规模对话模型,基于 InternLM2 架构开发。该模型拥有 200 亿参数,在数学推理方面表现出色,超越了同量级的 Llama3 和 Gemma2-27B 模型。InternLM2.5-20B-Chat 在工具调用能力方面有显著提升,支持从上百个网页收集信息进行分析推理,并具备更强的指令理解、工具选择和结果反思能力。它适用于构建复杂智能体,可进行多轮工具调用以完成复杂任务"
|
673
733
|
},
|
674
734
|
"internlm/internlm2_5-7b-chat": {
|
675
|
-
"description": "InternLM2.5
|
735
|
+
"description": "InternLM2.5-7B-Chat 是一个开源的对话模型,基于 InternLM2 架构开发。该 7B 参数规模的模型专注于对话生成任务,支持中英双语交互。模型采用了最新的训练技术,旨在提供流畅、智能的对话体验。InternLM2.5-7B-Chat 适用于各种对话应用场景,包括但不限于智能客服、个人助手等领域"
|
676
736
|
},
|
677
737
|
"internlm2-pro-chat": {
|
678
738
|
"description": "我们仍在维护的老版本模型,有 7B、20B 多种模型参数量可选。"
|
@@ -682,6 +742,9 @@
|
|
682
742
|
},
|
683
743
|
"jamba-1.5-large": {},
|
684
744
|
"jamba-1.5-mini": {},
|
745
|
+
"learnlm-1.5-pro-experimental": {
|
746
|
+
"description": "LearnLM 是一个实验性的、特定于任务的语言模型,经过训练以符合学习科学原则,可在教学和学习场景中遵循系统指令,充当专家导师等。"
|
747
|
+
},
|
685
748
|
"lite": {
|
686
749
|
"description": "Spark Lite 是一款轻量级大语言模型,具备极低的延迟与高效的处理能力,完全免费开放,支持实时在线搜索功能。其快速响应的特性使其在低算力设备上的推理应用和模型微调中表现出色,为用户带来出色的成本效益和智能体验,尤其在知识问答、内容生成及搜索场景下表现不俗。"
|
687
750
|
},
|
@@ -815,19 +878,19 @@
|
|
815
878
|
"description": "Llama 3 8B Instruct Turbo 是一款高效能的大语言模型,支持广泛的应用场景。"
|
816
879
|
},
|
817
880
|
"meta-llama/Meta-Llama-3.1-405B-Instruct": {
|
818
|
-
"description": "
|
881
|
+
"description": "Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 405B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月"
|
819
882
|
},
|
820
883
|
"meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo": {
|
821
884
|
"description": "405B 的 Llama 3.1 Turbo 模型,为大数据处理提供超大容量的上下文支持,在超大规模的人工智能应用中表现突出。"
|
822
885
|
},
|
823
886
|
"meta-llama/Meta-Llama-3.1-70B-Instruct": {
|
824
|
-
"description": "
|
887
|
+
"description": "Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 70B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月"
|
825
888
|
},
|
826
889
|
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": {
|
827
890
|
"description": "Llama 3.1 70B 模型经过精细调整,适用于高负载应用,量化至FP8提供更高效的计算能力和准确性,确保在复杂场景中的卓越表现。"
|
828
891
|
},
|
829
892
|
"meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
830
|
-
"description": "
|
893
|
+
"description": "Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月"
|
831
894
|
},
|
832
895
|
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": {
|
833
896
|
"description": "Llama 3.1 8B 模型采用FP8量化,支持高达131,072个上下文标记,是开源模型中的佼佼者,适合复杂任务,表现优异于许多行业基准。"
|
@@ -872,6 +935,9 @@
|
|
872
935
|
"description": "Meta Llama 3 是一款面向开发者、研究人员和企业的开放大型语言模型 (LLM),旨在帮助他们构建、实验并负责任地扩展他们的生成 AI 想法。作为全球社区创新的基础系统的一部分,它非常适合计算能力和资源有限、边缘设备和更快的训练时间。"
|
873
936
|
},
|
874
937
|
"microsoft/Phi-3.5-mini-instruct": {},
|
938
|
+
"microsoft/WizardLM-2-8x22B": {
|
939
|
+
"description": "WizardLM 2 是微软AI提供的语言模型,在复杂对话、多语言、推理和智能助手领域表现尤为出色。"
|
940
|
+
},
|
875
941
|
"microsoft/wizardlm 2-7b": {
|
876
942
|
"description": "WizardLM 2 7B 是微软AI最新的快速轻量化模型,性能接近于现有开源领导模型的10倍。"
|
877
943
|
},
|
@@ -954,7 +1020,10 @@
|
|
954
1020
|
"description": "Hermes 2 Pro Llama 3 8B 是 Nous Hermes 2的升级版本,包含最新的内部开发的数据集。"
|
955
1021
|
},
|
956
1022
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
957
|
-
"description": "Llama
|
1023
|
+
"description": "Llama-3.1-Nemotron-70B-Instruct 是由 NVIDIA 定制的大型语言模型,旨在提高 LLM 生成的响应对用户查询的帮助程度。该模型在 Arena Hard、AlpacaEval 2 LC 和 GPT-4-Turbo MT-Bench 等基准测试中表现出色,截至 2024 年 10 月 1 日,在所有三个自动对齐基准测试中排名第一。该模型使用 RLHF(特别是 REINFORCE)、Llama-3.1-Nemotron-70B-Reward 和 HelpSteer2-Preference 提示在 Llama-3.1-70B-Instruct 模型基础上进行训练"
|
1024
|
+
},
|
1025
|
+
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1026
|
+
"description": "Llama 3.1 Nemotron 70B 是由 NVIDIA 定制的大型语言模型,旨在提高 LLM 生成的响应对用户查询的帮助程度。该模型在 Arena Hard、AlpacaEval 2 LC 和 GPT-4-Turbo MT-Bench 等基准测试中表现出色,截至 2024 年 10 月 1 日,在所有三个自动对齐基准测试中排名第一。该模型使用 RLHF(特别是 REINFORCE)、Llama-3.1-Nemotron-70B-Reward 和 HelpSteer2-Preference 提示在 Llama-3.1-70B-Instruct 模型基础上进行训练"
|
958
1027
|
},
|
959
1028
|
"o1-mini": {
|
960
1029
|
"description": "比 o1-preview 更小、更快,成本低80%,在代码生成和小上下文操作方面表现良好。"
|
@@ -1052,6 +1121,9 @@
|
|
1052
1121
|
"qwen2": {
|
1053
1122
|
"description": "Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。"
|
1054
1123
|
},
|
1124
|
+
"qwen2.5": {
|
1125
|
+
"description": "Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。"
|
1126
|
+
},
|
1055
1127
|
"qwen2.5-14b-instruct": {
|
1056
1128
|
"description": "通义千问2.5对外开源的14B规模的模型。"
|
1057
1129
|
},
|
@@ -1076,6 +1148,15 @@
|
|
1076
1148
|
"qwen2.5-math-7b-instruct": {
|
1077
1149
|
"description": "Qwen-Math 模型具有强大的数学解题能力。"
|
1078
1150
|
},
|
1151
|
+
"qwen2.5:0.5b": {
|
1152
|
+
"description": "Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。"
|
1153
|
+
},
|
1154
|
+
"qwen2.5:1.5b": {
|
1155
|
+
"description": "Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。"
|
1156
|
+
},
|
1157
|
+
"qwen2.5:72b": {
|
1158
|
+
"description": "Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。"
|
1159
|
+
},
|
1079
1160
|
"qwen2:0.5b": {
|
1080
1161
|
"description": "Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。"
|
1081
1162
|
},
|
@@ -1085,6 +1166,12 @@
|
|
1085
1166
|
"qwen2:72b": {
|
1086
1167
|
"description": "Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。"
|
1087
1168
|
},
|
1169
|
+
"qwq": {
|
1170
|
+
"description": "QwQ 是一个实验研究模型,专注于提高 AI 推理能力。"
|
1171
|
+
},
|
1172
|
+
"qwq-32b-preview": {
|
1173
|
+
"description": "QwQ模型是由 Qwen 团队开发的实验性研究模型,专注于增强 AI 推理能力。"
|
1174
|
+
},
|
1088
1175
|
"solar-1-mini-chat": {
|
1089
1176
|
"description": "Solar Mini 是一种紧凑型 LLM,性能优于 GPT-3.5,具备强大的多语言能力,支持英语和韩语,提供高效小巧的解决方案。"
|
1090
1177
|
},
|
@@ -2,6 +2,9 @@
|
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
3
|
"description": "Yi-1.5 34B,以豐富的訓練樣本在行業應用中提供優越表現。"
|
4
4
|
},
|
5
|
+
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
+
"description": "Yi-1.5-6B-Chat 是 Yi-1.5 系列的一個變體,屬於開源聊天模型。Yi-1.5 是 Yi 的升級版本,在 500B 個高質量語料上進行了持續預訓練,並在 3M 多樣化的微調樣本上進行了微調。相比於 Yi,Yi-1.5 在編碼、數學、推理和指令遵循能力方面表現更強,同時保持了出色的語言理解、常識推理和閱讀理解能力。該模型具有 4K、16K 和 32K 的上下文長度版本,預訓練總量達到 3.6T 個 token"
|
7
|
+
},
|
5
8
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
6
9
|
"description": "Yi-1.5 9B 支持16K Tokens,提供高效、流暢的語言生成能力。"
|
7
10
|
},
|
@@ -91,6 +94,12 @@
|
|
91
94
|
"Gryphe/MythoMax-L2-13b": {
|
92
95
|
"description": "MythoMax-L2 (13B) 是一種創新模型,適合多領域應用和複雜任務。"
|
93
96
|
},
|
97
|
+
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
98
|
+
"description": "Qwen2.5-72B-Instruct 是阿里雲發布的最新大語言模型系列之一。該 72B 模型在編碼和數學等領域具有顯著改進的能力。該模型還提供了多語言支持,覆蓋超過 29 種語言,包括中文、英文等。模型在指令跟隨、理解結構化數據以及生成結構化輸出(尤其是 JSON)方面都有顯著提升"
|
99
|
+
},
|
100
|
+
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
101
|
+
"description": "Qwen2.5-7B-Instruct 是阿里雲發布的最新大語言模型系列之一。該 7B 模型在編碼和數學等領域具有顯著改進的能力。該模型還提供了多語言支持,覆蓋超過 29 種語言,包括中文、英文等。模型在指令跟隨、理解結構化數據以及生成結構化輸出(尤其是 JSON)方面都有顯著提升"
|
102
|
+
},
|
94
103
|
"Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
95
104
|
"description": "Hermes 2 Mixtral 8x7B DPO 是一款高度靈活的多模型合併,旨在提供卓越的創造性體驗。"
|
96
105
|
},
|
@@ -98,9 +107,6 @@
|
|
98
107
|
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
99
108
|
"description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) 是高精度的指令模型,適用於複雜計算。"
|
100
109
|
},
|
101
|
-
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
102
|
-
"description": "Nous Hermes-2 Yi (34B) 提供優化的語言輸出和多樣化的應用可能。"
|
103
|
-
},
|
104
110
|
"OpenGVLab/InternVL2-26B": {
|
105
111
|
"description": "InternVL2在各種視覺語言任務上展現出了卓越的性能,包括文檔和圖表理解、場景文本理解、OCR、科學和數學問題解決等。"
|
106
112
|
},
|
@@ -134,18 +140,42 @@
|
|
134
140
|
"Pro/OpenGVLab/InternVL2-8B": {
|
135
141
|
"description": "InternVL2在各種視覺語言任務上展現出了卓越的性能,包括文檔和圖表理解、場景文本理解、OCR、科學和數學問題解決等。"
|
136
142
|
},
|
143
|
+
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
144
|
+
"description": "Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微調大語言模型,參數規模為 1.5B。該模型基於 Transformer 架構,採用了 SwiGLU 激活函數、注意力 QKV 偏置和組查詢注意力等技術。它在語言理解、生成、多語言能力、編碼、數學和推理等多個基準測試中表現出色,超越了大多數開源模型。與 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等測試中均顯示出顯著的性能提升,儘管參數量略少"
|
145
|
+
},
|
146
|
+
"Pro/Qwen/Qwen2-7B-Instruct": {
|
147
|
+
"description": "Qwen2-7B-Instruct 是 Qwen2 系列中的指令微調大語言模型,參數規模為 7B。該模型基於 Transformer 架構,採用了 SwiGLU 激活函數、注意力 QKV 偏置和組查詢注意力等技術。它能夠處理大規模輸入。該模型在語言理解、生成、多語言能力、編碼、數學和推理等多個基準測試中表現出色,超越了大多數開源模型,並在某些任務上展現出與專有模型相當的競爭力。Qwen2-7B-Instruct 在多項評測中均優於 Qwen1.5-7B-Chat,顯示出顯著的性能提升"
|
148
|
+
},
|
137
149
|
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
138
150
|
"description": "Qwen2-VL 是 Qwen-VL 模型的最新迭代版本,在視覺理解基準測試中達到了最先進的性能。"
|
139
151
|
},
|
140
|
-
"Qwen/
|
141
|
-
"description": "
|
152
|
+
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
153
|
+
"description": "Qwen2.5-7B-Instruct 是阿里雲發布的最新大語言模型系列之一。該 7B 模型在編碼和數學等領域具有顯著改進的能力。該模型還提供了多語言支持,覆蓋超過 29 種語言,包括中文、英文等。模型在指令跟隨、理解結構化數據以及生成結構化輸出(尤其是 JSON)方面都有顯著提升"
|
154
|
+
},
|
155
|
+
"Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
|
156
|
+
"description": "Qwen2.5-Coder-7B-Instruct 是阿里雲發布的代碼特定大語言模型系列的最新版本。該模型在 Qwen2.5 的基礎上,通過 5.5 萬億個 tokens 的訓練,顯著提升了代碼生成、推理和修復能力。它不僅增強了編碼能力,還保持了數學和通用能力的優勢。模型為代碼智能體等實際應用提供了更全面的基礎"
|
157
|
+
},
|
158
|
+
"Pro/THUDM/glm-4-9b-chat": {
|
159
|
+
"description": "GLM-4-9B-Chat 是智譜 AI 推出的 GLM-4 系列預訓練模型中的開源版本。該模型在語義、數學、推理、代碼和知識等多個方面表現出色。除了支持多輪對話外,GLM-4-9B-Chat 還具備網頁瀏覽、代碼執行、自定義工具調用(Function Call)和長文本推理等高級功能。模型支持 26 種語言,包括中文、英文、日文、韓文和德文等。在多項基準測試中,GLM-4-9B-Chat 展現了優秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。該模型支持最大 128K 的上下文長度,適用於學術研究和商業應用"
|
142
160
|
},
|
143
|
-
"
|
144
|
-
"description": "
|
161
|
+
"Pro/google/gemma-2-9b-it": {
|
162
|
+
"description": "Gemma 是 Google 開發的輕量級、最先進的開放模型系列之一。它是一個僅解碼器的大型語言模型,支持英語,提供開放權重、預訓練變體和指令微調變體。Gemma 模型適用於各種文本生成任務,包括問答、摘要和推理。該 9B 模型是通過 8 萬億個 tokens 訓練而成。其相對較小的規模使其可以在資源有限的環境中部署,如筆記本電腦、桌面電腦或您自己的雲基礎設施,從而使更多人能夠訪問最先進的 AI 模型並促進創新"
|
163
|
+
},
|
164
|
+
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
165
|
+
"description": "Meta Llama 3.1 是由 Meta 開發的多語言大型語言模型家族,包括 8B、70B 和 405B 三種參數規模的預訓練和指令微調變體。該 8B 指令微調模型針對多語言對話場景進行了優化,在多項行業基準測試中表現優異。模型訓練使用了超過 15 萬億個 tokens 的公開數據,並採用了監督微調和人類反饋強化學習等技術來提升模型的有用性和安全性。Llama 3.1 支持文本生成和代碼生成,知識截止日期為 2023 年 12 月"
|
166
|
+
},
|
167
|
+
"Qwen/QwQ-32B-Preview": {
|
168
|
+
"description": "QwQ-32B-Preview是Qwen 最新的實驗性研究模型,專注於提升AI推理能力。通過探索語言混合、遞歸推理等複雜機制,主要優勢包括強大的推理分析能力、數學和編程能力。與此同時,也存在語言切換問題、推理循環、安全性考量、其他能力方面的差異。"
|
169
|
+
},
|
170
|
+
"Qwen/Qwen2-1.5B-Instruct": {
|
171
|
+
"description": "Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微調大語言模型,參數規模為 1.5B。該模型基於 Transformer 架構,採用了 SwiGLU 激活函數、注意力 QKV 偏置和組查詢注意力等技術。它在語言理解、生成、多語言能力、編碼、數學和推理等多個基準測試中表現出色,超越了大多數開源模型。與 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等測試中均顯示出顯著的性能提升,儘管參數量略少"
|
145
172
|
},
|
146
173
|
"Qwen/Qwen2-72B-Instruct": {
|
147
174
|
"description": "Qwen2 是先進的通用語言模型,支持多種指令類型。"
|
148
175
|
},
|
176
|
+
"Qwen/Qwen2-7B-Instruct": {
|
177
|
+
"description": "Qwen2-72B-Instruct 是 Qwen2 系列中的指令微調大語言模型,參數規模為 72B。該模型基於 Transformer 架構,採用了 SwiGLU 激活函數、注意力 QKV 偏置和組查詢注意力等技術。它能夠處理大規模輸入。該模型在語言理解、生成、多語言能力、編碼、數學和推理等多個基準測試中表現出色,超越了大多數開源模型,並在某些任務上展現出與專有模型相當的競爭力"
|
178
|
+
},
|
149
179
|
"Qwen/Qwen2-VL-72B-Instruct": {
|
150
180
|
"description": "Qwen2-VL 是 Qwen-VL 模型的最新迭代版本,在視覺理解基準測試中達到了最先進的性能。"
|
151
181
|
},
|
@@ -173,6 +203,9 @@
|
|
173
203
|
"Qwen/Qwen2.5-Coder-32B-Instruct": {
|
174
204
|
"description": "Qwen2.5-Coder 專注於代碼編寫。"
|
175
205
|
},
|
206
|
+
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
207
|
+
"description": "Qwen2.5-Coder-7B-Instruct 是阿里雲發布的代碼特定大語言模型系列的最新版本。該模型在 Qwen2.5 的基礎上,通過 5.5 萬億個 tokens 的訓練,顯著提升了代碼生成、推理和修復能力。它不僅增強了編碼能力,還保持了數學和通用能力的優勢。模型為代碼智能體等實際應用提供了更全面的基礎"
|
208
|
+
},
|
176
209
|
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
177
210
|
"description": "Qwen2.5-Math專注於數學領域的問題求解,為高難度題提供專業解答。"
|
178
211
|
},
|
@@ -209,12 +242,27 @@
|
|
209
242
|
"SenseChat-Turbo": {
|
210
243
|
"description": "適用於快速問答、模型微調場景"
|
211
244
|
},
|
245
|
+
"THUDM/chatglm3-6b": {
|
246
|
+
"description": "ChatGLM3-6B 是 ChatGLM 系列的開源模型,由智譜 AI 開發。該模型保留了前代模型的優秀特性,如對話流暢和部署門檻低,同時引入了新的特性。它採用了更多樣的訓練數據、更充分的訓練步數和更合理的訓練策略,在 10B 以下的預訓練模型中表現出色。ChatGLM3-6B 支持多輪對話、工具調用、代碼執行和 Agent 任務等複雜場景。除對話模型外,還開源了基礎模型 ChatGLM-6B-Base 和長文本對話模型 ChatGLM3-6B-32K。該模型對學術研究完全開放,在登記後也允許免費商業使用"
|
247
|
+
},
|
212
248
|
"THUDM/glm-4-9b-chat": {
|
213
249
|
"description": "GLM-4 9B 開放源碼版本,為會話應用提供優化後的對話體驗。"
|
214
250
|
},
|
251
|
+
"TeleAI/TeleChat2": {
|
252
|
+
"description": "TeleChat2大模型是由中國電信從0到1自主研發的生成式語義大模型,支持百科問答、代碼生成、長文生成等功能,為用戶提供對話諮詢服務,能夠與用戶進行對話互動,回答問題,協助創作,高效便捷地幫助用戶獲取信息、知識和靈感。模型在幻覺問題、長文生成、邏輯理解等方面均有較出色表現。"
|
253
|
+
},
|
254
|
+
"TeleAI/TeleMM": {
|
255
|
+
"description": "TeleMM多模態大模型是由中國電信自主研發的多模態理解大模型,能夠處理文本、圖像等多種模態輸入,支持圖像理解、圖表分析等功能,為用戶提供跨模態的理解服務。模型能夠與用戶進行多模態互動,準確理解輸入內容,回答問題、協助創作,並高效提供多模態信息和靈感支持。在細粒度感知,邏輯推理等多模態任務上有出色表現"
|
256
|
+
},
|
215
257
|
"Tencent/Hunyuan-A52B-Instruct": {
|
216
258
|
"description": "Hunyuan-Large 是業界最大的開源 Transformer 架構 MoE 模型,擁有 3890 億總參數量和 520 億激活參數量。"
|
217
259
|
},
|
260
|
+
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
261
|
+
"description": "Qwen2-72B-Instruct 是 Qwen2 系列中的指令微調大語言模型,參數規模為 72B。該模型基於 Transformer 架構,採用了 SwiGLU 激活函數、注意力 QKV 偏置和組查詢注意力等技術。它能夠處理大規模輸入。該模型在語言理解、生成、多語言能力、編碼、數學和推理等多個基準測試中表現出色,超越了大多數開源模型,並在某些任務上展現出與專有模型相當的競爭力"
|
262
|
+
},
|
263
|
+
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
264
|
+
"description": "Qwen2.5-72B-Instruct 是阿里雲發布的最新大語言模型系列之一。該 72B 模型在編碼和數學等領域具有顯著改進的能力。該模型還提供了多語言支持,覆蓋超過 29 種語言,包括中文、英文等。模型在指令跟隨、理解結構化數據以及生成結構化輸出(尤其是 JSON)方面都有顯著提升"
|
265
|
+
},
|
218
266
|
"Yi-34B-Chat": {
|
219
267
|
"description": "Yi-1.5-34B 在保持原系列模型優秀的通用語言能力的前提下,通過增量訓練 5 千億高質量 token,大幅提高了數學邏輯和代碼能力。"
|
220
268
|
},
|
@@ -290,9 +338,15 @@
|
|
290
338
|
"accounts/fireworks/models/phi-3-vision-128k-instruct": {
|
291
339
|
"description": "Phi 3 Vision 指令模型,輕量級多模態模型,能夠處理複雜的視覺和文本信息,具備較強的推理能力。"
|
292
340
|
},
|
341
|
+
"accounts/fireworks/models/qwen-qwq-32b-preview": {
|
342
|
+
"description": "QwQ模型是由 Qwen 團隊開發的實驗性研究模型,專注於增強 AI 推理能力。"
|
343
|
+
},
|
293
344
|
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
294
345
|
"description": "Qwen2.5 是由阿里雲 Qwen 團隊開發的一系列僅包含解碼器的語言模型。這些模型提供不同的大小,包括 0.5B、1.5B、3B、7B、14B、32B 和 72B,並且有基礎版(base)和指令版(instruct)兩種變體。"
|
295
346
|
},
|
347
|
+
"accounts/fireworks/models/qwen2p5-coder-32b-instruct": {
|
348
|
+
"description": "Qwen2.5 Coder 32B Instruct 是阿里雲發布的代碼特定大語言模型系列的最新版本。該模型在 Qwen2.5 的基礎上,通過 5.5 萬億個 tokens 的訓練,顯著提升了代碼生成、推理和修復能力。它不僅增強了編碼能力,還保持了數學和通用能力的優勢。模型為代碼智能體等實際應用提供了更全面的基礎"
|
349
|
+
},
|
296
350
|
"accounts/fireworks/models/starcoder-16b": {
|
297
351
|
"description": "StarCoder 15.5B 模型,支持高級編程任務,多語言能力增強,適合複雜代碼生成和理解。"
|
298
352
|
},
|
@@ -392,6 +446,9 @@
|
|
392
446
|
"codellama": {
|
393
447
|
"description": "Code Llama 是一款專注於代碼生成和討論的 LLM,結合廣泛的編程語言支持,適用於開發者環境。"
|
394
448
|
},
|
449
|
+
"codellama/CodeLlama-34b-Instruct-hf": {
|
450
|
+
"description": "Code Llama 是一款專注於代碼生成和討論的 LLM,結合廣泛的編程語言支持,適用於開發者環境。"
|
451
|
+
},
|
395
452
|
"codellama:13b": {
|
396
453
|
"description": "Code Llama 是一款專注於代碼生成和討論的 LLM,結合廣泛的編程語言支持,適用於開發者環境。"
|
397
454
|
},
|
@@ -428,6 +485,9 @@
|
|
428
485
|
"databricks/dbrx-instruct": {
|
429
486
|
"description": "DBRX Instruct 提供高可靠性的指令處理能力,支持多行業應用。"
|
430
487
|
},
|
488
|
+
"deepseek-ai/DeepSeek-V2-Chat": {
|
489
|
+
"description": "DeepSeek-V2 是一個強大、經濟高效的混合專家(MoE)語言模型。它在 8.1 萬億個 token 的高質量語料庫上進行了預訓練,並通過監督微調(SFT)和強化學習(RL)進一步提升了模型能力。與 DeepSeek 67B 相比, DeepSeek-V2 在性能更強的同時,節省了 42.5% 的訓練成本,減少了 93.3% 的 KV 緩存,並將最大生成吞吐量提高到了 5.76 倍。該模型支持 128k 的上下文長度,在標準基準測試和開放式生成評估中都表現出色"
|
490
|
+
},
|
431
491
|
"deepseek-ai/DeepSeek-V2.5": {
|
432
492
|
"description": "DeepSeek V2.5 集合了先前版本的優秀特徵,增強了通用和編碼能力。"
|
433
493
|
},
|
@@ -682,6 +742,9 @@
|
|
682
742
|
},
|
683
743
|
"jamba-1.5-large": {},
|
684
744
|
"jamba-1.5-mini": {},
|
745
|
+
"learnlm-1.5-pro-experimental": {
|
746
|
+
"description": "LearnLM 是一個實驗性的、特定於任務的語言模型,經過訓練以符合學習科學原則,可在教學和學習場景中遵循系統指令,充當專家導師等。"
|
747
|
+
},
|
685
748
|
"lite": {
|
686
749
|
"description": "Spark Lite 是一款輕量級大語言模型,具備極低的延遲與高效的處理能力,完全免費開放,支持即時在線搜索功能。其快速響應的特性使其在低算力設備上的推理應用和模型微調中表現出色,為用戶帶來出色的成本效益和智能體驗,尤其在知識問答、內容生成及搜索場景下表現不俗。"
|
687
750
|
},
|
@@ -872,6 +935,9 @@
|
|
872
935
|
"description": "Meta Llama 3 是一款面向開發者、研究人員和企業的開放大型語言模型 (LLM),旨在幫助他們構建、實驗並負責任地擴展他們的生成 AI 想法。作為全球社區創新的基礎系統的一部分,它非常適合計算能力和資源有限、邊緣設備和更快的訓練時間。"
|
873
936
|
},
|
874
937
|
"microsoft/Phi-3.5-mini-instruct": {},
|
938
|
+
"microsoft/WizardLM-2-8x22B": {
|
939
|
+
"description": "WizardLM 2 是微軟AI提供的語言模型,在複雜對話、多語言、推理和智能助手領域表現尤為出色。"
|
940
|
+
},
|
875
941
|
"microsoft/wizardlm 2-7b": {
|
876
942
|
"description": "WizardLM 2 7B 是微軟AI最新的快速輕量化模型,性能接近於現有開源領導模型的10倍。"
|
877
943
|
},
|
@@ -956,6 +1022,9 @@
|
|
956
1022
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
957
1023
|
"description": "Llama 3.1 Nemotron 70B 是由 NVIDIA 定製的大型語言模型,旨在提升 LLM 生成的回應對用戶查詢的幫助程度。"
|
958
1024
|
},
|
1025
|
+
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1026
|
+
"description": "Llama 3.1 Nemotron 70B 是由 NVIDIA 定制的大型語言模型,旨在提高 LLM 生成的回應對用戶查詢的幫助程度。該模型在 Arena Hard、AlpacaEval 2 LC 和 GPT-4-Turbo MT-Bench 等基準測試中表現出色,截至 2024 年 10 月 1 日,在所有三個自動對齊基準測試中排名第一。該模型使用 RLHF(特別是 REINFORCE)、Llama-3.1-Nemotron-70B-Reward 和 HelpSteer2-Preference 提示在 Llama-3.1-70B-Instruct 模型基礎上進行訓練"
|
1027
|
+
},
|
959
1028
|
"o1-mini": {
|
960
1029
|
"description": "o1-mini是一款針對程式設計、數學和科學應用場景而設計的快速、經濟高效的推理模型。該模型具有128K上下文和2023年10月的知識截止日期。"
|
961
1030
|
},
|
@@ -1052,6 +1121,9 @@
|
|
1052
1121
|
"qwen2": {
|
1053
1122
|
"description": "Qwen2 是阿里巴巴的新一代大規模語言模型,以優異的性能支持多元化的應用需求。"
|
1054
1123
|
},
|
1124
|
+
"qwen2.5": {
|
1125
|
+
"description": "Qwen2.5 是阿里巴巴的新一代大規模語言模型,以優異的性能支持多元化的應用需求。"
|
1126
|
+
},
|
1055
1127
|
"qwen2.5-14b-instruct": {
|
1056
1128
|
"description": "通義千問2.5對外開源的14B規模的模型。"
|
1057
1129
|
},
|
@@ -1076,6 +1148,15 @@
|
|
1076
1148
|
"qwen2.5-math-7b-instruct": {
|
1077
1149
|
"description": "Qwen-Math模型具有強大的數學解題能力。"
|
1078
1150
|
},
|
1151
|
+
"qwen2.5:0.5b": {
|
1152
|
+
"description": "Qwen2.5 是阿里巴巴的新一代大規模語言模型,以優異的性能支持多元化的應用需求。"
|
1153
|
+
},
|
1154
|
+
"qwen2.5:1.5b": {
|
1155
|
+
"description": "Qwen2.5 是阿里巴巴的新一代大規模語言模型,以優異的性能支持多元化的應用需求。"
|
1156
|
+
},
|
1157
|
+
"qwen2.5:72b": {
|
1158
|
+
"description": "Qwen2.5 是阿里巴巴的新一代大規模語言模型,以優異的性能支持多元化的應用需求。"
|
1159
|
+
},
|
1079
1160
|
"qwen2:0.5b": {
|
1080
1161
|
"description": "Qwen2 是阿里巴巴的新一代大規模語言模型,以優異的性能支持多元化的應用需求。"
|
1081
1162
|
},
|
@@ -1085,6 +1166,12 @@
|
|
1085
1166
|
"qwen2:72b": {
|
1086
1167
|
"description": "Qwen2 是阿里巴巴的新一代大規模語言模型,以優異的性能支持多元化的應用需求。"
|
1087
1168
|
},
|
1169
|
+
"qwq": {
|
1170
|
+
"description": "QwQ 是一個實驗研究模型,專注於提高 AI 推理能力。"
|
1171
|
+
},
|
1172
|
+
"qwq-32b-preview": {
|
1173
|
+
"description": "QwQ模型是由 Qwen 團隊開發的實驗性研究模型,專注於增強 AI 推理能力。"
|
1174
|
+
},
|
1088
1175
|
"solar-1-mini-chat": {
|
1089
1176
|
"description": "Solar Mini 是一種緊湊型 LLM,性能優於 GPT-3.5,具備強大的多語言能力,支持英語和韓語,提供高效小巧的解決方案。"
|
1090
1177
|
},
|
package/package.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
{
|
2
2
|
"name": "@lobehub/chat",
|
3
|
-
"version": "1.
|
3
|
+
"version": "1.35.1",
|
4
4
|
"description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
|
5
5
|
"keywords": [
|
6
6
|
"framework",
|
@@ -181,7 +181,7 @@
|
|
181
181
|
"numeral": "^2.0.6",
|
182
182
|
"nuqs": "^1.20.0",
|
183
183
|
"officeparser": "^4.2.0",
|
184
|
-
"ollama": "^0.5.
|
184
|
+
"ollama": "^0.5.10",
|
185
185
|
"openai": "^4.68.1",
|
186
186
|
"openapi-fetch": "^0.9.8",
|
187
187
|
"partial-json": "^0.1.7",
|