@lobehub/chat 1.22.15 → 1.22.17
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/README.md +8 -8
- package/README.zh-CN.md +8 -8
- package/locales/ar/models.json +86 -17
- package/locales/bg-BG/models.json +85 -16
- package/locales/de-DE/models.json +86 -17
- package/locales/en-US/models.json +86 -17
- package/locales/es-ES/models.json +86 -17
- package/locales/fr-FR/models.json +86 -17
- package/locales/it-IT/models.json +86 -17
- package/locales/ja-JP/models.json +86 -17
- package/locales/ko-KR/models.json +86 -17
- package/locales/nl-NL/models.json +86 -17
- package/locales/pl-PL/models.json +86 -17
- package/locales/pt-BR/models.json +86 -17
- package/locales/ru-RU/models.json +86 -17
- package/locales/tr-TR/models.json +86 -17
- package/locales/vi-VN/models.json +86 -17
- package/locales/zh-CN/models.json +108 -39
- package/locales/zh-CN/providers.json +2 -2
- package/locales/zh-TW/models.json +86 -17
- package/package.json +4 -6
- package/src/app/layout.tsx +1 -2
- package/src/features/DebugUI/Content.tsx +35 -0
- package/src/features/DebugUI/index.tsx +16 -32
- package/src/layout/GlobalProvider/index.tsx +2 -14
- package/src/libs/next-auth/sso-providers/azure-ad.ts +2 -1
@@ -47,8 +47,8 @@
|
|
47
47
|
"ERNIE-4.0-8K-Preview": {
|
48
48
|
"description": "Modello di linguaggio di grande scala ultra avanzato sviluppato da Baidu, che rispetto a ERNIE 3.5 ha subito un aggiornamento completo delle capacità del modello, ampiamente applicabile a scenari di compiti complessi in vari settori; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte."
|
49
49
|
},
|
50
|
-
"ERNIE-4.0-Turbo-8K": {
|
51
|
-
"description": "
|
50
|
+
"ERNIE-4.0-Turbo-8K-Latest": {
|
51
|
+
"description": "Il modello linguistico ultra grande di Baidu, auto-sviluppato, offre eccellenti prestazioni generali, ampiamente utilizzabile in scenari complessi di vari settori; supporta l'integrazione automatica dei plugin di ricerca di Baidu, garantendo l'attualità delle informazioni nelle risposte. Rispetto a ERNIE 4.0, offre prestazioni superiori."
|
52
52
|
},
|
53
53
|
"ERNIE-4.0-Turbo-8K-Preview": {
|
54
54
|
"description": "Modello di linguaggio di grande scala ultra avanzato sviluppato da Baidu, con prestazioni complessive eccezionali, ampiamente applicabile a scenari di compiti complessi in vari settori; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte. Rispetto a ERNIE 4.0, offre prestazioni superiori."
|
@@ -80,8 +80,11 @@
|
|
80
80
|
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
81
81
|
"description": "Nous Hermes-2 Yi (34B) offre output linguistici ottimizzati e possibilità di applicazione diversificate."
|
82
82
|
},
|
83
|
-
"
|
84
|
-
"description": "
|
83
|
+
"OpenGVLab/InternVL2-26B": {
|
84
|
+
"description": "InternVL2 ha dimostrato prestazioni eccezionali in una varietà di compiti visivi linguistici, tra cui comprensione di documenti e grafici, comprensione di testo in scena, OCR, risoluzione di problemi scientifici e matematici."
|
85
|
+
},
|
86
|
+
"OpenGVLab/InternVL2-Llama3-76B": {
|
87
|
+
"description": "InternVL2 ha dimostrato prestazioni eccezionali in una varietà di compiti visivi linguistici, tra cui comprensione di documenti e grafici, comprensione di testo in scena, OCR, risoluzione di problemi scientifici e matematici."
|
85
88
|
},
|
86
89
|
"Phi-3-medium-128k-instruct": {
|
87
90
|
"description": "Stesso modello Phi-3-medium, ma con una dimensione di contesto più grande per RAG o prompting a pochi colpi."
|
@@ -101,9 +104,21 @@
|
|
101
104
|
"Phi-3-small-8k-instruct": {
|
102
105
|
"description": "Un modello con 7 miliardi di parametri, dimostra una qualità migliore rispetto a Phi-3-mini, con un focus su dati densi di ragionamento di alta qualità."
|
103
106
|
},
|
107
|
+
"Phi-3.5-mini-instruct": {
|
108
|
+
"description": "Versione aggiornata del modello Phi-3-mini."
|
109
|
+
},
|
110
|
+
"Phi-3.5-vision-instrust": {
|
111
|
+
"description": "Versione aggiornata del modello Phi-3-vision."
|
112
|
+
},
|
104
113
|
"Pro-128k": {
|
105
114
|
"description": "Spark Pro-128K è dotato di capacità di elaborazione del contesto eccezionalmente grandi, in grado di gestire fino a 128K di informazioni contestuali, particolarmente adatto per contenuti lunghi che richiedono analisi complete e gestione di associazioni logiche a lungo termine, fornendo logica fluida e coerenza in comunicazioni testuali complesse e supporto per citazioni varie."
|
106
115
|
},
|
116
|
+
"Pro/OpenGVLab/InternVL2-8B": {
|
117
|
+
"description": "InternVL2 ha dimostrato prestazioni eccezionali in una varietà di compiti visivi linguistici, tra cui comprensione di documenti e grafici, comprensione di testo in scena, OCR, risoluzione di problemi scientifici e matematici."
|
118
|
+
},
|
119
|
+
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
120
|
+
"description": "Qwen2-VL è l'ultima iterazione del modello Qwen-VL, che ha raggiunto prestazioni all'avanguardia nei benchmark di comprensione visiva."
|
121
|
+
},
|
107
122
|
"Qwen/Qwen1.5-110B-Chat": {
|
108
123
|
"description": "Come versione beta di Qwen2, Qwen1.5 utilizza dati su larga scala per realizzare funzionalità di dialogo più precise."
|
109
124
|
},
|
@@ -113,18 +128,27 @@
|
|
113
128
|
"Qwen/Qwen2-72B-Instruct": {
|
114
129
|
"description": "Qwen2 è un modello di linguaggio universale avanzato, supportando vari tipi di istruzioni."
|
115
130
|
},
|
131
|
+
"Qwen/Qwen2-VL-72B-Instruct": {
|
132
|
+
"description": "Qwen2-VL è l'ultima iterazione del modello Qwen-VL, che ha raggiunto prestazioni all'avanguardia nei benchmark di comprensione visiva."
|
133
|
+
},
|
116
134
|
"Qwen/Qwen2.5-14B-Instruct": {
|
117
135
|
"description": "Qwen2.5 è una nuova serie di modelli di linguaggio di grandi dimensioni, progettata per ottimizzare l'elaborazione di compiti istruzionali."
|
118
136
|
},
|
119
137
|
"Qwen/Qwen2.5-32B-Instruct": {
|
120
138
|
"description": "Qwen2.5 è una nuova serie di modelli di linguaggio di grandi dimensioni, progettata per ottimizzare l'elaborazione di compiti istruzionali."
|
121
139
|
},
|
122
|
-
"Qwen/Qwen2.5-72B-Instruct": {
|
123
|
-
"description": "Qwen2.5 è una nuova serie di modelli
|
140
|
+
"Qwen/Qwen2.5-72B-Instruct-128K": {
|
141
|
+
"description": "Qwen2.5 è una nuova serie di modelli linguistici di grandi dimensioni, con una maggiore capacità di comprensione e generazione."
|
142
|
+
},
|
143
|
+
"Qwen/Qwen2.5-72B-Instruct-Turbo": {
|
144
|
+
"description": "Qwen2.5 è una nuova serie di modelli linguistici di grandi dimensioni, progettata per ottimizzare l'elaborazione dei compiti istruzionali."
|
124
145
|
},
|
125
146
|
"Qwen/Qwen2.5-7B-Instruct": {
|
126
147
|
"description": "Qwen2.5 è una nuova serie di modelli di linguaggio di grandi dimensioni, progettata per ottimizzare l'elaborazione di compiti istruzionali."
|
127
148
|
},
|
149
|
+
"Qwen/Qwen2.5-7B-Instruct-Turbo": {
|
150
|
+
"description": "Qwen2.5 è una nuova serie di modelli linguistici di grandi dimensioni, progettata per ottimizzare l'elaborazione dei compiti istruzionali."
|
151
|
+
},
|
128
152
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
129
153
|
"description": "Qwen2.5-Coder si concentra sulla scrittura di codice."
|
130
154
|
},
|
@@ -158,9 +182,6 @@
|
|
158
182
|
"accounts/fireworks/models/firellava-13b": {
|
159
183
|
"description": "fireworks-ai/FireLLaVA-13b è un modello di linguaggio visivo in grado di ricevere input sia visivi che testuali, addestrato su dati di alta qualità, adatto per compiti multimodali."
|
160
184
|
},
|
161
|
-
"accounts/fireworks/models/gemma2-9b-it": {
|
162
|
-
"description": "Il modello di istruzioni Gemma 2 9B, basato sulla tecnologia Google precedente, è adatto per rispondere a domande, riassumere e generare testi in vari contesti."
|
163
|
-
},
|
164
185
|
"accounts/fireworks/models/llama-v3-70b-instruct": {
|
165
186
|
"description": "Il modello di istruzioni Llama 3 70B è ottimizzato per dialoghi multilingue e comprensione del linguaggio naturale, superando le prestazioni della maggior parte dei modelli concorrenti."
|
166
187
|
},
|
@@ -182,6 +203,18 @@
|
|
182
203
|
"accounts/fireworks/models/llama-v3p1-8b-instruct": {
|
183
204
|
"description": "Il modello di istruzioni Llama 3.1 8B è ottimizzato per dialoghi multilingue, in grado di superare la maggior parte dei modelli open e closed source su benchmark di settore comuni."
|
184
205
|
},
|
206
|
+
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct": {
|
207
|
+
"description": "Modello di ragionamento visivo di Meta con 11 miliardi di parametri. Questo modello è ottimizzato per il riconoscimento visivo, il ragionamento visivo, la descrizione delle immagini e la risposta a domande generali riguardanti le immagini. Questo modello è in grado di comprendere dati visivi, come grafici e tabelle, e colmare il divario tra visione e linguaggio generando descrizioni testuali dei dettagli delle immagini."
|
208
|
+
},
|
209
|
+
"accounts/fireworks/models/llama-v3p2-1b-instruct": {
|
210
|
+
"description": "Il modello di istruzioni Llama 3.2 1B è un modello multilingue leggero lanciato da Meta. Questo modello è progettato per migliorare l'efficienza, offrendo miglioramenti significativi in termini di latenza e costi rispetto a modelli più grandi. I casi d'uso esemplari di questo modello includono recupero e sintesi."
|
211
|
+
},
|
212
|
+
"accounts/fireworks/models/llama-v3p2-3b-instruct": {
|
213
|
+
"description": "Il modello di istruzioni Llama 3.2 3B è un modello multilingue leggero lanciato da Meta. Questo modello è progettato per migliorare l'efficienza, offrendo miglioramenti significativi in termini di latenza e costi rispetto a modelli più grandi. I casi d'uso esemplari di questo modello includono query e riscrittura di suggerimenti, nonché supporto alla scrittura."
|
214
|
+
},
|
215
|
+
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct": {
|
216
|
+
"description": "Modello di ragionamento visivo di Meta con 90 miliardi di parametri. Questo modello è ottimizzato per il riconoscimento visivo, il ragionamento visivo, la descrizione delle immagini e la risposta a domande generali riguardanti le immagini. Questo modello è in grado di comprendere dati visivi, come grafici e tabelle, e colmare il divario tra visione e linguaggio generando descrizioni testuali dei dettagli delle immagini."
|
217
|
+
},
|
185
218
|
"accounts/fireworks/models/mixtral-8x22b-instruct": {
|
186
219
|
"description": "Il modello di istruzioni Mixtral MoE 8x22B, con parametri su larga scala e architettura multi-esperto, supporta in modo completo l'elaborazione efficiente di compiti complessi."
|
187
220
|
},
|
@@ -197,6 +230,9 @@
|
|
197
230
|
"accounts/fireworks/models/phi-3-vision-128k-instruct": {
|
198
231
|
"description": "Il modello di istruzioni Phi 3 Vision è un modello multimodale leggero, in grado di gestire informazioni visive e testuali complesse, con forti capacità di ragionamento."
|
199
232
|
},
|
233
|
+
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
234
|
+
"description": "Qwen2.5 è una serie di modelli linguistici solo decoder sviluppata dal team Qwen di Alibaba Cloud. Questi modelli offrono dimensioni diverse, tra cui 0.5B, 1.5B, 3B, 7B, 14B, 32B e 72B, e ci sono varianti base e di istruzione."
|
235
|
+
},
|
200
236
|
"accounts/fireworks/models/starcoder-16b": {
|
201
237
|
"description": "Il modello StarCoder 15.5B supporta compiti di programmazione avanzati, con capacità multilingue potenziate, adatto per la generazione e comprensione di codice complesso."
|
202
238
|
},
|
@@ -212,9 +248,6 @@
|
|
212
248
|
"ai21-jamba-1.5-mini": {
|
213
249
|
"description": "Un modello multilingue con 52 miliardi di parametri (12 miliardi attivi), offre una finestra di contesto lunga 256K, chiamata di funzione, output strutturato e generazione ancorata."
|
214
250
|
},
|
215
|
-
"ai21-jamba-instruct": {
|
216
|
-
"description": "Un modello LLM basato su Mamba di grado di produzione per ottenere prestazioni, qualità e efficienza dei costi di prim'ordine."
|
217
|
-
},
|
218
251
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
219
252
|
"description": "Claude 3.5 Sonnet ha elevato gli standard del settore, superando i modelli concorrenti e Claude 3 Opus, dimostrando prestazioni eccezionali in una vasta gamma di valutazioni, mantenendo la velocità e i costi dei nostri modelli di livello medio."
|
220
253
|
},
|
@@ -592,9 +625,15 @@
|
|
592
625
|
"llama-3.1-sonar-small-128k-online": {
|
593
626
|
"description": "Il modello Llama 3.1 Sonar Small Online, con 8B parametri, supporta una lunghezza di contesto di circa 127.000 token, progettato per chat online, in grado di gestire interazioni testuali in modo efficiente."
|
594
627
|
},
|
628
|
+
"llama-3.2-11b-vision-instruct": {
|
629
|
+
"description": "Eccellenti capacità di ragionamento visivo su immagini ad alta risoluzione, adatte ad applicazioni di comprensione visiva."
|
630
|
+
},
|
595
631
|
"llama-3.2-11b-vision-preview": {
|
596
632
|
"description": "Llama 3.2 è progettato per gestire compiti che combinano dati visivi e testuali. Eccelle in compiti come la descrizione delle immagini e le domande visive, colmando il divario tra generazione del linguaggio e ragionamento visivo."
|
597
633
|
},
|
634
|
+
"llama-3.2-90b-vision-instruct": {
|
635
|
+
"description": "Capacità avanzate di ragionamento visivo per applicazioni di agenti di comprensione visiva."
|
636
|
+
},
|
598
637
|
"llama-3.2-90b-vision-preview": {
|
599
638
|
"description": "Llama 3.2 è progettato per gestire compiti che combinano dati visivi e testuali. Eccelle in compiti come la descrizione delle immagini e le domande visive, colmando il divario tra generazione del linguaggio e ragionamento visivo."
|
600
639
|
},
|
@@ -652,8 +691,8 @@
|
|
652
691
|
"meta-llama/Llama-2-13b-chat-hf": {
|
653
692
|
"description": "LLaMA-2 Chat (13B) offre eccellenti capacità di elaborazione linguistica e un'interazione di alta qualità."
|
654
693
|
},
|
655
|
-
"meta-llama/Llama-2-
|
656
|
-
"description": "
|
694
|
+
"meta-llama/Llama-2-70b-hf": {
|
695
|
+
"description": "LLaMA-2 offre eccellenti capacità di elaborazione del linguaggio e un'esperienza interattiva di alta qualità."
|
657
696
|
},
|
658
697
|
"meta-llama/Llama-3-70b-chat-hf": {
|
659
698
|
"description": "LLaMA-3 Chat (70B) è un potente modello di chat, in grado di gestire esigenze di dialogo complesse."
|
@@ -661,6 +700,18 @@
|
|
661
700
|
"meta-llama/Llama-3-8b-chat-hf": {
|
662
701
|
"description": "LLaMA-3 Chat (8B) offre supporto multilingue, coprendo una vasta gamma di conoscenze di dominio."
|
663
702
|
},
|
703
|
+
"meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo": {
|
704
|
+
"description": "LLaMA 3.2 è progettato per gestire compiti che combinano dati visivi e testuali. Eccelle in compiti come la descrizione di immagini e le domande visive, colmando il divario tra generazione del linguaggio e ragionamento visivo."
|
705
|
+
},
|
706
|
+
"meta-llama/Llama-3.2-3B-Instruct-Turbo": {
|
707
|
+
"description": "LLaMA 3.2 è progettato per gestire compiti che combinano dati visivi e testuali. Eccelle in compiti come la descrizione di immagini e le domande visive, colmando il divario tra generazione del linguaggio e ragionamento visivo."
|
708
|
+
},
|
709
|
+
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
710
|
+
"description": "LLaMA 3.2 è progettato per gestire compiti che combinano dati visivi e testuali. Eccelle in compiti come la descrizione di immagini e le domande visive, colmando il divario tra generazione del linguaggio e ragionamento visivo."
|
711
|
+
},
|
712
|
+
"meta-llama/Llama-Vision-Free": {
|
713
|
+
"description": "LLaMA 3.2 è progettato per gestire compiti che combinano dati visivi e testuali. Eccelle in compiti come la descrizione di immagini e le domande visive, colmando il divario tra generazione del linguaggio e ragionamento visivo."
|
714
|
+
},
|
664
715
|
"meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
|
665
716
|
"description": "Llama 3 70B Instruct Lite è adatto per ambienti che richiedono alta efficienza e bassa latenza."
|
666
717
|
},
|
@@ -739,15 +790,18 @@
|
|
739
790
|
"minicpm-v": {
|
740
791
|
"description": "MiniCPM-V è la nuova generazione di modelli multimodali lanciata da OpenBMB, dotata di eccellenti capacità di riconoscimento OCR e comprensione multimodale, supportando una vasta gamma di scenari applicativi."
|
741
792
|
},
|
793
|
+
"ministral-3b-latest": {
|
794
|
+
"description": "Ministral 3B è il modello di punta di Mistral per edge computing."
|
795
|
+
},
|
796
|
+
"ministral-8b-latest": {
|
797
|
+
"description": "Ministral 8B è un modello edge ad alto rapporto qualità-prezzo di Mistral."
|
798
|
+
},
|
742
799
|
"mistral": {
|
743
800
|
"description": "Mistral è un modello da 7B lanciato da Mistral AI, adatto per esigenze di elaborazione linguistica variabili."
|
744
801
|
},
|
745
802
|
"mistral-large": {
|
746
803
|
"description": "Mixtral Large è il modello di punta di Mistral, combinando capacità di generazione di codice, matematica e ragionamento, supporta una finestra di contesto di 128k."
|
747
804
|
},
|
748
|
-
"mistral-large-2407": {
|
749
|
-
"description": "Mistral Large (2407) è un modello di linguaggio avanzato (LLM) con capacità di ragionamento, conoscenza e codifica all'avanguardia."
|
750
|
-
},
|
751
805
|
"mistral-large-latest": {
|
752
806
|
"description": "Mistral Large è il modello di punta, specializzato in compiti multilingue, ragionamento complesso e generazione di codice, è la scelta ideale per applicazioni di alta gamma."
|
753
807
|
},
|
@@ -769,12 +823,18 @@
|
|
769
823
|
"mistralai/Mistral-7B-Instruct-v0.3": {
|
770
824
|
"description": "Mistral (7B) Instruct v0.3 offre capacità computazionali efficienti e comprensione del linguaggio naturale, adatta per una vasta gamma di applicazioni."
|
771
825
|
},
|
826
|
+
"mistralai/Mistral-7B-v0.1": {
|
827
|
+
"description": "Mistral 7B è un modello compatto ma ad alte prestazioni, specializzato nell'elaborazione batch e in compiti semplici come classificazione e generazione di testo, con buone capacità di ragionamento."
|
828
|
+
},
|
772
829
|
"mistralai/Mixtral-8x22B-Instruct-v0.1": {
|
773
830
|
"description": "Mixtral-8x22B Instruct (141B) è un super modello di linguaggio, supportando esigenze di elaborazione estremamente elevate."
|
774
831
|
},
|
775
832
|
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
776
833
|
"description": "Mixtral 8x7B è un modello di esperti misti pre-addestrato, utilizzato per compiti testuali generali."
|
777
834
|
},
|
835
|
+
"mistralai/Mixtral-8x7B-v0.1": {
|
836
|
+
"description": "Mixtral 8x7B è un modello di esperti sparsi che utilizza più parametri per migliorare la velocità di ragionamento, adatto a compiti di generazione multilingue e di codice."
|
837
|
+
},
|
778
838
|
"mistralai/mistral-7b-instruct": {
|
779
839
|
"description": "Mistral 7B Instruct è un modello standard di settore ad alte prestazioni, ottimizzato per velocità e supporto di contesti lunghi."
|
780
840
|
},
|
@@ -802,6 +862,9 @@
|
|
802
862
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
803
863
|
"description": "Hermes 2 Pro Llama 3 8B è una versione aggiornata di Nous Hermes 2, contenente i più recenti dataset sviluppati internamente."
|
804
864
|
},
|
865
|
+
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
866
|
+
"description": "Llama 3.1 Nemotron 70B è un modello linguistico di grandi dimensioni personalizzato da NVIDIA, progettato per migliorare il grado di aiuto delle risposte generate da LLM alle domande degli utenti."
|
867
|
+
},
|
805
868
|
"o1-mini": {
|
806
869
|
"description": "o1-mini è un modello di inferenza rapido ed economico progettato per applicazioni di programmazione, matematica e scienza. Questo modello ha un contesto di 128K e una data di cutoff della conoscenza di ottobre 2023."
|
807
870
|
},
|
@@ -988,6 +1051,12 @@
|
|
988
1051
|
"yi-large-turbo": {
|
989
1052
|
"description": "Eccellente rapporto qualità-prezzo e prestazioni superiori. Ottimizzazione ad alta precisione in base a prestazioni, velocità di inferenza e costi."
|
990
1053
|
},
|
1054
|
+
"yi-lightning": {
|
1055
|
+
"description": "Il modello di ultima generazione ad alte prestazioni, che garantisce output di alta qualità e migliora notevolmente la velocità di ragionamento."
|
1056
|
+
},
|
1057
|
+
"yi-lightning-lite": {
|
1058
|
+
"description": "Versione leggera, si consiglia di utilizzare yi-lightning."
|
1059
|
+
},
|
991
1060
|
"yi-medium": {
|
992
1061
|
"description": "Modello di dimensioni medie aggiornato e ottimizzato, con capacità bilanciate e un buon rapporto qualità-prezzo. Ottimizzazione profonda delle capacità di seguire istruzioni."
|
993
1062
|
},
|
@@ -47,8 +47,8 @@
|
|
47
47
|
"ERNIE-4.0-8K-Preview": {
|
48
48
|
"description": "百度が独自に開発したフラッグシップの超大規模言語モデルで、ERNIE 3.5に比べてモデル能力が全面的にアップグレードされ、さまざまな分野の複雑なタスクシナリオに広く適用されます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。"
|
49
49
|
},
|
50
|
-
"ERNIE-4.0-Turbo-8K": {
|
51
|
-
"description": "
|
50
|
+
"ERNIE-4.0-Turbo-8K-Latest": {
|
51
|
+
"description": "百度が自主開発したフラッグシップの超大規模な言語モデルで、総合的なパフォーマンスが優れており、各分野の複雑なタスクシナリオに広く適応します;百度検索プラグインとの自動連携をサポートし、質問応答情報のタイムリーさを保証します。ERNIE 4.0に比べてパフォーマンスが向上しています。"
|
52
52
|
},
|
53
53
|
"ERNIE-4.0-Turbo-8K-Preview": {
|
54
54
|
"description": "百度が独自に開発したフラッグシップの超大規模言語モデルで、総合的なパフォーマンスが優れており、さまざまな分野の複雑なタスクシナリオに広く適用されます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。ERNIE 4.0に比べてパフォーマンスがさらに優れています。"
|
@@ -80,8 +80,11 @@
|
|
80
80
|
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
81
81
|
"description": "Nous Hermes-2 Yi (34B)は、最適化された言語出力と多様なアプリケーションの可能性を提供します。"
|
82
82
|
},
|
83
|
-
"
|
84
|
-
"description": "
|
83
|
+
"OpenGVLab/InternVL2-26B": {
|
84
|
+
"description": "InternVL2はさまざまな視覚と言語タスクで卓越した性能を発揮しており、文書や図表の理解、シーンテキストの理解、OCR、科学および数学の問題解決などを含みます。"
|
85
|
+
},
|
86
|
+
"OpenGVLab/InternVL2-Llama3-76B": {
|
87
|
+
"description": "InternVL2はさまざまな視覚と言語タスクで卓越した性能を発揮しており、文書や図表の理解、シーンテキストの理解、OCR、科学および数学の問題解決などを含みます。"
|
85
88
|
},
|
86
89
|
"Phi-3-medium-128k-instruct": {
|
87
90
|
"description": "同じPhi-3-mediumモデルですが、RAGまたは少数ショットプロンプティング用により大きなコンテキストサイズを持っています。"
|
@@ -101,9 +104,21 @@
|
|
101
104
|
"Phi-3-small-8k-instruct": {
|
102
105
|
"description": "7Bパラメータのモデルで、Phi-3-miniよりも高品質で、質の高い推論密度のデータに焦点を当てています。"
|
103
106
|
},
|
107
|
+
"Phi-3.5-mini-instruct": {
|
108
|
+
"description": "Phi-3-miniモデルの更新版です。"
|
109
|
+
},
|
110
|
+
"Phi-3.5-vision-instrust": {
|
111
|
+
"description": "Phi-3-visionモデルの更新版です。"
|
112
|
+
},
|
104
113
|
"Pro-128k": {
|
105
114
|
"description": "Spark Pro-128Kは特大のコンテキスト処理能力を備え、最大128Kのコンテキスト情報を処理でき、特に全体分析や長期的な論理関連処理が必要な長文コンテンツに適しており、複雑なテキストコミュニケーションにおいて流暢で一貫した論理と多様な引用サポートを提供します。"
|
106
115
|
},
|
116
|
+
"Pro/OpenGVLab/InternVL2-8B": {
|
117
|
+
"description": "InternVL2はさまざまな視覚と言語タスクで卓越した性能を発揮しており、文書や図表の理解、シーンテキストの理解、OCR、科学および数学の問題解決などを含みます。"
|
118
|
+
},
|
119
|
+
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
120
|
+
"description": "Qwen2-VLはQwen-VLモデルの最新のイテレーションで、視覚理解のベンチマークテストで最先端の性能を達成しました。"
|
121
|
+
},
|
107
122
|
"Qwen/Qwen1.5-110B-Chat": {
|
108
123
|
"description": "Qwen2のテスト版として、Qwen1.5は大規模データを使用してより正確な対話機能を実現しました。"
|
109
124
|
},
|
@@ -113,18 +128,27 @@
|
|
113
128
|
"Qwen/Qwen2-72B-Instruct": {
|
114
129
|
"description": "Qwen2は、先進的な汎用言語モデルであり、さまざまな指示タイプをサポートします。"
|
115
130
|
},
|
131
|
+
"Qwen/Qwen2-VL-72B-Instruct": {
|
132
|
+
"description": "Qwen2-VLはQwen-VLモデルの最新のイテレーションで、視覚理解のベンチマークテストで最先端の性能を達成しました。"
|
133
|
+
},
|
116
134
|
"Qwen/Qwen2.5-14B-Instruct": {
|
117
135
|
"description": "Qwen2.5は、新しい大型言語モデルシリーズで、指示型タスクの処理を最適化することを目的としています。"
|
118
136
|
},
|
119
137
|
"Qwen/Qwen2.5-32B-Instruct": {
|
120
138
|
"description": "Qwen2.5は、新しい大型言語モデルシリーズで、指示型タスクの処理を最適化することを目的としています。"
|
121
139
|
},
|
122
|
-
"Qwen/Qwen2.5-72B-Instruct": {
|
123
|
-
"description": "Qwen2.5
|
140
|
+
"Qwen/Qwen2.5-72B-Instruct-128K": {
|
141
|
+
"description": "Qwen2.5は新しい大型言語モデルシリーズで、より強力な理解と生成能力を持っています。"
|
142
|
+
},
|
143
|
+
"Qwen/Qwen2.5-72B-Instruct-Turbo": {
|
144
|
+
"description": "Qwen2.5は新しい大型言語モデルシリーズで、指示タスクの処理を最適化することを目的としています。"
|
124
145
|
},
|
125
146
|
"Qwen/Qwen2.5-7B-Instruct": {
|
126
147
|
"description": "Qwen2.5は、新しい大型言語モデルシリーズで、指示型タスクの処理を最適化することを目的としています。"
|
127
148
|
},
|
149
|
+
"Qwen/Qwen2.5-7B-Instruct-Turbo": {
|
150
|
+
"description": "Qwen2.5は新しい大型言語モデルシリーズで、指示タスクの処理を最適化することを目的としています。"
|
151
|
+
},
|
128
152
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
129
153
|
"description": "Qwen2.5-Coderは、コード作成に特化しています。"
|
130
154
|
},
|
@@ -158,9 +182,6 @@
|
|
158
182
|
"accounts/fireworks/models/firellava-13b": {
|
159
183
|
"description": "fireworks-ai/FireLLaVA-13bは、画像とテキストの入力を同時に受け取ることができる視覚言語モデルであり、高品質なデータで訓練されており、多モーダルタスクに適しています。"
|
160
184
|
},
|
161
|
-
"accounts/fireworks/models/gemma2-9b-it": {
|
162
|
-
"description": "Gemma 2 9B指示モデルは、以前のGoogle技術に基づいており、質問応答、要約、推論などのさまざまなテキスト生成タスクに適しています。"
|
163
|
-
},
|
164
185
|
"accounts/fireworks/models/llama-v3-70b-instruct": {
|
165
186
|
"description": "Llama 3 70B指示モデルは、多言語対話と自然言語理解に最適化されており、ほとんどの競合モデルを上回る性能を持っています。"
|
166
187
|
},
|
@@ -182,6 +203,18 @@
|
|
182
203
|
"accounts/fireworks/models/llama-v3p1-8b-instruct": {
|
183
204
|
"description": "Llama 3.1 8B指示モデルは、多言語対話の最適化のために設計されており、一般的な業界ベンチマークを超える性能を発揮します。"
|
184
205
|
},
|
206
|
+
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct": {
|
207
|
+
"description": "Metaの11Bパラメータ指示調整画像推論モデルです。このモデルは視覚認識、画像推論、画像説明、および画像に関する一般的な質問への回答に最適化されています。このモデルは、グラフや図表などの視覚データを理解し、画像の詳細をテキストで記述することで、視覚と言語の間のギャップを埋めることができます。"
|
208
|
+
},
|
209
|
+
"accounts/fireworks/models/llama-v3p2-1b-instruct": {
|
210
|
+
"description": "Llama 3.2 1B指示モデルはMetaが発表した軽量な多言語モデルです。このモデルは効率を向上させることを目的としており、より大規模なモデルと比較して遅延とコストの面で大きな改善を提供します。このモデルの使用例には、情報検索や要約が含まれます。"
|
211
|
+
},
|
212
|
+
"accounts/fireworks/models/llama-v3p2-3b-instruct": {
|
213
|
+
"description": "Llama 3.2 3B指示モデルはMetaが発表した軽量な多言語モデルです。このモデルは効率を向上させることを目的としており、より大規模なモデルと比較して遅延とコストの面で大きな改善を提供します。このモデルの使用例には、問い合わせやプロンプトのリライト、執筆支援が含まれます。"
|
214
|
+
},
|
215
|
+
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct": {
|
216
|
+
"description": "Metaの90Bパラメータ指示調整画像推論モデルです。このモデルは視覚認識、画像推論、画像説明、および画像に関する一般的な質問への回答に最適化されています。このモデルは、グラフや図表などの視覚データを理解し、画像の詳細をテキストで記述することで、視覚と言語の間のギャップを埋めることができます。"
|
217
|
+
},
|
185
218
|
"accounts/fireworks/models/mixtral-8x22b-instruct": {
|
186
219
|
"description": "Mixtral MoE 8x22B指示モデルは、大規模なパラメータと多専門家アーキテクチャを持ち、複雑なタスクの高効率処理を全方位でサポートします。"
|
187
220
|
},
|
@@ -197,6 +230,9 @@
|
|
197
230
|
"accounts/fireworks/models/phi-3-vision-128k-instruct": {
|
198
231
|
"description": "Phi 3 Vision指示モデルは、軽量の多モーダルモデルであり、複雑な視覚とテキスト情報を処理でき、強力な推論能力を持っています。"
|
199
232
|
},
|
233
|
+
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
234
|
+
"description": "Qwen2.5はAlibaba Cloud Qwenチームによって開発された一連のデコーダーのみを含む言語モデルです。これらのモデルは、0.5B、1.5B、3B、7B、14B、32B、72Bなど、さまざまなサイズを提供し、ベース版と指示版の2種類のバリエーションがあります。"
|
235
|
+
},
|
200
236
|
"accounts/fireworks/models/starcoder-16b": {
|
201
237
|
"description": "StarCoder 15.5Bモデルは、高度なプログラミングタスクをサポートし、多言語能力を強化し、複雑なコード生成と理解に適しています。"
|
202
238
|
},
|
@@ -212,9 +248,6 @@
|
|
212
248
|
"ai21-jamba-1.5-mini": {
|
213
249
|
"description": "52Bパラメータ(12Bアクティブ)の多言語モデルで、256Kの長いコンテキストウィンドウ、関数呼び出し、構造化出力、基盤生成を提供します。"
|
214
250
|
},
|
215
|
-
"ai21-jamba-instruct": {
|
216
|
-
"description": "最高のパフォーマンス、品質、コスト効率を実現するための生産グレードのMambaベースのLLMモデルです。"
|
217
|
-
},
|
218
251
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
219
252
|
"description": "Claude 3.5 Sonnetは業界標準を向上させ、競合モデルやClaude 3 Opusを超える性能を持ち、広範な評価で優れたパフォーマンスを示し、私たちの中程度のモデルの速度とコストを兼ね備えています。"
|
220
253
|
},
|
@@ -592,9 +625,15 @@
|
|
592
625
|
"llama-3.1-sonar-small-128k-online": {
|
593
626
|
"description": "Llama 3.1 Sonar Small Onlineモデルは、8Bパラメータを持ち、約127,000トークンのコンテキスト長をサポートし、オンラインチャット用に設計されており、さまざまなテキストインタラクションを効率的に処理できます。"
|
594
627
|
},
|
628
|
+
"llama-3.2-11b-vision-instruct": {
|
629
|
+
"description": "高解像度画像で優れた画像推論能力を発揮し、視覚理解アプリケーションに適しています。"
|
630
|
+
},
|
595
631
|
"llama-3.2-11b-vision-preview": {
|
596
632
|
"description": "Llama 3.2は、視覚データとテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的質問応答などのタスクで優れたパフォーマンスを発揮し、言語生成と視覚推論の間のギャップを埋めます。"
|
597
633
|
},
|
634
|
+
"llama-3.2-90b-vision-instruct": {
|
635
|
+
"description": "視覚理解エージェントアプリケーション向けの高度な画像推論能力を提供します。"
|
636
|
+
},
|
598
637
|
"llama-3.2-90b-vision-preview": {
|
599
638
|
"description": "Llama 3.2は、視覚データとテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的質問応答などのタスクで優れたパフォーマンスを発揮し、言語生成と視覚推論の間のギャップを埋めます。"
|
600
639
|
},
|
@@ -652,8 +691,8 @@
|
|
652
691
|
"meta-llama/Llama-2-13b-chat-hf": {
|
653
692
|
"description": "LLaMA-2 Chat (13B)は、優れた言語処理能力と素晴らしいインタラクション体験を提供します。"
|
654
693
|
},
|
655
|
-
"meta-llama/Llama-2-
|
656
|
-
"description": "
|
694
|
+
"meta-llama/Llama-2-70b-hf": {
|
695
|
+
"description": "LLaMA-2は優れた言語処理能力と素晴らしいインタラクティブ体験を提供します。"
|
657
696
|
},
|
658
697
|
"meta-llama/Llama-3-70b-chat-hf": {
|
659
698
|
"description": "LLaMA-3 Chat (70B)は、強力なチャットモデルであり、複雑な対話ニーズをサポートします。"
|
@@ -661,6 +700,18 @@
|
|
661
700
|
"meta-llama/Llama-3-8b-chat-hf": {
|
662
701
|
"description": "LLaMA-3 Chat (8B)は、多言語サポートを提供し、豊富な分野知識をカバーしています。"
|
663
702
|
},
|
703
|
+
"meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo": {
|
704
|
+
"description": "LLaMA 3.2は視覚データとテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的質問応答などのタスクで優れた性能を発揮し、言語生成と視覚推論の間のギャップを埋めます。"
|
705
|
+
},
|
706
|
+
"meta-llama/Llama-3.2-3B-Instruct-Turbo": {
|
707
|
+
"description": "LLaMA 3.2は視覚データとテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的質問応答などのタスクで優れた性能を発揮し、言語生成と視覚推論の間のギャップを埋めます。"
|
708
|
+
},
|
709
|
+
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
710
|
+
"description": "LLaMA 3.2は視覚データとテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的質問応答などのタスクで優れた性能を発揮し、言語生成と視覚推論の間のギャップを埋めます。"
|
711
|
+
},
|
712
|
+
"meta-llama/Llama-Vision-Free": {
|
713
|
+
"description": "LLaMA 3.2は視覚データとテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的質問応答などのタスクで優れた性能を発揮し、言語生成と視覚推論の間のギャップを埋めます。"
|
714
|
+
},
|
664
715
|
"meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
|
665
716
|
"description": "Llama 3 70B Instruct Liteは、高効率と低遅延が求められる環境に適しています。"
|
666
717
|
},
|
@@ -739,15 +790,18 @@
|
|
739
790
|
"minicpm-v": {
|
740
791
|
"description": "MiniCPM-VはOpenBMBが発表した次世代のマルチモーダル大モデルで、優れたOCR認識能力とマルチモーダル理解能力を備え、幅広いアプリケーションシーンをサポートします。"
|
741
792
|
},
|
793
|
+
"ministral-3b-latest": {
|
794
|
+
"description": "Ministral 3BはMistralの世界トップクラスのエッジモデルです。"
|
795
|
+
},
|
796
|
+
"ministral-8b-latest": {
|
797
|
+
"description": "Ministral 8BはMistralのコストパフォーマンスに優れたエッジモデルです。"
|
798
|
+
},
|
742
799
|
"mistral": {
|
743
800
|
"description": "Mistralは、Mistral AIがリリースした7Bモデルであり、多様な言語処理ニーズに適しています。"
|
744
801
|
},
|
745
802
|
"mistral-large": {
|
746
803
|
"description": "Mixtral Largeは、Mistralのフラッグシップモデルであり、コード生成、数学、推論の能力を組み合わせ、128kのコンテキストウィンドウをサポートします。"
|
747
804
|
},
|
748
|
-
"mistral-large-2407": {
|
749
|
-
"description": "Mistral Large (2407)は、最先端の推論、知識、コーディング能力を持つ高度な大規模言語モデル(LLM)です。"
|
750
|
-
},
|
751
805
|
"mistral-large-latest": {
|
752
806
|
"description": "Mistral Largeは、フラッグシップの大モデルであり、多言語タスク、複雑な推論、コード生成に優れ、高端アプリケーションに理想的な選択肢です。"
|
753
807
|
},
|
@@ -769,12 +823,18 @@
|
|
769
823
|
"mistralai/Mistral-7B-Instruct-v0.3": {
|
770
824
|
"description": "Mistral (7B) Instruct v0.3は、高効率の計算能力と自然言語理解を提供し、幅広いアプリケーションに適しています。"
|
771
825
|
},
|
826
|
+
"mistralai/Mistral-7B-v0.1": {
|
827
|
+
"description": "Mistral 7Bはコンパクトで高性能なモデルで、バッチ処理や分類、テキスト生成などの簡単なタスクに優れた推論能力を持っています。"
|
828
|
+
},
|
772
829
|
"mistralai/Mixtral-8x22B-Instruct-v0.1": {
|
773
830
|
"description": "Mixtral-8x22B Instruct (141B)は、超大規模な言語モデルであり、非常に高い処理要求をサポートします。"
|
774
831
|
},
|
775
832
|
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
776
833
|
"description": "Mixtral 8x7Bは、一般的なテキストタスクに使用される事前訓練されたスパースミックス専門家モデルです。"
|
777
834
|
},
|
835
|
+
"mistralai/Mixtral-8x7B-v0.1": {
|
836
|
+
"description": "Mixtral 8x7Bはスパースエキスパートモデルで、複数のパラメータを利用して推論速度を向上させ、多言語処理やコード生成タスクに適しています。"
|
837
|
+
},
|
778
838
|
"mistralai/mistral-7b-instruct": {
|
779
839
|
"description": "Mistral 7B Instructは速度最適化と長いコンテキストサポートを兼ね備えた高性能な業界標準モデルです。"
|
780
840
|
},
|
@@ -802,6 +862,9 @@
|
|
802
862
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
803
863
|
"description": "Hermes 2 Pro Llama 3 8BはNous Hermes 2のアップグレード版で、最新の内部開発データセットを含んでいます。"
|
804
864
|
},
|
865
|
+
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
866
|
+
"description": "Llama 3.1 Nemotron 70BはNVIDIAがカスタマイズした大型言語モデルで、LLMが生成した応答がユーザーの問い合わせをサポートする程度を向上させることを目的としています。"
|
867
|
+
},
|
805
868
|
"o1-mini": {
|
806
869
|
"description": "o1-miniは、プログラミング、数学、科学のアプリケーションシーンに特化して設計された迅速で経済的な推論モデルです。このモデルは128Kのコンテキストを持ち、2023年10月の知識のカットオフがあります。"
|
807
870
|
},
|
@@ -988,6 +1051,12 @@
|
|
988
1051
|
"yi-large-turbo": {
|
989
1052
|
"description": "超高コストパフォーマンス、卓越した性能。性能と推論速度、コストに基づいて、高精度のバランス調整を行います。"
|
990
1053
|
},
|
1054
|
+
"yi-lightning": {
|
1055
|
+
"description": "最新の高性能モデルで、高品質な出力を保証しつつ、推論速度が大幅に向上しています。"
|
1056
|
+
},
|
1057
|
+
"yi-lightning-lite": {
|
1058
|
+
"description": "軽量版で、yi-lightningの使用を推奨します。"
|
1059
|
+
},
|
991
1060
|
"yi-medium": {
|
992
1061
|
"description": "中型サイズモデルのアップグレード微調整であり、能力が均衡しており、コストパフォーマンスが高いです。指示遵守能力を深く最適化しています。"
|
993
1062
|
},
|