@lobehub/chat 1.22.15 → 1.22.17
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/README.md +8 -8
- package/README.zh-CN.md +8 -8
- package/locales/ar/models.json +86 -17
- package/locales/bg-BG/models.json +85 -16
- package/locales/de-DE/models.json +86 -17
- package/locales/en-US/models.json +86 -17
- package/locales/es-ES/models.json +86 -17
- package/locales/fr-FR/models.json +86 -17
- package/locales/it-IT/models.json +86 -17
- package/locales/ja-JP/models.json +86 -17
- package/locales/ko-KR/models.json +86 -17
- package/locales/nl-NL/models.json +86 -17
- package/locales/pl-PL/models.json +86 -17
- package/locales/pt-BR/models.json +86 -17
- package/locales/ru-RU/models.json +86 -17
- package/locales/tr-TR/models.json +86 -17
- package/locales/vi-VN/models.json +86 -17
- package/locales/zh-CN/models.json +108 -39
- package/locales/zh-CN/providers.json +2 -2
- package/locales/zh-TW/models.json +86 -17
- package/package.json +4 -6
- package/src/app/layout.tsx +1 -2
- package/src/features/DebugUI/Content.tsx +35 -0
- package/src/features/DebugUI/index.tsx +16 -32
- package/src/layout/GlobalProvider/index.tsx +2 -14
- package/src/libs/next-auth/sso-providers/azure-ad.ts +2 -1
@@ -47,8 +47,8 @@
|
|
47
47
|
"ERNIE-4.0-8K-Preview": {
|
48
48
|
"description": "Das von Baidu entwickelte Flaggschiff-Modell für ultra-große Sprachverarbeitung, das im Vergleich zu ERNIE 3.5 eine umfassende Verbesserung der Modellfähigkeiten erreicht hat und sich breit für komplexe Aufgaben in verschiedenen Bereichen eignet; unterstützt die automatische Anbindung an das Baidu-Such-Plugin, um die Aktualität der Antwortinformationen zu gewährleisten."
|
49
49
|
},
|
50
|
-
"ERNIE-4.0-Turbo-8K": {
|
51
|
-
"description": "
|
50
|
+
"ERNIE-4.0-Turbo-8K-Latest": {
|
51
|
+
"description": "Baidus selbstentwickeltes Flaggschiff-Modell für großflächige Sprachverarbeitung, das in vielen komplexen Aufgaben hervorragende Ergebnisse zeigt und umfassend in verschiedenen Bereichen eingesetzt werden kann; unterstützt die automatische Anbindung an Baidu-Suchplugins, um die Aktualität von Antwortinformationen zu gewährleisten. Im Vergleich zu ERNIE 4.0 hat es eine bessere Leistung."
|
52
52
|
},
|
53
53
|
"ERNIE-4.0-Turbo-8K-Preview": {
|
54
54
|
"description": "Das von Baidu entwickelte Flaggschiff-Modell für ultra-große Sprachverarbeitung, das in der Gesamtleistung herausragend ist und sich breit für komplexe Aufgaben in verschiedenen Bereichen eignet; unterstützt die automatische Anbindung an das Baidu-Such-Plugin, um die Aktualität der Antwortinformationen zu gewährleisten. Im Vergleich zu ERNIE 4.0 bietet es eine bessere Leistungsfähigkeit."
|
@@ -80,8 +80,11 @@
|
|
80
80
|
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
81
81
|
"description": "Nous Hermes-2 Yi (34B) bietet optimierte Sprachausgaben und vielfältige Anwendungsmöglichkeiten."
|
82
82
|
},
|
83
|
-
"
|
84
|
-
"description": "
|
83
|
+
"OpenGVLab/InternVL2-26B": {
|
84
|
+
"description": "InternVL2 zeigt herausragende Leistungen in verschiedenen visuellen Sprachaufgaben, einschließlich Dokumenten- und Diagrammverständnis, Szenentexterkennung, OCR, wissenschaftlicher und mathematischer Problemlösung."
|
85
|
+
},
|
86
|
+
"OpenGVLab/InternVL2-Llama3-76B": {
|
87
|
+
"description": "InternVL2 zeigt herausragende Leistungen in verschiedenen visuellen Sprachaufgaben, einschließlich Dokumenten- und Diagrammverständnis, Szenentexterkennung, OCR, wissenschaftlicher und mathematischer Problemlösung."
|
85
88
|
},
|
86
89
|
"Phi-3-medium-128k-instruct": {
|
87
90
|
"description": "Das gleiche Phi-3-medium-Modell, jedoch mit einer größeren Kontextgröße für RAG oder Few-Shot-Prompting."
|
@@ -101,9 +104,21 @@
|
|
101
104
|
"Phi-3-small-8k-instruct": {
|
102
105
|
"description": "Ein Modell mit 7 Milliarden Parametern, das eine bessere Qualität als Phi-3-mini bietet und sich auf qualitativ hochwertige, reasoning-dense Daten konzentriert."
|
103
106
|
},
|
107
|
+
"Phi-3.5-mini-instruct": {
|
108
|
+
"description": "Aktualisierte Version des Phi-3-mini-Modells."
|
109
|
+
},
|
110
|
+
"Phi-3.5-vision-instrust": {
|
111
|
+
"description": "Aktualisierte Version des Phi-3-vision-Modells."
|
112
|
+
},
|
104
113
|
"Pro-128k": {
|
105
114
|
"description": "Spark Pro-128K ist mit einer extrem großen Kontextverarbeitungsfähigkeit ausgestattet, die bis zu 128K Kontextinformationen verarbeiten kann, besonders geeignet für lange Texte, die eine umfassende Analyse und langfristige logische Verknüpfung erfordern, und bietet in komplexen Textkommunikationen flüssige und konsistente Logik sowie vielfältige Zitationsunterstützung."
|
106
115
|
},
|
116
|
+
"Pro/OpenGVLab/InternVL2-8B": {
|
117
|
+
"description": "InternVL2 zeigt herausragende Leistungen in verschiedenen visuellen Sprachaufgaben, einschließlich Dokumenten- und Diagrammverständnis, Szenentexterkennung, OCR, wissenschaftlicher und mathematischer Problemlösung."
|
118
|
+
},
|
119
|
+
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
120
|
+
"description": "Qwen2-VL ist die neueste Iteration des Qwen-VL-Modells, das in visuellen Verständnis-Benchmarks erstklassige Leistungen erzielt."
|
121
|
+
},
|
107
122
|
"Qwen/Qwen1.5-110B-Chat": {
|
108
123
|
"description": "Als Testversion von Qwen2 bietet Qwen1.5 präzisere Dialogfunktionen durch den Einsatz großer Datenmengen."
|
109
124
|
},
|
@@ -113,18 +128,27 @@
|
|
113
128
|
"Qwen/Qwen2-72B-Instruct": {
|
114
129
|
"description": "Qwen2 ist ein fortschrittliches allgemeines Sprachmodell, das eine Vielzahl von Anweisungsarten unterstützt."
|
115
130
|
},
|
131
|
+
"Qwen/Qwen2-VL-72B-Instruct": {
|
132
|
+
"description": "Qwen2-VL ist die neueste Iteration des Qwen-VL-Modells, das in visuellen Verständnis-Benchmarks erstklassige Leistungen erzielt."
|
133
|
+
},
|
116
134
|
"Qwen/Qwen2.5-14B-Instruct": {
|
117
135
|
"description": "Qwen2.5 ist eine brandneue Serie von großen Sprachmodellen, die darauf abzielt, die Verarbeitung von Anweisungsaufgaben zu optimieren."
|
118
136
|
},
|
119
137
|
"Qwen/Qwen2.5-32B-Instruct": {
|
120
138
|
"description": "Qwen2.5 ist eine brandneue Serie von großen Sprachmodellen, die darauf abzielt, die Verarbeitung von Anweisungsaufgaben zu optimieren."
|
121
139
|
},
|
122
|
-
"Qwen/Qwen2.5-72B-Instruct": {
|
123
|
-
"description": "Qwen2.5 ist eine
|
140
|
+
"Qwen/Qwen2.5-72B-Instruct-128K": {
|
141
|
+
"description": "Qwen2.5 ist eine neue Serie großer Sprachmodelle mit stärkeren Verständnis- und Generierungsfähigkeiten."
|
142
|
+
},
|
143
|
+
"Qwen/Qwen2.5-72B-Instruct-Turbo": {
|
144
|
+
"description": "Qwen2.5 ist eine neue Serie großer Sprachmodelle, die darauf abzielt, die Verarbeitung von instructiven Aufgaben zu optimieren."
|
124
145
|
},
|
125
146
|
"Qwen/Qwen2.5-7B-Instruct": {
|
126
147
|
"description": "Qwen2.5 ist eine brandneue Serie von großen Sprachmodellen, die darauf abzielt, die Verarbeitung von Anweisungsaufgaben zu optimieren."
|
127
148
|
},
|
149
|
+
"Qwen/Qwen2.5-7B-Instruct-Turbo": {
|
150
|
+
"description": "Qwen2.5 ist eine neue Serie großer Sprachmodelle, die darauf abzielt, die Verarbeitung von instructiven Aufgaben zu optimieren."
|
151
|
+
},
|
128
152
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
129
153
|
"description": "Qwen2.5-Coder konzentriert sich auf die Programmierung."
|
130
154
|
},
|
@@ -158,9 +182,6 @@
|
|
158
182
|
"accounts/fireworks/models/firellava-13b": {
|
159
183
|
"description": "fireworks-ai/FireLLaVA-13b ist ein visuelles Sprachmodell, das sowohl Bild- als auch Texteingaben verarbeiten kann und für multimodale Aufgaben geeignet ist, nachdem es mit hochwertigen Daten trainiert wurde."
|
160
184
|
},
|
161
|
-
"accounts/fireworks/models/gemma2-9b-it": {
|
162
|
-
"description": "Das Gemma 2 9B Instruct-Modell basiert auf früheren Google-Technologien und eignet sich für eine Vielzahl von Textgenerierungsaufgaben wie Fragen beantworten, Zusammenfassen und Schlussfolgern."
|
163
|
-
},
|
164
185
|
"accounts/fireworks/models/llama-v3-70b-instruct": {
|
165
186
|
"description": "Das Llama 3 70B Instruct-Modell ist speziell für mehrsprachige Dialoge und natürliche Sprachverständnis optimiert und übertrifft die meisten Wettbewerbsmodelle."
|
166
187
|
},
|
@@ -182,6 +203,18 @@
|
|
182
203
|
"accounts/fireworks/models/llama-v3p1-8b-instruct": {
|
183
204
|
"description": "Das Llama 3.1 8B Instruct-Modell ist speziell für mehrsprachige Dialoge optimiert und kann die meisten Open-Source- und Closed-Source-Modelle in gängigen Branchenbenchmarks übertreffen."
|
184
205
|
},
|
206
|
+
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct": {
|
207
|
+
"description": "Meta's 11B Parameter instruct-Modell für Bildverarbeitung. Dieses Modell ist optimiert für visuelle Erkennung, Bildverarbeitung, Bildbeschreibung und die Beantwortung allgemeiner Fragen zu Bildern. Es kann visuelle Daten wie Diagramme und Grafiken verstehen und schließt die Lücke zwischen visuellen und sprachlichen Informationen, indem es textuelle Beschreibungen der Bilddetails generiert."
|
208
|
+
},
|
209
|
+
"accounts/fireworks/models/llama-v3p2-1b-instruct": {
|
210
|
+
"description": "Llama 3.2 1B instruct-Modell ist ein leichtgewichtiges mehrsprachiges Modell, das von Meta veröffentlicht wurde. Dieses Modell zielt darauf ab, die Effizienz zu steigern und bietet im Vergleich zu größeren Modellen signifikante Verbesserungen in Bezug auf Latenz und Kosten. Anwendungsbeispiele für dieses Modell sind Retrieval und Zusammenfassung."
|
211
|
+
},
|
212
|
+
"accounts/fireworks/models/llama-v3p2-3b-instruct": {
|
213
|
+
"description": "Llama 3.2 3B instruct-Modell ist ein leichtgewichtiges mehrsprachiges Modell, das von Meta veröffentlicht wurde. Dieses Modell zielt darauf ab, die Effizienz zu steigern und bietet im Vergleich zu größeren Modellen signifikante Verbesserungen in Bezug auf Latenz und Kosten. Anwendungsbeispiele für dieses Modell sind Abfragen und Aufforderungsneuschreibungen sowie Schreibassistenz."
|
214
|
+
},
|
215
|
+
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct": {
|
216
|
+
"description": "Meta's 90B Parameter instruct-Modell für Bildverarbeitung. Dieses Modell ist optimiert für visuelle Erkennung, Bildverarbeitung, Bildbeschreibung und die Beantwortung allgemeiner Fragen zu Bildern. Es kann visuelle Daten wie Diagramme und Grafiken verstehen und schließt die Lücke zwischen visuellen und sprachlichen Informationen, indem es textuelle Beschreibungen der Bilddetails generiert."
|
217
|
+
},
|
185
218
|
"accounts/fireworks/models/mixtral-8x22b-instruct": {
|
186
219
|
"description": "Das Mixtral MoE 8x22B Instruct-Modell unterstützt durch seine große Anzahl an Parametern und Multi-Expert-Architektur die effiziente Verarbeitung komplexer Aufgaben."
|
187
220
|
},
|
@@ -197,6 +230,9 @@
|
|
197
230
|
"accounts/fireworks/models/phi-3-vision-128k-instruct": {
|
198
231
|
"description": "Das Phi 3 Vision Instruct-Modell ist ein leichtgewichtiges multimodales Modell, das komplexe visuelle und textuelle Informationen verarbeiten kann und über starke Schlussfolgerungsfähigkeiten verfügt."
|
199
232
|
},
|
233
|
+
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
234
|
+
"description": "Qwen2.5 ist eine Reihe von Sprachmodellen mit ausschließlich Decodern, die vom Alibaba Cloud Qwen-Team entwickelt wurde. Diese Modelle sind in verschiedenen Größen erhältlich, darunter 0.5B, 1.5B, 3B, 7B, 14B, 32B und 72B, mit Basis- und instruct-Varianten."
|
235
|
+
},
|
200
236
|
"accounts/fireworks/models/starcoder-16b": {
|
201
237
|
"description": "Das StarCoder 15.5B-Modell unterstützt fortgeschrittene Programmieraufgaben und hat verbesserte mehrsprachige Fähigkeiten, die sich für komplexe Codegenerierung und -verständnis eignen."
|
202
238
|
},
|
@@ -212,9 +248,6 @@
|
|
212
248
|
"ai21-jamba-1.5-mini": {
|
213
249
|
"description": "Ein mehrsprachiges Modell mit 52 Milliarden Parametern (12 Milliarden aktiv), das ein 256K langes Kontextfenster, Funktionsaufrufe, strukturierte Ausgaben und fundierte Generierung bietet."
|
214
250
|
},
|
215
|
-
"ai21-jamba-instruct": {
|
216
|
-
"description": "Ein produktionsreifes Mamba-basiertes LLM-Modell, das eine erstklassige Leistung, Qualität und Kosteneffizienz erreicht."
|
217
|
-
},
|
218
251
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
219
252
|
"description": "Claude 3.5 Sonnet hebt den Branchenstandard an, übertrifft die Konkurrenzmodelle und Claude 3 Opus und zeigt in umfassenden Bewertungen hervorragende Leistungen, während es die Geschwindigkeit und Kosten unserer mittleren Modelle beibehält."
|
220
253
|
},
|
@@ -592,9 +625,15 @@
|
|
592
625
|
"llama-3.1-sonar-small-128k-online": {
|
593
626
|
"description": "Das Llama 3.1 Sonar Small Online-Modell hat 8B Parameter und unterstützt eine Kontextlänge von etwa 127.000 Markierungen, es wurde speziell für Online-Chat entwickelt und kann verschiedene Textinteraktionen effizient verarbeiten."
|
594
627
|
},
|
628
|
+
"llama-3.2-11b-vision-instruct": {
|
629
|
+
"description": "Überlegene Bildverarbeitungsfähigkeiten auf hochauflösenden Bildern, geeignet für visuelle Verständnisanwendungen."
|
630
|
+
},
|
595
631
|
"llama-3.2-11b-vision-preview": {
|
596
632
|
"description": "Llama 3.2 ist darauf ausgelegt, Aufgaben zu bearbeiten, die visuelle und textuelle Daten kombinieren. Es zeigt hervorragende Leistungen bei Aufgaben wie Bildbeschreibung und visuellen Fragen und Antworten und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
|
597
633
|
},
|
634
|
+
"llama-3.2-90b-vision-instruct": {
|
635
|
+
"description": "Erweiterte Bildverarbeitungsfähigkeiten für visuelle Verständnisagentenanwendungen."
|
636
|
+
},
|
598
637
|
"llama-3.2-90b-vision-preview": {
|
599
638
|
"description": "Llama 3.2 ist darauf ausgelegt, Aufgaben zu bearbeiten, die visuelle und textuelle Daten kombinieren. Es zeigt hervorragende Leistungen bei Aufgaben wie Bildbeschreibung und visuellen Fragen und Antworten und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
|
600
639
|
},
|
@@ -652,8 +691,8 @@
|
|
652
691
|
"meta-llama/Llama-2-13b-chat-hf": {
|
653
692
|
"description": "LLaMA-2 Chat (13B) bietet hervorragende Sprachverarbeitungsfähigkeiten und ein ausgezeichnetes Interaktionserlebnis."
|
654
693
|
},
|
655
|
-
"meta-llama/Llama-2-
|
656
|
-
"description": "
|
694
|
+
"meta-llama/Llama-2-70b-hf": {
|
695
|
+
"description": "LLaMA-2 bietet hervorragende Sprachverarbeitungsfähigkeiten und ein großartiges Interaktionserlebnis."
|
657
696
|
},
|
658
697
|
"meta-llama/Llama-3-70b-chat-hf": {
|
659
698
|
"description": "LLaMA-3 Chat (70B) ist ein leistungsstarkes Chat-Modell, das komplexe Dialoganforderungen unterstützt."
|
@@ -661,6 +700,18 @@
|
|
661
700
|
"meta-llama/Llama-3-8b-chat-hf": {
|
662
701
|
"description": "LLaMA-3 Chat (8B) bietet mehrsprachige Unterstützung und deckt ein breites Spektrum an Fachwissen ab."
|
663
702
|
},
|
703
|
+
"meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo": {
|
704
|
+
"description": "LLaMA 3.2 ist darauf ausgelegt, Aufgaben zu bewältigen, die sowohl visuelle als auch Textdaten kombinieren. Es erzielt hervorragende Ergebnisse bei Aufgaben wie Bildbeschreibung und visueller Fragebeantwortung und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
|
705
|
+
},
|
706
|
+
"meta-llama/Llama-3.2-3B-Instruct-Turbo": {
|
707
|
+
"description": "LLaMA 3.2 ist darauf ausgelegt, Aufgaben zu bewältigen, die sowohl visuelle als auch Textdaten kombinieren. Es erzielt hervorragende Ergebnisse bei Aufgaben wie Bildbeschreibung und visueller Fragebeantwortung und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
|
708
|
+
},
|
709
|
+
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
710
|
+
"description": "LLaMA 3.2 ist darauf ausgelegt, Aufgaben zu bewältigen, die sowohl visuelle als auch Textdaten kombinieren. Es erzielt hervorragende Ergebnisse bei Aufgaben wie Bildbeschreibung und visueller Fragebeantwortung und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
|
711
|
+
},
|
712
|
+
"meta-llama/Llama-Vision-Free": {
|
713
|
+
"description": "LLaMA 3.2 ist darauf ausgelegt, Aufgaben zu bewältigen, die sowohl visuelle als auch Textdaten kombinieren. Es erzielt hervorragende Ergebnisse bei Aufgaben wie Bildbeschreibung und visueller Fragebeantwortung und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
|
714
|
+
},
|
664
715
|
"meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
|
665
716
|
"description": "Llama 3 70B Instruct Lite ist für Umgebungen geeignet, die hohe Leistung und niedrige Latenz erfordern."
|
666
717
|
},
|
@@ -739,15 +790,18 @@
|
|
739
790
|
"minicpm-v": {
|
740
791
|
"description": "MiniCPM-V ist das neue multimodale Großmodell von OpenBMB, das über hervorragende OCR-Erkennungs- und multimodale Verständnisfähigkeiten verfügt und eine Vielzahl von Anwendungsszenarien unterstützt."
|
741
792
|
},
|
793
|
+
"ministral-3b-latest": {
|
794
|
+
"description": "Ministral 3B ist das weltbeste Edge-Modell von Mistral."
|
795
|
+
},
|
796
|
+
"ministral-8b-latest": {
|
797
|
+
"description": "Ministral 8B ist das kosteneffizienteste Edge-Modell von Mistral."
|
798
|
+
},
|
742
799
|
"mistral": {
|
743
800
|
"description": "Mistral ist ein 7B-Modell von Mistral AI, das sich für vielfältige Anforderungen an die Sprachverarbeitung eignet."
|
744
801
|
},
|
745
802
|
"mistral-large": {
|
746
803
|
"description": "Mixtral Large ist das Flaggschiff-Modell von Mistral, das die Fähigkeiten zur Codegenerierung, Mathematik und Schlussfolgerungen kombiniert und ein Kontextfenster von 128k unterstützt."
|
747
804
|
},
|
748
|
-
"mistral-large-2407": {
|
749
|
-
"description": "Mistral Large (2407) ist ein fortschrittliches großes Sprachmodell (LLM) mit modernsten Fähigkeiten in den Bereichen Schlussfolgerungen, Wissen und Programmierung."
|
750
|
-
},
|
751
805
|
"mistral-large-latest": {
|
752
806
|
"description": "Mistral Large ist das Flaggschiff-Modell, das sich gut für mehrsprachige Aufgaben, komplexe Schlussfolgerungen und Codegenerierung eignet und die ideale Wahl für hochentwickelte Anwendungen ist."
|
753
807
|
},
|
@@ -769,12 +823,18 @@
|
|
769
823
|
"mistralai/Mistral-7B-Instruct-v0.3": {
|
770
824
|
"description": "Mistral (7B) Instruct v0.3 bietet effiziente Rechenleistung und natürliche Sprachverständnisfähigkeiten und eignet sich für eine Vielzahl von Anwendungen."
|
771
825
|
},
|
826
|
+
"mistralai/Mistral-7B-v0.1": {
|
827
|
+
"description": "Mistral 7B ist ein kompaktes, aber leistungsstarkes Modell, das gut für Batch-Verarbeitung und einfache Aufgaben wie Klassifizierung und Textgenerierung geeignet ist und über gute Schlussfolgerungsfähigkeiten verfügt."
|
828
|
+
},
|
772
829
|
"mistralai/Mixtral-8x22B-Instruct-v0.1": {
|
773
830
|
"description": "Mixtral-8x22B Instruct (141B) ist ein super großes Sprachmodell, das extrem hohe Verarbeitungsanforderungen unterstützt."
|
774
831
|
},
|
775
832
|
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
776
833
|
"description": "Mixtral 8x7B ist ein vortrainiertes sparsames Mischmodell, das für allgemeine Textaufgaben verwendet wird."
|
777
834
|
},
|
835
|
+
"mistralai/Mixtral-8x7B-v0.1": {
|
836
|
+
"description": "Mixtral 8x7B ist ein sparsames Expertenmodell, das mehrere Parameter nutzt, um die Schlussfolgerungsgeschwindigkeit zu erhöhen, und sich gut für mehrsprachige und Code-Generierungsaufgaben eignet."
|
837
|
+
},
|
778
838
|
"mistralai/mistral-7b-instruct": {
|
779
839
|
"description": "Mistral 7B Instruct ist ein hochleistungsfähiges Branchenstandardmodell mit Geschwindigkeitsoptimierung und Unterstützung für lange Kontexte."
|
780
840
|
},
|
@@ -802,6 +862,9 @@
|
|
802
862
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
803
863
|
"description": "Hermes 2 Pro Llama 3 8B ist die aktualisierte Version von Nous Hermes 2 und enthält die neuesten intern entwickelten Datensätze."
|
804
864
|
},
|
865
|
+
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
866
|
+
"description": "Llama 3.1 Nemotron 70B ist ein großes Sprachmodell, das von NVIDIA maßgeschneidert wurde, um die Hilfe von LLM-generierten Antworten auf Benutzeranfragen zu erhöhen."
|
867
|
+
},
|
805
868
|
"o1-mini": {
|
806
869
|
"description": "o1-mini ist ein schnelles und kosteneffizientes Inferenzmodell, das für Programmier-, Mathematik- und Wissenschaftsanwendungen entwickelt wurde. Das Modell hat einen Kontext von 128K und einen Wissensstand bis Oktober 2023."
|
807
870
|
},
|
@@ -988,6 +1051,12 @@
|
|
988
1051
|
"yi-large-turbo": {
|
989
1052
|
"description": "Hervorragendes Preis-Leistungs-Verhältnis und außergewöhnliche Leistung. Hochpräzise Feinabstimmung basierend auf Leistung, Schlussfolgerungsgeschwindigkeit und Kosten."
|
990
1053
|
},
|
1054
|
+
"yi-lightning": {
|
1055
|
+
"description": "Das neueste Hochleistungsmodell, das hochwertige Ausgaben gewährleistet und gleichzeitig die Schlussfolgerungsgeschwindigkeit erheblich verbessert."
|
1056
|
+
},
|
1057
|
+
"yi-lightning-lite": {
|
1058
|
+
"description": "Leichte Version, empfohlen wird die Verwendung von yi-lightning."
|
1059
|
+
},
|
991
1060
|
"yi-medium": {
|
992
1061
|
"description": "Mittelgroßes Modell mit verbesserten Feinabstimmungen, ausgewogene Fähigkeiten und gutes Preis-Leistungs-Verhältnis. Tiefgehende Optimierung der Anweisungsbefolgung."
|
993
1062
|
},
|
@@ -47,8 +47,8 @@
|
|
47
47
|
"ERNIE-4.0-8K-Preview": {
|
48
48
|
"description": "Baidu's self-developed flagship ultra-large-scale language model, which has achieved a comprehensive upgrade in model capabilities compared to ERNIE 3.5, widely applicable to complex task scenarios across various fields; supports automatic integration with Baidu search plugins to ensure the timeliness of Q&A information."
|
49
49
|
},
|
50
|
-
"ERNIE-4.0-Turbo-8K": {
|
51
|
-
"description": "Baidu's self-developed flagship ultra-large-scale language model, demonstrating excellent overall performance,
|
50
|
+
"ERNIE-4.0-Turbo-8K-Latest": {
|
51
|
+
"description": "Baidu's self-developed flagship ultra-large-scale language model, demonstrating excellent overall performance, suitable for complex task scenarios across various fields; supports automatic integration with Baidu search plugins to ensure the timeliness of Q&A information. It offers better performance compared to ERNIE 4.0."
|
52
52
|
},
|
53
53
|
"ERNIE-4.0-Turbo-8K-Preview": {
|
54
54
|
"description": "Baidu's self-developed flagship ultra-large-scale language model, demonstrating excellent overall performance, widely applicable to complex task scenarios across various fields; supports automatic integration with Baidu search plugins to ensure the timeliness of Q&A information. It outperforms ERNIE 4.0 in performance."
|
@@ -80,8 +80,11 @@
|
|
80
80
|
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
81
81
|
"description": "Nous Hermes-2 Yi (34B) provides optimized language output and diverse application possibilities."
|
82
82
|
},
|
83
|
-
"
|
84
|
-
"description": "
|
83
|
+
"OpenGVLab/InternVL2-26B": {
|
84
|
+
"description": "InternVL2 demonstrates exceptional performance across various visual language tasks, including document and chart understanding, scene text understanding, OCR, and solving scientific and mathematical problems."
|
85
|
+
},
|
86
|
+
"OpenGVLab/InternVL2-Llama3-76B": {
|
87
|
+
"description": "InternVL2 demonstrates exceptional performance across various visual language tasks, including document and chart understanding, scene text understanding, OCR, and solving scientific and mathematical problems."
|
85
88
|
},
|
86
89
|
"Phi-3-medium-128k-instruct": {
|
87
90
|
"description": "The same Phi-3-medium model, but with a larger context size for RAG or few-shot prompting."
|
@@ -101,9 +104,21 @@
|
|
101
104
|
"Phi-3-small-8k-instruct": {
|
102
105
|
"description": "A 7B parameter model that provides better quality than Phi-3-mini, focusing on high-quality, reasoning-dense data."
|
103
106
|
},
|
107
|
+
"Phi-3.5-mini-instruct": {
|
108
|
+
"description": "An updated version of the Phi-3-mini model."
|
109
|
+
},
|
110
|
+
"Phi-3.5-vision-instrust": {
|
111
|
+
"description": "An updated version of the Phi-3-vision model."
|
112
|
+
},
|
104
113
|
"Pro-128k": {
|
105
114
|
"description": "Spark Pro-128K is configured with ultra-large context processing capabilities, able to handle up to 128K of contextual information, particularly suitable for long texts requiring comprehensive analysis and long-term logical connections, providing smooth and consistent logic and diverse citation support in complex text communication."
|
106
115
|
},
|
116
|
+
"Pro/OpenGVLab/InternVL2-8B": {
|
117
|
+
"description": "InternVL2 demonstrates exceptional performance across various visual language tasks, including document and chart understanding, scene text understanding, OCR, and solving scientific and mathematical problems."
|
118
|
+
},
|
119
|
+
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
120
|
+
"description": "Qwen2-VL is the latest iteration of the Qwen-VL model, achieving state-of-the-art performance in visual understanding benchmarks."
|
121
|
+
},
|
107
122
|
"Qwen/Qwen1.5-110B-Chat": {
|
108
123
|
"description": "As a beta version of Qwen2, Qwen1.5 utilizes large-scale data to achieve more precise conversational capabilities."
|
109
124
|
},
|
@@ -113,18 +128,27 @@
|
|
113
128
|
"Qwen/Qwen2-72B-Instruct": {
|
114
129
|
"description": "Qwen2 is an advanced general-purpose language model that supports various types of instructions."
|
115
130
|
},
|
131
|
+
"Qwen/Qwen2-VL-72B-Instruct": {
|
132
|
+
"description": "Qwen2-VL is the latest iteration of the Qwen-VL model, achieving state-of-the-art performance in visual understanding benchmarks."
|
133
|
+
},
|
116
134
|
"Qwen/Qwen2.5-14B-Instruct": {
|
117
135
|
"description": "Qwen2.5 is a brand new series of large language models designed to optimize the handling of instruction-based tasks."
|
118
136
|
},
|
119
137
|
"Qwen/Qwen2.5-32B-Instruct": {
|
120
138
|
"description": "Qwen2.5 is a brand new series of large language models designed to optimize the handling of instruction-based tasks."
|
121
139
|
},
|
122
|
-
"Qwen/Qwen2.5-72B-Instruct": {
|
123
|
-
"description": "Qwen2.5 is a
|
140
|
+
"Qwen/Qwen2.5-72B-Instruct-128K": {
|
141
|
+
"description": "Qwen2.5 is a new large language model series with enhanced understanding and generation capabilities."
|
142
|
+
},
|
143
|
+
"Qwen/Qwen2.5-72B-Instruct-Turbo": {
|
144
|
+
"description": "Qwen2.5 is a new large language model series designed to optimize instruction-based task processing."
|
124
145
|
},
|
125
146
|
"Qwen/Qwen2.5-7B-Instruct": {
|
126
147
|
"description": "Qwen2.5 is a brand new series of large language models designed to optimize the handling of instruction-based tasks."
|
127
148
|
},
|
149
|
+
"Qwen/Qwen2.5-7B-Instruct-Turbo": {
|
150
|
+
"description": "Qwen2.5 is a new large language model series designed to optimize instruction-based task processing."
|
151
|
+
},
|
128
152
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
129
153
|
"description": "Qwen2.5-Coder focuses on code writing."
|
130
154
|
},
|
@@ -158,9 +182,6 @@
|
|
158
182
|
"accounts/fireworks/models/firellava-13b": {
|
159
183
|
"description": "fireworks-ai/FireLLaVA-13b is a visual language model that can accept both image and text inputs, trained on high-quality data, suitable for multimodal tasks."
|
160
184
|
},
|
161
|
-
"accounts/fireworks/models/gemma2-9b-it": {
|
162
|
-
"description": "Gemma 2 9B instruction model, based on previous Google technology, suitable for answering questions, summarizing, and reasoning across various text generation tasks."
|
163
|
-
},
|
164
185
|
"accounts/fireworks/models/llama-v3-70b-instruct": {
|
165
186
|
"description": "Llama 3 70B instruction model, optimized for multilingual dialogues and natural language understanding, outperforming most competitive models."
|
166
187
|
},
|
@@ -182,6 +203,18 @@
|
|
182
203
|
"accounts/fireworks/models/llama-v3p1-8b-instruct": {
|
183
204
|
"description": "Llama 3.1 8B instruction model, optimized for multilingual dialogues, capable of surpassing most open-source and closed-source models on common industry benchmarks."
|
184
205
|
},
|
206
|
+
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct": {
|
207
|
+
"description": "Meta's 11B parameter instruction-tuned image reasoning model. This model is optimized for visual recognition, image reasoning, image description, and answering general questions about images. It understands visual data like charts and graphs, generating text descriptions of image details to bridge the gap between vision and language."
|
208
|
+
},
|
209
|
+
"accounts/fireworks/models/llama-v3p2-1b-instruct": {
|
210
|
+
"description": "The Llama 3.2 1B instruction model is a lightweight multilingual model introduced by Meta. This model aims to enhance efficiency, providing significant improvements in latency and cost compared to larger models. Sample use cases include retrieval and summarization."
|
211
|
+
},
|
212
|
+
"accounts/fireworks/models/llama-v3p2-3b-instruct": {
|
213
|
+
"description": "The Llama 3.2 3B instruction model is a lightweight multilingual model introduced by Meta. This model aims to enhance efficiency, providing significant improvements in latency and cost compared to larger models. Sample use cases include querying, prompt rewriting, and writing assistance."
|
214
|
+
},
|
215
|
+
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct": {
|
216
|
+
"description": "Meta's 90B parameter instruction-tuned image reasoning model. This model is optimized for visual recognition, image reasoning, image description, and answering general questions about images. It understands visual data like charts and graphs, generating text descriptions of image details to bridge the gap between vision and language."
|
217
|
+
},
|
185
218
|
"accounts/fireworks/models/mixtral-8x22b-instruct": {
|
186
219
|
"description": "Mixtral MoE 8x22B instruction model, featuring large-scale parameters and a multi-expert architecture, fully supporting efficient processing of complex tasks."
|
187
220
|
},
|
@@ -197,6 +230,9 @@
|
|
197
230
|
"accounts/fireworks/models/phi-3-vision-128k-instruct": {
|
198
231
|
"description": "Phi 3 Vision instruction model, a lightweight multimodal model capable of handling complex visual and textual information, with strong reasoning abilities."
|
199
232
|
},
|
233
|
+
"accounts/fireworks/models/qwen2p5-72b-instruct": {
|
234
|
+
"description": "Qwen2.5 is a series of decoder-only language models developed by the Alibaba Cloud Qwen team. These models come in different sizes including 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B, available in both base and instruct variants."
|
235
|
+
},
|
200
236
|
"accounts/fireworks/models/starcoder-16b": {
|
201
237
|
"description": "StarCoder 15.5B model supports advanced programming tasks, enhanced multilingual capabilities, suitable for complex code generation and understanding."
|
202
238
|
},
|
@@ -212,9 +248,6 @@
|
|
212
248
|
"ai21-jamba-1.5-mini": {
|
213
249
|
"description": "A 52B parameter (12B active) multilingual model, offering a 256K long context window, function calling, structured output, and grounded generation."
|
214
250
|
},
|
215
|
-
"ai21-jamba-instruct": {
|
216
|
-
"description": "A production-grade Mamba-based LLM model designed to achieve best-in-class performance, quality, and cost efficiency."
|
217
|
-
},
|
218
251
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
219
252
|
"description": "Claude 3.5 Sonnet raises the industry standard, outperforming competitor models and Claude 3 Opus, excelling in a wide range of evaluations while maintaining the speed and cost of our mid-tier models."
|
220
253
|
},
|
@@ -592,9 +625,15 @@
|
|
592
625
|
"llama-3.1-sonar-small-128k-online": {
|
593
626
|
"description": "Llama 3.1 Sonar Small Online model, featuring 8B parameters, supports a context length of approximately 127,000 tokens, designed for online chat, efficiently handling various text interactions."
|
594
627
|
},
|
628
|
+
"llama-3.2-11b-vision-instruct": {
|
629
|
+
"description": "Excellent image reasoning capabilities on high-resolution images, suitable for visual understanding applications."
|
630
|
+
},
|
595
631
|
"llama-3.2-11b-vision-preview": {
|
596
632
|
"description": "Llama 3.2 is designed to handle tasks that combine visual and textual data. It excels in tasks such as image description and visual question answering, bridging the gap between language generation and visual reasoning."
|
597
633
|
},
|
634
|
+
"llama-3.2-90b-vision-instruct": {
|
635
|
+
"description": "Advanced image reasoning capabilities suitable for visual understanding agent applications."
|
636
|
+
},
|
598
637
|
"llama-3.2-90b-vision-preview": {
|
599
638
|
"description": "Llama 3.2 is designed to handle tasks that combine visual and textual data. It excels in tasks such as image description and visual question answering, bridging the gap between language generation and visual reasoning."
|
600
639
|
},
|
@@ -652,8 +691,8 @@
|
|
652
691
|
"meta-llama/Llama-2-13b-chat-hf": {
|
653
692
|
"description": "LLaMA-2 Chat (13B) offers excellent language processing capabilities and outstanding interactive experiences."
|
654
693
|
},
|
655
|
-
"meta-llama/Llama-2-
|
656
|
-
"description": "
|
694
|
+
"meta-llama/Llama-2-70b-hf": {
|
695
|
+
"description": "LLaMA-2 provides excellent language processing capabilities and outstanding interactive experiences."
|
657
696
|
},
|
658
697
|
"meta-llama/Llama-3-70b-chat-hf": {
|
659
698
|
"description": "LLaMA-3 Chat (70B) is a powerful chat model that supports complex conversational needs."
|
@@ -661,6 +700,18 @@
|
|
661
700
|
"meta-llama/Llama-3-8b-chat-hf": {
|
662
701
|
"description": "LLaMA-3 Chat (8B) provides multilingual support, covering a rich array of domain knowledge."
|
663
702
|
},
|
703
|
+
"meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo": {
|
704
|
+
"description": "LLaMA 3.2 is designed for tasks involving both visual and textual data. It excels in tasks like image description and visual question answering, bridging the gap between language generation and visual reasoning."
|
705
|
+
},
|
706
|
+
"meta-llama/Llama-3.2-3B-Instruct-Turbo": {
|
707
|
+
"description": "LLaMA 3.2 is designed for tasks involving both visual and textual data. It excels in tasks like image description and visual question answering, bridging the gap between language generation and visual reasoning."
|
708
|
+
},
|
709
|
+
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
710
|
+
"description": "LLaMA 3.2 is designed for tasks involving both visual and textual data. It excels in tasks like image description and visual question answering, bridging the gap between language generation and visual reasoning."
|
711
|
+
},
|
712
|
+
"meta-llama/Llama-Vision-Free": {
|
713
|
+
"description": "LLaMA 3.2 is designed for tasks involving both visual and textual data. It excels in tasks like image description and visual question answering, bridging the gap between language generation and visual reasoning."
|
714
|
+
},
|
664
715
|
"meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
|
665
716
|
"description": "Llama 3 70B Instruct Lite is suitable for environments requiring high performance and low latency."
|
666
717
|
},
|
@@ -739,15 +790,18 @@
|
|
739
790
|
"minicpm-v": {
|
740
791
|
"description": "MiniCPM-V is a next-generation multimodal large model launched by OpenBMB, boasting exceptional OCR recognition and multimodal understanding capabilities, supporting a wide range of application scenarios."
|
741
792
|
},
|
793
|
+
"ministral-3b-latest": {
|
794
|
+
"description": "Ministral 3B is Mistral's top-tier edge model."
|
795
|
+
},
|
796
|
+
"ministral-8b-latest": {
|
797
|
+
"description": "Ministral 8B is Mistral's cost-effective edge model."
|
798
|
+
},
|
742
799
|
"mistral": {
|
743
800
|
"description": "Mistral is a 7B model released by Mistral AI, suitable for diverse language processing needs."
|
744
801
|
},
|
745
802
|
"mistral-large": {
|
746
803
|
"description": "Mixtral Large is Mistral's flagship model, combining capabilities in code generation, mathematics, and reasoning, supporting a 128k context window."
|
747
804
|
},
|
748
|
-
"mistral-large-2407": {
|
749
|
-
"description": "Mistral Large (2407) is an advanced Large Language Model (LLM) with state-of-the-art reasoning, knowledge, and coding capabilities."
|
750
|
-
},
|
751
805
|
"mistral-large-latest": {
|
752
806
|
"description": "Mistral Large is the flagship model, excelling in multilingual tasks, complex reasoning, and code generation, making it an ideal choice for high-end applications."
|
753
807
|
},
|
@@ -769,12 +823,18 @@
|
|
769
823
|
"mistralai/Mistral-7B-Instruct-v0.3": {
|
770
824
|
"description": "Mistral (7B) Instruct v0.3 offers efficient computational power and natural language understanding, suitable for a wide range of applications."
|
771
825
|
},
|
826
|
+
"mistralai/Mistral-7B-v0.1": {
|
827
|
+
"description": "Mistral 7B is a compact yet high-performance model, adept at handling batch processing and simple tasks like classification and text generation, featuring good reasoning capabilities."
|
828
|
+
},
|
772
829
|
"mistralai/Mixtral-8x22B-Instruct-v0.1": {
|
773
830
|
"description": "Mixtral-8x22B Instruct (141B) is a super large language model that supports extremely high processing demands."
|
774
831
|
},
|
775
832
|
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
776
833
|
"description": "Mixtral 8x7B is a pre-trained sparse mixture of experts model for general text tasks."
|
777
834
|
},
|
835
|
+
"mistralai/Mixtral-8x7B-v0.1": {
|
836
|
+
"description": "Mixtral 8x7B is a sparse expert model that utilizes multiple parameters to enhance reasoning speed, suitable for multilingual and code generation tasks."
|
837
|
+
},
|
778
838
|
"mistralai/mistral-7b-instruct": {
|
779
839
|
"description": "Mistral 7B Instruct is a high-performance industry-standard model optimized for speed and long context support."
|
780
840
|
},
|
@@ -802,6 +862,9 @@
|
|
802
862
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
803
863
|
"description": "Hermes 2 Pro Llama 3 8B is an upgraded version of Nous Hermes 2, featuring the latest internally developed datasets."
|
804
864
|
},
|
865
|
+
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
866
|
+
"description": "Llama 3.1 Nemotron 70B is a large language model customized by NVIDIA, designed to enhance the help provided by LLM-generated responses to user queries."
|
867
|
+
},
|
805
868
|
"o1-mini": {
|
806
869
|
"description": "o1-mini is a fast and cost-effective reasoning model designed for programming, mathematics, and scientific applications. This model features a 128K context and has a knowledge cutoff date of October 2023."
|
807
870
|
},
|
@@ -988,6 +1051,12 @@
|
|
988
1051
|
"yi-large-turbo": {
|
989
1052
|
"description": "Exceptional performance at a high cost-performance ratio. Conducts high-precision tuning based on performance, inference speed, and cost."
|
990
1053
|
},
|
1054
|
+
"yi-lightning": {
|
1055
|
+
"description": "The latest high-performance model, ensuring high-quality output while significantly improving reasoning speed."
|
1056
|
+
},
|
1057
|
+
"yi-lightning-lite": {
|
1058
|
+
"description": "A lightweight version, recommended to use yi-lightning."
|
1059
|
+
},
|
991
1060
|
"yi-medium": {
|
992
1061
|
"description": "Medium-sized model upgraded and fine-tuned, balanced capabilities, and high cost-performance ratio. Deeply optimized instruction-following capabilities."
|
993
1062
|
},
|