@lobehub/chat 1.19.13 → 1.19.15

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2,9 +2,6 @@
2
2
  "01-ai/Yi-1.5-34B-Chat-16K": {
3
3
  "description": "Yi-1.5 34B,以豐富的訓練樣本在行業應用中提供優越表現。"
4
4
  },
5
- "01-ai/Yi-1.5-6B-Chat": {
6
- "description": "Yi-1.5 是Yi系列的進化版本,擁有高品質的預訓練和豐富的微調數據。"
7
- },
8
5
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
6
  "description": "Yi-1.5 9B 支持16K Tokens,提供高效、流暢的語言生成能力。"
10
7
  },
@@ -47,41 +44,56 @@
47
44
  "NousResearch/Nous-Hermes-2-Yi-34B": {
48
45
  "description": "Nous Hermes-2 Yi (34B) 提供優化的語言輸出和多樣化的應用可能。"
49
46
  },
47
+ "Phi-3-5-mini-instruct": {
48
+ "description": "Phi-3-mini模型的更新版本。"
49
+ },
50
+ "Phi-3-medium-128k-instruct": {
51
+ "description": "相同的Phi-3-medium模型,但具有更大的上下文大小,適用於RAG或少量提示。"
52
+ },
53
+ "Phi-3-medium-4k-instruct": {
54
+ "description": "一個14B參數模型,質量優於Phi-3-mini,專注於高質量、推理密集型數據。"
55
+ },
56
+ "Phi-3-mini-128k-instruct": {
57
+ "description": "相同的Phi-3-mini模型,但具有更大的上下文大小,適用於RAG或少量提示。"
58
+ },
59
+ "Phi-3-mini-4k-instruct": {
60
+ "description": "Phi-3系列中最小的成員。優化了質量和低延遲。"
61
+ },
62
+ "Phi-3-small-128k-instruct": {
63
+ "description": "相同的Phi-3-small模型,但具有更大的上下文大小,適用於RAG或少量提示。"
64
+ },
65
+ "Phi-3-small-8k-instruct": {
66
+ "description": "一個7B參數模型,質量優於Phi-3-mini,專注於高質量、推理密集型數據。"
67
+ },
50
68
  "Pro-128k": {
51
69
  "description": "Spark Pro-128K 配置了特大上下文處理能力,能夠處理多達128K的上下文信息,特別適合需通篇分析和長期邏輯關聯處理的長文內容,可在複雜文本溝通中提供流暢一致的邏輯與多樣的引用支持。"
52
70
  },
53
71
  "Qwen/Qwen1.5-110B-Chat": {
54
72
  "description": "作為 Qwen2 的測試版,Qwen1.5 使用大規模數據實現了更精確的對話功能。"
55
73
  },
56
- "Qwen/Qwen1.5-14B-Chat": {
57
- "description": "Qwen1.5 通過大規模數據集訓練,擅長複雜的語言任務。"
58
- },
59
- "Qwen/Qwen1.5-32B-Chat": {
60
- "description": "Qwen1.5 具備多領域問答和文本生成的能力。"
61
- },
62
74
  "Qwen/Qwen1.5-72B-Chat": {
63
75
  "description": "Qwen 1.5 Chat (72B) 提供快速響應和自然對話能力,適合多語言環境。"
64
76
  },
65
- "Qwen/Qwen1.5-7B-Chat": {
66
- "description": "Qwen1.5 通過結合高級預訓練和微調提升對話表達能力。"
77
+ "Qwen/Qwen2-72B-Instruct": {
78
+ "description": "Qwen2 是先進的通用語言模型,支持多種指令類型。"
67
79
  },
68
- "Qwen/Qwen2-1.5B-Instruct": {
69
- "description": "Qwen2 是全新的大型語言模型系列,旨在優化指令式任務的處理。"
80
+ "Qwen/Qwen2.5-14B-Instruct": {
81
+ "description": "Qwen2.5是全新的大型語言模型系列,旨在優化指令式任務的處理。"
70
82
  },
71
- "Qwen/Qwen2-57B-A14B-Instruct": {
72
- "description": "Qwen2 是全新的系列,57B A14B 型號在指令任務中表現卓越。"
83
+ "Qwen/Qwen2.5-32B-Instruct": {
84
+ "description": "Qwen2.5是全新的大型語言模型系列,旨在優化指令式任務的處理。"
73
85
  },
74
- "Qwen/Qwen2-72B-Instruct": {
75
- "description": "Qwen2 是先進的通用語言模型,支持多種指令類型。"
86
+ "Qwen/Qwen2.5-72B-Instruct": {
87
+ "description": "Qwen2.5是全新的大型語言模型系列,具有更強的理解和生成能力。"
76
88
  },
77
- "Qwen/Qwen2-7B-Instruct": {
78
- "description": "Qwen2 是全新的大型語言模型系列,具有更強的理解和生成能力。"
89
+ "Qwen/Qwen2.5-7B-Instruct": {
90
+ "description": "Qwen2.5是全新的大型語言模型系列,旨在優化指令式任務的處理。"
79
91
  },
80
- "Qwen/Qwen2-Math-72B-Instruct": {
81
- "description": "Qwen2-Math 專注於數學領域的問題求解,為高難度題提供專業解答。"
92
+ "Qwen/Qwen2.5-Coder-7B-Instruct": {
93
+ "description": "Qwen2.5-Coder專注於代碼編寫。"
82
94
  },
83
- "THUDM/chatglm3-6b": {
84
- "description": "作為雙語會話語言模型,ChatGLM3能處理中英文轉換任務。"
95
+ "Qwen/Qwen2.5-Math-72B-Instruct": {
96
+ "description": "Qwen2.5-Math專注於數學領域的問題求解,為高難度題提供專業解答。"
85
97
  },
86
98
  "THUDM/glm-4-9b-chat": {
87
99
  "description": "GLM-4 9B 開放源碼版本,為會話應用提供優化後的對話體驗。"
@@ -158,6 +170,15 @@
158
170
  "accounts/yi-01-ai/models/yi-large": {
159
171
  "description": "Yi-Large 模型,具備卓越的多語言處理能力,可用於各類語言生成和理解任務。"
160
172
  },
173
+ "ai21-jamba-1.5-large": {
174
+ "description": "一個398B參數(94B活躍)多語言模型,提供256K長上下文窗口、函數調用、結構化輸出和基於實體的生成。"
175
+ },
176
+ "ai21-jamba-1.5-mini": {
177
+ "description": "一個52B參數(12B活躍)多語言模型,提供256K長上下文窗口、函數調用、結構化輸出和基於實體的生成。"
178
+ },
179
+ "ai21-jamba-instruct": {
180
+ "description": "一個生產級的基於Mamba的LLM模型,以實現最佳性能、質量和成本效率。"
181
+ },
161
182
  "anthropic.claude-3-5-sonnet-20240620-v1:0": {
162
183
  "description": "Claude 3.5 Sonnet提升了行業標準,性能超過競爭對手模型和Claude 3 Opus,在廣泛的評估中表現出色,同時具有我們中等層級模型的速度和成本。"
163
184
  },
@@ -254,6 +275,12 @@
254
275
  "cognitivecomputations/dolphin-mixtral-8x22b": {
255
276
  "description": "Dolphin Mixtral 8x22B 是一款為指令遵循、對話和編程設計的模型。"
256
277
  },
278
+ "cohere-command-r": {
279
+ "description": "Command R是一個可擴展的生成模型,針對RAG和工具使用,旨在為企業提供生產級AI。"
280
+ },
281
+ "cohere-command-r-plus": {
282
+ "description": "Command R+是一個最先進的RAG優化模型,旨在應對企業級工作負載。"
283
+ },
257
284
  "command-r": {
258
285
  "description": "Command R 是優化用於對話和長上下文任務的 LLM,特別適合動態交互與知識管理。"
259
286
  },
@@ -263,12 +290,6 @@
263
290
  "databricks/dbrx-instruct": {
264
291
  "description": "DBRX Instruct 提供高可靠性的指令處理能力,支持多行業應用。"
265
292
  },
266
- "deepseek-ai/DeepSeek-Coder-V2-Instruct": {
267
- "description": "DeepSeek Coder V2 為代碼任務設計,專注於高效的代碼生成。"
268
- },
269
- "deepseek-ai/DeepSeek-V2-Chat": {
270
- "description": "DeepSeek V2 具備67億參數,支持英中文本處理。"
271
- },
272
293
  "deepseek-ai/DeepSeek-V2.5": {
273
294
  "description": "DeepSeek V2.5 集合了先前版本的優秀特徵,增強了通用和編碼能力。"
274
295
  },
@@ -467,6 +488,8 @@
467
488
  "internlm/internlm2_5-7b-chat": {
468
489
  "description": "InternLM2.5 提供多場景下的智能對話解決方案。"
469
490
  },
491
+ "jamba-1.5-large": {},
492
+ "jamba-1.5-mini": {},
470
493
  "llama-3.1-70b-instruct": {
471
494
  "description": "Llama 3.1 70B Instruct 模型,具備 70B 參數,能在大型文本生成和指示任務中提供卓越性能。"
472
495
  },
@@ -530,6 +553,21 @@
530
553
  "mathstral": {
531
554
  "description": "MathΣtral 專為科學研究和數學推理設計,提供有效的計算能力和結果解釋。"
532
555
  },
556
+ "meta-llama-3-70b-instruct": {
557
+ "description": "一個強大的70億參數模型,在推理、編碼和廣泛的語言應用中表現出色。"
558
+ },
559
+ "meta-llama-3-8b-instruct": {
560
+ "description": "一個多功能的8億參數模型,優化了對話和文本生成任務。"
561
+ },
562
+ "meta-llama-3.1-405b-instruct": {
563
+ "description": "Llama 3.1指令調整的文本模型,針對多語言對話用例進行優化,並在許多可用的開源和封閉聊天模型中超越了常見行業基準。"
564
+ },
565
+ "meta-llama-3.1-70b-instruct": {
566
+ "description": "Llama 3.1指令調整的文本模型,針對多語言對話用例進行優化,並在許多可用的開源和封閉聊天模型中超越了常見行業基準。"
567
+ },
568
+ "meta-llama-3.1-8b-instruct": {
569
+ "description": "Llama 3.1指令調整的文本模型,針對多語言對話用例進行優化,並在許多可用的開源和封閉聊天模型中超越了常見行業基準。"
570
+ },
533
571
  "meta-llama/Llama-2-13b-chat-hf": {
534
572
  "description": "LLaMA-2 Chat (13B) 提供優秀的語言處理能力和出色的互動體驗。"
535
573
  },
@@ -539,9 +577,6 @@
539
577
  "meta-llama/Llama-3-8b-chat-hf": {
540
578
  "description": "LLaMA-3 Chat (8B) 提供多語言支持,涵蓋豐富的領域知識。"
541
579
  },
542
- "meta-llama/Meta-Llama-3-70B-Instruct": {
543
- "description": "LLaMA 3 支持大容量文本生成和指令解析。"
544
- },
545
580
  "meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
546
581
  "description": "Llama 3 70B Instruct Lite 適合需要高效能和低延遲的環境。"
547
582
  },
@@ -620,12 +655,21 @@
620
655
  "mistral-large": {
621
656
  "description": "Mixtral Large 是 Mistral 的旗艦模型,結合代碼生成、數學和推理的能力,支持 128k 上下文窗口。"
622
657
  },
658
+ "mistral-large-2407": {
659
+ "description": "Mistral Large (2407)是一個先進的大型語言模型(LLM),具有最先進的推理、知識和編碼能力。"
660
+ },
623
661
  "mistral-large-latest": {
624
662
  "description": "Mistral Large 是旗艦大模型,擅長多語言任務、複雜推理和代碼生成,是高端應用的理想選擇。"
625
663
  },
626
664
  "mistral-nemo": {
627
665
  "description": "Mistral Nemo 由 Mistral AI 和 NVIDIA 合作推出,是高效性能的 12B 模型。"
628
666
  },
667
+ "mistral-small": {
668
+ "description": "Mistral Small可用於任何需要高效率和低延遲的語言任務。"
669
+ },
670
+ "mistral-small-latest": {
671
+ "description": "Mistral Small是一個成本效益高、快速且可靠的選擇,適用於翻譯、摘要和情感分析等用例。"
672
+ },
629
673
  "mistralai/Mistral-7B-Instruct-v0.1": {
630
674
  "description": "Mistral (7B) Instruct 以高性能著稱,適用於多種語言任務。"
631
675
  },
@@ -713,20 +757,29 @@
713
757
  "phi3:14b": {
714
758
  "description": "Phi-3 是微軟推出的輕量級開放模型,適用於高效集成和大規模知識推理。"
715
759
  },
760
+ "pixtral-12b-2409": {
761
+ "description": "Pixtral模型在圖表和圖理解、文檔問答、多模態推理和指令遵循等任務上表現出強大的能力,能夠以自然分辨率和寬高比攝入圖像,還能夠在長達128K令牌的長上下文窗口中處理任意數量的圖像。"
762
+ },
763
+ "qwen-coder-turbo-latest": {
764
+ "description": "通義千問代碼模型。"
765
+ },
716
766
  "qwen-long": {
717
767
  "description": "通義千問超大規模語言模型,支持長文本上下文,以及基於長文檔、多文檔等多個場景的對話功能。"
718
768
  },
719
- "qwen-max": {
720
- "description": "通義千問千億級別超大規模語言模型,支持中文、英文等不同語言輸入,當前通義千問2.5產品版本背後的API模型"
769
+ "qwen-math-plus-latest": {
770
+ "description": "通義千問數學模型是專門用於數學解題的語言模型。"
721
771
  },
722
- "qwen-max-longcontext": {
723
- "description": "通義千問千億級別超大規模語言模型,支持中文、英文等不同語言輸入,擴展了上下文窗口"
772
+ "qwen-math-turbo-latest": {
773
+ "description": "通義千問數學模型是專門用於數學解題的語言模型。"
724
774
  },
725
- "qwen-plus": {
726
- "description": "通義千問超大規模語言模型增強版,支持中文、英文等不同語言輸入"
775
+ "qwen-max-latest": {
776
+ "description": "通義千問千億級別超大規模語言模型,支持中文、英文等不同語言輸入,當前通義千問2.5產品版本背後的API模型。"
727
777
  },
728
- "qwen-turbo": {
729
- "description": "通義千問超大規模語言模型,支持中文、英文等不同語言輸入"
778
+ "qwen-plus-latest": {
779
+ "description": "通義千問超大規模語言模型增強版,支持中文、英文等不同語言輸入。"
780
+ },
781
+ "qwen-turbo-latest": {
782
+ "description": "通義千問超大規模語言模型,支持中文、英文等不同語言輸入。"
730
783
  },
731
784
  "qwen-vl-chat-v1": {
732
785
  "description": "通義千問VL支持靈活的交互方式,包括多圖、多輪問答、創作等能力的模型。"
@@ -746,17 +799,32 @@
746
799
  "qwen2": {
747
800
  "description": "Qwen2 是阿里巴巴的新一代大規模語言模型,以優異的性能支持多元化的應用需求。"
748
801
  },
749
- "qwen2-57b-a14b-instruct": {
750
- "description": "通義千問2對外開源的57B規模14B激活參數的MOE模型"
802
+ "qwen2.5-14b-instruct": {
803
+ "description": "通義千問2.5對外開源的14B規模的模型。"
804
+ },
805
+ "qwen2.5-32b-instruct": {
806
+ "description": "通義千問2.5對外開源的32B規模的模型。"
807
+ },
808
+ "qwen2.5-72b-instruct": {
809
+ "description": "通義千問2.5對外開源的72B規模的模型。"
810
+ },
811
+ "qwen2.5-7b-instruct": {
812
+ "description": "通義千問2.5對外開源的7B規模的模型。"
813
+ },
814
+ "qwen2.5-coder-1.5b-instruct": {
815
+ "description": "通義千問代碼模型開源版。"
816
+ },
817
+ "qwen2.5-coder-7b-instruct": {
818
+ "description": "通義千問代碼模型開源版。"
751
819
  },
752
- "qwen2-72b-instruct": {
753
- "description": "通義千問2對外開源的72B規模的模型"
820
+ "qwen2.5-math-1.5b-instruct": {
821
+ "description": "Qwen-Math模型具有強大的數學解題能力。"
754
822
  },
755
- "qwen2-7b-instruct": {
756
- "description": "通義千問2對外開源的7B規模的模型"
823
+ "qwen2.5-math-72b-instruct": {
824
+ "description": "Qwen-Math模型具有強大的數學解題能力。"
757
825
  },
758
- "qwen2-math-72b-instruct": {
759
- "description": "Qwen2-Math模型具有強大的數學解題能力"
826
+ "qwen2.5-math-7b-instruct": {
827
+ "description": "Qwen-Math模型具有強大的數學解題能力。"
760
828
  },
761
829
  "qwen2:0.5b": {
762
830
  "description": "Qwen2 是阿里巴巴的新一代大規模語言模型,以優異的性能支持多元化的應用需求。"
@@ -1,4 +1,5 @@
1
1
  {
2
+ "ai21": {},
2
3
  "ai360": {
3
4
  "description": "360 AI 是 360 公司推出的 AI 模型和服務平台,提供多種先進的自然語言處理模型,包括 360GPT2 Pro、360GPT Pro、360GPT Turbo 和 360GPT Turbo Responsibility 8K。這些模型結合了大規模參數和多模態能力,廣泛應用於文本生成、語義理解、對話系統與代碼生成等領域。通過靈活的定價策略,360 AI 滿足多樣化用戶需求,支持開發者集成,推動智能化應用的革新和發展。"
4
5
  },
@@ -20,6 +21,9 @@
20
21
  "fireworksai": {
21
22
  "description": "Fireworks AI 是一家領先的高級語言模型服務商,專注於功能調用和多模態處理。其最新模型 Firefunction V2 基於 Llama-3,優化用於函數調用、對話及指令跟隨。視覺語言模型 FireLLaVA-13B 支持圖像和文本混合輸入。其他 notable 模型包括 Llama 系列和 Mixtral 系列,提供高效的多語言指令跟隨與生成支持。"
22
23
  },
24
+ "github": {
25
+ "description": "透過 GitHub 模型,開發者可以成為 AI 工程師,並使用業界領先的 AI 模型進行建設。"
26
+ },
23
27
  "google": {
24
28
  "description": "Google 的 Gemini 系列是其最先進、通用的 AI 模型,由 Google DeepMind 打造,專為多模態設計,支持文本、代碼、圖像、音頻和視頻的無縫理解與處理。適用於從數據中心到移動設備的多種環境,極大提升了 AI 模型的效率與應用廣泛性。"
25
29
  },
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@lobehub/chat",
3
- "version": "1.19.13",
3
+ "version": "1.19.15",
4
4
  "description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
5
5
  "keywords": [
6
6
  "framework",
@@ -208,6 +208,7 @@
208
208
  "rtl-detect": "^1.1.2",
209
209
  "semver": "^7.6.3",
210
210
  "sharp": "^0.33.5",
211
+ "shiki": "1.17.7",
211
212
  "stripe": "^15.8.0",
212
213
  "superjson": "^2.2.1",
213
214
  "svix": "^1.30.0",