@lobehub/chat 1.19.13 → 1.19.15
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/locales/ar/models.json +116 -48
- package/locales/ar/providers.json +4 -0
- package/locales/bg-BG/models.json +116 -48
- package/locales/bg-BG/providers.json +4 -0
- package/locales/de-DE/models.json +116 -48
- package/locales/de-DE/providers.json +4 -0
- package/locales/en-US/models.json +116 -48
- package/locales/en-US/providers.json +4 -0
- package/locales/es-ES/models.json +116 -48
- package/locales/es-ES/providers.json +4 -0
- package/locales/fr-FR/models.json +116 -48
- package/locales/fr-FR/providers.json +4 -0
- package/locales/it-IT/models.json +0 -60
- package/locales/it-IT/providers.json +4 -0
- package/locales/ja-JP/models.json +116 -48
- package/locales/ja-JP/providers.json +4 -0
- package/locales/ko-KR/models.json +116 -48
- package/locales/ko-KR/providers.json +4 -0
- package/locales/nl-NL/models.json +0 -60
- package/locales/pl-PL/models.json +0 -60
- package/locales/pt-BR/models.json +116 -48
- package/locales/pt-BR/providers.json +4 -0
- package/locales/ru-RU/models.json +116 -48
- package/locales/ru-RU/providers.json +4 -0
- package/locales/tr-TR/models.json +116 -48
- package/locales/tr-TR/providers.json +4 -0
- package/locales/vi-VN/models.json +0 -60
- package/locales/zh-CN/models.json +122 -54
- package/locales/zh-CN/providers.json +4 -0
- package/locales/zh-TW/models.json +116 -48
- package/locales/zh-TW/providers.json +4 -0
- package/package.json +2 -1
@@ -2,9 +2,6 @@
|
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
3
|
"description": "Yi-1.5 34B, với mẫu huấn luyện phong phú, cung cấp hiệu suất vượt trội trong ứng dụng ngành."
|
4
4
|
},
|
5
|
-
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
-
"description": "Yi-1.5 là phiên bản tiến hóa của dòng Yi, có đào tạo trước chất lượng cao và dữ liệu tinh chỉnh phong phú."
|
7
|
-
},
|
8
5
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
6
|
"description": "Yi-1.5 9B hỗ trợ 16K Tokens, cung cấp khả năng tạo ngôn ngữ hiệu quả và mượt mà."
|
10
7
|
},
|
@@ -53,36 +50,12 @@
|
|
53
50
|
"Qwen/Qwen1.5-110B-Chat": {
|
54
51
|
"description": "Là phiên bản thử nghiệm của Qwen2, Qwen1.5 sử dụng dữ liệu quy mô lớn để đạt được chức năng đối thoại chính xác hơn."
|
55
52
|
},
|
56
|
-
"Qwen/Qwen1.5-14B-Chat": {
|
57
|
-
"description": "Qwen1.5 được đào tạo từ bộ dữ liệu quy mô lớn, xuất sắc trong các nhiệm vụ ngôn ngữ phức tạp."
|
58
|
-
},
|
59
|
-
"Qwen/Qwen1.5-32B-Chat": {
|
60
|
-
"description": "Qwen1.5 có khả năng trả lời câu hỏi đa lĩnh vực và tạo văn bản."
|
61
|
-
},
|
62
53
|
"Qwen/Qwen1.5-72B-Chat": {
|
63
54
|
"description": "Qwen 1.5 Chat (72B) cung cấp phản hồi nhanh và khả năng đối thoại tự nhiên, phù hợp cho môi trường đa ngôn ngữ."
|
64
55
|
},
|
65
|
-
"Qwen/Qwen1.5-7B-Chat": {
|
66
|
-
"description": "Qwen1.5 nâng cao khả năng diễn đạt trong đối thoại thông qua việc kết hợp giữa đào tạo trước cao cấp và tinh chỉnh."
|
67
|
-
},
|
68
|
-
"Qwen/Qwen2-1.5B-Instruct": {
|
69
|
-
"description": "Qwen2 là dòng mô hình ngôn ngữ lớn hoàn toàn mới, nhằm tối ưu hóa việc xử lý các nhiệm vụ theo hướng dẫn."
|
70
|
-
},
|
71
|
-
"Qwen/Qwen2-57B-A14B-Instruct": {
|
72
|
-
"description": "Qwen2 là dòng mới, mô hình 57B A14B thể hiện xuất sắc trong các nhiệm vụ theo hướng dẫn."
|
73
|
-
},
|
74
56
|
"Qwen/Qwen2-72B-Instruct": {
|
75
57
|
"description": "Qwen2 là mô hình ngôn ngữ tổng quát tiên tiến, hỗ trợ nhiều loại chỉ dẫn."
|
76
58
|
},
|
77
|
-
"Qwen/Qwen2-7B-Instruct": {
|
78
|
-
"description": "Qwen2 là dòng mô hình ngôn ngữ lớn hoàn toàn mới, có khả năng hiểu và tạo ra mạnh mẽ hơn."
|
79
|
-
},
|
80
|
-
"Qwen/Qwen2-Math-72B-Instruct": {
|
81
|
-
"description": "Qwen2-Math tập trung vào việc giải quyết các vấn đề trong lĩnh vực toán học, cung cấp giải pháp chuyên nghiệp cho các bài toán khó."
|
82
|
-
},
|
83
|
-
"THUDM/chatglm3-6b": {
|
84
|
-
"description": "Là mô hình ngôn ngữ hội thoại song ngữ, ChatGLM3 có khả năng xử lý các nhiệm vụ chuyển đổi giữa tiếng Trung và tiếng Anh."
|
85
|
-
},
|
86
59
|
"THUDM/glm-4-9b-chat": {
|
87
60
|
"description": "GLM-4 9B là phiên bản mã nguồn mở, cung cấp trải nghiệm đối thoại tối ưu cho các ứng dụng hội thoại."
|
88
61
|
},
|
@@ -263,12 +236,6 @@
|
|
263
236
|
"databricks/dbrx-instruct": {
|
264
237
|
"description": "DBRX Instruct cung cấp khả năng xử lý chỉ dẫn đáng tin cậy, hỗ trợ nhiều ứng dụng trong ngành."
|
265
238
|
},
|
266
|
-
"deepseek-ai/DeepSeek-Coder-V2-Instruct": {
|
267
|
-
"description": "DeepSeek Coder V2 được thiết kế cho các nhiệm vụ mã, tập trung vào việc tạo mã hiệu quả."
|
268
|
-
},
|
269
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
270
|
-
"description": "DeepSeek V2 có 6.7 tỷ tham số, hỗ trợ xử lý văn bản tiếng Anh và tiếng Trung."
|
271
|
-
},
|
272
239
|
"deepseek-ai/DeepSeek-V2.5": {
|
273
240
|
"description": "DeepSeek V2.5 kết hợp các đặc điểm xuất sắc của các phiên bản trước, tăng cường khả năng tổng quát và mã hóa."
|
274
241
|
},
|
@@ -539,9 +506,6 @@
|
|
539
506
|
"meta-llama/Llama-3-8b-chat-hf": {
|
540
507
|
"description": "LLaMA-3 Chat (8B) cung cấp hỗ trợ đa ngôn ngữ, bao gồm nhiều lĩnh vực kiến thức phong phú."
|
541
508
|
},
|
542
|
-
"meta-llama/Meta-Llama-3-70B-Instruct": {
|
543
|
-
"description": "LLaMA 3 hỗ trợ tạo văn bản dung lượng lớn và phân tích theo hướng dẫn."
|
544
|
-
},
|
545
509
|
"meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
|
546
510
|
"description": "Llama 3 70B Instruct Lite phù hợp cho các môi trường cần hiệu suất cao và độ trễ thấp."
|
547
511
|
},
|
@@ -716,18 +680,6 @@
|
|
716
680
|
"qwen-long": {
|
717
681
|
"description": "Mô hình ngôn ngữ quy mô lớn Qwen, hỗ trợ ngữ cảnh văn bản dài và chức năng đối thoại dựa trên tài liệu dài, nhiều tài liệu."
|
718
682
|
},
|
719
|
-
"qwen-max": {
|
720
|
-
"description": "Mô hình ngôn ngữ quy mô lớn Qwen với quy mô hàng trăm tỷ, hỗ trợ đầu vào bằng tiếng Trung, tiếng Anh và các ngôn ngữ khác, hiện là mô hình API đứng sau phiên bản sản phẩm Qwen 2.5."
|
721
|
-
},
|
722
|
-
"qwen-max-longcontext": {
|
723
|
-
"description": "Mô hình ngôn ngữ quy mô lớn Qwen với quy mô hàng trăm tỷ, hỗ trợ đầu vào bằng tiếng Trung, tiếng Anh và các ngôn ngữ khác, mở rộng cửa sổ ngữ cảnh."
|
724
|
-
},
|
725
|
-
"qwen-plus": {
|
726
|
-
"description": "Mô hình ngôn ngữ quy mô lớn Qwen phiên bản nâng cao, hỗ trợ đầu vào bằng tiếng Trung, tiếng Anh và các ngôn ngữ khác."
|
727
|
-
},
|
728
|
-
"qwen-turbo": {
|
729
|
-
"description": "Mô hình ngôn ngữ quy mô lớn Qwen, hỗ trợ đầu vào bằng tiếng Trung, tiếng Anh và các ngôn ngữ khác."
|
730
|
-
},
|
731
683
|
"qwen-vl-chat-v1": {
|
732
684
|
"description": "Mô hình Qwen VL hỗ trợ các phương thức tương tác linh hoạt, bao gồm nhiều hình ảnh, nhiều vòng hỏi đáp, sáng tạo, v.v."
|
733
685
|
},
|
@@ -746,18 +698,6 @@
|
|
746
698
|
"qwen2": {
|
747
699
|
"description": "Qwen2 là mô hình ngôn ngữ quy mô lớn thế hệ mới của Alibaba, hỗ trợ các nhu cầu ứng dụng đa dạng với hiệu suất xuất sắc."
|
748
700
|
},
|
749
|
-
"qwen2-57b-a14b-instruct": {
|
750
|
-
"description": "Mô hình Qwen2 quy mô 57B với 14B tham số kích hoạt MOE được mở nguồn cho công chúng."
|
751
|
-
},
|
752
|
-
"qwen2-72b-instruct": {
|
753
|
-
"description": "Mô hình Qwen2 quy mô 72B được mở nguồn cho công chúng."
|
754
|
-
},
|
755
|
-
"qwen2-7b-instruct": {
|
756
|
-
"description": "Mô hình Qwen2 quy mô 7B được mở nguồn cho công chúng."
|
757
|
-
},
|
758
|
-
"qwen2-math-72b-instruct": {
|
759
|
-
"description": "Mô hình Qwen2-Math có khả năng giải toán mạnh mẽ."
|
760
|
-
},
|
761
701
|
"qwen2:0.5b": {
|
762
702
|
"description": "Qwen2 là mô hình ngôn ngữ quy mô lớn thế hệ mới của Alibaba, hỗ trợ các nhu cầu ứng dụng đa dạng với hiệu suất xuất sắc."
|
763
703
|
},
|
@@ -2,9 +2,6 @@
|
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
3
|
"description": "Yi-1.5 34B, 以丰富的训练样本在行业应用中提供优越表现。"
|
4
4
|
},
|
5
|
-
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
-
"description": "Yi-1.5 是Yi系列的进化版本,拥有高质量的预训练和丰富的微调数据。"
|
7
|
-
},
|
8
5
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
6
|
"description": "Yi-1.5 9B 支持16K Tokens, 提供高效、流畅的语言生成能力。"
|
10
7
|
},
|
@@ -47,41 +44,56 @@
|
|
47
44
|
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
48
45
|
"description": "Nous Hermes-2 Yi (34B) 提供优化的语言输出和多样化的应用可能。"
|
49
46
|
},
|
47
|
+
"Phi-3-5-mini-instruct": {
|
48
|
+
"description": "Refresh of Phi-3-mini model."
|
49
|
+
},
|
50
|
+
"Phi-3-medium-128k-instruct": {
|
51
|
+
"description": "Same Phi-3-medium model, but with a larger context size for RAG or few shot prompting."
|
52
|
+
},
|
53
|
+
"Phi-3-medium-4k-instruct": {
|
54
|
+
"description": "A 14B parameters model, proves better quality than Phi-3-mini, with a focus on high-quality, reasoning-dense data."
|
55
|
+
},
|
56
|
+
"Phi-3-mini-128k-instruct": {
|
57
|
+
"description": "Same Phi-3-mini model, but with a larger context size for RAG or few shot prompting."
|
58
|
+
},
|
59
|
+
"Phi-3-mini-4k-instruct": {
|
60
|
+
"description": "Tiniest member of the Phi-3 family. Optimized for both quality and low latency."
|
61
|
+
},
|
62
|
+
"Phi-3-small-128k-instruct": {
|
63
|
+
"description": "Same Phi-3-small model, but with a larger context size for RAG or few shot prompting."
|
64
|
+
},
|
65
|
+
"Phi-3-small-8k-instruct": {
|
66
|
+
"description": "A 7B parameters model, proves better quality than Phi-3-mini, with a focus on high-quality, reasoning-dense data."
|
67
|
+
},
|
50
68
|
"Pro-128k": {
|
51
69
|
"description": "Spark Pro-128K 配置了特大上下文处理能力,能够处理多达128K的上下文信息,特别适合需通篇分析和长期逻辑关联处理的长文内容,可在复杂文本沟通中提供流畅一致的逻辑与多样的引用支持。"
|
52
70
|
},
|
53
71
|
"Qwen/Qwen1.5-110B-Chat": {
|
54
|
-
"description": "
|
55
|
-
},
|
56
|
-
"Qwen/Qwen1.5-14B-Chat": {
|
57
|
-
"description": "Qwen1.5 通过大规模数据集训练,擅长复杂的语言任务。"
|
58
|
-
},
|
59
|
-
"Qwen/Qwen1.5-32B-Chat": {
|
60
|
-
"description": "Qwen1.5 具备多领域问答和文本生成的能力。"
|
72
|
+
"description": "Qwen 1.5 Chat (110B) 是一款高效能的对话模型,支持复杂对话场景。"
|
61
73
|
},
|
62
74
|
"Qwen/Qwen1.5-72B-Chat": {
|
63
75
|
"description": "Qwen 1.5 Chat (72B) 提供快速响应和自然对话能力,适合多语言环境。"
|
64
76
|
},
|
65
|
-
"Qwen/
|
66
|
-
"description": "
|
77
|
+
"Qwen/Qwen2-72B-Instruct": {
|
78
|
+
"description": "Qwen 2 Instruct (72B) 为企业级应用提供精准的指令理解和响应。"
|
67
79
|
},
|
68
|
-
"Qwen/Qwen2
|
69
|
-
"description": "Qwen2 是全新的大型语言模型系列,旨在优化指令式任务的处理。"
|
80
|
+
"Qwen/Qwen2.5-14B-Instruct": {
|
81
|
+
"description": "Qwen2.5 是全新的大型语言模型系列,旨在优化指令式任务的处理。"
|
70
82
|
},
|
71
|
-
"Qwen/Qwen2-
|
72
|
-
"description": "Qwen2
|
83
|
+
"Qwen/Qwen2.5-32B-Instruct": {
|
84
|
+
"description": "Qwen2.5 是全新的大型语言模型系列,旨在优化指令式任务的处理。"
|
73
85
|
},
|
74
|
-
"Qwen/Qwen2-72B-Instruct": {
|
75
|
-
"description": "Qwen2
|
86
|
+
"Qwen/Qwen2.5-72B-Instruct": {
|
87
|
+
"description": "Qwen2.5 是全新的大型语言模型系列,具有更强的理解和生成能力。"
|
76
88
|
},
|
77
|
-
"Qwen/Qwen2-7B-Instruct": {
|
78
|
-
"description": "Qwen2
|
89
|
+
"Qwen/Qwen2.5-7B-Instruct": {
|
90
|
+
"description": "Qwen2.5 是全新的大型语言模型系列,旨在优化指令式任务的处理。"
|
79
91
|
},
|
80
|
-
"Qwen/Qwen2-
|
81
|
-
"description": "Qwen2-
|
92
|
+
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
93
|
+
"description": "Qwen2.5-Coder 专注于代码编写。"
|
82
94
|
},
|
83
|
-
"
|
84
|
-
"description": "
|
95
|
+
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
96
|
+
"description": "Qwen2.5-Math 专注于数学领域的问题求解,为高难度题提供专业解答。"
|
85
97
|
},
|
86
98
|
"THUDM/glm-4-9b-chat": {
|
87
99
|
"description": "GLM-4 9B 开放源码版本,为会话应用提供优化后的对话体验。"
|
@@ -158,6 +170,15 @@
|
|
158
170
|
"accounts/yi-01-ai/models/yi-large": {
|
159
171
|
"description": "Yi-Large 模型,具备卓越的多语言处理能力,可用于各类语言生成和理解任务。"
|
160
172
|
},
|
173
|
+
"ai21-jamba-1.5-large": {
|
174
|
+
"description": "A 398B parameters (94B active) multilingual model, offering a 256K long context window, function calling, structured output, and grounded generation."
|
175
|
+
},
|
176
|
+
"ai21-jamba-1.5-mini": {
|
177
|
+
"description": "A 52B parameters (12B active) multilingual model, offering a 256K long context window, function calling, structured output, and grounded generation."
|
178
|
+
},
|
179
|
+
"ai21-jamba-instruct": {
|
180
|
+
"description": "A production-grade Mamba-based LLM model to achieve best-in-class performance, quality, and cost efficiency."
|
181
|
+
},
|
161
182
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
162
183
|
"description": "Claude 3.5 Sonnet 提升了行业标准,性能超过竞争对手模型和 Claude 3 Opus,在广泛的评估中表现出色,同时具有我们中等层级模型的速度和成本。"
|
163
184
|
},
|
@@ -254,6 +275,12 @@
|
|
254
275
|
"cognitivecomputations/dolphin-mixtral-8x22b": {
|
255
276
|
"description": "Dolphin Mixtral 8x22B 是一款为指令遵循、对话和编程设计的模型。"
|
256
277
|
},
|
278
|
+
"cohere-command-r": {
|
279
|
+
"description": "Command R is a scalable generative model targeting RAG and Tool Use to enable production-scale AI for enterprise."
|
280
|
+
},
|
281
|
+
"cohere-command-r-plus": {
|
282
|
+
"description": "Command R+ is a state-of-the-art RAG-optimized model designed to tackle enterprise-grade workloads."
|
283
|
+
},
|
257
284
|
"command-r": {
|
258
285
|
"description": "Command R 是优化用于对话和长上下文任务的LLM,特别适合动态交互与知识管理。"
|
259
286
|
},
|
@@ -263,17 +290,11 @@
|
|
263
290
|
"databricks/dbrx-instruct": {
|
264
291
|
"description": "DBRX Instruct 提供高可靠性的指令处理能力,支持多行业应用。"
|
265
292
|
},
|
266
|
-
"deepseek-ai/DeepSeek-Coder-V2-Instruct": {
|
267
|
-
"description": "DeepSeek Coder V2 为代码任务设计, 专注于高效的代码生成。"
|
268
|
-
},
|
269
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
270
|
-
"description": "DeepSeek V2 具备67亿参数,支持英中文本处理。"
|
271
|
-
},
|
272
293
|
"deepseek-ai/DeepSeek-V2.5": {
|
273
294
|
"description": "DeepSeek V2.5 集合了先前版本的优秀特征,增强了通用和编码能力。"
|
274
295
|
},
|
275
296
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
276
|
-
"description": "DeepSeek 67B
|
297
|
+
"description": "DeepSeek LLM Chat (67B) 是创新的 AI 模型 提供深度语言理解和互动能力。"
|
277
298
|
},
|
278
299
|
"deepseek-chat": {
|
279
300
|
"description": "融合通用与代码能力的全新开源模型, 不仅保留了原有 Chat 模型的通用对话能力和 Coder 模型的强大代码处理能力,还更好地对齐了人类偏好。此外,DeepSeek-V2.5 在写作任务、指令跟随等多个方面也实现了大幅提升。"
|
@@ -447,7 +468,7 @@
|
|
447
468
|
"description": "最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。"
|
448
469
|
},
|
449
470
|
"gpt-4o": {
|
450
|
-
"description": "
|
471
|
+
"description": "OpenAI's most advanced multimodal model in the GPT-4 family. Can handle both text and image inputs."
|
451
472
|
},
|
452
473
|
"gpt-4o-2024-05-13": {
|
453
474
|
"description": "ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。"
|
@@ -456,7 +477,7 @@
|
|
456
477
|
"description": "ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。"
|
457
478
|
},
|
458
479
|
"gpt-4o-mini": {
|
459
|
-
"description": "
|
480
|
+
"description": "An affordable, efficient AI solution for diverse text and image tasks."
|
460
481
|
},
|
461
482
|
"gryphe/mythomax-l2-13b": {
|
462
483
|
"description": "MythoMax l2 13B 是一款合并了多个顶尖模型的创意与智能相结合的语言模型。"
|
@@ -467,6 +488,8 @@
|
|
467
488
|
"internlm/internlm2_5-7b-chat": {
|
468
489
|
"description": "InternLM2.5 提供多场景下的智能对话解决方案。"
|
469
490
|
},
|
491
|
+
"jamba-1.5-large": {},
|
492
|
+
"jamba-1.5-mini": {},
|
470
493
|
"llama-3.1-70b-instruct": {
|
471
494
|
"description": "Llama 3.1 70B Instruct 模型,具备70B参数,能在大型文本生成和指示任务中提供卓越性能。"
|
472
495
|
},
|
@@ -530,6 +553,21 @@
|
|
530
553
|
"mathstral": {
|
531
554
|
"description": "MathΣtral 专为科学研究和数学推理设计,提供有效的计算能力和结果解释。"
|
532
555
|
},
|
556
|
+
"meta-llama-3-70b-instruct": {
|
557
|
+
"description": "A powerful 70-billion parameter model excelling in reasoning, coding, and broad language applications."
|
558
|
+
},
|
559
|
+
"meta-llama-3-8b-instruct": {
|
560
|
+
"description": "A versatile 8-billion parameter model optimized for dialogue and text generation tasks."
|
561
|
+
},
|
562
|
+
"meta-llama-3.1-405b-instruct": {
|
563
|
+
"description": "The Llama 3.1 instruction tuned text only models are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks."
|
564
|
+
},
|
565
|
+
"meta-llama-3.1-70b-instruct": {
|
566
|
+
"description": "The Llama 3.1 instruction tuned text only models are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks."
|
567
|
+
},
|
568
|
+
"meta-llama-3.1-8b-instruct": {
|
569
|
+
"description": "The Llama 3.1 instruction tuned text only models are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks."
|
570
|
+
},
|
533
571
|
"meta-llama/Llama-2-13b-chat-hf": {
|
534
572
|
"description": "LLaMA-2 Chat (13B) 提供优秀的语言处理能力和出色的交互体验。"
|
535
573
|
},
|
@@ -539,9 +577,6 @@
|
|
539
577
|
"meta-llama/Llama-3-8b-chat-hf": {
|
540
578
|
"description": "LLaMA-3 Chat (8B) 提供多语言支持,涵盖丰富的领域知识。"
|
541
579
|
},
|
542
|
-
"meta-llama/Meta-Llama-3-70B-Instruct": {
|
543
|
-
"description": "LLaMA 3 支持大容量文本生成和指令解析。"
|
544
|
-
},
|
545
580
|
"meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
|
546
581
|
"description": "Llama 3 70B Instruct Lite 适合需要高效能和低延迟的环境。"
|
547
582
|
},
|
@@ -620,17 +655,26 @@
|
|
620
655
|
"mistral-large": {
|
621
656
|
"description": "Mixtral Large 是 Mistral 的旗舰模型,结合代码生成、数学和推理的能力,支持 128k 上下文窗口。"
|
622
657
|
},
|
658
|
+
"mistral-large-2407": {
|
659
|
+
"description": "Mistral Large (2407) is an advanced Large Language Model (LLM) with state-of-the-art reasoning, knowledge and coding capabilities."
|
660
|
+
},
|
623
661
|
"mistral-large-latest": {
|
624
662
|
"description": "Mistral Large是旗舰大模型,擅长多语言任务、复杂推理和代码生成,是高端应用的理想选择。"
|
625
663
|
},
|
626
664
|
"mistral-nemo": {
|
627
665
|
"description": "Mistral Nemo 由 Mistral AI 和 NVIDIA 合作推出,是高效性能的 12B 模型。"
|
628
666
|
},
|
667
|
+
"mistral-small": {
|
668
|
+
"description": "Mistral Small can be used on any language-based task that requires high efficiency and low latency."
|
669
|
+
},
|
670
|
+
"mistral-small-latest": {
|
671
|
+
"description": "Mistral Small是成本效益高、快速且可靠的选项,适用于翻译、摘要和情感分析等用例。"
|
672
|
+
},
|
629
673
|
"mistralai/Mistral-7B-Instruct-v0.1": {
|
630
674
|
"description": "Mistral (7B) Instruct 以高性能著称,适用于多种语言任务。"
|
631
675
|
},
|
632
676
|
"mistralai/Mistral-7B-Instruct-v0.2": {
|
633
|
-
"description": "Mistral 7B
|
677
|
+
"description": "Mistral (7B) Instruct v0.2 提供改进的指令处理能力和更精确的结果。"
|
634
678
|
},
|
635
679
|
"mistralai/Mistral-7B-Instruct-v0.3": {
|
636
680
|
"description": "Mistral (7B) Instruct v0.3 提供高效的计算能力和自然语言理解,适合广泛的应用。"
|
@@ -639,7 +683,7 @@
|
|
639
683
|
"description": "Mixtral-8x22B Instruct (141B) 是一款超级大语言模型,支持极高的处理需求。"
|
640
684
|
},
|
641
685
|
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
642
|
-
"description": "Mixtral
|
686
|
+
"description": "Mixtral-8x7B Instruct (46.7B) 提供高容量的计算框架,适合大规模数据处理。"
|
643
687
|
},
|
644
688
|
"mistralai/mistral-7b-instruct": {
|
645
689
|
"description": "Mistral 7B Instruct 是一款兼有速度优化和长上下文支持的高性能行业标准模型。"
|
@@ -713,20 +757,29 @@
|
|
713
757
|
"phi3:14b": {
|
714
758
|
"description": "Phi-3 是微软推出的轻量级开放模型,适用于高效集成和大规模知识推理。"
|
715
759
|
},
|
760
|
+
"pixtral-12b-2409": {
|
761
|
+
"description": "Pixtral 模型在图表和图理解、文档问答、多模态推理和指令遵循等任务上表现出强大的能力,能够以自然分辨率和宽高比摄入图像,还能够在长达 128K 令牌的长上下文窗口中处理任意数量的图像。"
|
762
|
+
},
|
763
|
+
"qwen-coder-turbo-latest": {
|
764
|
+
"description": "通义千问代码模型。"
|
765
|
+
},
|
716
766
|
"qwen-long": {
|
717
767
|
"description": "通义千问超大规模语言模型,支持长文本上下文,以及基于长文档、多文档等多个场景的对话功能。"
|
718
768
|
},
|
719
|
-
"qwen-
|
720
|
-
"description": "
|
769
|
+
"qwen-math-plus-latest": {
|
770
|
+
"description": "通义千问数学模型是专门用于数学解题的语言模型。"
|
721
771
|
},
|
722
|
-
"qwen-
|
723
|
-
"description": "
|
772
|
+
"qwen-math-turbo-latest": {
|
773
|
+
"description": "通义千问数学模型是专门用于数学解题的语言模型。"
|
724
774
|
},
|
725
|
-
"qwen-
|
726
|
-
"description": "
|
775
|
+
"qwen-max-latest": {
|
776
|
+
"description": "通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入,当前通义千问2.5产品版本背后的API模型。"
|
727
777
|
},
|
728
|
-
"qwen-
|
729
|
-
"description": "
|
778
|
+
"qwen-plus-latest": {
|
779
|
+
"description": "通义千问超大规模语言模型增强版,支持中文、英文等不同语言输入。"
|
780
|
+
},
|
781
|
+
"qwen-turbo-latest": {
|
782
|
+
"description": "通义千问超大规模语言模型,支持中文、英文等不同语言输入。"
|
730
783
|
},
|
731
784
|
"qwen-vl-chat-v1": {
|
732
785
|
"description": "通义千问VL支持灵活的交互方式,包括多图、多轮问答、创作等能力的模型。"
|
@@ -746,17 +799,32 @@
|
|
746
799
|
"qwen2": {
|
747
800
|
"description": "Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。"
|
748
801
|
},
|
749
|
-
"qwen2-
|
750
|
-
"description": "通义千问2对外开源的
|
802
|
+
"qwen2.5-14b-instruct": {
|
803
|
+
"description": "通义千问2.5对外开源的14B规模的模型。"
|
804
|
+
},
|
805
|
+
"qwen2.5-32b-instruct": {
|
806
|
+
"description": "通义千问2.5对外开源的32B规模的模型。"
|
807
|
+
},
|
808
|
+
"qwen2.5-72b-instruct": {
|
809
|
+
"description": "通义千问2.5对外开源的72B规模的模型。"
|
810
|
+
},
|
811
|
+
"qwen2.5-7b-instruct": {
|
812
|
+
"description": "通义千问2.5对外开源的7B规模的模型。"
|
813
|
+
},
|
814
|
+
"qwen2.5-coder-1.5b-instruct": {
|
815
|
+
"description": "通义千问代码模型开源版。"
|
816
|
+
},
|
817
|
+
"qwen2.5-coder-7b-instruct": {
|
818
|
+
"description": "通义千问代码模型开源版。"
|
751
819
|
},
|
752
|
-
"qwen2-
|
753
|
-
"description": "
|
820
|
+
"qwen2.5-math-1.5b-instruct": {
|
821
|
+
"description": "Qwen-Math 模型具有强大的数学解题能力。"
|
754
822
|
},
|
755
|
-
"qwen2-
|
756
|
-
"description": "
|
823
|
+
"qwen2.5-math-72b-instruct": {
|
824
|
+
"description": "Qwen-Math 模型具有强大的数学解题能力。"
|
757
825
|
},
|
758
|
-
"qwen2-math-
|
759
|
-
"description": "
|
826
|
+
"qwen2.5-math-7b-instruct": {
|
827
|
+
"description": "Qwen-Math 模型具有强大的数学解题能力。"
|
760
828
|
},
|
761
829
|
"qwen2:0.5b": {
|
762
830
|
"description": "Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。"
|
@@ -1,4 +1,5 @@
|
|
1
1
|
{
|
2
|
+
"ai21": {},
|
2
3
|
"ai360": {
|
3
4
|
"description": "360 AI 是 360 公司推出的 AI 模型和服务平台,提供多种先进的自然语言处理模型,包括 360GPT2 Pro、360GPT Pro、360GPT Turbo 和 360GPT Turbo Responsibility 8K。这些模型结合了大规模参数和多模态能力,广泛应用于文本生成、语义理解、对话系统与代码生成等领域。通过灵活的定价策略,360 AI 满足多样化用户需求,支持开发者集成,推动智能化应用的革新和发展。"
|
4
5
|
},
|
@@ -20,6 +21,9 @@
|
|
20
21
|
"fireworksai": {
|
21
22
|
"description": "Fireworks AI 是一家领先的高级语言模型服务商,专注于功能调用和多模态处理。其最新模型 Firefunction V2 基于 Llama-3,优化用于函数调用、对话及指令跟随。视觉语言模型 FireLLaVA-13B 支持图像和文本混合输入。其他 notable 模型包括 Llama 系列和 Mixtral 系列,提供高效的多语言指令跟随与生成支持。"
|
22
23
|
},
|
24
|
+
"github": {
|
25
|
+
"description": "With GitHub Models, developers can become AI engineers and build with the industry's leading AI models."
|
26
|
+
},
|
23
27
|
"google": {
|
24
28
|
"description": "Google 的 Gemini 系列是其最先进、通用的 A I模型,由 Google DeepMind 打造,专为多模态设计,支持文本、代码、图像、音频和视频的无缝理解与处理。适用于从数据中心到移动设备的多种环境,极大提升了AI模型的效率与应用广泛性。"
|
25
29
|
},
|