@lobehub/chat 1.120.5 → 1.120.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/chat.json +2 -1
- package/locales/ar/models.json +0 -9
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/chat.json +2 -1
- package/locales/bg-BG/models.json +0 -9
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/chat.json +2 -1
- package/locales/de-DE/models.json +0 -9
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/chat.json +2 -1
- package/locales/en-US/models.json +0 -9
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/chat.json +2 -1
- package/locales/es-ES/models.json +0 -9
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/chat.json +2 -1
- package/locales/fa-IR/models.json +0 -9
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/chat.json +2 -1
- package/locales/fr-FR/models.json +0 -9
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/chat.json +2 -1
- package/locales/it-IT/models.json +0 -9
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/chat.json +2 -1
- package/locales/ja-JP/models.json +0 -9
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/chat.json +2 -1
- package/locales/ko-KR/models.json +0 -9
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/chat.json +2 -1
- package/locales/nl-NL/models.json +0 -9
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/chat.json +2 -1
- package/locales/pl-PL/models.json +0 -9
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/chat.json +2 -1
- package/locales/pt-BR/models.json +0 -9
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/chat.json +2 -1
- package/locales/ru-RU/models.json +0 -9
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/chat.json +2 -1
- package/locales/tr-TR/models.json +0 -9
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/chat.json +2 -1
- package/locales/vi-VN/models.json +0 -9
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/chat.json +2 -1
- package/locales/zh-CN/models.json +0 -9
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/chat.json +2 -1
- package/locales/zh-TW/models.json +0 -9
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/src/components/DragUpload/useDragUpload.test.tsx +111 -0
- package/src/components/DragUpload/useDragUpload.tsx +26 -0
- package/src/locales/default/chat.ts +1 -0
package/locales/nl-NL/chat.json
CHANGED
@@ -273,7 +273,8 @@
|
|
273
273
|
"clientMode": {
|
274
274
|
"actionFiletip": "Bestand uploaden",
|
275
275
|
"actionTooltip": "Uploaden",
|
276
|
-
"disabled": "Dit model ondersteunt momenteel geen visuele herkenning en bestandanalyse, schakel alstublieft naar een ander model."
|
276
|
+
"disabled": "Dit model ondersteunt momenteel geen visuele herkenning en bestandanalyse, schakel alstublieft naar een ander model.",
|
277
|
+
"visionNotSupported": "Het huidige model ondersteunt geen visuele herkenning, schakel over naar een ander model om deze functie te gebruiken"
|
277
278
|
},
|
278
279
|
"preview": {
|
279
280
|
"prepareTasks": "Voorbereiden van blokken...",
|
@@ -2691,18 +2691,9 @@
|
|
2691
2691
|
"thudm/glm-4-9b-chat": {
|
2692
2692
|
"description": "De open-source versie van de nieuwste generatie voorgetrainde modellen van de GLM-4-serie, uitgebracht door Zhizhu AI."
|
2693
2693
|
},
|
2694
|
-
"thudm/glm-4-9b:free": {
|
2695
|
-
"description": "GLM-4-9B-0414 is een taalmodel met 9B parameters in de GLM-4 serie, ontwikkeld door THUDM. GLM-4-9B-0414 wordt getraind met dezelfde versterkingsleer- en afstemmingsstrategieën als het grotere 32B tegenhanger, en bereikt hoge prestaties in verhouding tot zijn formaat, waardoor het geschikt is voor implementaties met beperkte middelen die nog steeds sterke taalbegrip en generatiecapaciteiten vereisen."
|
2696
|
-
},
|
2697
2694
|
"thudm/glm-z1-32b": {
|
2698
2695
|
"description": "GLM-Z1-32B-0414 is een verbeterde redeneringsvariant van GLM-4-32B, speciaal gebouwd voor diepgaande wiskunde, logica en codegerichte probleemoplossing. Het past uitgebreide versterkingsleren toe (taakspecifiek en op basis van algemene parenvoorkeuren) om de prestaties van complexe meerstaps taken te verbeteren. In vergelijking met het basis GLM-4-32B-model heeft Z1 de mogelijkheden voor gestructureerde redenering en formele domeinen aanzienlijk verbeterd.\n\nDit model ondersteunt het afdwingen van 'denkstappen' via prompt-engineering en biedt verbeterde coherentie voor lange outputformaten. Het is geoptimaliseerd voor agentwerkstromen en ondersteunt lange context (via YaRN), JSON-toolaanroepen en fijnmazige samplingconfiguraties voor stabiele redenering. Zeer geschikt voor gebruikscases die diepgaand nadenken, meerstaps redenering of formele afleiding vereisen."
|
2699
2696
|
},
|
2700
|
-
"thudm/glm-z1-32b:free": {
|
2701
|
-
"description": "GLM-Z1-32B-0414 is een verbeterde redeneringsvariant van GLM-4-32B, speciaal gebouwd voor diepgaande wiskunde, logica en codegerichte probleemoplossing. Het past uitgebreide versterkingsleren toe (taakspecifiek en op basis van algemene parenvoorkeuren) om de prestaties van complexe meerstaps taken te verbeteren. In vergelijking met het basis GLM-4-32B-model heeft Z1 de mogelijkheden voor gestructureerde redenering en formele domeinen aanzienlijk verbeterd.\n\nDit model ondersteunt het afdwingen van 'denkstappen' via prompt-engineering en biedt verbeterde coherentie voor lange outputformaten. Het is geoptimaliseerd voor agentwerkstromen en ondersteunt lange context (via YaRN), JSON-toolaanroepen en fijnmazige samplingconfiguraties voor stabiele redenering. Zeer geschikt voor gebruikscases die diepgaand nadenken, meerstaps redenering of formele afleiding vereisen."
|
2702
|
-
},
|
2703
|
-
"thudm/glm-z1-9b:free": {
|
2704
|
-
"description": "GLM-Z1-9B-0414 is een taalmodel met 9B parameters in de GLM-4 serie, ontwikkeld door THUDM. Het maakt gebruik van technieken die oorspronkelijk zijn toegepast op het grotere GLM-Z1 model, waaronder uitgebreide versterkingsleer, parenrangschikking afstemming en training voor redeneringsintensieve taken zoals wiskunde, codering en logica. Ondanks zijn kleinere formaat, presteert het krachtig in algemene redeneringstaken en overtreft het veel open-source modellen op zijn gewichtsniveau."
|
2705
|
-
},
|
2706
2697
|
"thudm/glm-z1-rumination-32b": {
|
2707
2698
|
"description": "THUDM: GLM Z1 Rumination 32B is een diep redeneringsmodel met 32B parameters in de GLM-4-Z1 serie, geoptimaliseerd voor complexe, open taken die langdurig nadenken vereisen. Het is gebaseerd op glm-4-32b-0414, met extra versterkingsleerfasen en meerfasige afstemmingsstrategieën, en introduceert de 'reflectieve' capaciteit die is ontworpen om uitgebreide cognitieve verwerking te simuleren. Dit omvat iteratieve redenering, multi-hop analyse en tool-versterkte workflows, zoals zoeken, ophalen en citatie-bewuste synthese.\n\nDit model presteert uitstekend in onderzoeksgericht schrijven, vergelijkende analyses en complexe vraag-en-antwoord situaties. Het ondersteunt functie-aanroepen voor zoek- en navigatiecommando's (`search`, `click`, `open`, `finish`), waardoor het kan worden gebruikt in agent-gebaseerde pipelines. Reflectief gedrag wordt gevormd door een multi-rondencycluscontrole met op regels gebaseerde beloningen en een vertraagd besluitvormingsmechanisme, en is gebaseerd op diepgaande onderzoeksframeworks zoals de interne afstemmingsstack van OpenAI. Deze variant is geschikt voor scenario's die diepgang in plaats van snelheid vereisen."
|
2708
2699
|
},
|
@@ -92,6 +92,9 @@
|
|
92
92
|
"moonshot": {
|
93
93
|
"description": "Moonshot is een open platform gelanceerd door Beijing Dark Side Technology Co., Ltd., dat verschillende modellen voor natuurlijke taalverwerking biedt, met een breed toepassingsgebied, waaronder maar niet beperkt tot contentcreatie, academisch onderzoek, slimme aanbevelingen, medische diagnose, en ondersteunt lange tekstverwerking en complexe generatietaken."
|
94
94
|
},
|
95
|
+
"nebius": {
|
96
|
+
"description": "Nebius biedt wereldwijde AI-innovators hoogwaardige infrastructuur door het bouwen van grootschalige GPU-clusters en een verticaal geïntegreerd cloudplatform."
|
97
|
+
},
|
95
98
|
"novita": {
|
96
99
|
"description": "Novita AI is een platform dat API-diensten biedt voor verschillende grote taalmodellen en AI-beeldgeneratie, flexibel, betrouwbaar en kosteneffectief. Het ondersteunt de nieuwste open-source modellen zoals Llama3 en Mistral, en biedt een uitgebreide, gebruiksvriendelijke en automatisch schaalbare API-oplossing voor de ontwikkeling van generatieve AI-toepassingen, geschikt voor de snelle groei van AI-startups."
|
97
100
|
},
|
package/locales/pl-PL/chat.json
CHANGED
@@ -273,7 +273,8 @@
|
|
273
273
|
"clientMode": {
|
274
274
|
"actionFiletip": "Prześlij plik",
|
275
275
|
"actionTooltip": "Prześlij",
|
276
|
-
"disabled": "Aktualny model nie obsługuje rozpoznawania wizualnego i analizy plików, przełącz się na inny model, aby użyć tej funkcji"
|
276
|
+
"disabled": "Aktualny model nie obsługuje rozpoznawania wizualnego i analizy plików, przełącz się na inny model, aby użyć tej funkcji",
|
277
|
+
"visionNotSupported": "Obecny model nie obsługuje rozpoznawania wizualnego, proszę przełączyć model i spróbować ponownie"
|
277
278
|
},
|
278
279
|
"preview": {
|
279
280
|
"prepareTasks": "Przygotowywanie fragmentów...",
|
@@ -2693,18 +2693,9 @@
|
|
2693
2693
|
"thudm/glm-4-9b-chat": {
|
2694
2694
|
"description": "Otwarta wersja najnowszej generacji modelu pretrenowanego GLM-4 wydanego przez Zhipu AI."
|
2695
2695
|
},
|
2696
|
-
"thudm/glm-4-9b:free": {
|
2697
|
-
"description": "GLM-4-9B-0414 to model językowy o 9 miliardach parametrów w serii GLM-4 opracowany przez THUDM. GLM-4-9B-0414 wykorzystuje te same strategie uczenia przez wzmocnienie i dostosowania, co jego większy model odpowiadający 32B, osiągając wysoką wydajność w stosunku do swojej skali, co czyni go odpowiednim do wdrożeń z ograniczonymi zasobami, które nadal wymagają silnych zdolności rozumienia i generowania języka."
|
2698
|
-
},
|
2699
2696
|
"thudm/glm-z1-32b": {
|
2700
2697
|
"description": "GLM-Z1-32B-0414 to wzmocniona wariant wnioskowania GLM-4-32B, zaprojektowana do rozwiązywania głębokich problemów matematycznych, logicznych i związanych z kodem. Wykorzystuje rozszerzone uczenie przez wzmocnienie (specyficzne dla zadań i oparte na ogólnych preferencjach par) w celu poprawy wydajności w złożonych zadaniach wieloetapowych. W porównaniu do podstawowego modelu GLM-4-32B, Z1 znacznie poprawia zdolności w zakresie wnioskowania strukturalnego i formalnego.\n\nModel wspiera wymuszanie kroków 'myślenia' poprzez inżynierię podpowiedzi i zapewnia poprawioną spójność dla długich formatów wyjściowych. Jest zoptymalizowany pod kątem przepływów pracy agentów i wspiera długi kontekst (przez YaRN), wywołania narzędzi JSON oraz konfiguracje drobnoziarnistego próbkowania dla stabilnego wnioskowania. Idealny do przypadków użycia wymagających przemyślanego, wieloetapowego wnioskowania lub formalnych dedukcji."
|
2701
2698
|
},
|
2702
|
-
"thudm/glm-z1-32b:free": {
|
2703
|
-
"description": "GLM-Z1-32B-0414 to wzmocniona wariant wnioskowania GLM-4-32B, zaprojektowana do rozwiązywania głębokich problemów matematycznych, logicznych i związanych z kodem. Wykorzystuje rozszerzone uczenie przez wzmocnienie (specyficzne dla zadań i oparte na ogólnych preferencjach par) w celu poprawy wydajności w złożonych zadaniach wieloetapowych. W porównaniu do podstawowego modelu GLM-4-32B, Z1 znacznie poprawia zdolności w zakresie wnioskowania strukturalnego i formalnego.\n\nModel wspiera wymuszanie kroków 'myślenia' poprzez inżynierię podpowiedzi i zapewnia poprawioną spójność dla długich formatów wyjściowych. Jest zoptymalizowany pod kątem przepływów pracy agentów i wspiera długi kontekst (przez YaRN), wywołania narzędzi JSON oraz konfiguracje drobnoziarnistego próbkowania dla stabilnego wnioskowania. Idealny do przypadków użycia wymagających przemyślanego, wieloetapowego wnioskowania lub formalnych dedukcji."
|
2704
|
-
},
|
2705
|
-
"thudm/glm-z1-9b:free": {
|
2706
|
-
"description": "GLM-Z1-9B-0414 to model językowy o 9 miliardach parametrów w serii GLM-4 opracowany przez THUDM. Wykorzystuje techniki pierwotnie zastosowane w większym modelu GLM-Z1, w tym rozszerzone uczenie przez wzmocnienie, dostosowanie rankingowe w parach oraz trening do zadań intensywnie wymagających wnioskowania, takich jak matematyka, kodowanie i logika. Mimo mniejszej skali, wykazuje silną wydajność w ogólnych zadaniach wnioskowania i przewyższa wiele modeli open source na poziomie swoich wag."
|
2707
|
-
},
|
2708
2699
|
"thudm/glm-z1-rumination-32b": {
|
2709
2700
|
"description": "THUDM: GLM Z1 Rumination 32B to model głębokiego wnioskowania o 32 miliardach parametrów w serii GLM-4-Z1, zoptymalizowany do złożonych, otwartych zadań wymagających długotrwałego myślenia. Opiera się na glm-4-32b-0414, dodając dodatkowe etapy uczenia przez wzmocnienie i strategie wieloetapowego dostosowania, wprowadzając zdolność 'refleksji' mającą na celu symulację rozszerzonego przetwarzania poznawczego. Obejmuje to iteracyjne wnioskowanie, analizy wielokrokowe i wzbogacone narzędziami przepływy pracy, takie jak wyszukiwanie, pobieranie i syntezę z uwzględnieniem cytatów.\n\nModel doskonale sprawdza się w pisaniu badawczym, analizie porównawczej i złożonych pytaniach i odpowiedziach. Obsługuje wywołania funkcji dla prymitywów wyszukiwania i nawigacji (`search`, `click`, `open`, `finish`), co umożliwia jego użycie w agentowych przepływach pracy. Zachowanie refleksyjne kształtowane jest przez wieloetapową kontrolę cykliczną z nagrodami opartymi na regułach i mechanizmem opóźnionych decyzji, a także na głębokich ramach badawczych, takich jak wewnętrzny stos dostosowujący OpenAI. Ten wariant jest odpowiedni dla scenariuszy wymagających głębokości, a nie szybkości."
|
2710
2701
|
},
|
@@ -92,6 +92,9 @@
|
|
92
92
|
"moonshot": {
|
93
93
|
"description": "Moonshot to otwarta platforma stworzona przez Beijing Dark Side Technology Co., Ltd., oferująca różnorodne modele przetwarzania języka naturalnego, szeroko stosowane w takich dziedzinach jak tworzenie treści, badania akademickie, inteligentne rekomendacje, diagnoza medyczna i inne, wspierająca przetwarzanie długich tekstów i złożone zadania generacyjne."
|
94
94
|
},
|
95
|
+
"nebius": {
|
96
|
+
"description": "Nebius zapewnia wysokowydajną infrastrukturę dla globalnych innowatorów AI poprzez budowę dużych klastrów GPU i pionową integrację platformy chmurowej."
|
97
|
+
},
|
95
98
|
"novita": {
|
96
99
|
"description": "Novita AI to platforma oferująca API do różnych dużych modeli językowych i generacji obrazów AI, elastyczna, niezawodna i opłacalna. Wspiera najnowsze modele open-source, takie jak Llama3, Mistral, i oferuje kompleksowe, przyjazne dla użytkownika oraz automatycznie skalowalne rozwiązania API dla rozwoju aplikacji generatywnej AI, odpowiednie dla szybkiego rozwoju startupów AI."
|
97
100
|
},
|
package/locales/pt-BR/chat.json
CHANGED
@@ -273,7 +273,8 @@
|
|
273
273
|
"clientMode": {
|
274
274
|
"actionFiletip": "Enviar arquivo",
|
275
275
|
"actionTooltip": "Enviar",
|
276
|
-
"disabled": "O modelo atual não suporta reconhecimento visual e análise de arquivos, por favor, mude de modelo antes de usar"
|
276
|
+
"disabled": "O modelo atual não suporta reconhecimento visual e análise de arquivos, por favor, mude de modelo antes de usar",
|
277
|
+
"visionNotSupported": "O modelo atual não suporta reconhecimento visual, por favor, altere o modelo para usar esta função"
|
277
278
|
},
|
278
279
|
"preview": {
|
279
280
|
"prepareTasks": "Preparando partes...",
|
@@ -2693,18 +2693,9 @@
|
|
2693
2693
|
"thudm/glm-4-9b-chat": {
|
2694
2694
|
"description": "Versão de código aberto da última geração do modelo pré-treinado GLM-4, lançado pela Zhizhu AI."
|
2695
2695
|
},
|
2696
|
-
"thudm/glm-4-9b:free": {
|
2697
|
-
"description": "GLM-4-9B-0414 é um modelo de linguagem de 9 bilhões de parâmetros da série GLM-4 desenvolvido pela THUDM. O GLM-4-9B-0414 é treinado usando as mesmas estratégias de aprendizado por reforço e alinhamento de seu modelo correspondente maior de 32B, alcançando alto desempenho em relação ao seu tamanho, tornando-o adequado para implantações com recursos limitados que ainda exigem forte capacidade de compreensão e geração de linguagem."
|
2698
|
-
},
|
2699
2696
|
"thudm/glm-z1-32b": {
|
2700
2697
|
"description": "O GLM-Z1-32B-0414 é uma variante de raciocínio aprimorada do GLM-4-32B, construída para resolver problemas de matemática profunda, lógica e voltados para código. Ele aplica aprendizado por reforço estendido (tarefa específica e baseado em preferências emparelhadas gerais) para melhorar o desempenho em tarefas complexas de múltiplos passos. Em comparação com o modelo base GLM-4-32B, o Z1 melhora significativamente as capacidades de raciocínio estruturado e formal.\n\nEste modelo suporta a execução forçada de etapas de 'pensamento' por meio de engenharia de prompts e oferece maior coerência para saídas de formato longo. Ele é otimizado para fluxos de trabalho de agentes e suporta longos contextos (via YaRN), chamadas de ferramentas JSON e configurações de amostragem de granularidade fina para raciocínio estável. É ideal para casos de uso que exigem raciocínio cuidadoso, de múltiplos passos ou deduções formais."
|
2701
2698
|
},
|
2702
|
-
"thudm/glm-z1-32b:free": {
|
2703
|
-
"description": "O GLM-Z1-32B-0414 é uma variante de raciocínio aprimorada do GLM-4-32B, construída para resolver problemas de matemática profunda, lógica e voltados para código. Ele aplica aprendizado por reforço estendido (tarefa específica e baseado em preferências emparelhadas gerais) para melhorar o desempenho em tarefas complexas de múltiplos passos. Em comparação com o modelo base GLM-4-32B, o Z1 melhora significativamente as capacidades de raciocínio estruturado e formal.\n\nEste modelo suporta a execução forçada de etapas de 'pensamento' por meio de engenharia de prompts e oferece maior coerência para saídas de formato longo. Ele é otimizado para fluxos de trabalho de agentes e suporta longos contextos (via YaRN), chamadas de ferramentas JSON e configurações de amostragem de granularidade fina para raciocínio estável. É ideal para casos de uso que exigem raciocínio cuidadoso, de múltiplos passos ou deduções formais."
|
2704
|
-
},
|
2705
|
-
"thudm/glm-z1-9b:free": {
|
2706
|
-
"description": "GLM-Z1-9B-0414 é um modelo de linguagem de 9 bilhões de parâmetros da série GLM-4 desenvolvido pela THUDM. Ele utiliza técnicas inicialmente aplicadas a modelos maiores do GLM-Z1, incluindo aprendizado por reforço expandido, alinhamento de classificação em pares e treinamento para tarefas intensivas em raciocínio, como matemática, código e lógica. Apesar de seu tamanho menor, ele demonstra um desempenho robusto em tarefas gerais de raciocínio e supera muitos modelos de código aberto em seu nível de peso."
|
2707
|
-
},
|
2708
2699
|
"thudm/glm-z1-rumination-32b": {
|
2709
2700
|
"description": "THUDM: GLM Z1 Rumination 32B é um modelo de raciocínio profundo de 32 bilhões de parâmetros da série GLM-4-Z1, otimizado para tarefas complexas e abertas que exigem longos períodos de reflexão. Ele é construído sobre o glm-4-32b-0414, adicionando uma fase de aprendizado por reforço adicional e estratégias de alinhamento em múltiplas etapas, introduzindo a capacidade de 'reflexão' destinada a simular processamento cognitivo expandido. Isso inclui raciocínio iterativo, análise de múltiplos saltos e fluxos de trabalho aprimorados por ferramentas, como busca, recuperação e síntese consciente de citações.\n\nEste modelo se destaca em escrita de pesquisa, análise comparativa e perguntas complexas. Ele suporta chamadas de função para primitivos de busca e navegação (`search`, `click`, `open`, `finish`), permitindo seu uso em pipelines baseados em agentes. O comportamento reflexivo é moldado por recompensas baseadas em regras e um mecanismo de decisão atrasada controlado por múltiplos ciclos, com referência a estruturas de pesquisa profunda como a pilha de alinhamento interna da OpenAI. Esta variante é adequada para cenários que exigem profundidade em vez de velocidade."
|
2710
2701
|
},
|
@@ -92,6 +92,9 @@
|
|
92
92
|
"moonshot": {
|
93
93
|
"description": "Moonshot é uma plataforma de código aberto lançada pela Beijing Dark Side Technology Co., Ltd., oferecendo uma variedade de modelos de processamento de linguagem natural, com ampla gama de aplicações, incluindo, mas não se limitando a, criação de conteúdo, pesquisa acadêmica, recomendações inteligentes e diagnósticos médicos, suportando processamento de textos longos e tarefas de geração complexas."
|
94
94
|
},
|
95
|
+
"nebius": {
|
96
|
+
"description": "Nebius oferece infraestrutura de alto desempenho para inovadores em IA ao redor do mundo, construindo grandes clusters de GPU e uma plataforma de nuvem verticalmente integrada."
|
97
|
+
},
|
95
98
|
"novita": {
|
96
99
|
"description": "Novita AI é uma plataforma que oferece uma variedade de modelos de linguagem de grande escala e serviços de geração de imagens de IA, sendo flexível, confiável e econômica. Suporta os mais recentes modelos de código aberto, como Llama3 e Mistral, e fornece soluções de API abrangentes, amigáveis ao usuário e escaláveis para o desenvolvimento de aplicações de IA, adequadas para o rápido crescimento de startups de IA."
|
97
100
|
},
|
package/locales/ru-RU/chat.json
CHANGED
@@ -273,7 +273,8 @@
|
|
273
273
|
"clientMode": {
|
274
274
|
"actionFiletip": "Загрузить файл",
|
275
275
|
"actionTooltip": "Загрузить",
|
276
|
-
"disabled": "Текущая модель не поддерживает визуальное распознавание и анализ файлов, пожалуйста, переключитесь на другую модель"
|
276
|
+
"disabled": "Текущая модель не поддерживает визуальное распознавание и анализ файлов, пожалуйста, переключитесь на другую модель",
|
277
|
+
"visionNotSupported": "Текущая модель не поддерживает визуальное распознавание, пожалуйста, переключитесь на другую модель для использования"
|
277
278
|
},
|
278
279
|
"preview": {
|
279
280
|
"prepareTasks": "Подготовка блоков...",
|
@@ -2693,18 +2693,9 @@
|
|
2693
2693
|
"thudm/glm-4-9b-chat": {
|
2694
2694
|
"description": "Открытая версия последнего поколения предобученной модели GLM-4, выпущенной Zhizhu AI."
|
2695
2695
|
},
|
2696
|
-
"thudm/glm-4-9b:free": {
|
2697
|
-
"description": "GLM-4-9B-0414 — это языковая модель с 9B параметрами из серии GLM-4, разработанная THUDM. GLM-4-9B-0414 использует те же стратегии усиленного обучения и выравнивания, что и ее более крупная модель с 32B, обеспечивая высокую производительность относительно своего размера, что делает ее подходящей для развертываний с ограниченными ресурсами, которые все еще требуют мощных возможностей понимания и генерации языка."
|
2698
|
-
},
|
2699
2696
|
"thudm/glm-z1-32b": {
|
2700
2697
|
"description": "GLM-Z1-32B-0414 — это улучшенная версия GLM-4-32B, созданная для глубокого математического, логического и кодового решения задач. Она использует расширенное обучение с подкреплением (специфичное для задач и основанное на общих парных предпочтениях) для повышения производительности в сложных многошаговых задачах. По сравнению с базовой моделью GLM-4-32B, Z1 значительно улучшила способности в структурированном рассуждении и формальных областях.\n\nЭта модель поддерживает принудительное выполнение шагов \"думать\" через инженерное проектирование подсказок и обеспечивает улучшенную согласованность для длинных форматов вывода. Она оптимизирована для рабочих процессов агентов и поддерживает длинный контекст (через YaRN), вызовы инструментов JSON и конфигурацию тонкой выборки для стабильного рассуждения. Идеально подходит для случаев, требующих вдумчивого, многошагового рассуждения или формального вывода."
|
2701
2698
|
},
|
2702
|
-
"thudm/glm-z1-32b:free": {
|
2703
|
-
"description": "GLM-Z1-32B-0414 — это улучшенная версия GLM-4-32B, созданная для глубокого математического, логического и кодового решения задач. Она использует расширенное обучение с подкреплением (специфичное для задач и основанное на общих парных предпочтениях) для повышения производительности в сложных многошаговых задачах. По сравнению с базовой моделью GLM-4-32B, Z1 значительно улучшила способности в структурированном рассуждении и формальных областях.\n\nЭта модель поддерживает принудительное выполнение шагов \"думать\" через инженерное проектирование подсказок и обеспечивает улучшенную согласованность для длинных форматов вывода. Она оптимизирована для рабочих процессов агентов и поддерживает длинный контекст (через YaRN), вызовы инструментов JSON и конфигурацию тонкой выборки для стабильного рассуждения. Идеально подходит для случаев, требующих вдумчивого, многошагового рассуждения или формального вывода."
|
2704
|
-
},
|
2705
|
-
"thudm/glm-z1-9b:free": {
|
2706
|
-
"description": "GLM-Z1-9B-0414 — это языковая модель с 9B параметрами из серии GLM-4, разработанная THUDM. Она использует технологии, первоначально примененные в более крупной модели GLM-Z1, включая расширенное усиленное обучение, выравнивание парных рангов и обучение для задач, требующих интенсивного вывода, таких как математика, кодирование и логика. Несмотря на меньший размер, она демонстрирует высокую производительность в общих задачах вывода и превосходит многие открытые модели по уровню своих весов."
|
2707
|
-
},
|
2708
2699
|
"thudm/glm-z1-rumination-32b": {
|
2709
2700
|
"description": "THUDM: GLM Z1 Rumination 32B — это глубокая модель вывода с 32B параметрами из серии GLM-4-Z1, оптимизированная для сложных открытых задач, требующих длительного размышления. Она основана на glm-4-32b-0414 и включает дополнительные этапы усиленного обучения и многоступенчатую стратегию выравнивания, вводя способность \"размышления\", предназначенную для имитации расширенной когнитивной обработки. Это включает итеративный вывод, многошаговый анализ и рабочие процессы, улучшенные инструментами, такими как поиск, извлечение и синтез с учетом цитат.\n\nЭта модель демонстрирует отличные результаты в исследовательском письме, сравнительном анализе и сложных вопросах. Она поддерживает вызовы функций для поиска и навигации (\"search\", \"click\", \"open\", \"finish\"), что позволяет использовать ее в агентских потоках. Поведение размышления формируется с помощью многоуровневого контроля, основанного на правилах вознаграждения и механизмах отложенного принятия решений, и ориентируется на такие глубокие исследовательские рамки, как внутренний стек выравнивания OpenAI. Этот вариант подходит для сценариев, требующих глубины, а не скорости."
|
2710
2701
|
},
|
@@ -92,6 +92,9 @@
|
|
92
92
|
"moonshot": {
|
93
93
|
"description": "Moonshot — это открытая платформа, запущенная Beijing Dark Side Technology Co., Ltd., предлагающая различные модели обработки естественного языка, охватывающие широкий спектр областей применения, включая, но не ограничиваясь, создание контента, академические исследования, интеллектуальные рекомендации, медицинскую диагностику и т. д., поддерживающая обработку длинных текстов и сложные задачи генерации."
|
94
94
|
},
|
95
|
+
"nebius": {
|
96
|
+
"description": "Nebius создает масштабируемые GPU-кластеры и вертикально интегрированную облачную платформу, предоставляя высокопроизводительную инфраструктуру для мировых инноваторов в области ИИ."
|
97
|
+
},
|
95
98
|
"novita": {
|
96
99
|
"description": "Novita AI — это платформа, предлагающая API-сервисы для различных больших языковых моделей и генерации изображений AI, гибкая, надежная и экономически эффективная. Она поддерживает новейшие открытые модели, такие как Llama3, Mistral и предоставляет комплексные, удобные для пользователя и автоматически масштабируемые API-решения для разработки генеративных AI-приложений, подходящие для быстрого роста AI-стартапов."
|
97
100
|
},
|
package/locales/tr-TR/chat.json
CHANGED
@@ -273,7 +273,8 @@
|
|
273
273
|
"clientMode": {
|
274
274
|
"actionFiletip": "Dosya Yükle",
|
275
275
|
"actionTooltip": "Yükle",
|
276
|
-
"disabled": "Mevcut model görsel tanımayı ve dosya analizini desteklemiyor, lütfen modeli değiştirin ve tekrar deneyin"
|
276
|
+
"disabled": "Mevcut model görsel tanımayı ve dosya analizini desteklemiyor, lütfen modeli değiştirin ve tekrar deneyin",
|
277
|
+
"visionNotSupported": "Seçili model görsel tanımayı desteklemiyor, lütfen başka bir modele geçiş yaparak kullanın"
|
277
278
|
},
|
278
279
|
"preview": {
|
279
280
|
"prepareTasks": "Parçaları Hazırlıyor...",
|
@@ -2693,18 +2693,9 @@
|
|
2693
2693
|
"thudm/glm-4-9b-chat": {
|
2694
2694
|
"description": "Zhi Pu AI tarafından yayınlanan GLM-4 serisinin en son nesil ön eğitim modelinin açık kaynak versiyonudur."
|
2695
2695
|
},
|
2696
|
-
"thudm/glm-4-9b:free": {
|
2697
|
-
"description": "GLM-4-9B-0414, THUDM tarafından geliştirilen GLM-4 serisinin 9 milyar parametreli dil modelidir. GLM-4-9B-0414, daha büyük 32B karşılık gelen model ile aynı güçlendirilmiş öğrenme ve hizalama stratejilerini kullanarak eğitilmiştir ve ölçeğine göre yüksek performans sergileyerek hala güçlü dil anlama ve üretim yeteneklerine ihtiyaç duyan kaynak sınırlı dağıtımlar için uygundur."
|
2698
|
-
},
|
2699
2696
|
"thudm/glm-z1-32b": {
|
2700
2697
|
"description": "GLM-Z1-32B-0414, GLM-4-32B'nin geliştirilmiş akıl yürütme varyantıdır ve derin matematik, mantık ve kod odaklı sorun çözme için tasarlanmıştır. Karmaşık çok adımlı görevlerin performansını artırmak için genişletilmiş pekiştirmeli öğrenme (görev spesifik ve genel çift tercih tabanlı) uygular. Temel GLM-4-32B modeline kıyasla, Z1 yapılandırılmış akıl yürütme ve formel alanlardaki yetenekleri önemli ölçüde artırmıştır.\n\nBu model, ipucu mühendisliği ile 'düşünme' adımlarını zorunlu kılmayı destekler ve uzun format çıktılar için geliştirilmiş tutarlılık sağlar. Ajan iş akışları için optimize edilmiştir ve uzun bağlamı (YaRN aracılığıyla), JSON araç çağrılarını ve kararlı akıl yürütme için ince ayar örnekleme yapılandırmalarını destekler. Derin düşünme, çok adımlı akıl yürütme veya formel çıkarım gerektiren kullanım durumları için idealdir."
|
2701
2698
|
},
|
2702
|
-
"thudm/glm-z1-32b:free": {
|
2703
|
-
"description": "GLM-Z1-32B-0414, GLM-4-32B'nin geliştirilmiş akıl yürütme varyantıdır ve derin matematik, mantık ve kod odaklı sorun çözme için tasarlanmıştır. Karmaşık çok adımlı görevlerin performansını artırmak için genişletilmiş pekiştirmeli öğrenme (görev spesifik ve genel çift tercih tabanlı) uygular. Temel GLM-4-32B modeline kıyasla, Z1 yapılandırılmış akıl yürütme ve formel alanlardaki yetenekleri önemli ölçüde artırmıştır.\n\nBu model, ipucu mühendisliği ile 'düşünme' adımlarını zorunlu kılmayı destekler ve uzun format çıktılar için geliştirilmiş tutarlılık sağlar. Ajan iş akışları için optimize edilmiştir ve uzun bağlamı (YaRN aracılığıyla), JSON araç çağrılarını ve kararlı akıl yürütme için ince ayar örnekleme yapılandırmalarını destekler. Derin düşünme, çok adımlı akıl yürütme veya formel çıkarım gerektiren kullanım durumları için idealdir."
|
2704
|
-
},
|
2705
|
-
"thudm/glm-z1-9b:free": {
|
2706
|
-
"description": "GLM-Z1-9B-0414, THUDM tarafından geliştirilen GLM-4 serisinin 9B parametreli dil modelidir. Daha büyük GLM-Z1 modeline uygulanan teknikleri içermekte olup, güçlendirilmiş öğrenme, çift sıralama hizalaması ve matematik, kodlama ve mantık gibi akıl yürütme yoğun görevler için eğitim almıştır. Daha küçük olmasına rağmen, genel akıl yürütme görevlerinde güçlü performans sergilemekte ve ağırlık seviyesinde birçok açık kaynak modelinden daha üstündür."
|
2707
|
-
},
|
2708
2699
|
"thudm/glm-z1-rumination-32b": {
|
2709
2700
|
"description": "THUDM: GLM Z1 Rumination 32B, GLM-4-Z1 serisinin 32B parametreli derin akıl yürütme modelidir ve uzun süre düşünmeyi gerektiren karmaşık, açık uçlu görevler için optimize edilmiştir. glm-4-32b-0414 temel alınarak geliştirilmiş ve ek güçlendirilmiş öğrenme aşamaları ve çok aşamalı hizalama stratejileri eklenmiştir; genişletilmiş bilişsel işleme simüle etmek için 'düşünme' yeteneği getirilmiştir. Bu, yinelemeli akıl yürütme, çok adımlı analiz ve arama, alma ve alıntı bilincine sahip sentez gibi araç artırma iş akışlarını içerir.\n\nBu model, araştırma yazımı, karşılaştırmalı analiz ve karmaşık soru-cevap konularında mükemmel performans sergiler. Arama ve navigasyon ilkelere (`search`, `click`, `open`, `finish`) yönelik işlev çağrılarını destekler, böylece ajan tabanlı boru hatlarında kullanılabilir. Düşünme davranışı, kural tabanlı ödüller ve gecikmeli karar verme mekanizması ile çok turlu döngü kontrolü ile şekillendirilir ve OpenAI iç hizalama yığını gibi derin araştırma çerçevelerine göre değerlendirilir. Bu varyant, derinlik gerektiren senaryolar için uygundur."
|
2710
2701
|
},
|
@@ -92,6 +92,9 @@
|
|
92
92
|
"moonshot": {
|
93
93
|
"description": "Moonshot, Beijing Yuezhi Anmian Technology Co., Ltd. tarafından sunulan açık kaynaklı bir platformdur. İçerik oluşturma, akademik araştırma, akıllı öneri, tıbbi teşhis gibi geniş bir uygulama alanına sahip çeşitli doğal dil işleme modelleri sunmaktadır. Uzun metin işleme ve karmaşık üretim görevlerini desteklemektedir."
|
94
94
|
},
|
95
|
+
"nebius": {
|
96
|
+
"description": "Nebius, büyük ölçekli GPU kümeleri ve dikey entegre bulut platformları oluşturarak, dünya çapındaki yapay zeka yenilikçilerine yüksek performanslı altyapı sağlar."
|
97
|
+
},
|
95
98
|
"novita": {
|
96
99
|
"description": "Novita AI, çeşitli büyük dil modelleri ve yapay zeka görüntü üretimi API hizmetleri sunan bir platformdur. Esnek, güvenilir ve maliyet etkin bir yapıya sahiptir. Llama3, Mistral gibi en son açık kaynak modelleri desteklemekte ve üretken yapay zeka uygulama geliştirme için kapsamlı, kullanıcı dostu ve otomatik ölçeklenebilir API çözümleri sunmaktadır. Bu, yapay zeka girişimlerinin hızlı gelişimi için uygundur."
|
97
100
|
},
|
package/locales/vi-VN/chat.json
CHANGED
@@ -273,7 +273,8 @@
|
|
273
273
|
"clientMode": {
|
274
274
|
"actionFiletip": "Tải lên tệp",
|
275
275
|
"actionTooltip": "Tải lên",
|
276
|
-
"disabled": "Mô hình hiện tại không hỗ trợ nhận diện hình ảnh và phân tích tệp, vui lòng chuyển đổi mô hình để sử dụng"
|
276
|
+
"disabled": "Mô hình hiện tại không hỗ trợ nhận diện hình ảnh và phân tích tệp, vui lòng chuyển đổi mô hình để sử dụng",
|
277
|
+
"visionNotSupported": "Mô hình hiện tại không hỗ trợ nhận dạng hình ảnh, vui lòng chuyển sang mô hình khác để sử dụng"
|
277
278
|
},
|
278
279
|
"preview": {
|
279
280
|
"prepareTasks": "Chuẩn bị phân đoạn...",
|
@@ -2693,18 +2693,9 @@
|
|
2693
2693
|
"thudm/glm-4-9b-chat": {
|
2694
2694
|
"description": "Phiên bản mã nguồn mở của thế hệ mô hình tiền huấn luyện GLM-4 mới nhất được phát hành bởi Zhiyu AI."
|
2695
2695
|
},
|
2696
|
-
"thudm/glm-4-9b:free": {
|
2697
|
-
"description": "GLM-4-9B-0414 là mô hình ngôn ngữ 9 tỷ tham số trong dòng GLM-4 được phát triển bởi THUDM. GLM-4-9B-0414 sử dụng cùng một chiến lược học tăng cường và căn chỉnh như mô hình tương ứng lớn hơn 32B, đạt được hiệu suất cao so với quy mô của nó, khiến nó phù hợp cho các triển khai hạn chế tài nguyên nhưng vẫn cần khả năng hiểu và tạo ngôn ngữ mạnh mẽ."
|
2698
|
-
},
|
2699
2696
|
"thudm/glm-z1-32b": {
|
2700
2697
|
"description": "GLM-Z1-32B-0414 là biến thể suy luận nâng cao của GLM-4-32B, được xây dựng cho việc giải quyết các vấn đề sâu về toán học, logic và lập trình. Nó áp dụng học tăng cường mở rộng (cụ thể cho nhiệm vụ và dựa trên sở thích cặp chung) để cải thiện hiệu suất cho các nhiệm vụ phức tạp nhiều bước. So với mô hình GLM-4-32B cơ bản, Z1 đã nâng cao đáng kể khả năng suy luận có cấu trúc và trong các lĩnh vực chính thức.\n\nMô hình này hỗ trợ thực hiện các bước 'suy nghĩ' thông qua kỹ thuật nhắc nhở và cung cấp tính liên kết cải thiện cho đầu ra định dạng dài. Nó được tối ưu hóa cho quy trình làm việc của đại lý và hỗ trợ ngữ cảnh dài (thông qua YaRN), gọi công cụ JSON và cấu hình lấy mẫu chi tiết cho suy luận ổn định. Rất phù hợp cho các trường hợp cần suy nghĩ sâu sắc, suy luận nhiều bước hoặc suy diễn chính thức."
|
2701
2698
|
},
|
2702
|
-
"thudm/glm-z1-32b:free": {
|
2703
|
-
"description": "GLM-Z1-32B-0414 là biến thể suy luận nâng cao của GLM-4-32B, được xây dựng cho việc giải quyết các vấn đề sâu về toán học, logic và lập trình. Nó áp dụng học tăng cường mở rộng (cụ thể cho nhiệm vụ và dựa trên sở thích cặp chung) để cải thiện hiệu suất cho các nhiệm vụ phức tạp nhiều bước. So với mô hình GLM-4-32B cơ bản, Z1 đã nâng cao đáng kể khả năng suy luận có cấu trúc và trong các lĩnh vực chính thức.\n\nMô hình này hỗ trợ thực hiện các bước 'suy nghĩ' thông qua kỹ thuật nhắc nhở và cung cấp tính liên kết cải thiện cho đầu ra định dạng dài. Nó được tối ưu hóa cho quy trình làm việc của đại lý và hỗ trợ ngữ cảnh dài (thông qua YaRN), gọi công cụ JSON và cấu hình lấy mẫu chi tiết cho suy luận ổn định. Rất phù hợp cho các trường hợp cần suy nghĩ sâu sắc, suy luận nhiều bước hoặc suy diễn chính thức."
|
2704
|
-
},
|
2705
|
-
"thudm/glm-z1-9b:free": {
|
2706
|
-
"description": "GLM-Z1-9B-0414 là mô hình ngôn ngữ 9B trong dòng GLM-4 được phát triển bởi THUDM. Nó áp dụng các kỹ thuật ban đầu được sử dụng cho mô hình GLM-Z1 lớn hơn, bao gồm học tăng cường mở rộng, căn chỉnh xếp hạng cặp và đào tạo cho các nhiệm vụ yêu cầu suy luận dày đặc như toán học, mã và logic. Mặc dù quy mô nhỏ hơn, nhưng nó thể hiện hiệu suất mạnh mẽ trong các nhiệm vụ suy luận tổng quát và vượt trội hơn nhiều mô hình mã nguồn mở ở cấp độ trọng số của nó."
|
2707
|
-
},
|
2708
2699
|
"thudm/glm-z1-rumination-32b": {
|
2709
2700
|
"description": "THUDM: GLM Z1 Rumination 32B là mô hình suy luận sâu với 32B tham số trong dòng GLM-4-Z1, được tối ưu hóa cho các nhiệm vụ phức tạp, mở cần suy nghĩ lâu dài. Nó được xây dựng trên nền tảng glm-4-32b-0414, tăng cường thêm giai đoạn học tăng cường và chiến lược căn chỉnh đa giai đoạn, giới thiệu khả năng \"phản tư\" nhằm mô phỏng quá trình xử lý nhận thức mở rộng. Điều này bao gồm suy luận lặp đi lặp lại, phân tích đa bước và quy trình làm việc tăng cường công cụ như tìm kiếm, truy xuất và tổng hợp nhận thức trích dẫn.\n\nMô hình này thể hiện xuất sắc trong viết nghiên cứu, phân tích so sánh và câu hỏi phức tạp. Nó hỗ trợ gọi hàm cho các nguyên ngữ tìm kiếm và điều hướng (`search`, `click`, `open`, `finish`), cho phép sử dụng trong quy trình đại lý. Hành vi phản tư được hình thành bởi các phần thưởng dựa trên quy tắc và cơ chế quyết định trì hoãn trong kiểm soát vòng lặp đa vòng, và được chuẩn hóa theo các khung nghiên cứu sâu như ngăn xếp căn chỉnh nội bộ của OpenAI. Biến thể này phù hợp cho các tình huống cần độ sâu hơn là tốc độ."
|
2710
2701
|
},
|
@@ -92,6 +92,9 @@
|
|
92
92
|
"moonshot": {
|
93
93
|
"description": "Moonshot là nền tảng mã nguồn mở do Công ty TNHH Công nghệ Mặt Trăng Bắc Kinh phát hành, cung cấp nhiều mô hình xử lý ngôn ngữ tự nhiên, ứng dụng rộng rãi trong nhiều lĩnh vực, bao gồm nhưng không giới hạn ở sáng tác nội dung, nghiên cứu học thuật, gợi ý thông minh, chẩn đoán y tế, v.v., hỗ trợ xử lý văn bản dài và nhiệm vụ tạo phức tạp."
|
94
94
|
},
|
95
|
+
"nebius": {
|
96
|
+
"description": "Nebius cung cấp cơ sở hạ tầng hiệu suất cao cho các nhà đổi mới AI toàn cầu thông qua việc xây dựng cụm GPU quy mô lớn và nền tảng đám mây tích hợp dọc."
|
97
|
+
},
|
95
98
|
"novita": {
|
96
99
|
"description": "Novita AI là một nền tảng cung cấp dịch vụ API cho nhiều mô hình ngôn ngữ lớn và tạo hình ảnh AI, linh hoạt, đáng tin cậy và hiệu quả về chi phí. Nó hỗ trợ các mô hình mã nguồn mở mới nhất như Llama3, Mistral, và cung cấp giải pháp API toàn diện, thân thiện với người dùng và tự động mở rộng cho phát triển ứng dụng AI, phù hợp cho sự phát triển nhanh chóng của các công ty khởi nghiệp AI."
|
97
100
|
},
|
package/locales/zh-CN/chat.json
CHANGED
@@ -273,7 +273,8 @@
|
|
273
273
|
"clientMode": {
|
274
274
|
"actionFiletip": "上传文件",
|
275
275
|
"actionTooltip": "上传",
|
276
|
-
"disabled": "当前模型不支持视觉识别和文件分析,请切换模型后使用"
|
276
|
+
"disabled": "当前模型不支持视觉识别和文件分析,请切换模型后使用",
|
277
|
+
"visionNotSupported": "当前模型不支持视觉识别,请切换模型后使用"
|
277
278
|
},
|
278
279
|
"preview": {
|
279
280
|
"prepareTasks": "准备分块...",
|
@@ -2693,18 +2693,9 @@
|
|
2693
2693
|
"thudm/glm-4-9b-chat": {
|
2694
2694
|
"description": "智谱AI发布的GLM-4系列最新一代预训练模型的开源版本。"
|
2695
2695
|
},
|
2696
|
-
"thudm/glm-4-9b:free": {
|
2697
|
-
"description": "GLM-4-9B-0414 是 THUDM 开发的 GLM-4 系列中的 90 亿参数语言模型。GLM-4-9B-0414 使用与其较大的 32B 对应模型相同的强化学习和对齐策略进行训练,相对于其规模实现了高性能,使其适用于仍需要强大语言理解和生成能力的资源受限部署。"
|
2698
|
-
},
|
2699
2696
|
"thudm/glm-z1-32b": {
|
2700
2697
|
"description": "GLM-Z1-32B-0414 是 GLM-4-32B 的增强推理变体,专为深度数学、逻辑和面向代码的问题解决而构建。它应用扩展强化学习(任务特定和基于通用成对偏好)来提高复杂多步骤任务的性能。与基础 GLM-4-32B 模型相比,Z1 显著提升了结构化推理和形式化领域的能力。\n\n该模型支持通过提示工程强制执行“思考”步骤,并为长格式输出提供改进的连贯性。它针对代理工作流进行了优化,并支持长上下文(通过 YaRN)、JSON 工具调用和用于稳定推理的细粒度采样配置。非常适合需要深思熟虑、多步骤推理或形式化推导的用例。"
|
2701
2698
|
},
|
2702
|
-
"thudm/glm-z1-32b:free": {
|
2703
|
-
"description": "GLM-Z1-32B-0414 是 GLM-4-32B 的增强推理变体,专为深度数学、逻辑和面向代码的问题解决而构建。它应用扩展强化学习(任务特定和基于通用成对偏好)来提高复杂多步骤任务的性能。与基础 GLM-4-32B 模型相比,Z1 显著提升了结构化推理和形式化领域的能力。\n\n该模型支持通过提示工程强制执行“思考”步骤,并为长格式输出提供改进的连贯性。它针对代理工作流进行了优化,并支持长上下文(通过 YaRN)、JSON 工具调用和用于稳定推理的细粒度采样配置。非常适合需要深思熟虑、多步骤推理或形式化推导的用例。"
|
2704
|
-
},
|
2705
|
-
"thudm/glm-z1-9b:free": {
|
2706
|
-
"description": "GLM-Z1-9B-0414 是由 THUDM 开发的 GLM-4 系列中的 9B 参数语言模型。它采用了最初应用于更大 GLM-Z1 模型的技术,包括扩展强化学习、成对排名对齐以及对数学、代码和逻辑等推理密集型任务的训练。尽管其规模较小,但它在通用推理任务上表现出强大的性能,并在其权重级别中优于许多开源模型。"
|
2707
|
-
},
|
2708
2699
|
"thudm/glm-z1-rumination-32b": {
|
2709
2700
|
"description": "GLM Z1 Rumination 32B 是 GLM-4-Z1 系列中的 32B 参数深度推理模型,针对需要长时间思考的复杂、开放式任务进行了优化。它建立在 glm-4-32b-0414 的基础上,增加了额外的强化学习阶段和多阶段对齐策略,引入了旨在模拟扩展认知处理的“反思”能力。这包括迭代推理、多跳分析和工具增强的工作流程,例如搜索、检索和引文感知合成。\n\n该模型在研究式写作、比较分析和复杂问答方面表现出色。它支持用于搜索和导航原语(`search`、`click`、`open`、`finish`)的函数调用,从而可以在代理式管道中使用。反思行为由具有基于规则的奖励塑造和延迟决策机制的多轮循环控制,并以 OpenAI 内部对齐堆栈等深度研究框架为基准。此变体适用于需要深度而非速度的场景。"
|
2710
2701
|
},
|
@@ -92,6 +92,9 @@
|
|
92
92
|
"moonshot": {
|
93
93
|
"description": "Moonshot 是由北京月之暗面科技有限公司推出的开源平台,提供多种自然语言处理模型,应用领域广泛,包括但不限于内容创作、学术研究、智能推荐、医疗诊断等,支持长文本处理和复杂生成任务。"
|
94
94
|
},
|
95
|
+
"nebius": {
|
96
|
+
"description": "Nebius 通过构建大规模GPU集群和垂直整合的云平台,为全球AI创新者提供高性能基础设施。"
|
97
|
+
},
|
95
98
|
"novita": {
|
96
99
|
"description": "Novita AI 是一个提供多种大语言模型与 AI 图像生成的 API 服务的平台,灵活、可靠且具有成本效益。它支持 Llama3、Mistral 等最新的开源模型,并为生成式 AI 应用开发提供了全面、用户友好且自动扩展的 API 解决方案,适合 AI 初创公司的快速发展。"
|
97
100
|
},
|
package/locales/zh-TW/chat.json
CHANGED
@@ -273,7 +273,8 @@
|
|
273
273
|
"clientMode": {
|
274
274
|
"actionFiletip": "上傳檔案",
|
275
275
|
"actionTooltip": "上傳",
|
276
|
-
"disabled": "當前模型不支援視覺識別和檔案分析,請切換模型後使用"
|
276
|
+
"disabled": "當前模型不支援視覺識別和檔案分析,請切換模型後使用",
|
277
|
+
"visionNotSupported": "當前模型不支援視覺識別,請切換模型後使用"
|
277
278
|
},
|
278
279
|
"preview": {
|
279
280
|
"prepareTasks": "準備分塊...",
|
@@ -2691,18 +2691,9 @@
|
|
2691
2691
|
"thudm/glm-4-9b-chat": {
|
2692
2692
|
"description": "智譜AI發布的GLM-4系列最新一代預訓練模型的開源版本。"
|
2693
2693
|
},
|
2694
|
-
"thudm/glm-4-9b:free": {
|
2695
|
-
"description": "GLM-4-9B-0414 是 THUDM 開發的 GLM-4 系列中的 90 億參數語言模型。GLM-4-9B-0414 使用與其較大的 32B 對應模型相同的強化學習和對齊策略進行訓練,相對於其規模實現了高性能,使其適用於仍需要強大語言理解和生成能力的資源受限部署。"
|
2696
|
-
},
|
2697
2694
|
"thudm/glm-z1-32b": {
|
2698
2695
|
"description": "GLM-Z1-32B-0414 是 GLM-4-32B 的增強推理變體,專為深度數學、邏輯和面向程式碼的問題解決而構建。它應用擴展強化學習(任務特定和基於通用成對偏好)來提高複雜多步驟任務的性能。與基礎 GLM-4-32B 模型相比,Z1 顯著提升了結構化推理和形式化領域的能力。\n\n該模型支持通過提示工程強制執行「思考」步驟,並為長格式輸出提供改進的連貫性。它針對代理工作流進行了優化,並支持長上下文(通過 YaRN)、JSON 工具調用和用於穩定推理的細粒度採樣配置。非常適合需要深思熟慮、多步驟推理或形式化推導的用例。"
|
2699
2696
|
},
|
2700
|
-
"thudm/glm-z1-32b:free": {
|
2701
|
-
"description": "GLM-Z1-32B-0414 是 GLM-4-32B 的增強推理變體,專為深度數學、邏輯和面向程式碼的問題解決而構建。它應用擴展強化學習(任務特定和基於通用成對偏好)來提高複雜多步驟任務的性能。與基礎 GLM-4-32B 模型相比,Z1 顯著提升了結構化推理和形式化領域的能力。\n\n該模型支持通過提示工程強制執行「思考」步驟,並為長格式輸出提供改進的連貫性。它針對代理工作流進行了優化,並支持長上下文(通過 YaRN)、JSON 工具調用和用於穩定推理的細粒度採樣配置。非常適合需要深思熟慮、多步驟推理或形式化推導的用例。"
|
2702
|
-
},
|
2703
|
-
"thudm/glm-z1-9b:free": {
|
2704
|
-
"description": "GLM-Z1-9B-0414 是由 THUDM 開發的 GLM-4 系列中的 9B 參數語言模型。它採用了最初應用於更大 GLM-Z1 模型的技術,包括擴展強化學習、成對排名對齊以及對數學、代碼和邏輯等推理密集型任務的訓練。儘管其規模較小,但它在通用推理任務上表現出強大的性能,並在其權重級別中優於許多開源模型。"
|
2705
|
-
},
|
2706
2697
|
"thudm/glm-z1-rumination-32b": {
|
2707
2698
|
"description": "THUDM: GLM Z1 Rumination 32B 是 GLM-4-Z1 系列中的 32B 參數深度推理模型,針對需要長時間思考的複雜、開放式任務進行了優化。它建立在 glm-4-32b-0414 的基礎上,增加了額外的強化學習階段和多階段對齊策略,引入了旨在模擬擴展認知處理的「反思」能力。這包括迭代推理、多跳分析和工具增強的工作流程,例如搜索、檢索和引文感知合成。\n\n該模型在研究式寫作、比較分析和複雜問答方面表現出色。它支持用於搜索和導航原語(`search`、`click`、`open`、`finish`)的函數調用,從而可以在代理式管道中使用。反思行為由具有基於規則的獎勵塑造和延遲決策機制的多輪循環控制,並以 OpenAI 內部對齊堆疊等深度研究框架為基準。此變體適用於需要深度而非速度的場景。"
|
2708
2699
|
},
|
@@ -92,6 +92,9 @@
|
|
92
92
|
"moonshot": {
|
93
93
|
"description": "Moonshot 是由北京月之暗面科技有限公司推出的開源平台,提供多種自然語言處理模型,應用領域廣泛,包括但不限於內容創作、學術研究、智能推薦、醫療診斷等,支持長文本處理和複雜生成任務。"
|
94
94
|
},
|
95
|
+
"nebius": {
|
96
|
+
"description": "Nebius 透過構建大規模GPU叢集及垂直整合的雲端平台,為全球AI創新者提供高效能基礎設施。"
|
97
|
+
},
|
95
98
|
"novita": {
|
96
99
|
"description": "Novita AI 是一個提供多種大語言模型與 AI 圖像生成的 API 服務的平台,靈活、可靠且具有成本效益。它支持 Llama3、Mistral 等最新的開源模型,並為生成式 AI 應用開發提供了全面、用戶友好且自動擴展的 API 解決方案,適合 AI 初創公司的快速發展。"
|
97
100
|
},
|
package/package.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
{
|
2
2
|
"name": "@lobehub/chat",
|
3
|
-
"version": "1.120.
|
3
|
+
"version": "1.120.7",
|
4
4
|
"description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
|
5
5
|
"keywords": [
|
6
6
|
"framework",
|
@@ -1,15 +1,43 @@
|
|
1
1
|
import { act, renderHook } from '@testing-library/react';
|
2
|
+
import { App } from 'antd';
|
2
3
|
import { Mock, afterEach, beforeEach, describe, expect, it, vi } from 'vitest';
|
3
4
|
|
5
|
+
import { useModelSupportVision } from '@/hooks/useModelSupportVision';
|
6
|
+
import { useAgentStore } from '@/store/agent';
|
7
|
+
import { agentSelectors } from '@/store/agent/slices/chat';
|
8
|
+
|
4
9
|
import { getContainer, useDragUpload } from './useDragUpload';
|
5
10
|
|
11
|
+
// Mock the hooks and components
|
12
|
+
vi.mock('@/hooks/useModelSupportVision');
|
13
|
+
vi.mock('@/store/agent');
|
14
|
+
vi.mock('antd', () => ({
|
15
|
+
App: {
|
16
|
+
useApp: () => ({
|
17
|
+
message: {
|
18
|
+
warning: vi.fn(),
|
19
|
+
},
|
20
|
+
}),
|
21
|
+
},
|
22
|
+
}));
|
23
|
+
|
6
24
|
describe('useDragUpload', () => {
|
7
25
|
let mockOnUploadFiles: Mock;
|
26
|
+
let mockMessage: { warning: Mock };
|
8
27
|
|
9
28
|
beforeEach(() => {
|
10
29
|
mockOnUploadFiles = vi.fn();
|
30
|
+
mockMessage = { warning: vi.fn() };
|
11
31
|
vi.useFakeTimers();
|
12
32
|
document.body.innerHTML = '';
|
33
|
+
|
34
|
+
// Mock the hooks
|
35
|
+
(useModelSupportVision as Mock).mockReturnValue(false);
|
36
|
+
(useAgentStore as unknown as Mock).mockImplementation((selector) => {
|
37
|
+
if (selector === agentSelectors.currentAgentModel) return 'test-model';
|
38
|
+
if (selector === agentSelectors.currentAgentModelProvider) return 'test-provider';
|
39
|
+
return null;
|
40
|
+
});
|
13
41
|
});
|
14
42
|
|
15
43
|
afterEach(() => {
|
@@ -115,6 +143,89 @@ describe('useDragUpload', () => {
|
|
115
143
|
|
116
144
|
expect(mockOnUploadFiles).toHaveBeenCalledWith([mockFile]);
|
117
145
|
});
|
146
|
+
|
147
|
+
it('should show warning when dropping image file with vision not supported', async () => {
|
148
|
+
renderHook(() => useDragUpload(mockOnUploadFiles));
|
149
|
+
|
150
|
+
const mockImageFile = new File([''], 'test.png', { type: 'image/png' });
|
151
|
+
const dropEvent = new Event('drop') as DragEvent;
|
152
|
+
Object.defineProperty(dropEvent, 'dataTransfer', {
|
153
|
+
value: {
|
154
|
+
items: [
|
155
|
+
{
|
156
|
+
kind: 'file',
|
157
|
+
getAsFile: () => mockImageFile,
|
158
|
+
webkitGetAsEntry: () => ({
|
159
|
+
isFile: true,
|
160
|
+
file: (cb: (file: File) => void) => cb(mockImageFile),
|
161
|
+
}),
|
162
|
+
},
|
163
|
+
],
|
164
|
+
types: ['Files'],
|
165
|
+
},
|
166
|
+
});
|
167
|
+
|
168
|
+
await act(async () => {
|
169
|
+
window.dispatchEvent(dropEvent);
|
170
|
+
});
|
171
|
+
|
172
|
+
expect(mockOnUploadFiles).not.toHaveBeenCalled();
|
173
|
+
});
|
174
|
+
|
175
|
+
it('should show warning when pasting image file with vision not supported', async () => {
|
176
|
+
renderHook(() => useDragUpload(mockOnUploadFiles));
|
177
|
+
|
178
|
+
const mockImageFile = new File([''], 'test.png', { type: 'image/png' });
|
179
|
+
const pasteEvent = new Event('paste') as ClipboardEvent;
|
180
|
+
Object.defineProperty(pasteEvent, 'clipboardData', {
|
181
|
+
value: {
|
182
|
+
items: [
|
183
|
+
{
|
184
|
+
kind: 'file',
|
185
|
+
getAsFile: () => mockImageFile,
|
186
|
+
webkitGetAsEntry: () => null,
|
187
|
+
},
|
188
|
+
],
|
189
|
+
},
|
190
|
+
});
|
191
|
+
|
192
|
+
await act(async () => {
|
193
|
+
window.dispatchEvent(pasteEvent);
|
194
|
+
});
|
195
|
+
|
196
|
+
expect(mockOnUploadFiles).not.toHaveBeenCalled();
|
197
|
+
});
|
198
|
+
|
199
|
+
it('should allow image files when vision is supported', async () => {
|
200
|
+
(useModelSupportVision as Mock).mockReturnValue(true);
|
201
|
+
|
202
|
+
renderHook(() => useDragUpload(mockOnUploadFiles));
|
203
|
+
|
204
|
+
const mockImageFile = new File([''], 'test.png', { type: 'image/png' });
|
205
|
+
const dropEvent = new Event('drop') as DragEvent;
|
206
|
+
Object.defineProperty(dropEvent, 'dataTransfer', {
|
207
|
+
value: {
|
208
|
+
items: [
|
209
|
+
{
|
210
|
+
kind: 'file',
|
211
|
+
getAsFile: () => mockImageFile,
|
212
|
+
webkitGetAsEntry: () => ({
|
213
|
+
isFile: true,
|
214
|
+
file: (cb: (file: File) => void) => cb(mockImageFile),
|
215
|
+
}),
|
216
|
+
},
|
217
|
+
],
|
218
|
+
types: ['Files'],
|
219
|
+
},
|
220
|
+
});
|
221
|
+
|
222
|
+
await act(async () => {
|
223
|
+
window.dispatchEvent(dropEvent);
|
224
|
+
});
|
225
|
+
|
226
|
+
expect(mockOnUploadFiles).toHaveBeenCalledWith([mockImageFile]);
|
227
|
+
expect(App.useApp().message.warning).not.toHaveBeenCalled();
|
228
|
+
});
|
118
229
|
});
|
119
230
|
|
120
231
|
describe('getContainer', () => {
|
@@ -1,5 +1,11 @@
|
|
1
1
|
/* eslint-disable no-undef */
|
2
|
+
import { App } from 'antd';
|
2
3
|
import { useEffect, useRef, useState } from 'react';
|
4
|
+
import { useTranslation } from 'react-i18next';
|
5
|
+
|
6
|
+
import { useModelSupportVision } from '@/hooks/useModelSupportVision';
|
7
|
+
import { useAgentStore } from '@/store/agent';
|
8
|
+
import { agentSelectors } from '@/store/agent/selectors';
|
3
9
|
|
4
10
|
const DRAGGING_ROOT_ID = 'dragging-root';
|
5
11
|
export const getContainer = () => document.querySelector(`#${DRAGGING_ROOT_ID}`);
|
@@ -62,12 +68,18 @@ const getFileListFromDataTransferItems = async (items: DataTransferItem[]) => {
|
|
62
68
|
};
|
63
69
|
|
64
70
|
export const useDragUpload = (onUploadFiles: (files: File[]) => Promise<void>) => {
|
71
|
+
const { t } = useTranslation('chat');
|
72
|
+
const { message } = App.useApp();
|
65
73
|
const [isDragging, setIsDragging] = useState(false);
|
66
74
|
// When a file is dragged to a different area, the 'dragleave' event may be triggered,
|
67
75
|
// causing isDragging to be mistakenly set to false.
|
68
76
|
// to fix this issue, use a counter to ensure the status change only when drag event left the browser window .
|
69
77
|
const dragCounter = useRef(0);
|
70
78
|
|
79
|
+
const model = useAgentStore(agentSelectors.currentAgentModel);
|
80
|
+
const provider = useAgentStore(agentSelectors.currentAgentModelProvider);
|
81
|
+
const supportVision = useModelSupportVision(model, provider);
|
82
|
+
|
71
83
|
const handleDragEnter = (e: DragEvent) => {
|
72
84
|
if (!e.dataTransfer?.items || e.dataTransfer.items.length === 0) return;
|
73
85
|
|
@@ -113,6 +125,13 @@ export const useDragUpload = (onUploadFiles: (files: File[]) => Promise<void>) =
|
|
113
125
|
|
114
126
|
if (files.length === 0) return;
|
115
127
|
|
128
|
+
// 检查是否有图片文件且模型不支持视觉功能
|
129
|
+
const hasImageFiles = files.some((file) => file.type.startsWith('image/'));
|
130
|
+
if (hasImageFiles && !supportVision) {
|
131
|
+
message.warning(t('upload.clientMode.visionNotSupported'));
|
132
|
+
return;
|
133
|
+
}
|
134
|
+
|
116
135
|
// upload files
|
117
136
|
onUploadFiles(files);
|
118
137
|
};
|
@@ -125,6 +144,13 @@ export const useDragUpload = (onUploadFiles: (files: File[]) => Promise<void>) =
|
|
125
144
|
const files = await getFileListFromDataTransferItems(items);
|
126
145
|
if (files.length === 0) return;
|
127
146
|
|
147
|
+
// 检查是否有图片文件且模型不支持视觉功能
|
148
|
+
const hasImageFiles = files.some((file) => file.type.startsWith('image/'));
|
149
|
+
if (hasImageFiles && !supportVision) {
|
150
|
+
message.warning(t('upload.clientMode.visionNotSupported'));
|
151
|
+
return;
|
152
|
+
}
|
153
|
+
|
128
154
|
onUploadFiles(files);
|
129
155
|
};
|
130
156
|
|