@lobehub/chat 1.120.5 → 1.120.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (60) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/changelog/v1.json +18 -0
  3. package/locales/ar/chat.json +2 -1
  4. package/locales/ar/models.json +0 -9
  5. package/locales/ar/providers.json +3 -0
  6. package/locales/bg-BG/chat.json +2 -1
  7. package/locales/bg-BG/models.json +0 -9
  8. package/locales/bg-BG/providers.json +3 -0
  9. package/locales/de-DE/chat.json +2 -1
  10. package/locales/de-DE/models.json +0 -9
  11. package/locales/de-DE/providers.json +3 -0
  12. package/locales/en-US/chat.json +2 -1
  13. package/locales/en-US/models.json +0 -9
  14. package/locales/en-US/providers.json +3 -0
  15. package/locales/es-ES/chat.json +2 -1
  16. package/locales/es-ES/models.json +0 -9
  17. package/locales/es-ES/providers.json +3 -0
  18. package/locales/fa-IR/chat.json +2 -1
  19. package/locales/fa-IR/models.json +0 -9
  20. package/locales/fa-IR/providers.json +3 -0
  21. package/locales/fr-FR/chat.json +2 -1
  22. package/locales/fr-FR/models.json +0 -9
  23. package/locales/fr-FR/providers.json +3 -0
  24. package/locales/it-IT/chat.json +2 -1
  25. package/locales/it-IT/models.json +0 -9
  26. package/locales/it-IT/providers.json +3 -0
  27. package/locales/ja-JP/chat.json +2 -1
  28. package/locales/ja-JP/models.json +0 -9
  29. package/locales/ja-JP/providers.json +3 -0
  30. package/locales/ko-KR/chat.json +2 -1
  31. package/locales/ko-KR/models.json +0 -9
  32. package/locales/ko-KR/providers.json +3 -0
  33. package/locales/nl-NL/chat.json +2 -1
  34. package/locales/nl-NL/models.json +0 -9
  35. package/locales/nl-NL/providers.json +3 -0
  36. package/locales/pl-PL/chat.json +2 -1
  37. package/locales/pl-PL/models.json +0 -9
  38. package/locales/pl-PL/providers.json +3 -0
  39. package/locales/pt-BR/chat.json +2 -1
  40. package/locales/pt-BR/models.json +0 -9
  41. package/locales/pt-BR/providers.json +3 -0
  42. package/locales/ru-RU/chat.json +2 -1
  43. package/locales/ru-RU/models.json +0 -9
  44. package/locales/ru-RU/providers.json +3 -0
  45. package/locales/tr-TR/chat.json +2 -1
  46. package/locales/tr-TR/models.json +0 -9
  47. package/locales/tr-TR/providers.json +3 -0
  48. package/locales/vi-VN/chat.json +2 -1
  49. package/locales/vi-VN/models.json +0 -9
  50. package/locales/vi-VN/providers.json +3 -0
  51. package/locales/zh-CN/chat.json +2 -1
  52. package/locales/zh-CN/models.json +0 -9
  53. package/locales/zh-CN/providers.json +3 -0
  54. package/locales/zh-TW/chat.json +2 -1
  55. package/locales/zh-TW/models.json +0 -9
  56. package/locales/zh-TW/providers.json +3 -0
  57. package/package.json +1 -1
  58. package/src/components/DragUpload/useDragUpload.test.tsx +111 -0
  59. package/src/components/DragUpload/useDragUpload.tsx +26 -0
  60. package/src/locales/default/chat.ts +1 -0
package/CHANGELOG.md CHANGED
@@ -2,6 +2,56 @@
2
2
 
3
3
  # Changelog
4
4
 
5
+ ### [Version 1.120.7](https://github.com/lobehub/lobe-chat/compare/v1.120.6...v1.120.7)
6
+
7
+ <sup>Released on **2025-09-02**</sup>
8
+
9
+ #### 💄 Styles
10
+
11
+ - **misc**: Update i18n.
12
+
13
+ <br/>
14
+
15
+ <details>
16
+ <summary><kbd>Improvements and Fixes</kbd></summary>
17
+
18
+ #### Styles
19
+
20
+ - **misc**: Update i18n, closes [#9033](https://github.com/lobehub/lobe-chat/issues/9033) ([650e552](https://github.com/lobehub/lobe-chat/commit/650e552))
21
+
22
+ </details>
23
+
24
+ <div align="right">
25
+
26
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
27
+
28
+ </div>
29
+
30
+ ### [Version 1.120.6](https://github.com/lobehub/lobe-chat/compare/v1.120.5...v1.120.6)
31
+
32
+ <sup>Released on **2025-09-01**</sup>
33
+
34
+ #### 💄 Styles
35
+
36
+ - **misc**: Add upload hint for non-visual model.
37
+
38
+ <br/>
39
+
40
+ <details>
41
+ <summary><kbd>Improvements and Fixes</kbd></summary>
42
+
43
+ #### Styles
44
+
45
+ - **misc**: Add upload hint for non-visual model, closes [#7969](https://github.com/lobehub/lobe-chat/issues/7969) ([1224f4e](https://github.com/lobehub/lobe-chat/commit/1224f4e))
46
+
47
+ </details>
48
+
49
+ <div align="right">
50
+
51
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
52
+
53
+ </div>
54
+
5
55
  ### [Version 1.120.5](https://github.com/lobehub/lobe-chat/compare/v1.120.4...v1.120.5)
6
56
 
7
57
  <sup>Released on **2025-09-01**</sup>
package/changelog/v1.json CHANGED
@@ -1,4 +1,22 @@
1
1
  [
2
+ {
3
+ "children": {
4
+ "improvements": [
5
+ "Update i18n."
6
+ ]
7
+ },
8
+ "date": "2025-09-02",
9
+ "version": "1.120.7"
10
+ },
11
+ {
12
+ "children": {
13
+ "improvements": [
14
+ "Add upload hint for non-visual model."
15
+ ]
16
+ },
17
+ "date": "2025-09-01",
18
+ "version": "1.120.6"
19
+ },
2
20
  {
3
21
  "children": {},
4
22
  "date": "2025-09-01",
@@ -273,7 +273,8 @@
273
273
  "clientMode": {
274
274
  "actionFiletip": "رفع ملف",
275
275
  "actionTooltip": "رفع",
276
- "disabled": "النموذج الحالي لا يدعم التعرف على الصور وتحليل الملفات، يرجى تغيير النموذج لاستخدامه"
276
+ "disabled": "النموذج الحالي لا يدعم التعرف على الصور وتحليل الملفات، يرجى تغيير النموذج لاستخدامه",
277
+ "visionNotSupported": "النموذج الحالي لا يدعم التعرف البصري، يرجى تبديل النموذج لاستخدام هذه الميزة"
277
278
  },
278
279
  "preview": {
279
280
  "prepareTasks": "تحضير الأجزاء...",
@@ -2693,18 +2693,9 @@
2693
2693
  "thudm/glm-4-9b-chat": {
2694
2694
  "description": "الإصدار المفتوح من الجيل الأحدث من نموذج GLM-4 الذي أطلقته Zhizhu AI."
2695
2695
  },
2696
- "thudm/glm-4-9b:free": {
2697
- "description": "GLM-4-9B-0414 هو نموذج لغوي يحتوي على 9 مليار معلمة من سلسلة GLM-4 التي تم تطويرها بواسطة THUDM. يستخدم GLM-4-9B-0414 نفس استراتيجيات تعزيز التعلم والتوافق المستخدمة في النموذج المقابل الأكبر 32B، مما يحقق أداءً عاليًا بالنسبة لحجمه، مما يجعله مناسبًا للنشر في البيئات المحدودة الموارد التي لا تزال تتطلب قدرات قوية في فهم اللغة وتوليدها."
2698
- },
2699
2696
  "thudm/glm-z1-32b": {
2700
2697
  "description": "GLM-Z1-32B-0414 هو نسخة محسنة من GLM-4-32B، مصممة لحل المشكلات المعقدة في الرياضيات العميقة، المنطق، والشيفرات. يستخدم التعلم المعزز الموسع (المخصص للمهام والمبني على تفضيلات عامة) لتحسين الأداء في المهام المعقدة متعددة الخطوات. مقارنةً بنموذج GLM-4-32B الأساسي، زادت Z1 بشكل ملحوظ من قدرات الاستدلال الهيكلي والمجالات الرسمية.\n\nيدعم هذا النموذج تنفيذ خطوات \"التفكير\" من خلال هندسة التلميحات، ويقدم اتساقًا محسنًا للإخراج الطويل. تم تحسينه لعمليات سير العمل الخاصة بالوكيل، ويدعم السياقات الطويلة (عبر YaRN)، واستدعاءات أدوات JSON، وتكوينات أخذ العينات الدقيقة للاستدلال المستقر. مثالي للحالات التي تتطلب تفكيرًا عميقًا، استدلالًا متعدد الخطوات، أو استنتاجات رسمية."
2701
2698
  },
2702
- "thudm/glm-z1-32b:free": {
2703
- "description": "GLM-Z1-32B-0414 هو نسخة محسنة من GLM-4-32B، مصممة لحل المشكلات المعقدة في الرياضيات العميقة، المنطق، والشيفرات. يستخدم التعلم المعزز الموسع (المخصص للمهام والمبني على تفضيلات عامة) لتحسين الأداء في المهام المعقدة متعددة الخطوات. مقارنةً بنموذج GLM-4-32B الأساسي، زادت Z1 بشكل ملحوظ من قدرات الاستدلال الهيكلي والمجالات الرسمية.\n\nيدعم هذا النموذج تنفيذ خطوات \"التفكير\" من خلال هندسة التلميحات، ويقدم اتساقًا محسنًا للإخراج الطويل. تم تحسينه لعمليات سير العمل الخاصة بالوكيل، ويدعم السياقات الطويلة (عبر YaRN)، واستدعاءات أدوات JSON، وتكوينات أخذ العينات الدقيقة للاستدلال المستقر. مثالي للحالات التي تتطلب تفكيرًا عميقًا، استدلالًا متعدد الخطوات، أو استنتاجات رسمية."
2704
- },
2705
- "thudm/glm-z1-9b:free": {
2706
- "description": "GLM-Z1-9B-0414 هو نموذج لغوي يحتوي على 9 مليار معلمة من سلسلة GLM-4 التي تم تطويرها بواسطة THUDM. يستخدم تقنيات تم تطبيقها في الأصل على نموذج GLM-Z1 الأكبر، بما في ذلك تعزيز التعلم الموسع، والتوافق القائم على الترتيب الثنائي، والتدريب على المهام التي تتطلب استدلالًا مكثفًا مثل الرياضيات، والترميز، والمنطق. على الرغم من حجمه الأصغر، إلا أنه يظهر أداءً قويًا في المهام العامة للاستدلال، ويتفوق على العديد من النماذج مفتوحة المصدر في مستوى وزنه."
2707
- },
2708
2699
  "thudm/glm-z1-rumination-32b": {
2709
2700
  "description": "THUDM: GLM Z1 Rumination 32B هو نموذج استدلال عميق يحتوي على 32 مليار معلمة من سلسلة GLM-4-Z1، تم تحسينه للمهام المعقدة والمفتوحة التي تتطلب تفكيرًا طويل الأمد. يعتمد على glm-4-32b-0414، ويضيف مراحل تعزيز التعلم الإضافية واستراتيجيات التوافق متعددة المراحل، ويقدم قدرة \"التفكير\" المصممة لمحاكاة معالجة الإدراك الموسع. يشمل ذلك الاستدلال التكراري، والتحليل متعدد القفزات، وسير العمل المعزز بالأدوات مثل البحث، والاسترجاع، والتوليف المدرك للاقتباسات.\n\nيظهر هذا النموذج أداءً ممتازًا في الكتابة البحثية، والتحليل المقارن، والأسئلة المعقدة. يدعم استدعاء الوظائف المستخدمة في البحث والتنقل (مثل `search`، `click`، `open`، `finish`)، مما يسمح باستخدامه في أنابيب الوكلاء. يتم تشكيل سلوك التفكير من خلال مكافآت قائمة على القواعد وآلية اتخاذ القرار المتأخرة، ويتم قياسه باستخدام أطر بحث عميقة مثل كومة التوافق الداخلية لـ OpenAI. هذا المتغير مناسب للسيناريوهات التي تتطلب عمقًا بدلاً من السرعة."
2710
2701
  },
@@ -92,6 +92,9 @@
92
92
  "moonshot": {
93
93
  "description": "Moonshot هي منصة مفتوحة أطلقتها شركة Beijing Dark Side Technology Co.، Ltd، تقدم مجموعة متنوعة من نماذج معالجة اللغة الطبيعية، وتغطي مجالات واسعة، بما في ذلك ولكن لا تقتصر على إنشاء المحتوى، والبحث الأكاديمي، والتوصيات الذكية، والتشخيص الطبي، وتدعم معالجة النصوص الطويلة والمهام المعقدة."
94
94
  },
95
+ "nebius": {
96
+ "description": "نيبيوس توفر بنية تحتية عالية الأداء للمبتكرين في مجال الذكاء الاصطناعي حول العالم من خلال بناء مجموعات ضخمة من وحدات معالجة الرسومات ومنصة سحابية متكاملة رأسياً."
97
+ },
95
98
  "novita": {
96
99
  "description": "Novita AI هي منصة تقدم خدمات API لمجموعة متنوعة من نماذج اللغة الكبيرة وتوليد الصور بالذكاء الاصطناعي، مرنة وموثوقة وفعالة من حيث التكلفة. تدعم أحدث النماذج مفتوحة المصدر مثل Llama3 وMistral، وتوفر حلول API شاملة وسهلة الاستخدام وقابلة للتوسع تلقائيًا لتطوير تطبيقات الذكاء الاصطناعي، مما يجعلها مناسبة لنمو الشركات الناشئة في مجال الذكاء الاصطناعي."
97
100
  },
@@ -273,7 +273,8 @@
273
273
  "clientMode": {
274
274
  "actionFiletip": "Качване на файл",
275
275
  "actionTooltip": "Качване",
276
- "disabled": "Текущият модел не поддържа визуално разпознаване и анализ на файлове, моля, превключете модела и опитайте отново"
276
+ "disabled": "Текущият модел не поддържа визуално разпознаване и анализ на файлове, моля, превключете модела и опитайте отново",
277
+ "visionNotSupported": "Текущият модел не поддържа визуално разпознаване, моля, превключете на друг модел, за да използвате тази функция"
277
278
  },
278
279
  "preview": {
279
280
  "prepareTasks": "Подготовка на парчета...",
@@ -2693,18 +2693,9 @@
2693
2693
  "thudm/glm-4-9b-chat": {
2694
2694
  "description": "GLM-4 е последната версия на предварително обучен модел от серията, публикувана от Zhizhu AI."
2695
2695
  },
2696
- "thudm/glm-4-9b:free": {
2697
- "description": "GLM-4-9B-0414 е езиков модел с 9 милиарда параметри от серията GLM-4, разработен от THUDM. GLM-4-9B-0414 използва същите стратегии за усилено обучение и подравняване, които се прилагат за по-голямата му 32B версия, за да постигне висока производителност в съотношение с размера си, което го прави подходящ за внедряване с ограничени ресурси, което все пак изисква силни способности за разбиране и генериране на език."
2698
- },
2699
2696
  "thudm/glm-z1-32b": {
2700
2697
  "description": "GLM-Z1-32B-0414 е подобрена версия на GLM-4-32B, проектирана за дълбока математика, логика и решаване на проблеми, свързани с код. Той прилага разширено обучение с подсилване (за специфични задачи и на базата на общи предпочитания) за подобряване на производителността при сложни многостепенни задачи. В сравнение с основния модел GLM-4-32B, Z1 значително подобрява способностите в структурираното разсъждение и формалните области.\n\nМоделът поддържа прилагане на стъпки за \"мислене\" чрез инженеринг на подсказки и предлага подобрена последователност за дълги формати на изхода. Той е оптимизиран за работни потоци на агенти и поддържа дълъг контекст (чрез YaRN), извиквания на JSON инструменти и конфигурации за фино проби за стабилно разсъждение. Идеален е за случаи, изискващи дълбочинно разсъждение, многостепенни разсъждения или формализирани изводи."
2701
2698
  },
2702
- "thudm/glm-z1-32b:free": {
2703
- "description": "GLM-Z1-32B-0414 е подобрена версия на GLM-4-32B, проектирана за дълбока математика, логика и решаване на проблеми, свързани с код. Той прилага разширено обучение с подсилване (за специфични задачи и на базата на общи предпочитания) за подобряване на производителността при сложни многостепенни задачи. В сравнение с основния модел GLM-4-32B, Z1 значително подобрява способностите в структурираното разсъждение и формалните области.\n\nМоделът поддържа прилагане на стъпки за \"мислене\" чрез инженеринг на подсказки и предлага подобрена последователност за дълги формати на изхода. Той е оптимизиран за работни потоци на агенти и поддържа дълъг контекст (чрез YaRN), извиквания на JSON инструменти и конфигурации за фино проби за стабилно разсъждение. Идеален е за случаи, изискващи дълбочинно разсъждение, многостепенни разсъждения или формализирани изводи."
2704
- },
2705
- "thudm/glm-z1-9b:free": {
2706
- "description": "GLM-Z1-9B-0414 е езиков модел с 9B параметри от серията GLM-4, разработен от THUDM. Той прилага технологии, първоначално използвани в по-големия GLM-Z1 модел, включително разширено усилено обучение, подравняване на двойки и обучение за интензивни разсъждения в области като математика, кодиране и логика. Въпреки по-малкия си размер, той показва силна производителност в общите задачи за разсъждение и надминава много от отворените модели на нивото на теглата."
2707
- },
2708
2699
  "thudm/glm-z1-rumination-32b": {
2709
2700
  "description": "THUDM: GLM Z1 Rumination 32B е дълбок разсъдъчен модел с 32B параметри от серията GLM-4-Z1, оптимизиран за сложни, отворени задачи, изискващи дълго разсъждение. Той е построен на основата на glm-4-32b-0414, с добавени допълнителни етапи на усилено обучение и многостепенни стратегии за подравняване, въвеждайки \"разсъждателни\" способности, предназначени да симулират разширена когнитивна обработка. Това включва итеративно разсъждение, многократен анализ и работни потоци, подобрени с инструменти, като търсене, извличане и синтез с осведоменост за цитати.\n\nМоделът показва отлични резултати в изследователското писане, сравнителния анализ и сложните въпроси и отговори. Той поддържа извиквания на функции за търсене и навигация (\"search\", \"click\", \"open\", \"finish\"), което позволява използването му в агенти. Разсъждателното поведение се контролира от многократни цикли с базирани на правила награди и механизми за забавено вземане на решения, с референтни рамки за дълбоки изследвания, като вътрешния стек за подравняване на OpenAI. Този вариант е подходящ за сценарии, изискващи дълбочина, а не скорост."
2710
2701
  },
@@ -92,6 +92,9 @@
92
92
  "moonshot": {
93
93
  "description": "Moonshot е отворена платформа, представена от Beijing Dark Side Technology Co., Ltd., предлагаща множество модели за обработка на естествен език, с широко приложение, включително, но не само, създаване на съдържание, академични изследвания, интелигентни препоръки, медицинска диагностика и др., поддържаща обработка на дълги текстове и сложни генериращи задачи."
94
94
  },
95
+ "nebius": {
96
+ "description": "Nebius предоставя високопроизводителна инфраструктура за глобалните иноватори в областта на изкуствения интелект чрез изграждане на мащабни GPU клъстери и вертикално интегрирана облачна платформа."
97
+ },
95
98
  "novita": {
96
99
  "description": "Novita AI е платформа, предлагаща API услуги за множество големи езикови модели и генериране на AI изображения, гъвкава, надеждна и икономически ефективна. Поддържа най-новите отворени модели, като Llama3 и Mistral, и предлага цялостни, потребителски приятелски и автоматично разширяеми API решения за разработка на генеративни AI приложения, подходящи за бързото развитие на AI стартъпи."
97
100
  },
@@ -273,7 +273,8 @@
273
273
  "clientMode": {
274
274
  "actionFiletip": "Datei hochladen",
275
275
  "actionTooltip": "Hochladen",
276
- "disabled": "Das aktuelle Modell unterstützt keine visuelle Erkennung und Dateianalyse. Bitte wechseln Sie das Modell, um diese Funktionen zu nutzen."
276
+ "disabled": "Das aktuelle Modell unterstützt keine visuelle Erkennung und Dateianalyse. Bitte wechseln Sie das Modell, um diese Funktionen zu nutzen.",
277
+ "visionNotSupported": "Das aktuelle Modell unterstützt keine visuelle Erkennung. Bitte wechseln Sie das Modell, um diese Funktion zu nutzen."
277
278
  },
278
279
  "preview": {
279
280
  "prepareTasks": "Vorbereitung der Teile...",
@@ -2693,18 +2693,9 @@
2693
2693
  "thudm/glm-4-9b-chat": {
2694
2694
  "description": "Die Open-Source-Version des neuesten vortrainierten Modells der GLM-4-Serie, das von Zhizhu AI veröffentlicht wurde."
2695
2695
  },
2696
- "thudm/glm-4-9b:free": {
2697
- "description": "GLM-4-9B-0414 ist ein Sprachmodell mit 9 Milliarden Parametern aus der GLM-4-Serie, das von THUDM entwickelt wurde. GLM-4-9B-0414 verwendet die gleichen Verstärkungs- und Ausrichtungsstrategien wie das größere 32B-Modell und erzielt in Bezug auf seine Größe hohe Leistungen, was es für ressourcenbeschränkte Bereitstellungen geeignet macht, die dennoch starke Sprachverständnis- und Generierungsfähigkeiten erfordern."
2698
- },
2699
2696
  "thudm/glm-z1-32b": {
2700
2697
  "description": "GLM-Z1-32B-0414 ist eine verbesserte Denkvariante von GLM-4-32B, die für tiefgehende Mathematik, Logik und codeorientierte Problemlösungen entwickelt wurde. Es verwendet erweiterte Verstärkungslernen (aufgabenspezifisch und basierend auf allgemeinen Paarpräferenzen), um die Leistung bei komplexen mehrstufigen Aufgaben zu verbessern. Im Vergleich zum Basis-GLM-4-32B-Modell hat Z1 die Fähigkeiten im strukturierten Denken und im formalen Bereich erheblich verbessert.\n\nDieses Modell unterstützt die Durchsetzung von \"Denk\"-Schritten durch Prompt-Engineering und bietet verbesserte Kohärenz für Ausgaben im Langformat. Es ist für Agenten-Workflows optimiert und unterstützt langen Kontext (über YaRN), JSON-Toolaufrufe und feinkörnige Sampling-Konfigurationen für stabiles Denken. Besonders geeignet für Anwendungsfälle, die durchdachtes, mehrstufiges Denken oder formale Ableitungen erfordern."
2701
2698
  },
2702
- "thudm/glm-z1-32b:free": {
2703
- "description": "GLM-Z1-32B-0414 ist eine verbesserte Denkvariante von GLM-4-32B, die für tiefgehende Mathematik, Logik und codeorientierte Problemlösungen entwickelt wurde. Es verwendet erweiterte Verstärkungslernen (aufgabenspezifisch und basierend auf allgemeinen Paarpräferenzen), um die Leistung bei komplexen mehrstufigen Aufgaben zu verbessern. Im Vergleich zum Basis-GLM-4-32B-Modell hat Z1 die Fähigkeiten im strukturierten Denken und im formalen Bereich erheblich verbessert.\n\nDieses Modell unterstützt die Durchsetzung von \"Denk\"-Schritten durch Prompt-Engineering und bietet verbesserte Kohärenz für Ausgaben im Langformat. Es ist für Agenten-Workflows optimiert und unterstützt langen Kontext (über YaRN), JSON-Toolaufrufe und feinkörnige Sampling-Konfigurationen für stabiles Denken. Besonders geeignet für Anwendungsfälle, die durchdachtes, mehrstufiges Denken oder formale Ableitungen erfordern."
2704
- },
2705
- "thudm/glm-z1-9b:free": {
2706
- "description": "GLM-Z1-9B-0414 ist ein Sprachmodell mit 9B Parametern aus der GLM-4-Serie, das von THUDM entwickelt wurde. Es verwendet Techniken, die ursprünglich auf das größere GLM-Z1-Modell angewendet wurden, einschließlich erweiterten verstärkten Lernens, paarweiser Rangordnungsausrichtung und Training für inferenzintensive Aufgaben wie Mathematik, Programmierung und Logik. Trotz seiner kleineren Größe zeigt es starke Leistungen bei allgemeinen Inferenzaufgaben und übertrifft viele Open-Source-Modelle in Bezug auf seine Gewichtung."
2707
- },
2708
2699
  "thudm/glm-z1-rumination-32b": {
2709
2700
  "description": "THUDM: GLM Z1 Rumination 32B ist ein tiefes Inferenzmodell mit 32B Parametern aus der GLM-4-Z1-Serie, das für komplexe, offene Aufgaben optimiert wurde, die langes Nachdenken erfordern. Es basiert auf glm-4-32b-0414 und hat zusätzliche Phasen des verstärkten Lernens und mehrstufige Ausrichtungsstrategien hinzugefügt, die die \"Reflexions\"-Fähigkeit einführen, die darauf abzielt, erweiterte kognitive Prozesse zu simulieren. Dazu gehören iterative Inferenz, mehrstufige Analysen und werkzeuggestützte Arbeitsabläufe wie Suche, Abruf und zitationsbewusste Synthese.\n\nDieses Modell zeigt hervorragende Leistungen in forschungsorientiertem Schreiben, vergleichender Analyse und komplexen Fragen und Antworten. Es unterstützt Funktionsaufrufe für Such- und Navigationsprimitiven (`search`, `click`, `open`, `finish`), sodass es in agentenbasierten Pipelines verwendet werden kann. Reflexionsverhalten wird durch ein mehrstufiges Regelbelohnungssystem und verzögerte Entscheidungsmechanismen geformt und wird an tiefen Forschungsrahmen wie dem internen Ausrichtungsstapel von OpenAI gemessen. Diese Variante eignet sich für Szenarien, die Tiefe statt Geschwindigkeit erfordern."
2710
2701
  },
@@ -92,6 +92,9 @@
92
92
  "moonshot": {
93
93
  "description": "Moonshot ist eine Open-Source-Plattform, die von Beijing Dark Side Technology Co., Ltd. eingeführt wurde und eine Vielzahl von Modellen zur Verarbeitung natürlicher Sprache anbietet, die in vielen Bereichen Anwendung finden, darunter, aber nicht beschränkt auf, Inhaltserstellung, akademische Forschung, intelligente Empfehlungen und medizinische Diagnosen, und unterstützt die Verarbeitung langer Texte und komplexer Generierungsaufgaben."
94
94
  },
95
+ "nebius": {
96
+ "description": "Nebius bietet globalen KI-Innovatoren durch den Aufbau großflächiger GPU-Cluster und einer vertikal integrierten Cloud-Plattform leistungsstarke Infrastruktur."
97
+ },
95
98
  "novita": {
96
99
  "description": "Novita AI ist eine Plattform, die eine Vielzahl von großen Sprachmodellen und API-Diensten für die KI-Bilderzeugung anbietet, die flexibel, zuverlässig und kosteneffektiv ist. Sie unterstützt die neuesten Open-Source-Modelle wie Llama3 und Mistral und bietet umfassende, benutzerfreundliche und automatisch skalierbare API-Lösungen für die Entwicklung generativer KI-Anwendungen, die für das schnelle Wachstum von KI-Startups geeignet sind."
97
100
  },
@@ -273,7 +273,8 @@
273
273
  "clientMode": {
274
274
  "actionFiletip": "Upload File",
275
275
  "actionTooltip": "Upload",
276
- "disabled": "The current model does not support visual recognition and file analysis. Please switch models to use this feature."
276
+ "disabled": "The current model does not support visual recognition and file analysis. Please switch models to use this feature.",
277
+ "visionNotSupported": "The current model does not support visual recognition. Please switch to a different model to use this feature."
277
278
  },
278
279
  "preview": {
279
280
  "prepareTasks": "Preparing chunks...",
@@ -2693,18 +2693,9 @@
2693
2693
  "thudm/glm-4-9b-chat": {
2694
2694
  "description": "The open-source version of the latest generation pre-trained model from the GLM-4 series released by Zhiyuan AI."
2695
2695
  },
2696
- "thudm/glm-4-9b:free": {
2697
- "description": "GLM-4-9B-0414 is a 9 billion parameter language model in the GLM-4 series developed by THUDM. GLM-4-9B-0414 is trained using the same reinforcement learning and alignment strategies as its larger 32B counterpart, achieving high performance relative to its scale, making it suitable for resource-constrained deployments that still require strong language understanding and generation capabilities."
2698
- },
2699
2696
  "thudm/glm-z1-32b": {
2700
2697
  "description": "GLM-Z1-32B-0414 is an enhanced reasoning variant of GLM-4-32B, built for deep mathematics, logic, and code-oriented problem solving. It applies extended reinforcement learning (task-specific and based on general pairwise preferences) to improve performance on complex multi-step tasks. Compared to the base GLM-4-32B model, Z1 significantly enhances capabilities in structured reasoning and formal domains.\n\nThis model supports enforcing 'thinking' steps through prompt engineering and provides improved coherence for long-format outputs. It is optimized for agent workflows and supports long context (via YaRN), JSON tool calls, and fine-grained sampling configurations for stable reasoning. It is ideal for use cases requiring thoughtful, multi-step reasoning or formal derivation."
2701
2698
  },
2702
- "thudm/glm-z1-32b:free": {
2703
- "description": "GLM-Z1-32B-0414 is an enhanced reasoning variant of GLM-4-32B, built for deep mathematics, logic, and code-oriented problem solving. It applies extended reinforcement learning (task-specific and based on general pairwise preferences) to improve performance on complex multi-step tasks. Compared to the base GLM-4-32B model, Z1 significantly enhances capabilities in structured reasoning and formal domains.\n\nThis model supports enforcing 'thinking' steps through prompt engineering and provides improved coherence for long-format outputs. It is optimized for agent workflows and supports long context (via YaRN), JSON tool calls, and fine-grained sampling configurations for stable reasoning. It is ideal for use cases requiring thoughtful, multi-step reasoning or formal derivation."
2704
- },
2705
- "thudm/glm-z1-9b:free": {
2706
- "description": "GLM-Z1-9B-0414 is a 9 billion parameter language model in the GLM-4 series developed by THUDM. It employs techniques initially applied to the larger GLM-Z1 model, including extended reinforcement learning, pairwise ranking alignment, and training for reasoning-intensive tasks such as mathematics, coding, and logic. Despite its smaller scale, it demonstrates strong performance on general reasoning tasks and outperforms many open-source models at its weight level."
2707
- },
2708
2699
  "thudm/glm-z1-rumination-32b": {
2709
2700
  "description": "THUDM: GLM Z1 Rumination 32B is a deep reasoning model with 32 billion parameters in the GLM-4-Z1 series, optimized for complex, open-ended tasks that require prolonged thought. It builds upon glm-4-32b-0414, adding additional reinforcement learning stages and multi-stage alignment strategies, introducing a 'rumination' capability designed to simulate extended cognitive processing. This includes iterative reasoning, multi-hop analysis, and tool-enhanced workflows such as search, retrieval, and citation-aware synthesis.\n\nThe model excels in research-style writing, comparative analysis, and complex question answering. It supports function calls for search and navigation primitives (`search`, `click`, `open`, `finish`), allowing it to be used in agent-based pipelines. The rumination behavior is shaped by rule-based rewards and a delayed decision-making mechanism, controlled by multi-round cycles, benchmarked against deep research frameworks like OpenAI's internal alignment stack. This variant is suitable for scenarios requiring depth over speed."
2710
2701
  },
@@ -92,6 +92,9 @@
92
92
  "moonshot": {
93
93
  "description": "Moonshot is an open-source platform launched by Beijing Dark Side Technology Co., Ltd., providing various natural language processing models with a wide range of applications, including but not limited to content creation, academic research, intelligent recommendations, and medical diagnosis, supporting long text processing and complex generation tasks."
94
94
  },
95
+ "nebius": {
96
+ "description": "Nebius provides high-performance infrastructure for global AI innovators by building large-scale GPU clusters and vertically integrated cloud platforms."
97
+ },
95
98
  "novita": {
96
99
  "description": "Novita AI is a platform providing a variety of large language models and AI image generation API services, flexible, reliable, and cost-effective. It supports the latest open-source models like Llama3 and Mistral, offering a comprehensive, user-friendly, and auto-scaling API solution for generative AI application development, suitable for the rapid growth of AI startups."
97
100
  },
@@ -273,7 +273,8 @@
273
273
  "clientMode": {
274
274
  "actionFiletip": "Subir archivo",
275
275
  "actionTooltip": "Subir",
276
- "disabled": "El modelo actual no soporta reconocimiento visual ni análisis de archivos, por favor cambie de modelo para usar esta función"
276
+ "disabled": "El modelo actual no soporta reconocimiento visual ni análisis de archivos, por favor cambie de modelo para usar esta función",
277
+ "visionNotSupported": "El modelo actual no admite reconocimiento visual, por favor cambie de modelo para usar esta función"
277
278
  },
278
279
  "preview": {
279
280
  "prepareTasks": "Preparando fragmentos...",
@@ -2691,18 +2691,9 @@
2691
2691
  "thudm/glm-4-9b-chat": {
2692
2692
  "description": "Versión de código abierto de la última generación del modelo preentrenado GLM-4 lanzado por Zhizhu AI."
2693
2693
  },
2694
- "thudm/glm-4-9b:free": {
2695
- "description": "GLM-4-9B-0414 es un modelo de lenguaje de 9B parámetros en la serie GLM-4 desarrollado por THUDM. GLM-4-9B-0414 utiliza las mismas estrategias de aprendizaje por refuerzo y alineación que su modelo correspondiente de 32B, logrando un alto rendimiento en relación con su tamaño, lo que lo hace adecuado para implementaciones con recursos limitados que aún requieren una fuerte capacidad de comprensión y generación de lenguaje."
2696
- },
2697
2694
  "thudm/glm-z1-32b": {
2698
2695
  "description": "GLM-Z1-32B-0414 es una variante de razonamiento mejorada de GLM-4-32B, construida para resolver problemas de matemáticas profundas, lógica y orientados al código. Aplica aprendizaje por refuerzo extendido (específico para tareas y basado en preferencias emparejadas generales) para mejorar el rendimiento en tareas complejas de múltiples pasos. En comparación con el modelo base GLM-4-32B, Z1 mejora significativamente las capacidades de razonamiento estructurado y en dominios formalizados.\n\nEste modelo admite la ejecución forzada de pasos de 'pensamiento' a través de ingeniería de indicaciones y proporciona una coherencia mejorada para salidas de formato largo. Está optimizado para flujos de trabajo de agentes y admite contextos largos (a través de YaRN), llamadas a herramientas JSON y configuraciones de muestreo de alta precisión para razonamiento estable. Es ideal para casos de uso que requieren razonamiento reflexivo, de múltiples pasos o deducción formal."
2699
2696
  },
2700
- "thudm/glm-z1-32b:free": {
2701
- "description": "GLM-Z1-32B-0414 es una variante de razonamiento mejorada de GLM-4-32B, construida para resolver problemas de matemáticas profundas, lógica y orientados al código. Aplica aprendizaje por refuerzo extendido (específico para tareas y basado en preferencias emparejadas generales) para mejorar el rendimiento en tareas complejas de múltiples pasos. En comparación con el modelo base GLM-4-32B, Z1 mejora significativamente las capacidades de razonamiento estructurado y en dominios formalizados.\n\nEste modelo admite la ejecución forzada de pasos de 'pensamiento' a través de ingeniería de indicaciones y proporciona una coherencia mejorada para salidas de formato largo. Está optimizado para flujos de trabajo de agentes y admite contextos largos (a través de YaRN), llamadas a herramientas JSON y configuraciones de muestreo de alta precisión para razonamiento estable. Es ideal para casos de uso que requieren razonamiento reflexivo, de múltiples pasos o deducción formal."
2702
- },
2703
- "thudm/glm-z1-9b:free": {
2704
- "description": "GLM-Z1-9B-0414 es un modelo de lenguaje de 9B parámetros en la serie GLM-4 desarrollado por THUDM. Utiliza técnicas inicialmente aplicadas al modelo GLM-Z1 más grande, incluyendo aprendizaje por refuerzo extendido, alineación de clasificación por pares y entrenamiento para tareas intensivas en razonamiento como matemáticas, código y lógica. A pesar de su menor tamaño, muestra un rendimiento robusto en tareas de razonamiento general y supera a muchos modelos de código abierto en su nivel de pesos."
2705
- },
2706
2697
  "thudm/glm-z1-rumination-32b": {
2707
2698
  "description": "THUDM: GLM Z1 Rumination 32B es un modelo de razonamiento profundo de 32B parámetros en la serie GLM-4-Z1, optimizado para tareas complejas y abiertas que requieren un pensamiento prolongado. Se basa en glm-4-32b-0414, añadiendo una fase adicional de aprendizaje por refuerzo y estrategias de alineación multietapa, introduciendo una capacidad de 'reflexión' diseñada para simular el procesamiento cognitivo extendido. Esto incluye razonamiento iterativo, análisis de múltiples saltos y flujos de trabajo mejorados por herramientas, como búsqueda, recuperación y síntesis consciente de citas.\n\nEste modelo destaca en escritura de investigación, análisis comparativo y preguntas complejas. Soporta llamadas a funciones para primitivos de búsqueda y navegación (`search`, `click`, `open`, `finish`), lo que permite su uso en tuberías de agentes. El comportamiento reflexivo está moldeado por un control cíclico de múltiples rondas con mecanismos de recompensa basados en reglas y decisiones retrasadas, y se basa en marcos de investigación profunda como el stack de alineación interno de OpenAI. Esta variante es adecuada para escenarios que requieren profundidad en lugar de velocidad."
2708
2699
  },
@@ -92,6 +92,9 @@
92
92
  "moonshot": {
93
93
  "description": "Moonshot es una plataforma de código abierto lanzada por Beijing Dark Side Technology Co., que ofrece una variedad de modelos de procesamiento del lenguaje natural, con aplicaciones en campos amplios, incluyendo pero no limitado a creación de contenido, investigación académica, recomendaciones inteligentes y diagnóstico médico, apoyando el procesamiento de textos largos y tareas de generación complejas."
94
94
  },
95
+ "nebius": {
96
+ "description": "Nebius proporciona infraestructura de alto rendimiento a innovadores de IA en todo el mundo mediante la construcción de grandes clústeres de GPU y una plataforma en la nube integrada verticalmente."
97
+ },
95
98
  "novita": {
96
99
  "description": "Novita AI es una plataforma que ofrece servicios API para múltiples modelos de lenguaje de gran tamaño y generación de imágenes de IA, siendo flexible, confiable y rentable. Soporta los últimos modelos de código abierto como Llama3 y Mistral, proporcionando soluciones API completas, amigables para el usuario y autoescalables para el desarrollo de aplicaciones de IA, adecuadas para el rápido crecimiento de startups de IA."
97
100
  },
@@ -273,7 +273,8 @@
273
273
  "clientMode": {
274
274
  "actionFiletip": "بارگذاری فایل",
275
275
  "actionTooltip": "بارگذاری",
276
- "disabled": "مدل فعلی از تشخیص بصری و تحلیل فایل پشتیبانی نمی‌کند، لطفاً مدل را تغییر دهید و دوباره امتحان کنید"
276
+ "disabled": "مدل فعلی از تشخیص بصری و تحلیل فایل پشتیبانی نمی‌کند، لطفاً مدل را تغییر دهید و دوباره امتحان کنید",
277
+ "visionNotSupported": "مدل فعلی از شناسایی بصری پشتیبانی نمی‌کند، لطفاً مدل را تغییر دهید و دوباره امتحان کنید"
277
278
  },
278
279
  "preview": {
279
280
  "prepareTasks": "آماده‌سازی بخش‌ها...",
@@ -2693,18 +2693,9 @@
2693
2693
  "thudm/glm-4-9b-chat": {
2694
2694
  "description": "نسخه متن باز جدیدترین نسل مدل‌های پیش‌آموزش GLM-4 منتشر شده توسط Zhizhu AI."
2695
2695
  },
2696
- "thudm/glm-4-9b:free": {
2697
- "description": "GLM-4-9B-0414 یک مدل زبان با ۹۰ میلیارد پارامتر در سری GLM-4 است که توسط THUDM توسعه یافته است. GLM-4-9B-0414 از همان استراتژی‌های تقویت یادگیری و هم‌راستایی که برای مدل بزرگ‌تر ۳۲B خود استفاده می‌شود، استفاده می‌کند و نسبت به اندازه خود عملکرد بالایی را ارائه می‌دهد و برای استقرار در منابع محدود که هنوز به توانایی‌های قوی در درک و تولید زبان نیاز دارند، مناسب است."
2698
- },
2699
2696
  "thudm/glm-z1-32b": {
2700
2697
  "description": "GLM-Z1-32B-0414 یک واریانت تقویت‌شده استدلال GLM-4-32B است که به طور خاص برای حل مسائل عمیق ریاضی، منطقی و کد محور طراحی شده است. این مدل از یادگیری تقویتی گسترش‌یافته (وظیفه‌محور و مبتنی بر ترجیحات جفتی عمومی) برای بهبود عملکرد در وظایف پیچیده چند مرحله‌ای استفاده می‌کند. نسبت به مدل پایه GLM-4-32B، Z1 به طور قابل توجهی توانایی‌های استدلال ساختاری و حوزه‌های رسمی را افزایش می‌دهد.\n\nاین مدل از طریق مهندسی نشانه‌گذاری، مراحل «تفکر» را تحمیل می‌کند و برای خروجی‌های طولانی، انسجام بهبودیافته‌ای را فراهم می‌کند. این مدل برای جریان‌های کاری نمایندگی بهینه‌سازی شده و از زمینه‌های طولانی (از طریق YaRN)، فراخوانی ابزار JSON و پیکربندی نمونه‌برداری دقیق برای استدلال پایدار پشتیبانی می‌کند. این مدل برای مواردی که نیاز به تفکر عمیق، استدلال چند مرحله‌ای یا استنتاج رسمی دارند، بسیار مناسب است."
2701
2698
  },
2702
- "thudm/glm-z1-32b:free": {
2703
- "description": "GLM-Z1-32B-0414 یک واریانت تقویت‌شده استدلال GLM-4-32B است که به طور خاص برای حل مسائل عمیق ریاضی، منطقی و کد محور طراحی شده است. این مدل از یادگیری تقویتی گسترش‌یافته (وظیفه‌محور و مبتنی بر ترجیحات جفتی عمومی) برای بهبود عملکرد در وظایف پیچیده چند مرحله‌ای استفاده می‌کند. نسبت به مدل پایه GLM-4-32B، Z1 به طور قابل توجهی توانایی‌های استدلال ساختاری و حوزه‌های رسمی را افزایش می‌دهد.\n\nاین مدل از طریق مهندسی نشانه‌گذاری، مراحل «تفکر» را تحمیل می‌کند و برای خروجی‌های طولانی، انسجام بهبودیافته‌ای را فراهم می‌کند. این مدل برای جریان‌های کاری نمایندگی بهینه‌سازی شده و از زمینه‌های طولانی (از طریق YaRN)، فراخوانی ابزار JSON و پیکربندی نمونه‌برداری دقیق برای استدلال پایدار پشتیبانی می‌کند. این مدل برای مواردی که نیاز به تفکر عمیق، استدلال چند مرحله‌ای یا استنتاج رسمی دارند، بسیار مناسب است."
2704
- },
2705
- "thudm/glm-z1-9b:free": {
2706
- "description": "GLM-Z1-9B-0414 یک مدل زبان با ۹B پارامتر در سری GLM-4 است که توسط THUDM توسعه یافته است. این مدل از تکنیک‌هایی که در ابتدا برای مدل بزرگ‌تر GLM-Z1 استفاده شده بود، شامل تقویت یادگیری گسترش‌یافته، هم‌راستایی رتبه‌بندی جفت و آموزش برای وظایف استدلال فشرده مانند ریاضیات، کدنویسی و منطق استفاده می‌کند. با وجود اندازه کوچکتر، این مدل در وظایف استدلال عمومی عملکرد قوی دارد و در سطح وزن خود از بسیاری از مدل‌های متن‌باز برتر است."
2707
- },
2708
2699
  "thudm/glm-z1-rumination-32b": {
2709
2700
  "description": "THUDM: GLM Z1 Rumination 32B یک مدل عمیق استدلال با ۳۲B پارامتر در سری GLM-4-Z1 است که برای وظایف پیچیده و باز که نیاز به تفکر طولانی دارند بهینه‌سازی شده است. این مدل بر اساس glm-4-32b-0414 ساخته شده و مراحل تقویت یادگیری اضافی و استراتژی‌های هم‌راستایی چند مرحله‌ای را اضافه کرده است و توانایی «تفکر» را که به شبیه‌سازی پردازش شناختی گسترش یافته طراحی شده است، معرفی می‌کند. این شامل استدلال تکراری، تحلیل چندپرش و جریان‌های کاری تقویت‌شده با ابزارهایی مانند جستجو، بازیابی و ترکیب آگاهانه است.\n\nاین مدل در نوشتن تحقیقاتی، تحلیل مقایسه‌ای و پرسش و پاسخ پیچیده عملکرد عالی دارد. این مدل از فراخوانی توابع برای جستجو و ناوبری (جستجو، کلیک، باز کردن، اتمام) پشتیبانی می‌کند و می‌تواند در لوله‌های نمایندگی استفاده شود. رفتار تفکری توسط کنترل چند دوری با پاداش‌های مبتنی بر قوانین و مکانیزم تصمیم‌گیری تأخیری شکل می‌گیرد و به عنوان مرجع از چارچوب‌های عمیق تحقیقاتی مانند انباشت هم‌راستایی داخلی OpenAI استفاده می‌شود. این واریانت برای صحنه‌هایی که نیاز به عمق به جای سرعت دارند مناسب است."
2710
2701
  },
@@ -92,6 +92,9 @@
92
92
  "moonshot": {
93
93
  "description": "Moonshot یک پلتفرم متن‌باز است که توسط شرکت فناوری Beijing Dark Side of the Moon ارائه شده است. این پلتفرم مدل‌های مختلف پردازش زبان طبیعی را ارائه می‌دهد و در زمینه‌های گسترده‌ای از جمله، اما نه محدود به، تولید محتوا، تحقیقات علمی، توصیه‌های هوشمند، تشخیص پزشکی و غیره کاربرد دارد و از پردازش متون طولانی و وظایف پیچیده تولید پشتیبانی می‌کند."
94
94
  },
95
+ "nebius": {
96
+ "description": "Nebius با ساخت خوشه‌های بزرگ GPU و پلتفرم ابری یکپارچه، زیرساخت‌های با عملکرد بالا را برای نوآوران هوش مصنوعی در سراسر جهان فراهم می‌کند."
97
+ },
95
98
  "novita": {
96
99
  "description": "Novita AI یک پلتفرم ارائه‌دهنده خدمات API برای مدل‌های بزرگ زبانی و تولید تصاویر هوش مصنوعی است که انعطاف‌پذیر، قابل‌اعتماد و مقرون‌به‌صرفه می‌باشد. این پلتفرم از جدیدترین مدل‌های متن‌باز مانند Llama3 و Mistral پشتیبانی می‌کند و راه‌حل‌های API جامع، کاربرپسند و خودکار برای توسعه برنامه‌های هوش مصنوعی مولد ارائه می‌دهد که مناسب رشد سریع استارتاپ‌های هوش مصنوعی است."
97
100
  },
@@ -273,7 +273,8 @@
273
273
  "clientMode": {
274
274
  "actionFiletip": "Télécharger un fichier",
275
275
  "actionTooltip": "Télécharger",
276
- "disabled": "Le modèle actuel ne prend pas en charge la reconnaissance visuelle et l'analyse de fichiers, veuillez changer de modèle pour l'utiliser"
276
+ "disabled": "Le modèle actuel ne prend pas en charge la reconnaissance visuelle et l'analyse de fichiers, veuillez changer de modèle pour l'utiliser",
277
+ "visionNotSupported": "Le modèle actuel ne prend pas en charge la reconnaissance visuelle, veuillez changer de modèle pour l'utiliser"
277
278
  },
278
279
  "preview": {
279
280
  "prepareTasks": "Préparation des morceaux...",
@@ -2693,18 +2693,9 @@
2693
2693
  "thudm/glm-4-9b-chat": {
2694
2694
  "description": "Version open source de la dernière génération de modèles pré-entraînés de la série GLM-4 publiée par Zhizhu AI."
2695
2695
  },
2696
- "thudm/glm-4-9b:free": {
2697
- "description": "GLM-4-9B-0414 est un modèle de langage de 9 milliards de paramètres dans la série GLM-4 développé par THUDM. GLM-4-9B-0414 utilise les mêmes stratégies d'apprentissage par renforcement et d'alignement que son modèle correspondant de 32B, réalisant des performances élevées par rapport à sa taille, ce qui le rend adapté à des déploiements à ressources limitées nécessitant encore de solides capacités de compréhension et de génération de langage."
2698
- },
2699
2696
  "thudm/glm-z1-32b": {
2700
2697
  "description": "GLM-Z1-32B-0414 est une variante de raisonnement améliorée de GLM-4-32B, construite pour résoudre des problèmes de mathématiques profondes, de logique et orientés code. Il applique un apprentissage par renforcement étendu (spécifique à la tâche et basé sur des préférences par paires générales) pour améliorer les performances sur des tâches complexes à plusieurs étapes. Par rapport au modèle de base GLM-4-32B, Z1 améliore considérablement les capacités de raisonnement structuré et de domaine formel.\n\nCe modèle prend en charge l'exécution des étapes de 'pensée' via l'ingénierie des invites et offre une cohérence améliorée pour les sorties au format long. Il est optimisé pour les flux de travail d'agents et prend en charge un long contexte (via YaRN), des appels d'outils JSON et une configuration d'échantillonnage de granularité fine pour un raisonnement stable. Idéal pour les cas d'utilisation nécessitant une réflexion approfondie, un raisonnement à plusieurs étapes ou une déduction formelle."
2701
2698
  },
2702
- "thudm/glm-z1-32b:free": {
2703
- "description": "GLM-Z1-32B-0414 est une variante de raisonnement améliorée de GLM-4-32B, construite pour résoudre des problèmes de mathématiques profondes, de logique et orientés code. Il applique un apprentissage par renforcement étendu (spécifique à la tâche et basé sur des préférences par paires générales) pour améliorer les performances sur des tâches complexes à plusieurs étapes. Par rapport au modèle de base GLM-4-32B, Z1 améliore considérablement les capacités de raisonnement structuré et de domaine formel.\n\nCe modèle prend en charge l'exécution des étapes de 'pensée' via l'ingénierie des invites et offre une cohérence améliorée pour les sorties au format long. Il est optimisé pour les flux de travail d'agents et prend en charge un long contexte (via YaRN), des appels d'outils JSON et une configuration d'échantillonnage de granularité fine pour un raisonnement stable. Idéal pour les cas d'utilisation nécessitant une réflexion approfondie, un raisonnement à plusieurs étapes ou une déduction formelle."
2704
- },
2705
- "thudm/glm-z1-9b:free": {
2706
- "description": "GLM-Z1-9B-0414 est un modèle de langage de 9 milliards de paramètres dans la série GLM-4 développé par THUDM. Il utilise des techniques initialement appliquées à des modèles GLM-Z1 plus grands, y compris un apprentissage par renforcement étendu, un alignement par classement par paires et une formation pour des tâches intensives en raisonnement telles que les mathématiques, le codage et la logique. Bien que de taille plus petite, il montre de solides performances sur des tâches de raisonnement général et surpasse de nombreux modèles open source à son niveau de poids."
2707
- },
2708
2699
  "thudm/glm-z1-rumination-32b": {
2709
2700
  "description": "THUDM : GLM Z1 Rumination 32B est un modèle de raisonnement profond de 32 milliards de paramètres dans la série GLM-4-Z1, optimisé pour des tâches complexes et ouvertes nécessitant une réflexion prolongée. Il est construit sur la base de glm-4-32b-0414, ajoutant une phase d'apprentissage par renforcement supplémentaire et une stratégie d'alignement multi-étapes, introduisant une capacité de \"réflexion\" destinée à simuler un traitement cognitif étendu. Cela inclut un raisonnement itératif, une analyse multi-sauts et des flux de travail améliorés par des outils, tels que la recherche, la récupération et la synthèse consciente des citations.\n\nCe modèle excelle dans l'écriture de recherche, l'analyse comparative et les questions complexes. Il prend en charge les appels de fonction pour les primitives de recherche et de navigation (`search`, `click`, `open`, `finish`), permettant son utilisation dans des pipelines d'agents. Le comportement de réflexion est façonné par un contrôle cyclique multi-tours avec des récompenses basées sur des règles et un mécanisme de décision différée, et est étalonné sur des cadres de recherche approfondie tels que la pile d'alignement interne d'OpenAI. Cette variante est adaptée aux scénarios nécessitant de la profondeur plutôt que de la vitesse."
2710
2701
  },
@@ -92,6 +92,9 @@
92
92
  "moonshot": {
93
93
  "description": "Moonshot est une plateforme open source lancée par Beijing Dark Side Technology Co., Ltd., offrant divers modèles de traitement du langage naturel, avec des applications dans des domaines variés, y compris mais sans s'y limiter, la création de contenu, la recherche académique, les recommandations intelligentes, le diagnostic médical, etc., prenant en charge le traitement de longs textes et des tâches de génération complexes."
94
94
  },
95
+ "nebius": {
96
+ "description": "Nebius fournit une infrastructure haute performance aux innovateurs en IA du monde entier en construisant de vastes clusters GPU et une plateforme cloud intégrée verticalement."
97
+ },
95
98
  "novita": {
96
99
  "description": "Novita AI est une plateforme offrant des services API pour divers grands modèles de langage et la génération d'images IA, flexible, fiable et rentable. Elle prend en charge les derniers modèles open source tels que Llama3, Mistral, et fournit des solutions API complètes, conviviales et évolutives pour le développement d'applications IA, adaptées à la croissance rapide des startups IA."
97
100
  },
@@ -273,7 +273,8 @@
273
273
  "clientMode": {
274
274
  "actionFiletip": "Carica file",
275
275
  "actionTooltip": "Carica",
276
- "disabled": "Il modello attuale non supporta il riconoscimento visivo e l'analisi dei file, si prega di cambiare modello per utilizzare questa funzione"
276
+ "disabled": "Il modello attuale non supporta il riconoscimento visivo e l'analisi dei file, si prega di cambiare modello per utilizzare questa funzione",
277
+ "visionNotSupported": "Il modello attuale non supporta il riconoscimento visivo, si prega di cambiare modello per utilizzare questa funzione"
277
278
  },
278
279
  "preview": {
279
280
  "prepareTasks": "Preparazione dei blocchi...",
@@ -2693,18 +2693,9 @@
2693
2693
  "thudm/glm-4-9b-chat": {
2694
2694
  "description": "La versione open source dell'ultima generazione del modello pre-addestrato GLM-4 rilasciato da Zhizhu AI."
2695
2695
  },
2696
- "thudm/glm-4-9b:free": {
2697
- "description": "GLM-4-9B-0414 è un modello linguistico con 9 miliardi di parametri della serie GLM-4 sviluppato da THUDM. GLM-4-9B-0414 utilizza le stesse strategie di apprendimento rinforzato e allineamento del suo modello corrispondente più grande da 32B, raggiungendo alte prestazioni rispetto alle sue dimensioni, rendendolo adatto per implementazioni a risorse limitate che richiedono ancora forti capacità di comprensione e generazione del linguaggio."
2698
- },
2699
2696
  "thudm/glm-z1-32b": {
2700
2697
  "description": "GLM-Z1-32B-0414 è una variante di ragionamento potenziata di GLM-4-32B, costruita per la risoluzione di problemi di matematica profonda, logica e orientati al codice. Utilizza l'apprendimento rinforzato esteso (specifico per compiti e basato su preferenze generali) per migliorare le prestazioni in compiti complessi a più passaggi. Rispetto al modello di base GLM-4-32B, Z1 ha migliorato significativamente le capacità di ragionamento strutturato e nei domini formali.\n\nQuesto modello supporta l'applicazione di 'passaggi di pensiero' tramite ingegneria dei prompt e offre una coerenza migliorata per output di lungo formato. È ottimizzato per flussi di lavoro agenti e supporta contesti lunghi (tramite YaRN), chiamate a strumenti JSON e configurazioni di campionamento a grana fine per un ragionamento stabile. È particolarmente adatto per casi d'uso che richiedono ragionamenti approfonditi, a più passaggi o deduzioni formali."
2701
2698
  },
2702
- "thudm/glm-z1-32b:free": {
2703
- "description": "GLM-Z1-32B-0414 è una variante di ragionamento potenziata di GLM-4-32B, costruita per la risoluzione di problemi di matematica profonda, logica e orientati al codice. Utilizza l'apprendimento rinforzato esteso (specifico per compiti e basato su preferenze generali) per migliorare le prestazioni in compiti complessi a più passaggi. Rispetto al modello di base GLM-4-32B, Z1 ha migliorato significativamente le capacità di ragionamento strutturato e nei domini formali.\n\nQuesto modello supporta l'applicazione di 'passaggi di pensiero' tramite ingegneria dei prompt e offre una coerenza migliorata per output di lungo formato. È ottimizzato per flussi di lavoro agenti e supporta contesti lunghi (tramite YaRN), chiamate a strumenti JSON e configurazioni di campionamento a grana fine per un ragionamento stabile. È particolarmente adatto per casi d'uso che richiedono ragionamenti approfonditi, a più passaggi o deduzioni formali."
2704
- },
2705
- "thudm/glm-z1-9b:free": {
2706
- "description": "GLM-Z1-9B-0414 è un modello linguistico con 9 miliardi di parametri della serie GLM-4 sviluppato da THUDM. Utilizza tecniche inizialmente applicate a modelli GLM-Z1 più grandi, inclusi apprendimento rinforzato esteso, allineamento di ranking a coppie e addestramento per compiti di ragionamento intensivo come matematica, codifica e logica. Nonostante le sue dimensioni più piccole, mostra prestazioni robuste in compiti di ragionamento generali e supera molti modelli open source nel suo livello di pesi."
2707
- },
2708
2699
  "thudm/glm-z1-rumination-32b": {
2709
2700
  "description": "THUDM: GLM Z1 Rumination 32B è un modello di inferenza profonda con 32 miliardi di parametri della serie GLM-4-Z1, ottimizzato per compiti complessi e aperti che richiedono un lungo periodo di riflessione. Si basa su glm-4-32b-0414, aggiungendo ulteriori fasi di apprendimento rinforzato e strategie di allineamento multi-fase, introducendo la capacità di 'riflessione' progettata per simulare un'elaborazione cognitiva estesa. Questo include ragionamento iterativo, analisi multi-salto e flussi di lavoro potenziati da strumenti, come ricerca, recupero e sintesi consapevole delle citazioni.\n\nQuesto modello eccelle nella scrittura di ricerca, analisi comparativa e domande complesse. Supporta chiamate di funzione per primari di ricerca e navigazione (`search`, `click`, `open`, `finish`), rendendolo utilizzabile in pipeline basate su agenti. Il comportamento di riflessione è modellato da un controllo ciclico multi-turno con premi basati su regole e meccanismi di decisione ritardata, e viene confrontato con framework di ricerca approfondita come l'allineamento interno di OpenAI. Questa variante è adatta per scenari che richiedono profondità piuttosto che velocità."
2710
2701
  },
@@ -92,6 +92,9 @@
92
92
  "moonshot": {
93
93
  "description": "Moonshot è una piattaforma open source lanciata da Beijing Dark Side Technology Co., Ltd., che offre vari modelli di elaborazione del linguaggio naturale, con ampie applicazioni, inclusi ma non limitati a creazione di contenuti, ricerca accademica, raccomandazioni intelligenti, diagnosi mediche e altro, supportando l'elaborazione di testi lunghi e compiti di generazione complessi."
94
94
  },
95
+ "nebius": {
96
+ "description": "Nebius fornisce infrastrutture ad alte prestazioni agli innovatori dell'IA di tutto il mondo, costruendo grandi cluster GPU e una piattaforma cloud verticalmente integrata."
97
+ },
95
98
  "novita": {
96
99
  "description": "Novita AI è una piattaforma che offre API per vari modelli di linguaggio di grandi dimensioni e generazione di immagini AI, flessibile, affidabile e conveniente. Supporta i più recenti modelli open source come Llama3 e Mistral, fornendo soluzioni API complete, user-friendly e scalabili per lo sviluppo di applicazioni AI, adatte alla rapida crescita delle startup AI."
97
100
  },
@@ -273,7 +273,8 @@
273
273
  "clientMode": {
274
274
  "actionFiletip": "ファイルをアップロード",
275
275
  "actionTooltip": "アップロード",
276
- "disabled": "現在のモデルは視覚認識とファイル分析をサポートしていません。モデルを切り替えてから使用してください。"
276
+ "disabled": "現在のモデルは視覚認識とファイル分析をサポートしていません。モデルを切り替えてから使用してください。",
277
+ "visionNotSupported": "現在のモデルはビジョン認識をサポートしていません。モデルを切り替えてからご利用ください。"
277
278
  },
278
279
  "preview": {
279
280
  "prepareTasks": "ブロックの準備中...",
@@ -2693,18 +2693,9 @@
2693
2693
  "thudm/glm-4-9b-chat": {
2694
2694
  "description": "智谱AIが発表したGLM-4シリーズの最新世代の事前トレーニングモデルのオープンソース版です。"
2695
2695
  },
2696
- "thudm/glm-4-9b:free": {
2697
- "description": "GLM-4-9B-0414はTHUDMによって開発されたGLM-4シリーズの90億パラメータの言語モデルです。GLM-4-9B-0414は、より大きな32B対応モデルと同じ強化学習と整合性戦略を使用してトレーニングされており、その規模に対して高性能を実現し、依然として強力な言語理解と生成能力を必要とするリソース制約のあるデプロイメントに適しています。"
2698
- },
2699
2696
  "thudm/glm-z1-32b": {
2700
2697
  "description": "GLM-Z1-32B-0414は、GLM-4-32Bの強化推論バリアントであり、深い数学、論理、コード指向の問題解決のために構築されています。タスク特化型および一般的なペアの好みに基づく拡張強化学習を適用して、複雑な多段階タスクのパフォーマンスを向上させます。基礎となるGLM-4-32Bモデルと比較して、Z1は構造化推論と形式的な領域の能力を大幅に向上させています。\n\nこのモデルは、プロンプトエンジニアリングを通じて「思考」ステップを強制し、長形式の出力に対して改善された一貫性を提供します。エージェントワークフローに最適化されており、長いコンテキスト(YaRNを介して)、JSONツール呼び出し、安定した推論のための細粒度サンプリング設定をサポートしています。深く考慮された多段階推論や形式的な導出が必要なユースケースに非常に適しています。"
2701
2698
  },
2702
- "thudm/glm-z1-32b:free": {
2703
- "description": "GLM-Z1-32B-0414は、GLM-4-32Bの強化推論バリアントであり、深い数学、論理、コード指向の問題解決のために構築されています。タスク特化型および一般的なペアの好みに基づく拡張強化学習を適用して、複雑な多段階タスクのパフォーマンスを向上させます。基礎となるGLM-4-32Bモデルと比較して、Z1は構造化推論と形式的な領域の能力を大幅に向上させています。\n\nこのモデルは、プロンプトエンジニアリングを通じて「思考」ステップを強制し、長形式の出力に対して改善された一貫性を提供します。エージェントワークフローに最適化されており、長いコンテキスト(YaRNを介して)、JSONツール呼び出し、安定した推論のための細粒度サンプリング設定をサポートしています。深く考慮された多段階推論や形式的な導出が必要なユースケースに非常に適しています。"
2704
- },
2705
- "thudm/glm-z1-9b:free": {
2706
- "description": "GLM-Z1-9B-0414はTHUDMによって開発されたGLM-4シリーズの9Bパラメータの言語モデルです。これは、より大きなGLM-Z1モデルに最初に適用された技術を採用しており、拡張強化学習、ペアランキング整合性、数学、コーディング、論理などの推論集約型タスクのトレーニングを含みます。規模は小さいものの、一般的な推論タスクにおいて強力な性能を発揮し、その重みレベルにおいて多くのオープンソースモデルを上回っています。"
2707
- },
2708
2699
  "thudm/glm-z1-rumination-32b": {
2709
2700
  "description": "THUDM: GLM Z1 Rumination 32BはGLM-4-Z1シリーズの32Bパラメータの深い推論モデルで、長時間の思考を必要とする複雑でオープンなタスクに最適化されています。glm-4-32b-0414を基にしており、追加の強化学習段階と多段階の整合性戦略を追加し、拡張認知処理を模倣することを目的とした「反省」能力を導入しています。これには、反復推論、多段階分析、検索、取得、引用感知合成などのツール強化ワークフローが含まれます。\n\nこのモデルは研究型の執筆、比較分析、複雑な質問応答において優れた性能を発揮します。検索とナビゲーションの原語(`search`、`click`、`open`、`finish`)のための関数呼び出しをサポートし、エージェント式パイプラインで使用できるようにします。反省行動は、ルールベースの報酬形成と遅延意思決定メカニズムを持つ多ラウンドの循環制御によって形作られ、OpenAI内部の整合性スタックなどの深い研究フレームワークを基準としています。このバリアントは、速度よりも深さが必要なシナリオに適しています。"
2710
2701
  },
@@ -92,6 +92,9 @@
92
92
  "moonshot": {
93
93
  "description": "Moonshotは、北京月之暗面科技有限公司が提供するオープンプラットフォームであり、さまざまな自然言語処理モデルを提供し、コンテンツ創作、学術研究、スマート推薦、医療診断などの広範な応用分野を持ち、長文処理や複雑な生成タスクをサポートしています。"
94
94
  },
95
+ "nebius": {
96
+ "description": "Nebiusは、大規模なGPUクラスターと垂直統合されたクラウドプラットフォームを構築することで、世界中のAIイノベーターに高性能なインフラストラクチャを提供します。"
97
+ },
95
98
  "novita": {
96
99
  "description": "Novita AIは、さまざまな大規模言語モデルとAI画像生成のAPIサービスを提供するプラットフォームであり、柔軟で信頼性が高く、コスト効率に優れています。Llama3、Mistralなどの最新のオープンソースモデルをサポートし、生成的AIアプリケーションの開発に向けた包括的でユーザーフレンドリーかつ自動スケーリングのAPIソリューションを提供し、AIスタートアップの急成長を支援します。"
97
100
  },
@@ -273,7 +273,8 @@
273
273
  "clientMode": {
274
274
  "actionFiletip": "파일 업로드",
275
275
  "actionTooltip": "업로드",
276
- "disabled": "현재 모델은 시각 인식 및 파일 분석을 지원하지 않습니다. 모델을 변경한 후 사용하세요."
276
+ "disabled": "현재 모델은 시각 인식 및 파일 분석을 지원하지 않습니다. 모델을 변경한 후 사용하세요.",
277
+ "visionNotSupported": "현재 모델은 시각 인식을 지원하지 않습니다. 모델을 변경한 후 사용해 주세요"
277
278
  },
278
279
  "preview": {
279
280
  "prepareTasks": "청크 준비 중...",
@@ -2691,18 +2691,9 @@
2691
2691
  "thudm/glm-4-9b-chat": {
2692
2692
  "description": "지프 AI가 발표한 GLM-4 시리즈 최신 세대의 사전 훈련 모델의 오픈 소스 버전입니다."
2693
2693
  },
2694
- "thudm/glm-4-9b:free": {
2695
- "description": "GLM-4-9B-0414는 THUDM이 개발한 GLM-4 시리즈의 90억 매개변수 언어 모델입니다. GLM-4-9B-0414는 더 큰 32B 대응 모델과 동일한 강화 학습 및 정렬 전략을 사용하여 훈련되었으며, 그 규모에 비해 높은 성능을 달성하여 여전히 강력한 언어 이해 및 생성 능력이 필요한 자원 제한 배포에 적합합니다."
2696
- },
2697
2694
  "thudm/glm-z1-32b": {
2698
2695
  "description": "GLM-Z1-32B-0414는 GLM-4-32B의 향상된 추론 변형으로, 깊은 수학, 논리 및 코드 중심 문제 해결을 위해 설계되었습니다. 이 모델은 복잡한 다단계 작업의 성능을 향상시키기 위해 확장 강화 학습(작업 특정 및 일반 쌍 선호 기반)을 적용합니다. 기본 GLM-4-32B 모델에 비해 Z1은 구조적 추론 및 형식적 분야의 능력을 크게 향상시킵니다.\n\n이 모델은 프롬프트 엔지니어링을 통해 '사고' 단계를 강제 실행할 수 있으며, 긴 형식 출력에 대한 개선된 일관성을 제공합니다. 에이전트 워크플로우에 최적화되어 있으며, 긴 맥락(YaRN을 통해), JSON 도구 호출 및 안정적인 추론을 위한 세분화된 샘플링 구성을 지원합니다. 깊이 있는 사고, 다단계 추론 또는 형식적 유도가 필요한 사용 사례에 매우 적합합니다."
2699
2696
  },
2700
- "thudm/glm-z1-32b:free": {
2701
- "description": "GLM-Z1-32B-0414는 GLM-4-32B의 향상된 추론 변형으로, 깊은 수학, 논리 및 코드 중심 문제 해결을 위해 설계되었습니다. 이 모델은 복잡한 다단계 작업의 성능을 향상시키기 위해 확장 강화 학습(작업 특정 및 일반 쌍 선호 기반)을 적용합니다. 기본 GLM-4-32B 모델에 비해 Z1은 구조적 추론 및 형식적 분야의 능력을 크게 향상시킵니다.\n\n이 모델은 프롬프트 엔지니어링을 통해 '사고' 단계를 강제 실행할 수 있으며, 긴 형식 출력에 대한 개선된 일관성을 제공합니다. 에이전트 워크플로우에 최적화되어 있으며, 긴 맥락(YaRN을 통해), JSON 도구 호출 및 안정적인 추론을 위한 세분화된 샘플링 구성을 지원합니다. 깊이 있는 사고, 다단계 추론 또는 형식적 유도가 필요한 사용 사례에 매우 적합합니다."
2702
- },
2703
- "thudm/glm-z1-9b:free": {
2704
- "description": "GLM-Z1-9B-0414는 THUDM이 개발한 GLM-4 시리즈의 9B 매개변수 언어 모델입니다. 이 모델은 더 큰 GLM-Z1 모델에 처음 적용된 기술을 포함하여, 확장된 강화 학습, 쌍 순위 정렬 및 수학, 코드 및 논리와 같은 추론 집약적인 작업에 대한 훈련을 포함합니다. 비록 규모는 작지만, 일반 추론 작업에서 강력한 성능을 발휘하며, 많은 오픈 소스 모델보다 우수한 성능을 보입니다."
2705
- },
2706
2697
  "thudm/glm-z1-rumination-32b": {
2707
2698
  "description": "THUDM: GLM Z1 Rumination 32B는 GLM-4-Z1 시리즈의 32B 매개변수 심층 추론 모델로, 오랜 시간 동안 사고가 필요한 복잡하고 개방적인 작업을 위해 최적화되었습니다. 이 모델은 glm-4-32b-0414를 기반으로 하며, 추가적인 강화 학습 단계와 다단계 정렬 전략을 도입하여 확장된 인지 처리를 모방하는 '반성' 능력을 도입합니다. 여기에는 반복 추론, 다중 점 분석 및 검색, 검색 및 인용 인식 합성을 포함한 도구 강화 워크플로우가 포함됩니다.\n\n이 모델은 연구 기반 글쓰기, 비교 분석 및 복잡한 질문 응답에서 뛰어난 성능을 발휘합니다. 검색 및 탐색 원시(`search`, `click`, `open`, `finish`)를 위한 함수 호출을 지원하여 에이전트 기반 파이프라인에서 사용할 수 있습니다. 반성 행동은 규칙 기반 보상 및 지연 결정 메커니즘을 갖춘 다중 회전 제어에 의해 형성되며, OpenAI 내부 정렬 스택과 같은 심층 연구 프레임워크를 기준으로 합니다. 이 변형은 깊이가 필요하고 속도가 필요하지 않은 시나리오에 적합합니다."
2708
2699
  },
@@ -92,6 +92,9 @@
92
92
  "moonshot": {
93
93
  "description": "Moonshot은 베이징 월의 어두운 면 기술 회사가 출시한 오픈 소스 플랫폼으로, 다양한 자연어 처리 모델을 제공하며, 콘텐츠 창작, 학술 연구, 스마트 추천, 의료 진단 등 다양한 분야에 적용됩니다. 긴 텍스트 처리 및 복잡한 생성 작업을 지원합니다."
94
94
  },
95
+ "nebius": {
96
+ "description": "Nebius는 대규모 GPU 클러스터와 수직 통합 클라우드 플랫폼을 구축하여 전 세계 AI 혁신가들에게 고성능 인프라를 제공합니다."
97
+ },
95
98
  "novita": {
96
99
  "description": "Novita AI는 다양한 대형 언어 모델과 AI 이미지 생성을 제공하는 API 서비스 플랫폼으로, 유연하고 신뢰할 수 있으며 비용 효율적입니다. Llama3, Mistral 등 최신 오픈 소스 모델을 지원하며, 생성적 AI 응용 프로그램 개발을 위한 포괄적이고 사용자 친화적이며 자동 확장 가능한 API 솔루션을 제공하여 AI 스타트업의 빠른 발전에 적합합니다."
97
100
  },