@librechat/agents 3.0.0 → 3.0.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (76) hide show
  1. package/dist/cjs/common/enum.cjs +0 -1
  2. package/dist/cjs/common/enum.cjs.map +1 -1
  3. package/dist/cjs/llm/providers.cjs +0 -2
  4. package/dist/cjs/llm/providers.cjs.map +1 -1
  5. package/dist/cjs/main.cjs +2 -0
  6. package/dist/cjs/main.cjs.map +1 -1
  7. package/dist/cjs/tools/Calculator.cjs +45 -0
  8. package/dist/cjs/tools/Calculator.cjs.map +1 -0
  9. package/dist/esm/common/enum.mjs +0 -1
  10. package/dist/esm/common/enum.mjs.map +1 -1
  11. package/dist/esm/llm/providers.mjs +0 -2
  12. package/dist/esm/llm/providers.mjs.map +1 -1
  13. package/dist/esm/main.mjs +1 -0
  14. package/dist/esm/main.mjs.map +1 -1
  15. package/dist/esm/tools/Calculator.mjs +24 -0
  16. package/dist/esm/tools/Calculator.mjs.map +1 -0
  17. package/dist/types/common/enum.d.ts +0 -1
  18. package/dist/types/index.d.ts +1 -0
  19. package/dist/types/tools/Calculator.d.ts +8 -0
  20. package/dist/types/types/llm.d.ts +1 -6
  21. package/package.json +5 -3
  22. package/src/common/enum.ts +0 -1
  23. package/src/index.ts +1 -0
  24. package/src/llm/providers.ts +0 -2
  25. package/src/scripts/abort.ts +34 -15
  26. package/src/scripts/cli.ts +25 -20
  27. package/src/scripts/cli2.ts +23 -15
  28. package/src/scripts/cli3.ts +35 -29
  29. package/src/scripts/cli4.ts +1 -2
  30. package/src/scripts/cli5.ts +1 -2
  31. package/src/scripts/code_exec.ts +1 -2
  32. package/src/scripts/code_exec_simple.ts +1 -2
  33. package/src/scripts/content.ts +33 -15
  34. package/src/scripts/simple.ts +1 -2
  35. package/src/scripts/stream.ts +33 -15
  36. package/src/scripts/test-tools-before-handoff.ts +17 -28
  37. package/src/scripts/tools.ts +4 -6
  38. package/src/specs/anthropic.simple.test.ts +1 -1
  39. package/src/specs/azure.simple.test.ts +1 -1
  40. package/src/specs/openai.simple.test.ts +1 -1
  41. package/src/specs/openrouter.simple.test.ts +1 -1
  42. package/src/tools/Calculator.ts +25 -0
  43. package/src/types/llm.ts +0 -6
  44. package/dist/types/tools/example.d.ts +0 -78
  45. package/src/proto/CollabGraph.ts +0 -269
  46. package/src/proto/TaskManager.ts +0 -243
  47. package/src/proto/collab.ts +0 -200
  48. package/src/proto/collab_design.ts +0 -184
  49. package/src/proto/collab_design_v2.ts +0 -224
  50. package/src/proto/collab_design_v3.ts +0 -255
  51. package/src/proto/collab_design_v4.ts +0 -220
  52. package/src/proto/collab_design_v5.ts +0 -251
  53. package/src/proto/collab_graph.ts +0 -181
  54. package/src/proto/collab_original.ts +0 -123
  55. package/src/proto/example.ts +0 -93
  56. package/src/proto/example_new.ts +0 -68
  57. package/src/proto/example_old.ts +0 -201
  58. package/src/proto/example_test.ts +0 -152
  59. package/src/proto/example_test_anthropic.ts +0 -100
  60. package/src/proto/log_stream.ts +0 -202
  61. package/src/proto/main_collab_community_event.ts +0 -133
  62. package/src/proto/main_collab_design_v2.ts +0 -96
  63. package/src/proto/main_collab_design_v4.ts +0 -100
  64. package/src/proto/main_collab_design_v5.ts +0 -135
  65. package/src/proto/main_collab_global_analysis.ts +0 -122
  66. package/src/proto/main_collab_hackathon_event.ts +0 -153
  67. package/src/proto/main_collab_space_mission.ts +0 -153
  68. package/src/proto/main_philosophy.ts +0 -210
  69. package/src/proto/original_script.ts +0 -126
  70. package/src/proto/standard.ts +0 -100
  71. package/src/proto/stream.ts +0 -56
  72. package/src/proto/tasks.ts +0 -118
  73. package/src/proto/tools/global_analysis_tools.ts +0 -86
  74. package/src/proto/tools/space_mission_tools.ts +0 -60
  75. package/src/proto/vertexai.ts +0 -54
  76. package/src/tools/example.ts +0 -129
@@ -1,251 +0,0 @@
1
- // src/collab_design_v5.ts
2
- import 'dotenv/config';
3
- import { BaseMessage, HumanMessage } from '@langchain/core/messages';
4
- import { END, StateGraphArgs, START, StateGraph, MemorySaver } from '@langchain/langgraph';
5
- import { AgentExecutor, createOpenAIToolsAgent } from 'langchain/agents';
6
- import {
7
- ChatPromptTemplate,
8
- MessagesPlaceholder,
9
- } from '@langchain/core/prompts';
10
- import { Runnable, RunnableConfig } from '@langchain/core/runnables';
11
- import { JsonOutputToolsParser } from 'langchain/output_parsers';
12
- import { HandlerRegistry } from '@/events';
13
- import { ChatOpenAI } from '@langchain/openai';
14
- import { ChatBedrockConverse } from '@langchain/aws';
15
- import { ChatAnthropic } from '@langchain/anthropic';
16
- import { ChatMistralAI } from '@langchain/mistralai';
17
- import { ChatVertexAI } from '@langchain/google-vertexai';
18
- import { BedrockChat } from '@langchain/community/chat_models/bedrock/web';
19
- import { supervisorPrompt } from '@/prompts/collab';
20
- import type * as t from '@/types';
21
- import { Providers } from '@/common';
22
-
23
- interface AgentStateChannels {
24
- messages: BaseMessage[];
25
- next: string;
26
- }
27
-
28
- export interface Member {
29
- name: string;
30
- systemPrompt: string;
31
- tools: any[];
32
- llmConfig: LLMConfig;
33
- }
34
-
35
- interface LLMConfig {
36
- provider: Providers;
37
- [key: string]: any;
38
- }
39
-
40
- interface SupervisorConfig {
41
- systemPrompt?: string;
42
- llmConfig: LLMConfig;
43
- }
44
-
45
- const llmProviders: Record<Providers, any> = {
46
- [Providers.OPENAI]: ChatOpenAI,
47
- [Providers.VERTEXAI]: ChatVertexAI,
48
- [Providers.BEDROCK_LEGACY]: BedrockChat,
49
- [Providers.MISTRALAI]: ChatMistralAI,
50
- [Providers.BEDROCK]: ChatBedrockConverse,
51
- [Providers.ANTHROPIC]: ChatAnthropic,
52
- };
53
-
54
- export class CollaborativeProcessor {
55
- graph: t.CompiledWorkflow | null = null;
56
- private handlerRegistry: HandlerRegistry;
57
- private members: Member[];
58
- private supervisorConfig: SupervisorConfig;
59
-
60
- constructor(
61
- members: Member[],
62
- supervisorConfig: SupervisorConfig,
63
- customHandlers?: Record<string, any>
64
- ) {
65
- this.members = members;
66
- this.supervisorConfig = supervisorConfig;
67
- this.handlerRegistry = new HandlerRegistry();
68
- if (customHandlers) {
69
- for (const [eventType, handler] of Object.entries(customHandlers)) {
70
- this.handlerRegistry.register(eventType, handler);
71
- }
72
- }
73
- }
74
-
75
- async initialize(): Promise<void> {
76
- this.graph = await this.createGraph();
77
- }
78
-
79
- private async createGraph(): Promise<t.CompiledWorkflow> {
80
- const agentStateChannels: StateGraphArgs<AgentStateChannels>['channels'] = {
81
- messages: {
82
- value: (x?: BaseMessage[], y?: BaseMessage[]) => (x ?? []).concat(y ?? []),
83
- default: () => [],
84
- },
85
- next: {
86
- value: (x?: string, y?: string) => y ?? x ?? END,
87
- default: () => END,
88
- },
89
- };
90
-
91
- async function createAgent(
92
- llmConfig: LLMConfig,
93
- tools: any[],
94
- systemPrompt: string
95
- ): Promise<AgentExecutor> {
96
- const { provider, ...clientOptions } = llmConfig;
97
- const LLMClass = llmProviders[provider];
98
- if (!LLMClass) {
99
- throw new Error(`Unsupported LLM provider: ${provider}`);
100
- }
101
- const llm = new LLMClass(clientOptions);
102
-
103
- const prompt = await ChatPromptTemplate.fromMessages([
104
- ['system', systemPrompt],
105
- new MessagesPlaceholder('messages'),
106
- new MessagesPlaceholder('agent_scratchpad'),
107
- ]);
108
- const agent = await createOpenAIToolsAgent({ llm, tools, prompt });
109
- return new AgentExecutor({ agent, tools });
110
- }
111
-
112
- const memberNames = this.members.map(member => member.name);
113
-
114
- const systemPrompt = this.supervisorConfig.systemPrompt || supervisorPrompt;
115
- const options = [END, ...memberNames];
116
-
117
- const functionDef = {
118
- name: 'route',
119
- description: 'Select the next role.',
120
- parameters: {
121
- title: 'routeSchema',
122
- type: 'object',
123
- properties: {
124
- next: {
125
- title: 'Next',
126
- anyOf: [
127
- { enum: options },
128
- ],
129
- },
130
- },
131
- required: ['next'],
132
- },
133
- };
134
-
135
- const toolDef = {
136
- type: 'function',
137
- function: functionDef,
138
- } as const;
139
-
140
- const prompt = ChatPromptTemplate.fromMessages([
141
- ['system', systemPrompt],
142
- new MessagesPlaceholder('messages'),
143
- [
144
- 'system',
145
- 'Given the conversation above, who should act next?' +
146
- ' Or should we FINISH? Select one of: {options}',
147
- ],
148
- ]);
149
-
150
- const formattedPrompt = await prompt.partial({
151
- options: options.join(', '),
152
- members: memberNames.join(', '),
153
- });
154
-
155
- const { provider, ...clientOptions } = this.supervisorConfig.llmConfig;
156
- const LLMClass = llmProviders[provider];
157
- if (!LLMClass) {
158
- throw new Error(`Unsupported LLM provider for supervisor: ${provider}`);
159
- }
160
- const llm = new LLMClass(clientOptions);
161
-
162
- const supervisorChain = formattedPrompt
163
- .pipe(llm.bindTools(
164
- [toolDef],
165
- {
166
- tool_choice: { 'type': 'function', 'function': { 'name': 'route' } },
167
- },
168
- ))
169
- .pipe(new JsonOutputToolsParser())
170
- .pipe((x) => (x[0].args));
171
-
172
- const workflow = new StateGraph({
173
- channels: agentStateChannels,
174
- });
175
-
176
- // Dynamically create agents and add nodes for each member
177
- for (const member of this.members) {
178
- const agent = await createAgent(member.llmConfig, member.tools, member.systemPrompt);
179
- const node = async (
180
- state: AgentStateChannels,
181
- config?: RunnableConfig,
182
- ) => {
183
- const agentPromise = agent.invoke(state, config);
184
-
185
- // Store the promise in the state
186
- await this.graph?.updateState(config, {
187
- [`${member.name}Promise`]: agentPromise,
188
- });
189
-
190
- const result = await agentPromise;
191
- return {
192
- messages: [
193
- new HumanMessage({ content: result.output, name: member.name }),
194
- ],
195
- };
196
- };
197
- workflow.addNode(member.name, node);
198
- workflow.addEdge(member.name, 'supervisor');
199
- }
200
-
201
- const supervisorNode = async (
202
- state: AgentStateChannels,
203
- config?: RunnableConfig,
204
- ) => {
205
- // Get the current state
206
- const currentState = await this.graph?.getState(config);
207
-
208
- // Wait for all member promises to resolve
209
- const memberPromises = this.members.map(member => currentState[`${member.name}Promise`]);
210
- await Promise.all(memberPromises);
211
-
212
- // Clear the promises for the next iteration
213
- for (const member of this.members) {
214
- await this.graph?.updateState(config, {
215
- [`${member.name}Promise`]: undefined,
216
- });
217
- }
218
-
219
- const result = await supervisorChain.invoke(state, config);
220
- return result;
221
- };
222
-
223
- workflow.addNode('supervisor', supervisorNode);
224
-
225
- workflow.addConditionalEdges(
226
- 'supervisor',
227
- (x: AgentStateChannels) => x.next,
228
- );
229
-
230
- workflow.addEdge(START, 'supervisor');
231
-
232
- const memory = new MemorySaver();
233
- return workflow.compile({ checkpointer: memory });
234
- }
235
-
236
- async processStream(
237
- inputs: { messages: BaseMessage[] },
238
- config: Partial<RunnableConfig> & { version: 'v1' | 'v2' },
239
- ) {
240
- if (!this.graph) {
241
- throw new Error('CollaborativeProcessor not initialized. Call initialize() first.');
242
- }
243
- const stream = this.graph.streamEvents(inputs, config);
244
- for await (const event of stream) {
245
- const handler = this.handlerRegistry.getHandler(event.event);
246
- if (handler) {
247
- handler.handle(event.event, event.data);
248
- }
249
- }
250
- }
251
- }
@@ -1,181 +0,0 @@
1
- import 'dotenv/config';
2
- import { BaseMessage, HumanMessage } from '@langchain/core/messages';
3
- import { END, StateGraphArgs, START, StateGraph } from '@langchain/langgraph';
4
- import { chartTool, tavilyTool } from '@/tools/example';
5
- import { AgentExecutor, createOpenAIToolsAgent } from 'langchain/agents';
6
- import {
7
- ChatPromptTemplate,
8
- MessagesPlaceholder,
9
- } from '@langchain/core/prompts';
10
- import { ChatOpenAI } from '@langchain/openai';
11
- import { Runnable, RunnableConfig } from '@langchain/core/runnables';
12
- import { JsonOutputToolsParser } from 'langchain/output_parsers';
13
-
14
- interface AgentStateChannels {
15
- messages: BaseMessage[];
16
- next: string;
17
- }
18
-
19
- (async function() {
20
- const agentStateChannels: StateGraphArgs['channels'] = {
21
- messages: {
22
- value: (x?: BaseMessage[], y?: BaseMessage[]) => (x ?? []).concat(y ?? []),
23
- default: () => [],
24
- },
25
- next: {
26
- value: (x?: string, y?: string) => y ?? x ?? END,
27
- default: () => END,
28
- },
29
- };
30
-
31
- async function createAgent(
32
- llm: ChatOpenAI,
33
- tools: any[],
34
- systemPrompt: string
35
- ): Promise<AgentExecutor> {
36
- const prompt = await ChatPromptTemplate.fromMessages([
37
- ['system', systemPrompt],
38
- new MessagesPlaceholder('messages'),
39
- new MessagesPlaceholder('agent_scratchpad'),
40
- ]);
41
- const agent = await createOpenAIToolsAgent({ llm, tools, prompt });
42
- return new AgentExecutor({ agent, tools });
43
- }
44
-
45
- const members = ['researcher', 'chart_generator'];
46
-
47
- const systemPrompt =
48
- 'You are a supervisor tasked with managing a conversation between the' +
49
- ' following workers: {members}. Given the following user request,' +
50
- ' respond with the worker to act next. Each worker will perform a' +
51
- ' task and respond with their results and status. When finished,' +
52
- ' respond with FINISH.';
53
- const options = [END, ...members];
54
-
55
- const functionDef = {
56
- name: 'route',
57
- description: 'Select the next role.',
58
- parameters: {
59
- title: 'routeSchema',
60
- type: 'object',
61
- properties: {
62
- next: {
63
- title: 'Next',
64
- anyOf: [
65
- { enum: options },
66
- ],
67
- },
68
- },
69
- required: ['next'],
70
- },
71
- };
72
-
73
- const toolDef = {
74
- type: 'function',
75
- function: functionDef,
76
- } as const;
77
-
78
- const prompt = ChatPromptTemplate.fromMessages([
79
- ['system', systemPrompt],
80
- new MessagesPlaceholder('messages'),
81
- [
82
- 'system',
83
- 'Given the conversation above, who should act next?' +
84
- ' Or should we FINISH? Select one of: {options}',
85
- ],
86
- ]);
87
-
88
- const formattedPrompt = await prompt.partial({
89
- options: options.join(', '),
90
- members: members.join(', '),
91
- });
92
-
93
- const llm = new ChatOpenAI({
94
- modelName: 'gpt-4',
95
- temperature: 0,
96
- });
97
-
98
- const supervisorChain = formattedPrompt
99
- .pipe(llm.bindTools(
100
- [toolDef],
101
- {
102
- tool_choice: { 'type': 'function', 'function': { 'name': 'route' } },
103
- },
104
- ))
105
- .pipe(new JsonOutputToolsParser())
106
- .pipe((x) => (x[0].args));
107
-
108
- const researcherAgent = await createAgent(
109
- llm,
110
- [tavilyTool],
111
- 'You are a web researcher. You may use the Tavily search engine to search the web for' +
112
- ' important information, so the Chart Generator in your team can make useful plots.',
113
- );
114
-
115
- const researcherNode = async (
116
- state: AgentStateChannels,
117
- config?: RunnableConfig,
118
- ) => {
119
- const result = await researcherAgent.invoke(state, config);
120
- return {
121
- messages: [
122
- new HumanMessage({ content: result.output, name: 'Researcher' }),
123
- ],
124
- };
125
- };
126
-
127
- const chartGenAgent = await createAgent(
128
- llm,
129
- [chartTool],
130
- 'You excel at generating bar charts. Use the researcher\'s information to generate the charts.',
131
- );
132
-
133
- const chartGenNode = async (
134
- state: AgentStateChannels,
135
- config?: RunnableConfig,
136
- ) => {
137
- const result = await chartGenAgent.invoke(state, config);
138
- return {
139
- messages: [
140
- new HumanMessage({ content: result.output, name: 'ChartGenerator' }),
141
- ],
142
- };
143
- };
144
-
145
- const workflow = new StateGraph({
146
- channels: agentStateChannels,
147
- })
148
- .addNode('researcher', researcherNode)
149
- .addNode('chart_generator', chartGenNode)
150
- .addNode('supervisor', supervisorChain);
151
-
152
- members.forEach((member) => {
153
- workflow.addEdge(member, 'supervisor');
154
- });
155
-
156
- workflow.addConditionalEdges(
157
- 'supervisor',
158
- (x: AgentStateChannels) => x.next,
159
- );
160
-
161
- workflow.addEdge(START, 'supervisor');
162
-
163
- const graph = workflow.compile();
164
-
165
- try {
166
- const stream = graph.streamEvents({
167
- messages: [new HumanMessage('Create a chart showing the population growth of the top 5 most populous countries over the last 50 years.')],
168
- }, {
169
- version: 'v2',
170
- streamMode: 'values',
171
- });
172
-
173
- for await (const event of stream) {
174
- console.log(event.event);
175
- console.dir(event.data, { depth: null });
176
- }
177
-
178
- } catch (error) {
179
- console.error('An error occurred:', error);
180
- }
181
- })();
@@ -1,123 +0,0 @@
1
- // src/main_collaborative.ts
2
- import dotenv from 'dotenv';
3
- import { HumanMessage } from '@langchain/core/messages';
4
- import type * as t from '@/types';
5
- import {
6
- ChatModelStreamHandler,
7
- LLMStreamHandler,
8
- } from '@/stream';
9
- import { Processor } from '@/processor';
10
- import { AgentStateChannels } from '@/graphs/CollabGraph';
11
- import { tavilyTool, chartTool } from '@/tools/example';
12
- import { supervisorPrompt } from '@/prompts/collab';
13
- import { GraphEvents, Providers } from '@/common';
14
- import fs from 'fs';
15
- import util from 'util';
16
-
17
- dotenv.config();
18
-
19
- // Create a write stream
20
- const logFile = fs.createWriteStream('output.log', { flags: 'a' });
21
-
22
- // Redirect console.log and console.error
23
- const originalConsoleLog = console.log;
24
- const originalConsoleError = console.error;
25
-
26
- console.log = function(...args) {
27
- logFile.write(util.format.apply(null, args) + '\n');
28
- originalConsoleLog.apply(console, args);
29
- };
30
-
31
- console.error = function(...args) {
32
- logFile.write(util.format.apply(null, args) + '\n');
33
- originalConsoleError.apply(console, args);
34
- };
35
-
36
- async function testCollaborativeStreaming() {
37
- const customHandlers = {
38
- [GraphEvents.LLM_STREAM]: new LLMStreamHandler(),
39
- [GraphEvents.CHAT_MODEL_STREAM]: new ChatModelStreamHandler(),
40
- [GraphEvents.LLM_START]: {
41
- handle: (event: string, data: t.StreamEventData) => {
42
- console.log('LLM Start:', event);
43
- }
44
- },
45
- [GraphEvents.LLM_END]: {
46
- handle: (event: string, data: t.StreamEventData) => {
47
- console.log('LLM End:', event);
48
- }
49
- },
50
- [GraphEvents.CHAT_MODEL_END]: {
51
- handle: (event: string, data: t.StreamEventData) => {
52
- console.log('Chat Model End:', event);
53
- }
54
- },
55
- [GraphEvents.TOOL_END]: {
56
- handle: (event: string, data: t.StreamEventData) => {
57
- console.log('Tool End:', event);
58
- console.dir(data, { depth: null });
59
- }
60
- },
61
- };
62
-
63
- const processor = await Processor.create<AgentStateChannels>({
64
- graphConfig: {
65
- type: 'collaborative',
66
- members: [
67
- {
68
- name: 'researcher',
69
- systemPrompt: 'You are a web researcher. You may use the Tavily search engine to search the web for important information, so the Chart Generator in your team can make useful plots.',
70
- tools: [tavilyTool],
71
- llmConfig: {
72
- provider: Providers.OPENAI,
73
-
74
- model: 'gpt-4o',
75
- temperature: 0,
76
- },
77
- },
78
- {
79
- name: 'chart_generator',
80
- systemPrompt: 'You excel at generating bar charts. Use the researcher\'s information to generate the charts.',
81
- tools: [chartTool],
82
- llmConfig: {
83
- provider: Providers.OPENAI,
84
-
85
- model: 'gpt-4o',
86
- temperature: 0.2,
87
- },
88
- },
89
- ],
90
- supervisorConfig: {
91
- systemPrompt: supervisorPrompt,
92
- llmConfig: {
93
- provider: Providers.OPENAI,
94
- model: 'gpt-4o',
95
- temperature: 0,
96
- },
97
- },
98
- },
99
- customHandlers,
100
- });
101
-
102
- const config = {
103
- configurable: { thread_id: 'collaborative-conversation-1' },
104
- streamMode: 'values',
105
- version: 'v2' as const,
106
- };
107
-
108
- console.log('\nCollaborative Test: Create a chart');
109
-
110
- const input = {
111
- messages: [new HumanMessage('Create a chart showing the population growth of the top 5 most populous countries over the last 50 years.')],
112
- };
113
-
114
- await processor.processStream(input, config);
115
- }
116
-
117
- async function main() {
118
- await testCollaborativeStreaming();
119
- }
120
-
121
- main().catch(console.error).finally(() => {
122
- logFile.end();
123
- });
@@ -1,93 +0,0 @@
1
- import dotenv from 'dotenv';
2
- import { ChatOpenAI } from '@langchain/openai';
3
- import { AIMessage } from '@langchain/core/messages';
4
- import { BaseMessage } from '@langchain/core/messages';
5
- import { ToolNode } from '@langchain/langgraph/prebuilt';
6
- import { RunnableConfig } from '@langchain/core/runnables';
7
- import { END, START, StateGraph } from '@langchain/langgraph';
8
- import { TavilySearchResults } from '@langchain/community/tools/tavily_search';
9
- import { HandlerRegistry, LLMStreamHandler, GraphStreamProcessor } from '@/proto/stream';
10
- import type * as t from '@/types/graph';
11
-
12
- dotenv.config();
13
-
14
- const graphState: t.GraphStateChannels = {
15
- messages: {
16
- value: (x: BaseMessage[], y: BaseMessage[]) => x.concat(y),
17
- default: () => [],
18
- },
19
- };
20
-
21
- // Set up the tools
22
- const tools = [new TavilySearchResults({})];
23
-
24
- // Create the ToolNode
25
- const toolNode = new ToolNode<{ messages: BaseMessage[] }>(tools);
26
-
27
- // Set up the model
28
- const model = new ChatOpenAI({ model: 'gpt-4o' });
29
- const boundModel = model.bindTools(tools);
30
-
31
- // Define the graph
32
- const routeMessage = (state: t.IState) => {
33
- const { messages } = state;
34
- const lastMessage = messages[messages.length - 1] as AIMessage;
35
- if (!lastMessage?.tool_calls?.length) {
36
- return END;
37
- }
38
- return 'tools';
39
- };
40
-
41
- const callModel = async (
42
- state: t.IState,
43
- config?: RunnableConfig,
44
- ) => {
45
- const { messages } = state;
46
- const responseMessage = await boundModel.invoke(messages, config);
47
- return { messages: [responseMessage] };
48
- };
49
-
50
- const workflow: t.Workflow = new StateGraph<t.IState>({
51
- channels: graphState,
52
- })
53
- .addNode('agent', callModel)
54
- .addNode('tools', toolNode)
55
- .addEdge(START, 'agent')
56
- .addConditionalEdges('agent', routeMessage)
57
- .addEdge('tools', 'agent');
58
-
59
- const graph = workflow.compile();
60
-
61
- // Test the streaming functionality
62
- async function testStreaming() {
63
- const handlerRegistry = new HandlerRegistry();
64
- handlerRegistry.register('on_llm_stream', new LLMStreamHandler());
65
-
66
- // Register custom handlers
67
- handlerRegistry.register('on_llm_start', {
68
- handle: (event, data) => {
69
- console.log(event);
70
- console.dir(data, { depth: null });
71
- }
72
- });
73
-
74
- const processor = new GraphStreamProcessor(handlerRegistry);
75
-
76
- const config: Partial<RunnableConfig> & { version: 'v1' | 'v2', streamMode: string } = {
77
- configurable: { thread_id: 'conversation-num-1' },
78
- streamMode: 'values',
79
- version: 'v1' as const,
80
- };
81
-
82
- console.log('Test 1: Initial greeting');
83
- let inputs = { messages: [['user', 'Hi I\'m Jo.']] };
84
- // await processor.processStream(graph, inputs, config);
85
- console.log('\n');
86
-
87
- console.log('Test 2: Weather query');
88
- inputs = { messages: [['user', 'Make a search for the weather in new york today, which is 7/7/24']] };
89
- await processor.processStream(graph, inputs, config);
90
- console.log('\n');
91
- }
92
-
93
- testStreaming();