@librechat/agents 3.0.0 → 3.0.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (76) hide show
  1. package/dist/cjs/common/enum.cjs +0 -1
  2. package/dist/cjs/common/enum.cjs.map +1 -1
  3. package/dist/cjs/llm/providers.cjs +0 -2
  4. package/dist/cjs/llm/providers.cjs.map +1 -1
  5. package/dist/cjs/main.cjs +2 -0
  6. package/dist/cjs/main.cjs.map +1 -1
  7. package/dist/cjs/tools/Calculator.cjs +45 -0
  8. package/dist/cjs/tools/Calculator.cjs.map +1 -0
  9. package/dist/esm/common/enum.mjs +0 -1
  10. package/dist/esm/common/enum.mjs.map +1 -1
  11. package/dist/esm/llm/providers.mjs +0 -2
  12. package/dist/esm/llm/providers.mjs.map +1 -1
  13. package/dist/esm/main.mjs +1 -0
  14. package/dist/esm/main.mjs.map +1 -1
  15. package/dist/esm/tools/Calculator.mjs +24 -0
  16. package/dist/esm/tools/Calculator.mjs.map +1 -0
  17. package/dist/types/common/enum.d.ts +0 -1
  18. package/dist/types/index.d.ts +1 -0
  19. package/dist/types/tools/Calculator.d.ts +8 -0
  20. package/dist/types/types/llm.d.ts +1 -6
  21. package/package.json +5 -3
  22. package/src/common/enum.ts +0 -1
  23. package/src/index.ts +1 -0
  24. package/src/llm/providers.ts +0 -2
  25. package/src/scripts/abort.ts +34 -15
  26. package/src/scripts/cli.ts +25 -20
  27. package/src/scripts/cli2.ts +23 -15
  28. package/src/scripts/cli3.ts +35 -29
  29. package/src/scripts/cli4.ts +1 -2
  30. package/src/scripts/cli5.ts +1 -2
  31. package/src/scripts/code_exec.ts +1 -2
  32. package/src/scripts/code_exec_simple.ts +1 -2
  33. package/src/scripts/content.ts +33 -15
  34. package/src/scripts/simple.ts +1 -2
  35. package/src/scripts/stream.ts +33 -15
  36. package/src/scripts/test-tools-before-handoff.ts +17 -28
  37. package/src/scripts/tools.ts +4 -6
  38. package/src/specs/anthropic.simple.test.ts +1 -1
  39. package/src/specs/azure.simple.test.ts +1 -1
  40. package/src/specs/openai.simple.test.ts +1 -1
  41. package/src/specs/openrouter.simple.test.ts +1 -1
  42. package/src/tools/Calculator.ts +25 -0
  43. package/src/types/llm.ts +0 -6
  44. package/dist/types/tools/example.d.ts +0 -78
  45. package/src/proto/CollabGraph.ts +0 -269
  46. package/src/proto/TaskManager.ts +0 -243
  47. package/src/proto/collab.ts +0 -200
  48. package/src/proto/collab_design.ts +0 -184
  49. package/src/proto/collab_design_v2.ts +0 -224
  50. package/src/proto/collab_design_v3.ts +0 -255
  51. package/src/proto/collab_design_v4.ts +0 -220
  52. package/src/proto/collab_design_v5.ts +0 -251
  53. package/src/proto/collab_graph.ts +0 -181
  54. package/src/proto/collab_original.ts +0 -123
  55. package/src/proto/example.ts +0 -93
  56. package/src/proto/example_new.ts +0 -68
  57. package/src/proto/example_old.ts +0 -201
  58. package/src/proto/example_test.ts +0 -152
  59. package/src/proto/example_test_anthropic.ts +0 -100
  60. package/src/proto/log_stream.ts +0 -202
  61. package/src/proto/main_collab_community_event.ts +0 -133
  62. package/src/proto/main_collab_design_v2.ts +0 -96
  63. package/src/proto/main_collab_design_v4.ts +0 -100
  64. package/src/proto/main_collab_design_v5.ts +0 -135
  65. package/src/proto/main_collab_global_analysis.ts +0 -122
  66. package/src/proto/main_collab_hackathon_event.ts +0 -153
  67. package/src/proto/main_collab_space_mission.ts +0 -153
  68. package/src/proto/main_philosophy.ts +0 -210
  69. package/src/proto/original_script.ts +0 -126
  70. package/src/proto/standard.ts +0 -100
  71. package/src/proto/stream.ts +0 -56
  72. package/src/proto/tasks.ts +0 -118
  73. package/src/proto/tools/global_analysis_tools.ts +0 -86
  74. package/src/proto/tools/space_mission_tools.ts +0 -60
  75. package/src/proto/vertexai.ts +0 -54
  76. package/src/tools/example.ts +0 -129
@@ -1,224 +0,0 @@
1
- // src/collab.ts
2
- import 'dotenv/config';
3
- import { BaseMessage, HumanMessage } from '@langchain/core/messages';
4
- import { END, StateGraphArgs, START, StateGraph } from '@langchain/langgraph';
5
- import { AgentExecutor, createOpenAIToolsAgent } from 'langchain/agents';
6
- import {
7
- ChatPromptTemplate,
8
- MessagesPlaceholder,
9
- } from '@langchain/core/prompts';
10
- import { Runnable, RunnableConfig } from '@langchain/core/runnables';
11
- import { JsonOutputToolsParser } from 'langchain/output_parsers';
12
- import { HandlerRegistry } from '@/events';
13
- import { ChatOpenAI } from '@langchain/openai';
14
- import { ChatBedrockConverse } from '@langchain/aws';
15
- import { ChatAnthropic } from '@langchain/anthropic';
16
- import { ChatMistralAI } from '@langchain/mistralai';
17
- import { ChatVertexAI } from '@langchain/google-vertexai';
18
- import { BedrockChat } from '@langchain/community/chat_models/bedrock/web';
19
- import { Providers } from '@/common';
20
-
21
- interface AgentStateChannels {
22
- messages: BaseMessage[];
23
- next: string;
24
- }
25
-
26
- export interface Member {
27
- name: string;
28
- systemPrompt: string;
29
- tools: any[];
30
- llmConfig: LLMConfig;
31
- }
32
-
33
- interface LLMConfig {
34
- provider: Providers;
35
- [key: string]: any;
36
- }
37
-
38
- interface SupervisorConfig {
39
- systemPrompt?: string;
40
- llmConfig: LLMConfig;
41
- }
42
-
43
- const llmProviders: Record<Providers, any> = {
44
- [Providers.OPENAI]: ChatOpenAI,
45
- [Providers.VERTEXAI]: ChatVertexAI,
46
- [Providers.BEDROCK_LEGACY]: BedrockChat,
47
- [Providers.MISTRALAI]: ChatMistralAI,
48
- [Providers.BEDROCK]: ChatBedrockConverse,
49
- [Providers.ANTHROPIC]: ChatAnthropic,
50
- };
51
-
52
- export class CollaborativeProcessor {
53
- private graph: Runnable | null = null;
54
- private handlerRegistry: HandlerRegistry;
55
- private members: Member[];
56
- private supervisorConfig: SupervisorConfig;
57
-
58
- constructor(
59
- members: Member[],
60
- supervisorConfig: SupervisorConfig,
61
- customHandlers?: Record<string, any>
62
- ) {
63
- this.members = members;
64
- this.supervisorConfig = supervisorConfig;
65
- this.handlerRegistry = new HandlerRegistry();
66
- if (customHandlers) {
67
- for (const [eventType, handler] of Object.entries(customHandlers)) {
68
- this.handlerRegistry.register(eventType, handler);
69
- }
70
- }
71
- }
72
-
73
- async initialize(): Promise<void> {
74
- this.graph = await this.createGraph();
75
- }
76
-
77
- private async createGraph(): Promise<Runnable> {
78
- const agentStateChannels: StateGraphArgs['channels'] = {
79
- messages: {
80
- value: (x?: BaseMessage[], y?: BaseMessage[]) => (x ?? []).concat(y ?? []),
81
- default: () => [],
82
- },
83
- next: {
84
- value: (x?: string, y?: string) => y ?? x ?? END,
85
- default: () => END,
86
- },
87
- };
88
-
89
- async function createAgent(
90
- llmConfig: LLMConfig,
91
- tools: any[],
92
- systemPrompt: string
93
- ): Promise<AgentExecutor> {
94
- const { provider, ...clientOptions } = llmConfig;
95
- const LLMClass = llmProviders[provider];
96
- if (!LLMClass) {
97
- throw new Error(`Unsupported LLM provider: ${provider}`);
98
- }
99
- const llm = new LLMClass(clientOptions);
100
-
101
- const prompt = await ChatPromptTemplate.fromMessages([
102
- ['system', systemPrompt],
103
- new MessagesPlaceholder('messages'),
104
- new MessagesPlaceholder('agent_scratchpad'),
105
- ]);
106
- const agent = await createOpenAIToolsAgent({ llm, tools, prompt });
107
- return new AgentExecutor({ agent, tools });
108
- }
109
-
110
- const memberNames = this.members.map(member => member.name);
111
-
112
- const systemPrompt = this.supervisorConfig.systemPrompt ||
113
- 'You are a supervisor tasked with managing a conversation between the' +
114
- ' following workers: {members}. Given the following user request,' +
115
- ' respond with the worker to act next. Each worker will perform a' +
116
- ' task and respond with their results and status. When finished,' +
117
- ' respond with FINISH.';
118
- const options = [END, ...memberNames];
119
-
120
- const functionDef = {
121
- name: 'route',
122
- description: 'Select the next role.',
123
- parameters: {
124
- title: 'routeSchema',
125
- type: 'object',
126
- properties: {
127
- next: {
128
- title: 'Next',
129
- anyOf: [
130
- { enum: options },
131
- ],
132
- },
133
- },
134
- required: ['next'],
135
- },
136
- };
137
-
138
- const toolDef = {
139
- type: 'function',
140
- function: functionDef,
141
- } as const;
142
-
143
- const prompt = ChatPromptTemplate.fromMessages([
144
- ['system', systemPrompt],
145
- new MessagesPlaceholder('messages'),
146
- [
147
- 'system',
148
- 'Given the conversation above, who should act next?' +
149
- ' Or should we FINISH? Select one of: {options}',
150
- ],
151
- ]);
152
-
153
- const formattedPrompt = await prompt.partial({
154
- options: options.join(', '),
155
- members: memberNames.join(', '),
156
- });
157
-
158
- const { provider, ...clientOptions } = this.supervisorConfig.llmConfig;
159
- const LLMClass = llmProviders[provider];
160
- if (!LLMClass) {
161
- throw new Error(`Unsupported LLM provider for supervisor: ${provider}`);
162
- }
163
- const llm = new LLMClass(clientOptions);
164
-
165
- const supervisorChain = formattedPrompt
166
- .pipe(llm.bindTools(
167
- [toolDef],
168
- {
169
- tool_choice: { 'type': 'function', 'function': { 'name': 'route' } },
170
- },
171
- ))
172
- .pipe(new JsonOutputToolsParser())
173
- .pipe((x) => (x[0].args));
174
-
175
- const workflow = new StateGraph({
176
- channels: agentStateChannels,
177
- });
178
-
179
- // Dynamically create agents and add nodes for each member
180
- for (const member of this.members) {
181
- const agent = await createAgent(member.llmConfig, member.tools, member.systemPrompt);
182
- const node = async (
183
- state: AgentStateChannels,
184
- config?: RunnableConfig,
185
- ) => {
186
- const result = await agent.invoke(state, config);
187
- return {
188
- messages: [
189
- new HumanMessage({ content: result.output, name: member.name }),
190
- ],
191
- };
192
- };
193
- workflow.addNode(member.name, node);
194
- workflow.addEdge(member.name, 'supervisor');
195
- }
196
-
197
- workflow.addNode('supervisor', supervisorChain);
198
-
199
- workflow.addConditionalEdges(
200
- 'supervisor',
201
- (x: AgentStateChannels) => x.next,
202
- );
203
-
204
- workflow.addEdge(START, 'supervisor');
205
-
206
- return workflow.compile();
207
- }
208
-
209
- async processStream(
210
- inputs: { messages: BaseMessage[] },
211
- config: Partial<RunnableConfig> & { version: 'v1' | 'v2' },
212
- ) {
213
- if (!this.graph) {
214
- throw new Error('CollaborativeProcessor not initialized. Call initialize() first.');
215
- }
216
- const stream = this.graph.streamEvents(inputs, config);
217
- for await (const event of stream) {
218
- const handler = this.handlerRegistry.getHandler(event.event);
219
- if (handler) {
220
- handler.handle(event.event, event.data);
221
- }
222
- }
223
- }
224
- }
@@ -1,255 +0,0 @@
1
- // src/collab_design_v2.ts
2
- import 'dotenv/config';
3
- import { BaseMessage, HumanMessage, AIMessage } from '@langchain/core/messages';
4
- import { END, StateGraphArgs, START, StateGraph } from '@langchain/langgraph';
5
- import { AgentExecutor, createOpenAIToolsAgent } from 'langchain/agents';
6
- import {
7
- ChatPromptTemplate,
8
- MessagesPlaceholder,
9
- } from '@langchain/core/prompts';
10
- import { ChatOpenAI } from '@langchain/openai';
11
- import { Runnable, RunnableConfig } from '@langchain/core/runnables';
12
- import { JsonOutputToolsParser } from 'langchain/output_parsers';
13
- import { HandlerRegistry } from '@/events';
14
- import { ChatBedrockConverse } from '@langchain/aws';
15
- import { ChatAnthropic } from '@langchain/anthropic';
16
- import { ChatMistralAI } from '@langchain/mistralai';
17
- import { ChatVertexAI } from '@langchain/google-vertexai';
18
- import { BedrockChat } from '@langchain/community/chat_models/bedrock/web';
19
- import { Providers } from '@/common';
20
-
21
- interface AgentStateChannels {
22
- messages: BaseMessage[];
23
- next: string | string[];
24
- parallelResults: { [key: string]: string };
25
- }
26
-
27
- export interface Member {
28
- name: string;
29
- systemPrompt: string;
30
- tools: any[];
31
- llmConfig: LLMConfig;
32
- }
33
-
34
- interface LLMConfig {
35
- provider: Providers;
36
- [key: string]: any;
37
- }
38
-
39
- const llmProviders: Record<Providers, any> = {
40
- [Providers.OPENAI]: ChatOpenAI,
41
- [Providers.VERTEXAI]: ChatVertexAI,
42
- [Providers.BEDROCK_LEGACY]: BedrockChat,
43
- [Providers.MISTRALAI]: ChatMistralAI,
44
- [Providers.BEDROCK]: ChatBedrockConverse,
45
- [Providers.ANTHROPIC]: ChatAnthropic,
46
- };
47
-
48
- export class CollaborativeProcessor {
49
- private graph: Runnable | null = null;
50
- private handlerRegistry: HandlerRegistry;
51
- private members: Member[];
52
-
53
- constructor(members: Member[], customHandlers?: Record<string, any>) {
54
- this.members = members;
55
- this.handlerRegistry = new HandlerRegistry();
56
- if (customHandlers) {
57
- for (const [eventType, handler] of Object.entries(customHandlers)) {
58
- this.handlerRegistry.register(eventType, handler);
59
- }
60
- }
61
- }
62
-
63
- async initialize(): Promise<void> {
64
- this.graph = await this.createGraph();
65
- }
66
-
67
- private async createGraph(): Promise<Runnable> {
68
- const agentStateChannels: StateGraphArgs['channels'] = {
69
- messages: {
70
- value: (x?: BaseMessage[], y?: BaseMessage[]) => (x ?? []).concat(y ?? []),
71
- default: () => [],
72
- },
73
- next: {
74
- value: (x?: string | string[], y?: string | string[]) => y ?? x ?? END,
75
- default: () => END,
76
- },
77
- parallelResults: {
78
- value: (x?: { [key: string]: string }, y?: { [key: string]: string }) => ({ ...x, ...y }),
79
- default: () => ({}),
80
- },
81
- };
82
-
83
- async function createAgent(
84
- llmConfig: LLMConfig,
85
- tools: any[],
86
- systemPrompt: string
87
- ): Promise<AgentExecutor> {
88
- const { provider, ...clientOptions } = llmConfig;
89
- const LLMClass = llmProviders[provider];
90
- if (!LLMClass) {
91
- throw new Error(`Unsupported LLM provider: ${provider}`);
92
- }
93
- const llm = new LLMClass(clientOptions);
94
-
95
- const prompt = await ChatPromptTemplate.fromMessages([
96
- ['system', systemPrompt],
97
- new MessagesPlaceholder('messages'),
98
- new MessagesPlaceholder('agent_scratchpad'),
99
- ]);
100
- const agent = await createOpenAIToolsAgent({ llm, tools, prompt });
101
- return new AgentExecutor({ agent, tools });
102
- }
103
-
104
- const memberNames = this.members.map(member => member.name);
105
-
106
- const systemPrompt =
107
- 'You are a supervisor tasked with managing a conversation between the' +
108
- ' following workers: {members}. Given the following user request,' +
109
- ' respond with the worker(s) to act next. You can choose multiple workers' +
110
- ' to act in parallel if appropriate. Each worker will perform a' +
111
- ' task and respond with their results and status. When finished,' +
112
- ' respond with FINISH.';
113
- const options = [END, ...memberNames];
114
-
115
- const functionDef = {
116
- name: 'route',
117
- description: 'Select the next role(s).',
118
- parameters: {
119
- title: 'routeSchema',
120
- type: 'object',
121
- properties: {
122
- next: {
123
- title: 'Next',
124
- type: 'array',
125
- items: {
126
- type: 'string',
127
- enum: options,
128
- },
129
- minItems: 1,
130
- },
131
- },
132
- required: ['next'],
133
- },
134
- };
135
-
136
- const toolDef = {
137
- type: 'function',
138
- function: functionDef,
139
- } as const;
140
-
141
- const prompt = ChatPromptTemplate.fromMessages([
142
- ['system', systemPrompt],
143
- new MessagesPlaceholder('messages'),
144
- [
145
- 'system',
146
- 'Given the conversation above, who should act next?' +
147
- ' You can choose multiple workers to act in parallel if appropriate.' +
148
- ' Or should we FINISH? Select from: {options}',
149
- ],
150
- ]);
151
-
152
- const formattedPrompt = await prompt.partial({
153
- options: options.join(', '),
154
- members: memberNames.join(', '),
155
- });
156
-
157
- const llm = new ChatOpenAI({
158
- modelName: 'gpt-4',
159
- temperature: 0,
160
- });
161
-
162
- const supervisorChain = formattedPrompt
163
- .pipe(llm.bindTools(
164
- [toolDef],
165
- {
166
- tool_choice: { 'type': 'function', 'function': { 'name': 'route' } },
167
- },
168
- ))
169
- .pipe(new JsonOutputToolsParser())
170
- .pipe((x) => x[0].args);
171
-
172
- const workflow = new StateGraph({
173
- channels: agentStateChannels,
174
- });
175
-
176
- // Dynamically create agents and add nodes for each member
177
- for (const member of this.members) {
178
- const agent = await createAgent(member.llmConfig, member.tools, member.systemPrompt);
179
- const node = async (
180
- state: AgentStateChannels,
181
- config?: RunnableConfig,
182
- ) => {
183
- const result = await agent.invoke(state, config);
184
- return {
185
- messages: [
186
- new AIMessage({ content: result.output, name: member.name }),
187
- ],
188
- parallelResults: { [member.name]: result.output },
189
- };
190
- };
191
- workflow.addNode(member.name, node);
192
- }
193
-
194
- // Add aggregator node
195
- workflow.addNode('aggregator', async (state: AgentStateChannels) => {
196
- const aggregatedContent = Object.entries(state.parallelResults)
197
- .map(([name, result]) => `${name}: ${result}`)
198
- .join('\n\n');
199
- return {
200
- messages: [new AIMessage({ content: aggregatedContent, name: 'Aggregator' })],
201
- parallelResults: {}, // Clear parallel results after aggregation
202
- };
203
- });
204
-
205
- workflow.addNode('supervisor', async (state: AgentStateChannels) => {
206
- const result = await supervisorChain.invoke(state);
207
- return {
208
- next: result.next,
209
- };
210
- });
211
-
212
- // Add conditional edges for parallel execution
213
- workflow.addConditionalEdges(
214
- 'supervisor',
215
- (x: AgentStateChannels) => {
216
- if (x.next === END) {
217
- return [END];
218
- }
219
- return Array.isArray(x.next) ? x.next : [x.next];
220
- },
221
- {
222
- ...Object.fromEntries(this.members.map(m => [m.name, m.name])),
223
- [END]: END,
224
- }
225
- );
226
-
227
- // Add edges from all agent nodes to the aggregator
228
- this.members.forEach(member => {
229
- workflow.addEdge(member.name, 'aggregator');
230
- });
231
-
232
- // Add edge from aggregator to supervisor
233
- workflow.addEdge('aggregator', 'supervisor');
234
-
235
- workflow.addEdge(START, 'supervisor');
236
-
237
- return workflow.compile();
238
- }
239
-
240
- async processStream(
241
- inputs: { messages: BaseMessage[] },
242
- config: Partial<RunnableConfig> & { version: 'v1' | 'v2' },
243
- ) {
244
- if (!this.graph) {
245
- throw new Error('CollaborativeProcessor not initialized. Call initialize() first.');
246
- }
247
- const stream = this.graph.streamEvents(inputs, config);
248
- for await (const event of stream) {
249
- const handler = this.handlerRegistry.getHandler(event.event);
250
- if (handler) {
251
- handler.handle(event.event, event.data);
252
- }
253
- }
254
- }
255
- }
@@ -1,220 +0,0 @@
1
- // src/collab_design_v4.ts
2
- import 'dotenv/config';
3
- import { BaseMessage, HumanMessage } from '@langchain/core/messages';
4
- import { END, StateGraphArgs, START, StateGraph } from '@langchain/langgraph';
5
- import { AgentExecutor, createOpenAIToolsAgent } from 'langchain/agents';
6
- import {
7
- ChatPromptTemplate,
8
- MessagesPlaceholder,
9
- } from '@langchain/core/prompts';
10
- import { Runnable, RunnableConfig } from '@langchain/core/runnables';
11
- import { JsonOutputToolsParser } from 'langchain/output_parsers';
12
- import { HandlerRegistry } from '@/events';
13
- import { ChatOpenAI } from '@langchain/openai';
14
- import { ChatBedrockConverse } from '@langchain/aws';
15
- import { ChatAnthropic } from '@langchain/anthropic';
16
- import { ChatMistralAI } from '@langchain/mistralai';
17
- import { ChatVertexAI } from '@langchain/google-vertexai';
18
- import { BedrockChat } from '@langchain/community/chat_models/bedrock/web';
19
- import { supervisorPrompt } from '@/prompts/collab';
20
- import { Providers } from '@/common';
21
-
22
- interface AgentStateChannels {
23
- messages: BaseMessage[];
24
- next: string;
25
- }
26
-
27
- export interface Member {
28
- name: string;
29
- systemPrompt: string;
30
- tools: any[];
31
- llmConfig: LLMConfig;
32
- }
33
-
34
- interface LLMConfig {
35
- provider: Providers;
36
- [key: string]: any;
37
- }
38
-
39
- interface SupervisorConfig {
40
- systemPrompt?: string;
41
- llmConfig: LLMConfig;
42
- }
43
-
44
- const llmProviders: Record<Providers, any> = {
45
- [Providers.OPENAI]: ChatOpenAI,
46
- [Providers.VERTEXAI]: ChatVertexAI,
47
- [Providers.BEDROCK_LEGACY]: BedrockChat,
48
- [Providers.MISTRALAI]: ChatMistralAI,
49
- [Providers.BEDROCK]: ChatBedrockConverse,
50
- [Providers.ANTHROPIC]: ChatAnthropic,
51
- };
52
-
53
- export class CollaborativeProcessor {
54
- private graph: Runnable | null = null;
55
- private handlerRegistry: HandlerRegistry;
56
- private members: Member[];
57
- private supervisorConfig: SupervisorConfig;
58
-
59
- constructor(
60
- members: Member[],
61
- supervisorConfig: SupervisorConfig,
62
- customHandlers?: Record<string, any>
63
- ) {
64
- this.members = members;
65
- this.supervisorConfig = supervisorConfig;
66
- this.handlerRegistry = new HandlerRegistry();
67
- if (customHandlers) {
68
- for (const [eventType, handler] of Object.entries(customHandlers)) {
69
- this.handlerRegistry.register(eventType, handler);
70
- }
71
- }
72
- }
73
-
74
- async initialize(): Promise<void> {
75
- this.graph = await this.createGraph();
76
- }
77
-
78
- private async createGraph(): Promise<Runnable> {
79
- const agentStateChannels: StateGraphArgs['channels'] = {
80
- messages: {
81
- value: (x?: BaseMessage[], y?: BaseMessage[]) => (x ?? []).concat(y ?? []),
82
- default: () => [],
83
- },
84
- next: {
85
- value: (x?: string, y?: string) => y ?? x ?? END,
86
- default: () => END,
87
- },
88
- };
89
-
90
- async function createAgent(
91
- llmConfig: LLMConfig,
92
- tools: any[],
93
- systemPrompt: string
94
- ): Promise<AgentExecutor> {
95
- const { provider, ...clientOptions } = llmConfig;
96
- const LLMClass = llmProviders[provider];
97
- if (!LLMClass) {
98
- throw new Error(`Unsupported LLM provider: ${provider}`);
99
- }
100
- const llm = new LLMClass(clientOptions);
101
-
102
- const prompt = await ChatPromptTemplate.fromMessages([
103
- ['system', systemPrompt],
104
- new MessagesPlaceholder('messages'),
105
- new MessagesPlaceholder('agent_scratchpad'),
106
- ]);
107
- const agent = await createOpenAIToolsAgent({ llm, tools, prompt });
108
- return new AgentExecutor({ agent, tools });
109
- }
110
-
111
- const memberNames = this.members.map(member => member.name);
112
-
113
- const systemPrompt = this.supervisorConfig.systemPrompt || supervisorPrompt;
114
- const options = [END, ...memberNames];
115
-
116
- const functionDef = {
117
- name: 'route',
118
- description: 'Select the next role.',
119
- parameters: {
120
- title: 'routeSchema',
121
- type: 'object',
122
- properties: {
123
- next: {
124
- title: 'Next',
125
- anyOf: [
126
- { enum: options },
127
- ],
128
- },
129
- },
130
- required: ['next'],
131
- },
132
- };
133
-
134
- const toolDef = {
135
- type: 'function',
136
- function: functionDef,
137
- } as const;
138
-
139
- const prompt = ChatPromptTemplate.fromMessages([
140
- ['system', systemPrompt],
141
- new MessagesPlaceholder('messages'),
142
- [
143
- 'system',
144
- 'Given the conversation above, who should act next?' +
145
- ' Or should we FINISH? Select one of: {options}',
146
- ],
147
- ]);
148
-
149
- const formattedPrompt = await prompt.partial({
150
- options: options.join(', '),
151
- members: memberNames.join(', '),
152
- });
153
-
154
- const { provider, ...clientOptions } = this.supervisorConfig.llmConfig;
155
- const LLMClass = llmProviders[provider];
156
- if (!LLMClass) {
157
- throw new Error(`Unsupported LLM provider for supervisor: ${provider}`);
158
- }
159
- const llm = new LLMClass(clientOptions);
160
-
161
- const supervisorChain = formattedPrompt
162
- .pipe(llm.bindTools(
163
- [toolDef],
164
- {
165
- tool_choice: { 'type': 'function', 'function': { 'name': 'route' } },
166
- },
167
- ))
168
- .pipe(new JsonOutputToolsParser())
169
- .pipe((x) => (x[0].args));
170
-
171
- const workflow = new StateGraph({
172
- channels: agentStateChannels,
173
- });
174
-
175
- // Dynamically create agents and add nodes for each member
176
- for (const member of this.members) {
177
- const agent = await createAgent(member.llmConfig, member.tools, member.systemPrompt);
178
- const node = async (
179
- state: AgentStateChannels,
180
- config?: RunnableConfig,
181
- ) => {
182
- const result = await agent.invoke(state, config);
183
- return {
184
- messages: [
185
- new HumanMessage({ content: result.output, name: member.name }),
186
- ],
187
- };
188
- };
189
- workflow.addNode(member.name, node);
190
- workflow.addEdge(member.name, 'supervisor');
191
- }
192
-
193
- workflow.addNode('supervisor', supervisorChain);
194
-
195
- workflow.addConditionalEdges(
196
- 'supervisor',
197
- (x: AgentStateChannels) => x.next,
198
- );
199
-
200
- workflow.addEdge(START, 'supervisor');
201
-
202
- return workflow.compile();
203
- }
204
-
205
- async processStream(
206
- inputs: { messages: BaseMessage[] },
207
- config: Partial<RunnableConfig> & { version: 'v1' | 'v2' },
208
- ) {
209
- if (!this.graph) {
210
- throw new Error('CollaborativeProcessor not initialized. Call initialize() first.');
211
- }
212
- const stream = this.graph.streamEvents(inputs, config);
213
- for await (const event of stream) {
214
- const handler = this.handlerRegistry.getHandler(event.event);
215
- if (handler) {
216
- handler.handle(event.event, event.data);
217
- }
218
- }
219
- }
220
- }