@js-draw/math 1.16.0 → 1.17.0
Sign up to get free protection for your applications and to get access to all the features.
- package/dist/cjs/Vec3.d.ts +21 -0
- package/dist/cjs/Vec3.js +28 -0
- package/dist/cjs/lib.d.ts +1 -1
- package/dist/cjs/shapes/Abstract2DShape.d.ts +3 -0
- package/dist/cjs/shapes/BezierJSWrapper.d.ts +15 -5
- package/dist/cjs/shapes/BezierJSWrapper.js +135 -18
- package/dist/cjs/shapes/LineSegment2.d.ts +34 -5
- package/dist/cjs/shapes/LineSegment2.js +63 -10
- package/dist/cjs/shapes/Parameterized2DShape.d.ts +31 -0
- package/dist/cjs/shapes/Parameterized2DShape.js +15 -0
- package/dist/cjs/shapes/Path.d.ts +40 -6
- package/dist/cjs/shapes/Path.js +173 -15
- package/dist/cjs/shapes/PointShape2D.d.ts +14 -3
- package/dist/cjs/shapes/PointShape2D.js +28 -5
- package/dist/cjs/shapes/QuadraticBezier.d.ts +4 -0
- package/dist/cjs/shapes/QuadraticBezier.js +19 -4
- package/dist/cjs/shapes/Rect2.d.ts +3 -0
- package/dist/cjs/shapes/Rect2.js +4 -1
- package/dist/mjs/Vec3.d.ts +21 -0
- package/dist/mjs/Vec3.mjs +28 -0
- package/dist/mjs/lib.d.ts +1 -1
- package/dist/mjs/shapes/Abstract2DShape.d.ts +3 -0
- package/dist/mjs/shapes/BezierJSWrapper.d.ts +15 -5
- package/dist/mjs/shapes/BezierJSWrapper.mjs +133 -18
- package/dist/mjs/shapes/LineSegment2.d.ts +34 -5
- package/dist/mjs/shapes/LineSegment2.mjs +63 -10
- package/dist/mjs/shapes/Parameterized2DShape.d.ts +31 -0
- package/dist/mjs/shapes/Parameterized2DShape.mjs +8 -0
- package/dist/mjs/shapes/Path.d.ts +40 -6
- package/dist/mjs/shapes/Path.mjs +173 -15
- package/dist/mjs/shapes/PointShape2D.d.ts +14 -3
- package/dist/mjs/shapes/PointShape2D.mjs +28 -5
- package/dist/mjs/shapes/QuadraticBezier.d.ts +4 -0
- package/dist/mjs/shapes/QuadraticBezier.mjs +19 -4
- package/dist/mjs/shapes/Rect2.d.ts +3 -0
- package/dist/mjs/shapes/Rect2.mjs +4 -1
- package/package.json +5 -5
- package/src/Vec3.test.ts +26 -7
- package/src/Vec3.ts +30 -0
- package/src/lib.ts +2 -0
- package/src/shapes/Abstract2DShape.ts +3 -0
- package/src/shapes/BezierJSWrapper.ts +154 -14
- package/src/shapes/LineSegment2.test.ts +35 -1
- package/src/shapes/LineSegment2.ts +79 -11
- package/src/shapes/Parameterized2DShape.ts +39 -0
- package/src/shapes/Path.test.ts +63 -3
- package/src/shapes/Path.ts +209 -25
- package/src/shapes/PointShape2D.ts +33 -6
- package/src/shapes/QuadraticBezier.test.ts +48 -12
- package/src/shapes/QuadraticBezier.ts +23 -5
- package/src/shapes/Rect2.ts +4 -1
@@ -1,8 +1,8 @@
|
|
1
1
|
import { Bezier } from 'bezier-js';
|
2
2
|
import { Point2, Vec2 } from '../Vec2';
|
3
|
-
import Abstract2DShape from './Abstract2DShape';
|
4
3
|
import LineSegment2 from './LineSegment2';
|
5
4
|
import Rect2 from './Rect2';
|
5
|
+
import Parameterized2DShape from './Parameterized2DShape';
|
6
6
|
|
7
7
|
/**
|
8
8
|
* A lazy-initializing wrapper around Bezier-js.
|
@@ -10,14 +10,24 @@ import Rect2 from './Rect2';
|
|
10
10
|
* Subclasses may override `at`, `derivativeAt`, and `normal` with functions
|
11
11
|
* that do not initialize a `bezier-js` `Bezier`.
|
12
12
|
*
|
13
|
-
* Do not use this class directly
|
13
|
+
* **Do not use this class directly.** It may be removed/replaced in a future release.
|
14
14
|
* @internal
|
15
15
|
*/
|
16
|
-
abstract class BezierJSWrapper extends
|
16
|
+
export abstract class BezierJSWrapper extends Parameterized2DShape {
|
17
17
|
#bezierJs: Bezier|null = null;
|
18
18
|
|
19
|
+
protected constructor(
|
20
|
+
bezierJsBezier?: Bezier
|
21
|
+
) {
|
22
|
+
super();
|
23
|
+
|
24
|
+
if (bezierJsBezier) {
|
25
|
+
this.#bezierJs = bezierJsBezier;
|
26
|
+
}
|
27
|
+
}
|
28
|
+
|
19
29
|
/** Returns the start, control points, and end point of this Bézier. */
|
20
|
-
public abstract getPoints(): Point2[];
|
30
|
+
public abstract getPoints(): readonly Point2[];
|
21
31
|
|
22
32
|
protected getBezier() {
|
23
33
|
if (!this.#bezierJs) {
|
@@ -28,7 +38,7 @@ abstract class BezierJSWrapper extends Abstract2DShape {
|
|
28
38
|
|
29
39
|
public override signedDistance(point: Point2): number {
|
30
40
|
// .d: Distance
|
31
|
-
return this.
|
41
|
+
return this.nearestPointTo(point).point.distanceTo(point);
|
32
42
|
}
|
33
43
|
|
34
44
|
/**
|
@@ -44,7 +54,7 @@ abstract class BezierJSWrapper extends Abstract2DShape {
|
|
44
54
|
/**
|
45
55
|
* @returns the curve evaluated at `t`.
|
46
56
|
*/
|
47
|
-
public at(t: number): Point2 {
|
57
|
+
public override at(t: number): Point2 {
|
48
58
|
return Vec2.ofXY(this.getBezier().get(t));
|
49
59
|
}
|
50
60
|
|
@@ -52,10 +62,22 @@ abstract class BezierJSWrapper extends Abstract2DShape {
|
|
52
62
|
return Vec2.ofXY(this.getBezier().derivative(t));
|
53
63
|
}
|
54
64
|
|
65
|
+
public secondDerivativeAt(t: number): Point2 {
|
66
|
+
return Vec2.ofXY((this.getBezier() as any).dderivative(t));
|
67
|
+
}
|
68
|
+
|
55
69
|
public normal(t: number): Vec2 {
|
56
70
|
return Vec2.ofXY(this.getBezier().normal(t));
|
57
71
|
}
|
58
72
|
|
73
|
+
public override normalAt(t: number): Vec2 {
|
74
|
+
return this.normal(t);
|
75
|
+
}
|
76
|
+
|
77
|
+
public override tangentAt(t: number): Vec2 {
|
78
|
+
return this.derivativeAt(t).normalized();
|
79
|
+
}
|
80
|
+
|
59
81
|
public override getTightBoundingBox(): Rect2 {
|
60
82
|
const bbox = this.getBezier().bbox();
|
61
83
|
const width = bbox.x.max - bbox.x.min;
|
@@ -64,10 +86,10 @@ abstract class BezierJSWrapper extends Abstract2DShape {
|
|
64
86
|
return new Rect2(bbox.x.min, bbox.y.min, width, height);
|
65
87
|
}
|
66
88
|
|
67
|
-
public override
|
89
|
+
public override argIntersectsLineSegment(line: LineSegment2): number[] {
|
68
90
|
const bezier = this.getBezier();
|
69
91
|
|
70
|
-
|
92
|
+
return bezier.intersects(line).map(t => {
|
71
93
|
// We're using the .intersects(line) function, which is documented
|
72
94
|
// to always return numbers. However, to satisfy the type checker (and
|
73
95
|
// possibly improperly-defined types),
|
@@ -75,18 +97,136 @@ abstract class BezierJSWrapper extends Abstract2DShape {
|
|
75
97
|
t = parseFloat(t);
|
76
98
|
}
|
77
99
|
|
78
|
-
const point = Vec2.ofXY(
|
100
|
+
const point = Vec2.ofXY(this.at(t));
|
79
101
|
|
80
102
|
// Ensure that the intersection is on the line segment
|
81
|
-
if (point.
|
82
|
-
|| point.
|
103
|
+
if (point.distanceTo(line.p1) > line.length
|
104
|
+
|| point.distanceTo(line.p2) > line.length) {
|
83
105
|
return null;
|
84
106
|
}
|
85
107
|
|
86
|
-
return
|
87
|
-
}).filter(entry => entry !== null) as
|
108
|
+
return t;
|
109
|
+
}).filter(entry => entry !== null) as number[];
|
110
|
+
}
|
111
|
+
|
112
|
+
public override splitAt(t: number): [BezierJSWrapper] | [BezierJSWrapper, BezierJSWrapper] {
|
113
|
+
if (t <= 0 || t >= 1) {
|
114
|
+
return [ this ];
|
115
|
+
}
|
116
|
+
|
117
|
+
const bezier = this.getBezier();
|
118
|
+
const split = bezier.split(t);
|
119
|
+
return [
|
120
|
+
new BezierJSWrapperImpl(split.left.points.map(point => Vec2.ofXY(point)), split.left),
|
121
|
+
new BezierJSWrapperImpl(split.right.points.map(point => Vec2.ofXY(point)), split.right),
|
122
|
+
];
|
123
|
+
}
|
124
|
+
|
125
|
+
public override nearestPointTo(point: Point2) {
|
126
|
+
// One implementation could be similar to this:
|
127
|
+
// const projection = this.getBezier().project(point);
|
128
|
+
// return {
|
129
|
+
// point: Vec2.ofXY(projection),
|
130
|
+
// parameterValue: projection.t!,
|
131
|
+
// };
|
132
|
+
// However, Bezier-js is rather impercise (and relies on a lookup table).
|
133
|
+
// Thus, we instead use Newton's Method:
|
134
|
+
|
135
|
+
// We want to find t such that f(t) = |B(t) - p|² is minimized.
|
136
|
+
// Expanding,
|
137
|
+
// f(t) = (Bₓ(t) - pₓ)² + (Bᵧ(t) - pᵧ)²
|
138
|
+
// ⇒ f'(t) = Dₜ(Bₓ(t) - pₓ)² + Dₜ(Bᵧ(t) - pᵧ)²
|
139
|
+
// ⇒ f'(t) = 2(Bₓ(t) - pₓ)(Bₓ'(t)) + 2(Bᵧ(t) - pᵧ)(Bᵧ'(t))
|
140
|
+
// = 2Bₓ(t)Bₓ'(t) - 2pₓBₓ'(t) + 2Bᵧ(t)Bᵧ'(t) - 2pᵧBᵧ'(t)
|
141
|
+
// ⇒ f''(t)= 2Bₓ'(t)Bₓ'(t) + 2Bₓ(t)Bₓ''(t) - 2pₓBₓ''(t) + 2Bᵧ'(t)Bᵧ'(t)
|
142
|
+
// + 2Bᵧ(t)Bᵧ''(t) - 2pᵧBᵧ''(t)
|
143
|
+
// Because f'(t) = 0 at relative extrema, we can use Newton's Method
|
144
|
+
// to improve on an initial guess.
|
145
|
+
|
146
|
+
const sqrDistAt = (t: number) => point.squareDistanceTo(this.at(t));
|
147
|
+
const yIntercept = sqrDistAt(0);
|
148
|
+
let t = 0;
|
149
|
+
let minSqrDist = yIntercept;
|
150
|
+
|
151
|
+
// Start by testing a few points:
|
152
|
+
const pointsToTest = 4;
|
153
|
+
for (let i = 0; i < pointsToTest; i ++) {
|
154
|
+
const testT = i / (pointsToTest - 1);
|
155
|
+
const testMinSqrDist = sqrDistAt(testT);
|
156
|
+
|
157
|
+
if (testMinSqrDist < minSqrDist) {
|
158
|
+
t = testT;
|
159
|
+
minSqrDist = testMinSqrDist;
|
160
|
+
}
|
161
|
+
}
|
162
|
+
|
163
|
+
// To use Newton's Method, we need to evaluate the second derivative of the distance
|
164
|
+
// function:
|
165
|
+
const secondDerivativeAt = (t: number) => {
|
166
|
+
// f''(t) = 2Bₓ'(t)Bₓ'(t) + 2Bₓ(t)Bₓ''(t) - 2pₓBₓ''(t)
|
167
|
+
// + 2Bᵧ'(t)Bᵧ'(t) + 2Bᵧ(t)Bᵧ''(t) - 2pᵧBᵧ''(t)
|
168
|
+
const b = this.at(t);
|
169
|
+
const bPrime = this.derivativeAt(t);
|
170
|
+
const bPrimePrime = this.secondDerivativeAt(t);
|
171
|
+
return (
|
172
|
+
2 * bPrime.x * bPrime.x + 2 * b.x * bPrimePrime.x - 2 * point.x * bPrimePrime.x
|
173
|
+
+ 2 * bPrime.y * bPrime.y + 2 * b.y * bPrimePrime.y - 2 * point.y * bPrimePrime.y
|
174
|
+
);
|
175
|
+
};
|
176
|
+
// Because we're zeroing f'(t), we also need to be able to compute it:
|
177
|
+
const derivativeAt = (t: number) => {
|
178
|
+
// f'(t) = 2Bₓ(t)Bₓ'(t) - 2pₓBₓ'(t) + 2Bᵧ(t)Bᵧ'(t) - 2pᵧBᵧ'(t)
|
179
|
+
const b = this.at(t);
|
180
|
+
const bPrime = this.derivativeAt(t);
|
181
|
+
return (
|
182
|
+
2 * b.x * bPrime.x - 2 * point.x * bPrime.x
|
183
|
+
+ 2 * b.y * bPrime.y - 2 * point.y * bPrime.y
|
184
|
+
);
|
185
|
+
};
|
186
|
+
|
187
|
+
const iterate = () => {
|
188
|
+
const slope = secondDerivativeAt(t);
|
189
|
+
// We intersect a line through the point on f'(t) at t with the x-axis:
|
190
|
+
// y = m(x - x₀) + y₀
|
191
|
+
// ⇒ x - x₀ = (y - y₀) / m
|
192
|
+
// ⇒ x = (y - y₀) / m + x₀
|
193
|
+
//
|
194
|
+
// Thus, when zeroed,
|
195
|
+
// tN = (0 - f'(t)) / m + t
|
196
|
+
const newT = (0 - derivativeAt(t)) / slope + t;
|
197
|
+
//const distDiff = sqrDistAt(newT) - sqrDistAt(t);
|
198
|
+
//console.assert(distDiff <= 0, `${-distDiff} >= 0`);
|
199
|
+
t = newT;
|
200
|
+
if (t > 1) {
|
201
|
+
t = 1;
|
202
|
+
} else if (t < 0) {
|
203
|
+
t = 0;
|
204
|
+
}
|
205
|
+
};
|
206
|
+
|
207
|
+
for (let i = 0; i < 12; i++) {
|
208
|
+
iterate();
|
209
|
+
}
|
210
|
+
|
211
|
+
return { parameterValue: t, point: this.at(t) };
|
212
|
+
}
|
213
|
+
|
214
|
+
public override toString() {
|
215
|
+
return `Bézier(${this.getPoints().map(point => point.toString()).join(', ')})`;
|
216
|
+
}
|
217
|
+
}
|
218
|
+
|
219
|
+
/**
|
220
|
+
* Private concrete implementation of `BezierJSWrapper`, used by methods above that need to return a wrapper
|
221
|
+
* around a `Bezier`.
|
222
|
+
*/
|
223
|
+
class BezierJSWrapperImpl extends BezierJSWrapper {
|
224
|
+
public constructor(private controlPoints: readonly Point2[], curve?: Bezier) {
|
225
|
+
super(curve);
|
226
|
+
}
|
88
227
|
|
89
|
-
|
228
|
+
public override getPoints() {
|
229
|
+
return this.controlPoints;
|
90
230
|
}
|
91
231
|
}
|
92
232
|
|
@@ -28,7 +28,7 @@ describe('Line2', () => {
|
|
28
28
|
|
29
29
|
expect(line1.intersection(line2)?.point).objEq(Vec2.of(0, 10));
|
30
30
|
|
31
|
-
// t=10 implies 10 units along
|
31
|
+
// t=10 implies 10 units along the line from (10, 10) to (-10, 10)
|
32
32
|
expect(line1.intersection(line2)?.t).toBe(10);
|
33
33
|
|
34
34
|
// Similarly, t = 12 implies 12 units above (0, -2) in the direction of (0, 200)
|
@@ -96,4 +96,38 @@ describe('Line2', () => {
|
|
96
96
|
p2: Vec2.of(3, 98),
|
97
97
|
});
|
98
98
|
});
|
99
|
+
|
100
|
+
it.each([
|
101
|
+
{ from: Vec2.of(0, 0), to: Vec2.of(2, 2) },
|
102
|
+
{ from: Vec2.of(100, 0), to: Vec2.of(2, 2) },
|
103
|
+
])('should be able to split a line segment between %j', ({ from, to }) => {
|
104
|
+
const midpoint = from.lerp(to, 0.5);
|
105
|
+
const lineSegment = new LineSegment2(from, to);
|
106
|
+
|
107
|
+
// Halving
|
108
|
+
//
|
109
|
+
expect(lineSegment.at(0.5)).objEq(midpoint);
|
110
|
+
const [ firstHalf, secondHalf ] = lineSegment.splitAt(0.5);
|
111
|
+
|
112
|
+
if (!secondHalf) {
|
113
|
+
throw new Error('Splitting a line segment in half should yield two line segments.');
|
114
|
+
}
|
115
|
+
|
116
|
+
expect(firstHalf.p2).objEq(midpoint);
|
117
|
+
expect(firstHalf.p1).objEq(from);
|
118
|
+
expect(secondHalf.p2).objEq(to);
|
119
|
+
expect(secondHalf.p1).objEq(midpoint);
|
120
|
+
|
121
|
+
// Before start/end
|
122
|
+
expect(lineSegment.splitAt(0)[0]).objEq(lineSegment);
|
123
|
+
expect(lineSegment.splitAt(0)).toHaveLength(1);
|
124
|
+
expect(lineSegment.splitAt(1)).toHaveLength(1);
|
125
|
+
expect(lineSegment.splitAt(2)).toHaveLength(1);
|
126
|
+
});
|
127
|
+
|
128
|
+
it('equivalence check should allow ignoring direction', () => {
|
129
|
+
expect(new LineSegment2(Vec2.zero, Vec2.unitX)).objEq(new LineSegment2(Vec2.zero, Vec2.unitX));
|
130
|
+
expect(new LineSegment2(Vec2.zero, Vec2.unitX)).objEq(new LineSegment2(Vec2.unitX, Vec2.zero));
|
131
|
+
expect(new LineSegment2(Vec2.zero, Vec2.unitX)).not.objEq(new LineSegment2(Vec2.unitX, Vec2.zero), { ignoreDirection: false });
|
132
|
+
});
|
99
133
|
});
|
@@ -1,7 +1,8 @@
|
|
1
1
|
import Mat33 from '../Mat33';
|
2
2
|
import Rect2 from './Rect2';
|
3
3
|
import { Vec2, Point2 } from '../Vec2';
|
4
|
-
import
|
4
|
+
import Parameterized2DShape from './Parameterized2DShape';
|
5
|
+
import Vec3 from '../Vec3';
|
5
6
|
|
6
7
|
interface IntersectionResult {
|
7
8
|
point: Point2;
|
@@ -9,7 +10,7 @@ interface IntersectionResult {
|
|
9
10
|
}
|
10
11
|
|
11
12
|
/** Represents a line segment. A `LineSegment2` is immutable. */
|
12
|
-
export class LineSegment2 extends
|
13
|
+
export class LineSegment2 extends Parameterized2DShape {
|
13
14
|
// invariant: ||direction|| = 1
|
14
15
|
|
15
16
|
/**
|
@@ -58,8 +59,12 @@ export class LineSegment2 extends Abstract2DShape {
|
|
58
59
|
return this.point2;
|
59
60
|
}
|
60
61
|
|
62
|
+
public get center(): Point2 {
|
63
|
+
return this.point1.lerp(this.point2, 0.5);
|
64
|
+
}
|
65
|
+
|
61
66
|
/**
|
62
|
-
* Gets a point a distance `t` along this line.
|
67
|
+
* Gets a point a **distance** `t` along this line.
|
63
68
|
*
|
64
69
|
* @deprecated
|
65
70
|
*/
|
@@ -74,11 +79,40 @@ export class LineSegment2 extends Abstract2DShape {
|
|
74
79
|
*
|
75
80
|
* `t` should be in `[0, 1]`.
|
76
81
|
*/
|
77
|
-
public at(t: number): Point2 {
|
82
|
+
public override at(t: number): Point2 {
|
78
83
|
return this.get(t * this.length);
|
79
84
|
}
|
80
85
|
|
86
|
+
public override normalAt(_t: number): Vec2 {
|
87
|
+
return this.direction.orthog();
|
88
|
+
}
|
89
|
+
|
90
|
+
public override tangentAt(_t: number): Vec3 {
|
91
|
+
return this.direction;
|
92
|
+
}
|
93
|
+
|
94
|
+
public splitAt(t: number): [LineSegment2]|[LineSegment2,LineSegment2] {
|
95
|
+
if (t <= 0 || t >= 1) {
|
96
|
+
return [this];
|
97
|
+
}
|
98
|
+
|
99
|
+
return [
|
100
|
+
new LineSegment2(this.point1, this.at(t)),
|
101
|
+
new LineSegment2(this.at(t), this.point2),
|
102
|
+
];
|
103
|
+
}
|
104
|
+
|
105
|
+
/**
|
106
|
+
* Returns the intersection of this with another line segment.
|
107
|
+
*
|
108
|
+
* **WARNING**: The parameter value returned by this method does not range from 0 to 1 and
|
109
|
+
* is currently a length.
|
110
|
+
* This will change in a future release.
|
111
|
+
* @deprecated
|
112
|
+
*/
|
81
113
|
public intersection(other: LineSegment2): IntersectionResult|null {
|
114
|
+
// TODO(v2.0.0): Make this return a `t` value from `0` to `1`.
|
115
|
+
|
82
116
|
// We want x₁(t) = x₂(t) and y₁(t) = y₂(t)
|
83
117
|
// Observe that
|
84
118
|
// x = this.point1.x + this.direction.x · t₁
|
@@ -146,10 +180,10 @@ export class LineSegment2 extends Abstract2DShape {
|
|
146
180
|
}
|
147
181
|
|
148
182
|
// Ensure the result is in this/the other segment.
|
149
|
-
const resultToP1 = resultPoint.
|
150
|
-
const resultToP2 = resultPoint.
|
151
|
-
const resultToP3 = resultPoint.
|
152
|
-
const resultToP4 = resultPoint.
|
183
|
+
const resultToP1 = resultPoint.distanceTo(this.point1);
|
184
|
+
const resultToP2 = resultPoint.distanceTo(this.point2);
|
185
|
+
const resultToP3 = resultPoint.distanceTo(other.point1);
|
186
|
+
const resultToP4 = resultPoint.distanceTo(other.point2);
|
153
187
|
if (resultToP1 > this.length
|
154
188
|
|| resultToP2 > this.length
|
155
189
|
|| resultToP3 > other.length
|
@@ -167,6 +201,15 @@ export class LineSegment2 extends Abstract2DShape {
|
|
167
201
|
return this.intersection(other) !== null;
|
168
202
|
}
|
169
203
|
|
204
|
+
public override argIntersectsLineSegment(lineSegment: LineSegment2) {
|
205
|
+
const intersection = this.intersection(lineSegment);
|
206
|
+
|
207
|
+
if (intersection) {
|
208
|
+
return [ intersection.t / this.length ];
|
209
|
+
}
|
210
|
+
return [];
|
211
|
+
}
|
212
|
+
|
170
213
|
/**
|
171
214
|
* Returns the points at which this line segment intersects the
|
172
215
|
* given line segment.
|
@@ -186,6 +229,10 @@ export class LineSegment2 extends Abstract2DShape {
|
|
186
229
|
|
187
230
|
// Returns the closest point on this to [target]
|
188
231
|
public closestPointTo(target: Point2) {
|
232
|
+
return this.nearestPointTo(target).point;
|
233
|
+
}
|
234
|
+
|
235
|
+
public override nearestPointTo(target: Vec3): { point: Vec3; parameterValue: number; } {
|
189
236
|
// Distance from P1 along this' direction.
|
190
237
|
const projectedDistFromP1 = target.minus(this.p1).dot(this.direction);
|
191
238
|
const projectedDistFromP2 = this.length - projectedDistFromP1;
|
@@ -193,13 +240,13 @@ export class LineSegment2 extends Abstract2DShape {
|
|
193
240
|
const projection = this.p1.plus(this.direction.times(projectedDistFromP1));
|
194
241
|
|
195
242
|
if (projectedDistFromP1 > 0 && projectedDistFromP1 < this.length) {
|
196
|
-
return projection;
|
243
|
+
return { point: projection, parameterValue: projectedDistFromP1 / this.length };
|
197
244
|
}
|
198
245
|
|
199
246
|
if (Math.abs(projectedDistFromP2) < Math.abs(projectedDistFromP1)) {
|
200
|
-
return this.p2;
|
247
|
+
return { point: this.p2, parameterValue: 1 };
|
201
248
|
} else {
|
202
|
-
return this.p1;
|
249
|
+
return { point: this.p1, parameterValue: 0 };
|
203
250
|
}
|
204
251
|
}
|
205
252
|
|
@@ -228,5 +275,26 @@ export class LineSegment2 extends Abstract2DShape {
|
|
228
275
|
public override toString() {
|
229
276
|
return `LineSegment(${this.p1.toString()}, ${this.p2.toString()})`;
|
230
277
|
}
|
278
|
+
|
279
|
+
/**
|
280
|
+
* Returns `true` iff this is equivalent to `other`.
|
281
|
+
*
|
282
|
+
* **Options**:
|
283
|
+
* - `tolerance`: The maximum difference between endpoints. (Default: 0)
|
284
|
+
* - `ignoreDirection`: Allow matching a version of `this` with opposite direction. (Default: `true`)
|
285
|
+
*/
|
286
|
+
public eq(other: LineSegment2, options?: { tolerance?: number, ignoreDirection?: boolean }) {
|
287
|
+
if (!(other instanceof LineSegment2)) {
|
288
|
+
return false;
|
289
|
+
}
|
290
|
+
|
291
|
+
const tolerance = options?.tolerance;
|
292
|
+
const ignoreDirection = options?.ignoreDirection ?? true;
|
293
|
+
|
294
|
+
return (
|
295
|
+
(other.p1.eq(this.p1, tolerance) && other.p2.eq(this.p2, tolerance))
|
296
|
+
|| (ignoreDirection && other.p1.eq(this.p2, tolerance) && other.p2.eq(this.p1, tolerance))
|
297
|
+
);
|
298
|
+
}
|
231
299
|
}
|
232
300
|
export default LineSegment2;
|
@@ -0,0 +1,39 @@
|
|
1
|
+
import { Point2, Vec2 } from '../Vec2';
|
2
|
+
import Abstract2DShape from './Abstract2DShape';
|
3
|
+
import LineSegment2 from './LineSegment2';
|
4
|
+
|
5
|
+
/** A 2-dimensional path with parameter interval $t \in [0, 1]$. */
|
6
|
+
export abstract class Parameterized2DShape extends Abstract2DShape {
|
7
|
+
/** Returns this at a given parameter. $t \in [0, 1]$ */
|
8
|
+
abstract at(t: number): Point2;
|
9
|
+
|
10
|
+
/** Computes the unit normal vector at $t$. */
|
11
|
+
abstract normalAt(t: number): Vec2;
|
12
|
+
|
13
|
+
abstract tangentAt(t: number): Vec2;
|
14
|
+
|
15
|
+
/**
|
16
|
+
* Divides this shape into two separate shapes at parameter value $t$.
|
17
|
+
*/
|
18
|
+
abstract splitAt(t: number): [ Parameterized2DShape ] | [ Parameterized2DShape, Parameterized2DShape ];
|
19
|
+
|
20
|
+
/**
|
21
|
+
* Returns the nearest point on `this` to `point` and the `parameterValue` at which
|
22
|
+
* that point occurs.
|
23
|
+
*/
|
24
|
+
abstract nearestPointTo(point: Point2): { point: Point2, parameterValue: number };
|
25
|
+
|
26
|
+
/**
|
27
|
+
* Returns the **parameter values** at which `lineSegment` intersects this shape.
|
28
|
+
*
|
29
|
+
* See also {@link intersectsLineSegment}
|
30
|
+
*/
|
31
|
+
public abstract argIntersectsLineSegment(lineSegment: LineSegment2): number[];
|
32
|
+
|
33
|
+
|
34
|
+
public override intersectsLineSegment(line: LineSegment2): Point2[] {
|
35
|
+
return this.argIntersectsLineSegment(line).map(t => this.at(t));
|
36
|
+
}
|
37
|
+
}
|
38
|
+
|
39
|
+
export default Parameterized2DShape;
|
package/src/shapes/Path.test.ts
CHANGED
@@ -60,6 +60,24 @@ describe('Path', () => {
|
|
60
60
|
);
|
61
61
|
});
|
62
62
|
|
63
|
+
it.each([
|
64
|
+
[ 'm0,0 L1,1', 'M0,0 L1,1', true ],
|
65
|
+
[ 'm0,0 L1,1', 'M1,1 L0,0', false ],
|
66
|
+
[ 'm0,0 L1,1 Q2,3 4,5', 'M1,1 L0,0', false ],
|
67
|
+
[ 'm0,0 L1,1 Q2,3 4,5', 'M1,1 L0,0 Q2,3 4,5', false ],
|
68
|
+
[ 'm0,0 L1,1 Q2,3 4,5', 'M0,0 L1,1 Q2,3 4,5', true ],
|
69
|
+
[ 'm0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9', 'M0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9', true ],
|
70
|
+
[ 'm0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9Z', 'M0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9', false ],
|
71
|
+
[ 'm0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9', 'M0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9Z', false ],
|
72
|
+
[ 'm0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9', 'M0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9.01', false ],
|
73
|
+
[ 'm0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9', 'M0,0 L1,1 Q2,3 4,5 C4,5 6,7.01 8,9', false ],
|
74
|
+
[ 'm0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9', 'M0,0 L1,1 Q2,3 4,5 C4,5.01 6,7 8,9', false ],
|
75
|
+
])('.eq should check equality', (path1Str, path2Str, shouldEqual) => {
|
76
|
+
expect(Path.fromString(path1Str)).objEq(Path.fromString(path1Str));
|
77
|
+
expect(Path.fromString(path2Str)).objEq(Path.fromString(path2Str));
|
78
|
+
expect(Path.fromString(path1Str).eq(Path.fromString(path2Str))).toBe(shouldEqual);
|
79
|
+
});
|
80
|
+
|
63
81
|
describe('intersection', () => {
|
64
82
|
it('should give all intersections for a path made up of lines', () => {
|
65
83
|
const lineStart = Vec2.of(100, 100);
|
@@ -179,7 +197,7 @@ describe('Path', () => {
|
|
179
197
|
});
|
180
198
|
});
|
181
199
|
|
182
|
-
it('should
|
200
|
+
it('should correctly report intersections for a simple Bézier curve path', () => {
|
183
201
|
const lineStart = Vec2.zero;
|
184
202
|
const path = new Path(lineStart, [
|
185
203
|
{
|
@@ -196,13 +214,36 @@ describe('Path', () => {
|
|
196
214
|
let intersections = path.intersection(
|
197
215
|
new LineSegment2(Vec2.of(-1, 0.5), Vec2.of(2, 0.5)), strokeWidth,
|
198
216
|
);
|
199
|
-
expect(intersections
|
217
|
+
expect(intersections).toHaveLength(0);
|
200
218
|
|
201
219
|
// Should be an intersection when exiting/entering the edge of the stroke
|
202
220
|
intersections = path.intersection(
|
203
221
|
new LineSegment2(Vec2.of(0, 0.5), Vec2.of(8, 0.5)), strokeWidth,
|
204
222
|
);
|
205
|
-
expect(intersections
|
223
|
+
expect(intersections).toHaveLength(1);
|
224
|
+
});
|
225
|
+
|
226
|
+
it('should correctly report intersections near the cap of a line-like Bézier', () => {
|
227
|
+
const path = Path.fromString('M0,0Q14,0 27,0');
|
228
|
+
expect(
|
229
|
+
path.intersection(
|
230
|
+
new LineSegment2(Vec2.of(0, -100), Vec2.of(0, 100)),
|
231
|
+
10,
|
232
|
+
),
|
233
|
+
|
234
|
+
// Should have intersections, despite being at the cap of the Bézier
|
235
|
+
// curve.
|
236
|
+
).toHaveLength(2);
|
237
|
+
});
|
238
|
+
|
239
|
+
it.each([
|
240
|
+
[new LineSegment2(Vec2.of(43.5,-12.5), Vec2.of(40.5,24.5)), 0],
|
241
|
+
// TODO: The below case is failing. It seems to be a Bezier-js bug though...
|
242
|
+
// (The Bézier.js method returns an empty array).
|
243
|
+
//[new LineSegment2(Vec2.of(35.5,19.5), Vec2.of(38.5,-17.5)), 0],
|
244
|
+
])('should correctly report positive intersections with a line-like Bézier', (line, strokeRadius) => {
|
245
|
+
const bezier = Path.fromString('M0,0 Q50,0 100,0');
|
246
|
+
expect(bezier.intersection(line, strokeRadius).length).toBeGreaterThan(0);
|
206
247
|
});
|
207
248
|
});
|
208
249
|
|
@@ -306,4 +347,23 @@ describe('Path', () => {
|
|
306
347
|
expect(strokedRect.startPoint).objEq(lastSegment.point);
|
307
348
|
});
|
308
349
|
});
|
350
|
+
|
351
|
+
it.each([
|
352
|
+
[ 'm0,0 L1,1', 'M1,1 L0,0' ],
|
353
|
+
[ 'm0,0 L1,1', 'M1,1 L0,0' ],
|
354
|
+
[ 'M0,0 L1,1 Q2,2 3,3', 'M3,3 Q2,2 1,1 L0,0' ],
|
355
|
+
[ 'M0,0 L1,1 Q4,2 5,3 C12,13 10,9 8,7', 'M8,7 C 10,9 12,13 5,3 Q 4,2 1,1 L 0,0' ],
|
356
|
+
])('.reversed should reverse paths', (original, expected) => {
|
357
|
+
expect(Path.fromString(original).reversed()).objEq(Path.fromString(expected));
|
358
|
+
expect(Path.fromString(expected).reversed()).objEq(Path.fromString(original));
|
359
|
+
expect(Path.fromString(original).reversed().reversed()).objEq(Path.fromString(original));
|
360
|
+
});
|
361
|
+
|
362
|
+
it.each([
|
363
|
+
[ 'm0,0 l1,0', Vec2.of(0, 0), Vec2.of(0, 0) ],
|
364
|
+
[ 'm0,0 l1,0', Vec2.of(0.5, 0), Vec2.of(0.5, 0) ],
|
365
|
+
[ 'm0,0 Q1,0 1,2', Vec2.of(1, 0), Vec2.of(0.6236, 0.299) ],
|
366
|
+
])('.nearestPointTo should return the closest point on a path to the given parameter (case %#)', (path, point, expectedClosest) => {
|
367
|
+
expect(Path.fromString(path).nearestPointTo(point).point).objEq(expectedClosest, 0.002);
|
368
|
+
});
|
309
369
|
});
|