@js-draw/math 1.16.0 → 1.17.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (51) hide show
  1. package/dist/cjs/Vec3.d.ts +21 -0
  2. package/dist/cjs/Vec3.js +28 -0
  3. package/dist/cjs/lib.d.ts +1 -1
  4. package/dist/cjs/shapes/Abstract2DShape.d.ts +3 -0
  5. package/dist/cjs/shapes/BezierJSWrapper.d.ts +15 -5
  6. package/dist/cjs/shapes/BezierJSWrapper.js +135 -18
  7. package/dist/cjs/shapes/LineSegment2.d.ts +34 -5
  8. package/dist/cjs/shapes/LineSegment2.js +63 -10
  9. package/dist/cjs/shapes/Parameterized2DShape.d.ts +31 -0
  10. package/dist/cjs/shapes/Parameterized2DShape.js +15 -0
  11. package/dist/cjs/shapes/Path.d.ts +40 -6
  12. package/dist/cjs/shapes/Path.js +173 -15
  13. package/dist/cjs/shapes/PointShape2D.d.ts +14 -3
  14. package/dist/cjs/shapes/PointShape2D.js +28 -5
  15. package/dist/cjs/shapes/QuadraticBezier.d.ts +4 -0
  16. package/dist/cjs/shapes/QuadraticBezier.js +19 -4
  17. package/dist/cjs/shapes/Rect2.d.ts +3 -0
  18. package/dist/cjs/shapes/Rect2.js +4 -1
  19. package/dist/mjs/Vec3.d.ts +21 -0
  20. package/dist/mjs/Vec3.mjs +28 -0
  21. package/dist/mjs/lib.d.ts +1 -1
  22. package/dist/mjs/shapes/Abstract2DShape.d.ts +3 -0
  23. package/dist/mjs/shapes/BezierJSWrapper.d.ts +15 -5
  24. package/dist/mjs/shapes/BezierJSWrapper.mjs +133 -18
  25. package/dist/mjs/shapes/LineSegment2.d.ts +34 -5
  26. package/dist/mjs/shapes/LineSegment2.mjs +63 -10
  27. package/dist/mjs/shapes/Parameterized2DShape.d.ts +31 -0
  28. package/dist/mjs/shapes/Parameterized2DShape.mjs +8 -0
  29. package/dist/mjs/shapes/Path.d.ts +40 -6
  30. package/dist/mjs/shapes/Path.mjs +173 -15
  31. package/dist/mjs/shapes/PointShape2D.d.ts +14 -3
  32. package/dist/mjs/shapes/PointShape2D.mjs +28 -5
  33. package/dist/mjs/shapes/QuadraticBezier.d.ts +4 -0
  34. package/dist/mjs/shapes/QuadraticBezier.mjs +19 -4
  35. package/dist/mjs/shapes/Rect2.d.ts +3 -0
  36. package/dist/mjs/shapes/Rect2.mjs +4 -1
  37. package/package.json +5 -5
  38. package/src/Vec3.test.ts +26 -7
  39. package/src/Vec3.ts +30 -0
  40. package/src/lib.ts +2 -0
  41. package/src/shapes/Abstract2DShape.ts +3 -0
  42. package/src/shapes/BezierJSWrapper.ts +154 -14
  43. package/src/shapes/LineSegment2.test.ts +35 -1
  44. package/src/shapes/LineSegment2.ts +79 -11
  45. package/src/shapes/Parameterized2DShape.ts +39 -0
  46. package/src/shapes/Path.test.ts +63 -3
  47. package/src/shapes/Path.ts +209 -25
  48. package/src/shapes/PointShape2D.ts +33 -6
  49. package/src/shapes/QuadraticBezier.test.ts +48 -12
  50. package/src/shapes/QuadraticBezier.ts +23 -5
  51. package/src/shapes/Rect2.ts +4 -1
@@ -1,8 +1,8 @@
1
1
  import { Bezier } from 'bezier-js';
2
2
  import { Point2, Vec2 } from '../Vec2';
3
- import Abstract2DShape from './Abstract2DShape';
4
3
  import LineSegment2 from './LineSegment2';
5
4
  import Rect2 from './Rect2';
5
+ import Parameterized2DShape from './Parameterized2DShape';
6
6
 
7
7
  /**
8
8
  * A lazy-initializing wrapper around Bezier-js.
@@ -10,14 +10,24 @@ import Rect2 from './Rect2';
10
10
  * Subclasses may override `at`, `derivativeAt`, and `normal` with functions
11
11
  * that do not initialize a `bezier-js` `Bezier`.
12
12
  *
13
- * Do not use this class directly. It may be removed/replaced in a future release.
13
+ * **Do not use this class directly.** It may be removed/replaced in a future release.
14
14
  * @internal
15
15
  */
16
- abstract class BezierJSWrapper extends Abstract2DShape {
16
+ export abstract class BezierJSWrapper extends Parameterized2DShape {
17
17
  #bezierJs: Bezier|null = null;
18
18
 
19
+ protected constructor(
20
+ bezierJsBezier?: Bezier
21
+ ) {
22
+ super();
23
+
24
+ if (bezierJsBezier) {
25
+ this.#bezierJs = bezierJsBezier;
26
+ }
27
+ }
28
+
19
29
  /** Returns the start, control points, and end point of this Bézier. */
20
- public abstract getPoints(): Point2[];
30
+ public abstract getPoints(): readonly Point2[];
21
31
 
22
32
  protected getBezier() {
23
33
  if (!this.#bezierJs) {
@@ -28,7 +38,7 @@ abstract class BezierJSWrapper extends Abstract2DShape {
28
38
 
29
39
  public override signedDistance(point: Point2): number {
30
40
  // .d: Distance
31
- return this.getBezier().project(point.xy).d!;
41
+ return this.nearestPointTo(point).point.distanceTo(point);
32
42
  }
33
43
 
34
44
  /**
@@ -44,7 +54,7 @@ abstract class BezierJSWrapper extends Abstract2DShape {
44
54
  /**
45
55
  * @returns the curve evaluated at `t`.
46
56
  */
47
- public at(t: number): Point2 {
57
+ public override at(t: number): Point2 {
48
58
  return Vec2.ofXY(this.getBezier().get(t));
49
59
  }
50
60
 
@@ -52,10 +62,22 @@ abstract class BezierJSWrapper extends Abstract2DShape {
52
62
  return Vec2.ofXY(this.getBezier().derivative(t));
53
63
  }
54
64
 
65
+ public secondDerivativeAt(t: number): Point2 {
66
+ return Vec2.ofXY((this.getBezier() as any).dderivative(t));
67
+ }
68
+
55
69
  public normal(t: number): Vec2 {
56
70
  return Vec2.ofXY(this.getBezier().normal(t));
57
71
  }
58
72
 
73
+ public override normalAt(t: number): Vec2 {
74
+ return this.normal(t);
75
+ }
76
+
77
+ public override tangentAt(t: number): Vec2 {
78
+ return this.derivativeAt(t).normalized();
79
+ }
80
+
59
81
  public override getTightBoundingBox(): Rect2 {
60
82
  const bbox = this.getBezier().bbox();
61
83
  const width = bbox.x.max - bbox.x.min;
@@ -64,10 +86,10 @@ abstract class BezierJSWrapper extends Abstract2DShape {
64
86
  return new Rect2(bbox.x.min, bbox.y.min, width, height);
65
87
  }
66
88
 
67
- public override intersectsLineSegment(line: LineSegment2): Point2[] {
89
+ public override argIntersectsLineSegment(line: LineSegment2): number[] {
68
90
  const bezier = this.getBezier();
69
91
 
70
- const intersectionPoints = bezier.intersects(line).map(t => {
92
+ return bezier.intersects(line).map(t => {
71
93
  // We're using the .intersects(line) function, which is documented
72
94
  // to always return numbers. However, to satisfy the type checker (and
73
95
  // possibly improperly-defined types),
@@ -75,18 +97,136 @@ abstract class BezierJSWrapper extends Abstract2DShape {
75
97
  t = parseFloat(t);
76
98
  }
77
99
 
78
- const point = Vec2.ofXY(bezier.get(t));
100
+ const point = Vec2.ofXY(this.at(t));
79
101
 
80
102
  // Ensure that the intersection is on the line segment
81
- if (point.minus(line.p1).magnitude() > line.length
82
- || point.minus(line.p2).magnitude() > line.length) {
103
+ if (point.distanceTo(line.p1) > line.length
104
+ || point.distanceTo(line.p2) > line.length) {
83
105
  return null;
84
106
  }
85
107
 
86
- return point;
87
- }).filter(entry => entry !== null) as Point2[];
108
+ return t;
109
+ }).filter(entry => entry !== null) as number[];
110
+ }
111
+
112
+ public override splitAt(t: number): [BezierJSWrapper] | [BezierJSWrapper, BezierJSWrapper] {
113
+ if (t <= 0 || t >= 1) {
114
+ return [ this ];
115
+ }
116
+
117
+ const bezier = this.getBezier();
118
+ const split = bezier.split(t);
119
+ return [
120
+ new BezierJSWrapperImpl(split.left.points.map(point => Vec2.ofXY(point)), split.left),
121
+ new BezierJSWrapperImpl(split.right.points.map(point => Vec2.ofXY(point)), split.right),
122
+ ];
123
+ }
124
+
125
+ public override nearestPointTo(point: Point2) {
126
+ // One implementation could be similar to this:
127
+ // const projection = this.getBezier().project(point);
128
+ // return {
129
+ // point: Vec2.ofXY(projection),
130
+ // parameterValue: projection.t!,
131
+ // };
132
+ // However, Bezier-js is rather impercise (and relies on a lookup table).
133
+ // Thus, we instead use Newton's Method:
134
+
135
+ // We want to find t such that f(t) = |B(t) - p|² is minimized.
136
+ // Expanding,
137
+ // f(t) = (Bₓ(t) - pₓ)² + (Bᵧ(t) - pᵧ)²
138
+ // ⇒ f'(t) = Dₜ(Bₓ(t) - pₓ)² + Dₜ(Bᵧ(t) - pᵧ)²
139
+ // ⇒ f'(t) = 2(Bₓ(t) - pₓ)(Bₓ'(t)) + 2(Bᵧ(t) - pᵧ)(Bᵧ'(t))
140
+ // = 2Bₓ(t)Bₓ'(t) - 2pₓBₓ'(t) + 2Bᵧ(t)Bᵧ'(t) - 2pᵧBᵧ'(t)
141
+ // ⇒ f''(t)= 2Bₓ'(t)Bₓ'(t) + 2Bₓ(t)Bₓ''(t) - 2pₓBₓ''(t) + 2Bᵧ'(t)Bᵧ'(t)
142
+ // + 2Bᵧ(t)Bᵧ''(t) - 2pᵧBᵧ''(t)
143
+ // Because f'(t) = 0 at relative extrema, we can use Newton's Method
144
+ // to improve on an initial guess.
145
+
146
+ const sqrDistAt = (t: number) => point.squareDistanceTo(this.at(t));
147
+ const yIntercept = sqrDistAt(0);
148
+ let t = 0;
149
+ let minSqrDist = yIntercept;
150
+
151
+ // Start by testing a few points:
152
+ const pointsToTest = 4;
153
+ for (let i = 0; i < pointsToTest; i ++) {
154
+ const testT = i / (pointsToTest - 1);
155
+ const testMinSqrDist = sqrDistAt(testT);
156
+
157
+ if (testMinSqrDist < minSqrDist) {
158
+ t = testT;
159
+ minSqrDist = testMinSqrDist;
160
+ }
161
+ }
162
+
163
+ // To use Newton's Method, we need to evaluate the second derivative of the distance
164
+ // function:
165
+ const secondDerivativeAt = (t: number) => {
166
+ // f''(t) = 2Bₓ'(t)Bₓ'(t) + 2Bₓ(t)Bₓ''(t) - 2pₓBₓ''(t)
167
+ // + 2Bᵧ'(t)Bᵧ'(t) + 2Bᵧ(t)Bᵧ''(t) - 2pᵧBᵧ''(t)
168
+ const b = this.at(t);
169
+ const bPrime = this.derivativeAt(t);
170
+ const bPrimePrime = this.secondDerivativeAt(t);
171
+ return (
172
+ 2 * bPrime.x * bPrime.x + 2 * b.x * bPrimePrime.x - 2 * point.x * bPrimePrime.x
173
+ + 2 * bPrime.y * bPrime.y + 2 * b.y * bPrimePrime.y - 2 * point.y * bPrimePrime.y
174
+ );
175
+ };
176
+ // Because we're zeroing f'(t), we also need to be able to compute it:
177
+ const derivativeAt = (t: number) => {
178
+ // f'(t) = 2Bₓ(t)Bₓ'(t) - 2pₓBₓ'(t) + 2Bᵧ(t)Bᵧ'(t) - 2pᵧBᵧ'(t)
179
+ const b = this.at(t);
180
+ const bPrime = this.derivativeAt(t);
181
+ return (
182
+ 2 * b.x * bPrime.x - 2 * point.x * bPrime.x
183
+ + 2 * b.y * bPrime.y - 2 * point.y * bPrime.y
184
+ );
185
+ };
186
+
187
+ const iterate = () => {
188
+ const slope = secondDerivativeAt(t);
189
+ // We intersect a line through the point on f'(t) at t with the x-axis:
190
+ // y = m(x - x₀) + y₀
191
+ // ⇒ x - x₀ = (y - y₀) / m
192
+ // ⇒ x = (y - y₀) / m + x₀
193
+ //
194
+ // Thus, when zeroed,
195
+ // tN = (0 - f'(t)) / m + t
196
+ const newT = (0 - derivativeAt(t)) / slope + t;
197
+ //const distDiff = sqrDistAt(newT) - sqrDistAt(t);
198
+ //console.assert(distDiff <= 0, `${-distDiff} >= 0`);
199
+ t = newT;
200
+ if (t > 1) {
201
+ t = 1;
202
+ } else if (t < 0) {
203
+ t = 0;
204
+ }
205
+ };
206
+
207
+ for (let i = 0; i < 12; i++) {
208
+ iterate();
209
+ }
210
+
211
+ return { parameterValue: t, point: this.at(t) };
212
+ }
213
+
214
+ public override toString() {
215
+ return `Bézier(${this.getPoints().map(point => point.toString()).join(', ')})`;
216
+ }
217
+ }
218
+
219
+ /**
220
+ * Private concrete implementation of `BezierJSWrapper`, used by methods above that need to return a wrapper
221
+ * around a `Bezier`.
222
+ */
223
+ class BezierJSWrapperImpl extends BezierJSWrapper {
224
+ public constructor(private controlPoints: readonly Point2[], curve?: Bezier) {
225
+ super(curve);
226
+ }
88
227
 
89
- return intersectionPoints;
228
+ public override getPoints() {
229
+ return this.controlPoints;
90
230
  }
91
231
  }
92
232
 
@@ -28,7 +28,7 @@ describe('Line2', () => {
28
28
 
29
29
  expect(line1.intersection(line2)?.point).objEq(Vec2.of(0, 10));
30
30
 
31
- // t=10 implies 10 units along he line from (10, 10) to (-10, 10)
31
+ // t=10 implies 10 units along the line from (10, 10) to (-10, 10)
32
32
  expect(line1.intersection(line2)?.t).toBe(10);
33
33
 
34
34
  // Similarly, t = 12 implies 12 units above (0, -2) in the direction of (0, 200)
@@ -96,4 +96,38 @@ describe('Line2', () => {
96
96
  p2: Vec2.of(3, 98),
97
97
  });
98
98
  });
99
+
100
+ it.each([
101
+ { from: Vec2.of(0, 0), to: Vec2.of(2, 2) },
102
+ { from: Vec2.of(100, 0), to: Vec2.of(2, 2) },
103
+ ])('should be able to split a line segment between %j', ({ from, to }) => {
104
+ const midpoint = from.lerp(to, 0.5);
105
+ const lineSegment = new LineSegment2(from, to);
106
+
107
+ // Halving
108
+ //
109
+ expect(lineSegment.at(0.5)).objEq(midpoint);
110
+ const [ firstHalf, secondHalf ] = lineSegment.splitAt(0.5);
111
+
112
+ if (!secondHalf) {
113
+ throw new Error('Splitting a line segment in half should yield two line segments.');
114
+ }
115
+
116
+ expect(firstHalf.p2).objEq(midpoint);
117
+ expect(firstHalf.p1).objEq(from);
118
+ expect(secondHalf.p2).objEq(to);
119
+ expect(secondHalf.p1).objEq(midpoint);
120
+
121
+ // Before start/end
122
+ expect(lineSegment.splitAt(0)[0]).objEq(lineSegment);
123
+ expect(lineSegment.splitAt(0)).toHaveLength(1);
124
+ expect(lineSegment.splitAt(1)).toHaveLength(1);
125
+ expect(lineSegment.splitAt(2)).toHaveLength(1);
126
+ });
127
+
128
+ it('equivalence check should allow ignoring direction', () => {
129
+ expect(new LineSegment2(Vec2.zero, Vec2.unitX)).objEq(new LineSegment2(Vec2.zero, Vec2.unitX));
130
+ expect(new LineSegment2(Vec2.zero, Vec2.unitX)).objEq(new LineSegment2(Vec2.unitX, Vec2.zero));
131
+ expect(new LineSegment2(Vec2.zero, Vec2.unitX)).not.objEq(new LineSegment2(Vec2.unitX, Vec2.zero), { ignoreDirection: false });
132
+ });
99
133
  });
@@ -1,7 +1,8 @@
1
1
  import Mat33 from '../Mat33';
2
2
  import Rect2 from './Rect2';
3
3
  import { Vec2, Point2 } from '../Vec2';
4
- import Abstract2DShape from './Abstract2DShape';
4
+ import Parameterized2DShape from './Parameterized2DShape';
5
+ import Vec3 from '../Vec3';
5
6
 
6
7
  interface IntersectionResult {
7
8
  point: Point2;
@@ -9,7 +10,7 @@ interface IntersectionResult {
9
10
  }
10
11
 
11
12
  /** Represents a line segment. A `LineSegment2` is immutable. */
12
- export class LineSegment2 extends Abstract2DShape {
13
+ export class LineSegment2 extends Parameterized2DShape {
13
14
  // invariant: ||direction|| = 1
14
15
 
15
16
  /**
@@ -58,8 +59,12 @@ export class LineSegment2 extends Abstract2DShape {
58
59
  return this.point2;
59
60
  }
60
61
 
62
+ public get center(): Point2 {
63
+ return this.point1.lerp(this.point2, 0.5);
64
+ }
65
+
61
66
  /**
62
- * Gets a point a distance `t` along this line.
67
+ * Gets a point a **distance** `t` along this line.
63
68
  *
64
69
  * @deprecated
65
70
  */
@@ -74,11 +79,40 @@ export class LineSegment2 extends Abstract2DShape {
74
79
  *
75
80
  * `t` should be in `[0, 1]`.
76
81
  */
77
- public at(t: number): Point2 {
82
+ public override at(t: number): Point2 {
78
83
  return this.get(t * this.length);
79
84
  }
80
85
 
86
+ public override normalAt(_t: number): Vec2 {
87
+ return this.direction.orthog();
88
+ }
89
+
90
+ public override tangentAt(_t: number): Vec3 {
91
+ return this.direction;
92
+ }
93
+
94
+ public splitAt(t: number): [LineSegment2]|[LineSegment2,LineSegment2] {
95
+ if (t <= 0 || t >= 1) {
96
+ return [this];
97
+ }
98
+
99
+ return [
100
+ new LineSegment2(this.point1, this.at(t)),
101
+ new LineSegment2(this.at(t), this.point2),
102
+ ];
103
+ }
104
+
105
+ /**
106
+ * Returns the intersection of this with another line segment.
107
+ *
108
+ * **WARNING**: The parameter value returned by this method does not range from 0 to 1 and
109
+ * is currently a length.
110
+ * This will change in a future release.
111
+ * @deprecated
112
+ */
81
113
  public intersection(other: LineSegment2): IntersectionResult|null {
114
+ // TODO(v2.0.0): Make this return a `t` value from `0` to `1`.
115
+
82
116
  // We want x₁(t) = x₂(t) and y₁(t) = y₂(t)
83
117
  // Observe that
84
118
  // x = this.point1.x + this.direction.x · t₁
@@ -146,10 +180,10 @@ export class LineSegment2 extends Abstract2DShape {
146
180
  }
147
181
 
148
182
  // Ensure the result is in this/the other segment.
149
- const resultToP1 = resultPoint.minus(this.point1).magnitude();
150
- const resultToP2 = resultPoint.minus(this.point2).magnitude();
151
- const resultToP3 = resultPoint.minus(other.point1).magnitude();
152
- const resultToP4 = resultPoint.minus(other.point2).magnitude();
183
+ const resultToP1 = resultPoint.distanceTo(this.point1);
184
+ const resultToP2 = resultPoint.distanceTo(this.point2);
185
+ const resultToP3 = resultPoint.distanceTo(other.point1);
186
+ const resultToP4 = resultPoint.distanceTo(other.point2);
153
187
  if (resultToP1 > this.length
154
188
  || resultToP2 > this.length
155
189
  || resultToP3 > other.length
@@ -167,6 +201,15 @@ export class LineSegment2 extends Abstract2DShape {
167
201
  return this.intersection(other) !== null;
168
202
  }
169
203
 
204
+ public override argIntersectsLineSegment(lineSegment: LineSegment2) {
205
+ const intersection = this.intersection(lineSegment);
206
+
207
+ if (intersection) {
208
+ return [ intersection.t / this.length ];
209
+ }
210
+ return [];
211
+ }
212
+
170
213
  /**
171
214
  * Returns the points at which this line segment intersects the
172
215
  * given line segment.
@@ -186,6 +229,10 @@ export class LineSegment2 extends Abstract2DShape {
186
229
 
187
230
  // Returns the closest point on this to [target]
188
231
  public closestPointTo(target: Point2) {
232
+ return this.nearestPointTo(target).point;
233
+ }
234
+
235
+ public override nearestPointTo(target: Vec3): { point: Vec3; parameterValue: number; } {
189
236
  // Distance from P1 along this' direction.
190
237
  const projectedDistFromP1 = target.minus(this.p1).dot(this.direction);
191
238
  const projectedDistFromP2 = this.length - projectedDistFromP1;
@@ -193,13 +240,13 @@ export class LineSegment2 extends Abstract2DShape {
193
240
  const projection = this.p1.plus(this.direction.times(projectedDistFromP1));
194
241
 
195
242
  if (projectedDistFromP1 > 0 && projectedDistFromP1 < this.length) {
196
- return projection;
243
+ return { point: projection, parameterValue: projectedDistFromP1 / this.length };
197
244
  }
198
245
 
199
246
  if (Math.abs(projectedDistFromP2) < Math.abs(projectedDistFromP1)) {
200
- return this.p2;
247
+ return { point: this.p2, parameterValue: 1 };
201
248
  } else {
202
- return this.p1;
249
+ return { point: this.p1, parameterValue: 0 };
203
250
  }
204
251
  }
205
252
 
@@ -228,5 +275,26 @@ export class LineSegment2 extends Abstract2DShape {
228
275
  public override toString() {
229
276
  return `LineSegment(${this.p1.toString()}, ${this.p2.toString()})`;
230
277
  }
278
+
279
+ /**
280
+ * Returns `true` iff this is equivalent to `other`.
281
+ *
282
+ * **Options**:
283
+ * - `tolerance`: The maximum difference between endpoints. (Default: 0)
284
+ * - `ignoreDirection`: Allow matching a version of `this` with opposite direction. (Default: `true`)
285
+ */
286
+ public eq(other: LineSegment2, options?: { tolerance?: number, ignoreDirection?: boolean }) {
287
+ if (!(other instanceof LineSegment2)) {
288
+ return false;
289
+ }
290
+
291
+ const tolerance = options?.tolerance;
292
+ const ignoreDirection = options?.ignoreDirection ?? true;
293
+
294
+ return (
295
+ (other.p1.eq(this.p1, tolerance) && other.p2.eq(this.p2, tolerance))
296
+ || (ignoreDirection && other.p1.eq(this.p2, tolerance) && other.p2.eq(this.p1, tolerance))
297
+ );
298
+ }
231
299
  }
232
300
  export default LineSegment2;
@@ -0,0 +1,39 @@
1
+ import { Point2, Vec2 } from '../Vec2';
2
+ import Abstract2DShape from './Abstract2DShape';
3
+ import LineSegment2 from './LineSegment2';
4
+
5
+ /** A 2-dimensional path with parameter interval $t \in [0, 1]$. */
6
+ export abstract class Parameterized2DShape extends Abstract2DShape {
7
+ /** Returns this at a given parameter. $t \in [0, 1]$ */
8
+ abstract at(t: number): Point2;
9
+
10
+ /** Computes the unit normal vector at $t$. */
11
+ abstract normalAt(t: number): Vec2;
12
+
13
+ abstract tangentAt(t: number): Vec2;
14
+
15
+ /**
16
+ * Divides this shape into two separate shapes at parameter value $t$.
17
+ */
18
+ abstract splitAt(t: number): [ Parameterized2DShape ] | [ Parameterized2DShape, Parameterized2DShape ];
19
+
20
+ /**
21
+ * Returns the nearest point on `this` to `point` and the `parameterValue` at which
22
+ * that point occurs.
23
+ */
24
+ abstract nearestPointTo(point: Point2): { point: Point2, parameterValue: number };
25
+
26
+ /**
27
+ * Returns the **parameter values** at which `lineSegment` intersects this shape.
28
+ *
29
+ * See also {@link intersectsLineSegment}
30
+ */
31
+ public abstract argIntersectsLineSegment(lineSegment: LineSegment2): number[];
32
+
33
+
34
+ public override intersectsLineSegment(line: LineSegment2): Point2[] {
35
+ return this.argIntersectsLineSegment(line).map(t => this.at(t));
36
+ }
37
+ }
38
+
39
+ export default Parameterized2DShape;
@@ -60,6 +60,24 @@ describe('Path', () => {
60
60
  );
61
61
  });
62
62
 
63
+ it.each([
64
+ [ 'm0,0 L1,1', 'M0,0 L1,1', true ],
65
+ [ 'm0,0 L1,1', 'M1,1 L0,0', false ],
66
+ [ 'm0,0 L1,1 Q2,3 4,5', 'M1,1 L0,0', false ],
67
+ [ 'm0,0 L1,1 Q2,3 4,5', 'M1,1 L0,0 Q2,3 4,5', false ],
68
+ [ 'm0,0 L1,1 Q2,3 4,5', 'M0,0 L1,1 Q2,3 4,5', true ],
69
+ [ 'm0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9', 'M0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9', true ],
70
+ [ 'm0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9Z', 'M0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9', false ],
71
+ [ 'm0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9', 'M0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9Z', false ],
72
+ [ 'm0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9', 'M0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9.01', false ],
73
+ [ 'm0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9', 'M0,0 L1,1 Q2,3 4,5 C4,5 6,7.01 8,9', false ],
74
+ [ 'm0,0 L1,1 Q2,3 4,5 C4,5 6,7 8,9', 'M0,0 L1,1 Q2,3 4,5 C4,5.01 6,7 8,9', false ],
75
+ ])('.eq should check equality', (path1Str, path2Str, shouldEqual) => {
76
+ expect(Path.fromString(path1Str)).objEq(Path.fromString(path1Str));
77
+ expect(Path.fromString(path2Str)).objEq(Path.fromString(path2Str));
78
+ expect(Path.fromString(path1Str).eq(Path.fromString(path2Str))).toBe(shouldEqual);
79
+ });
80
+
63
81
  describe('intersection', () => {
64
82
  it('should give all intersections for a path made up of lines', () => {
65
83
  const lineStart = Vec2.of(100, 100);
@@ -179,7 +197,7 @@ describe('Path', () => {
179
197
  });
180
198
  });
181
199
 
182
- it('should give all intersections for a Bézier stroked path', () => {
200
+ it('should correctly report intersections for a simple Bézier curve path', () => {
183
201
  const lineStart = Vec2.zero;
184
202
  const path = new Path(lineStart, [
185
203
  {
@@ -196,13 +214,36 @@ describe('Path', () => {
196
214
  let intersections = path.intersection(
197
215
  new LineSegment2(Vec2.of(-1, 0.5), Vec2.of(2, 0.5)), strokeWidth,
198
216
  );
199
- expect(intersections.length).toBe(0);
217
+ expect(intersections).toHaveLength(0);
200
218
 
201
219
  // Should be an intersection when exiting/entering the edge of the stroke
202
220
  intersections = path.intersection(
203
221
  new LineSegment2(Vec2.of(0, 0.5), Vec2.of(8, 0.5)), strokeWidth,
204
222
  );
205
- expect(intersections.length).toBe(1);
223
+ expect(intersections).toHaveLength(1);
224
+ });
225
+
226
+ it('should correctly report intersections near the cap of a line-like Bézier', () => {
227
+ const path = Path.fromString('M0,0Q14,0 27,0');
228
+ expect(
229
+ path.intersection(
230
+ new LineSegment2(Vec2.of(0, -100), Vec2.of(0, 100)),
231
+ 10,
232
+ ),
233
+
234
+ // Should have intersections, despite being at the cap of the Bézier
235
+ // curve.
236
+ ).toHaveLength(2);
237
+ });
238
+
239
+ it.each([
240
+ [new LineSegment2(Vec2.of(43.5,-12.5), Vec2.of(40.5,24.5)), 0],
241
+ // TODO: The below case is failing. It seems to be a Bezier-js bug though...
242
+ // (The Bézier.js method returns an empty array).
243
+ //[new LineSegment2(Vec2.of(35.5,19.5), Vec2.of(38.5,-17.5)), 0],
244
+ ])('should correctly report positive intersections with a line-like Bézier', (line, strokeRadius) => {
245
+ const bezier = Path.fromString('M0,0 Q50,0 100,0');
246
+ expect(bezier.intersection(line, strokeRadius).length).toBeGreaterThan(0);
206
247
  });
207
248
  });
208
249
 
@@ -306,4 +347,23 @@ describe('Path', () => {
306
347
  expect(strokedRect.startPoint).objEq(lastSegment.point);
307
348
  });
308
349
  });
350
+
351
+ it.each([
352
+ [ 'm0,0 L1,1', 'M1,1 L0,0' ],
353
+ [ 'm0,0 L1,1', 'M1,1 L0,0' ],
354
+ [ 'M0,0 L1,1 Q2,2 3,3', 'M3,3 Q2,2 1,1 L0,0' ],
355
+ [ 'M0,0 L1,1 Q4,2 5,3 C12,13 10,9 8,7', 'M8,7 C 10,9 12,13 5,3 Q 4,2 1,1 L 0,0' ],
356
+ ])('.reversed should reverse paths', (original, expected) => {
357
+ expect(Path.fromString(original).reversed()).objEq(Path.fromString(expected));
358
+ expect(Path.fromString(expected).reversed()).objEq(Path.fromString(original));
359
+ expect(Path.fromString(original).reversed().reversed()).objEq(Path.fromString(original));
360
+ });
361
+
362
+ it.each([
363
+ [ 'm0,0 l1,0', Vec2.of(0, 0), Vec2.of(0, 0) ],
364
+ [ 'm0,0 l1,0', Vec2.of(0.5, 0), Vec2.of(0.5, 0) ],
365
+ [ 'm0,0 Q1,0 1,2', Vec2.of(1, 0), Vec2.of(0.6236, 0.299) ],
366
+ ])('.nearestPointTo should return the closest point on a path to the given parameter (case %#)', (path, point, expectedClosest) => {
367
+ expect(Path.fromString(path).nearestPointTo(point).point).objEq(expectedClosest, 0.002);
368
+ });
309
369
  });