@js-draw/math 1.16.0 → 1.17.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/cjs/Vec3.d.ts +21 -0
- package/dist/cjs/Vec3.js +28 -0
- package/dist/cjs/lib.d.ts +1 -1
- package/dist/cjs/shapes/Abstract2DShape.d.ts +3 -0
- package/dist/cjs/shapes/BezierJSWrapper.d.ts +15 -5
- package/dist/cjs/shapes/BezierJSWrapper.js +135 -18
- package/dist/cjs/shapes/LineSegment2.d.ts +34 -5
- package/dist/cjs/shapes/LineSegment2.js +63 -10
- package/dist/cjs/shapes/Parameterized2DShape.d.ts +31 -0
- package/dist/cjs/shapes/Parameterized2DShape.js +15 -0
- package/dist/cjs/shapes/Path.d.ts +40 -6
- package/dist/cjs/shapes/Path.js +173 -15
- package/dist/cjs/shapes/PointShape2D.d.ts +14 -3
- package/dist/cjs/shapes/PointShape2D.js +28 -5
- package/dist/cjs/shapes/QuadraticBezier.d.ts +4 -0
- package/dist/cjs/shapes/QuadraticBezier.js +19 -4
- package/dist/cjs/shapes/Rect2.d.ts +3 -0
- package/dist/cjs/shapes/Rect2.js +4 -1
- package/dist/mjs/Vec3.d.ts +21 -0
- package/dist/mjs/Vec3.mjs +28 -0
- package/dist/mjs/lib.d.ts +1 -1
- package/dist/mjs/shapes/Abstract2DShape.d.ts +3 -0
- package/dist/mjs/shapes/BezierJSWrapper.d.ts +15 -5
- package/dist/mjs/shapes/BezierJSWrapper.mjs +133 -18
- package/dist/mjs/shapes/LineSegment2.d.ts +34 -5
- package/dist/mjs/shapes/LineSegment2.mjs +63 -10
- package/dist/mjs/shapes/Parameterized2DShape.d.ts +31 -0
- package/dist/mjs/shapes/Parameterized2DShape.mjs +8 -0
- package/dist/mjs/shapes/Path.d.ts +40 -6
- package/dist/mjs/shapes/Path.mjs +173 -15
- package/dist/mjs/shapes/PointShape2D.d.ts +14 -3
- package/dist/mjs/shapes/PointShape2D.mjs +28 -5
- package/dist/mjs/shapes/QuadraticBezier.d.ts +4 -0
- package/dist/mjs/shapes/QuadraticBezier.mjs +19 -4
- package/dist/mjs/shapes/Rect2.d.ts +3 -0
- package/dist/mjs/shapes/Rect2.mjs +4 -1
- package/package.json +5 -5
- package/src/Vec3.test.ts +26 -7
- package/src/Vec3.ts +30 -0
- package/src/lib.ts +2 -0
- package/src/shapes/Abstract2DShape.ts +3 -0
- package/src/shapes/BezierJSWrapper.ts +154 -14
- package/src/shapes/LineSegment2.test.ts +35 -1
- package/src/shapes/LineSegment2.ts +79 -11
- package/src/shapes/Parameterized2DShape.ts +39 -0
- package/src/shapes/Path.test.ts +63 -3
- package/src/shapes/Path.ts +209 -25
- package/src/shapes/PointShape2D.ts +33 -6
- package/src/shapes/QuadraticBezier.test.ts +48 -12
- package/src/shapes/QuadraticBezier.ts +23 -5
- package/src/shapes/Rect2.ts +4 -1
package/dist/cjs/Vec3.d.ts
CHANGED
@@ -35,11 +35,31 @@ export declare class Vec3 {
|
|
35
35
|
length(): number;
|
36
36
|
magnitude(): number;
|
37
37
|
magnitudeSquared(): number;
|
38
|
+
/**
|
39
|
+
* Interpreting this vector as a point in ℝ^3, computes the square distance
|
40
|
+
* to another point, `p`.
|
41
|
+
*
|
42
|
+
* Equivalent to `.minus(p).magnitudeSquared()`.
|
43
|
+
*/
|
44
|
+
squareDistanceTo(p: Vec3): number;
|
45
|
+
/**
|
46
|
+
* Interpreting this vector as a point in ℝ³, returns the distance to the point
|
47
|
+
* `p`.
|
48
|
+
*
|
49
|
+
* Equivalent to `.minus(p).magnitude()`.
|
50
|
+
*/
|
51
|
+
distanceTo(p: Vec3): number;
|
38
52
|
/**
|
39
53
|
* Returns the entry of this with the greatest magnitude.
|
40
54
|
*
|
41
55
|
* In other words, returns $\max \{ |x| : x \in {\bf v} \}$, where ${\bf v}$ is the set of
|
42
56
|
* all entries of this vector.
|
57
|
+
*
|
58
|
+
* **Example**:
|
59
|
+
* ```ts,runnable,console
|
60
|
+
* import { Vec3 } from '@js-draw/math';
|
61
|
+
* console.log(Vec3.of(-1, -10, 8).maximumEntryMagnitude()); // -> 10
|
62
|
+
* ```
|
43
63
|
*/
|
44
64
|
maximumEntryMagnitude(): number;
|
45
65
|
/**
|
@@ -50,6 +70,7 @@ export declare class Vec3 {
|
|
50
70
|
* As such, observing that `Math.atan2(-0, -1)` $\approx -\pi$ and `Math.atan2(0, -1)`$\approx \pi$
|
51
71
|
* the resultant angle is in the range $[-\pi, pi]$.
|
52
72
|
*
|
73
|
+
* **Example**:
|
53
74
|
* ```ts,runnable,console
|
54
75
|
* import { Vec2 } from '@js-draw/math';
|
55
76
|
* console.log(Vec2.of(-1, -0).angle()); // atan2(-0, -1)
|
package/dist/cjs/Vec3.js
CHANGED
@@ -58,11 +58,38 @@ class Vec3 {
|
|
58
58
|
magnitudeSquared() {
|
59
59
|
return this.dot(this);
|
60
60
|
}
|
61
|
+
/**
|
62
|
+
* Interpreting this vector as a point in ℝ^3, computes the square distance
|
63
|
+
* to another point, `p`.
|
64
|
+
*
|
65
|
+
* Equivalent to `.minus(p).magnitudeSquared()`.
|
66
|
+
*/
|
67
|
+
squareDistanceTo(p) {
|
68
|
+
const dx = this.x - p.x;
|
69
|
+
const dy = this.y - p.y;
|
70
|
+
const dz = this.z - p.z;
|
71
|
+
return dx * dx + dy * dy + dz * dz;
|
72
|
+
}
|
73
|
+
/**
|
74
|
+
* Interpreting this vector as a point in ℝ³, returns the distance to the point
|
75
|
+
* `p`.
|
76
|
+
*
|
77
|
+
* Equivalent to `.minus(p).magnitude()`.
|
78
|
+
*/
|
79
|
+
distanceTo(p) {
|
80
|
+
return Math.sqrt(this.squareDistanceTo(p));
|
81
|
+
}
|
61
82
|
/**
|
62
83
|
* Returns the entry of this with the greatest magnitude.
|
63
84
|
*
|
64
85
|
* In other words, returns $\max \{ |x| : x \in {\bf v} \}$, where ${\bf v}$ is the set of
|
65
86
|
* all entries of this vector.
|
87
|
+
*
|
88
|
+
* **Example**:
|
89
|
+
* ```ts,runnable,console
|
90
|
+
* import { Vec3 } from '@js-draw/math';
|
91
|
+
* console.log(Vec3.of(-1, -10, 8).maximumEntryMagnitude()); // -> 10
|
92
|
+
* ```
|
66
93
|
*/
|
67
94
|
maximumEntryMagnitude() {
|
68
95
|
return Math.max(Math.abs(this.x), Math.max(Math.abs(this.y), Math.abs(this.z)));
|
@@ -75,6 +102,7 @@ class Vec3 {
|
|
75
102
|
* As such, observing that `Math.atan2(-0, -1)` $\approx -\pi$ and `Math.atan2(0, -1)`$\approx \pi$
|
76
103
|
* the resultant angle is in the range $[-\pi, pi]$.
|
77
104
|
*
|
105
|
+
* **Example**:
|
78
106
|
* ```ts,runnable,console
|
79
107
|
* import { Vec2 } from '@js-draw/math';
|
80
108
|
* console.log(Vec2.of(-1, -0).angle()); // atan2(-0, -1)
|
package/dist/cjs/lib.d.ts
CHANGED
@@ -17,7 +17,7 @@
|
|
17
17
|
* @packageDocumentation
|
18
18
|
*/
|
19
19
|
export { LineSegment2 } from './shapes/LineSegment2';
|
20
|
-
export { Path, PathCommandType, PathCommand, LinePathCommand, MoveToPathCommand, QuadraticBezierPathCommand, CubicBezierPathCommand, } from './shapes/Path';
|
20
|
+
export { Path, IntersectionResult as PathIntersectionResult, CurveIndexRecord as PathCurveIndex, PathCommandType, PathCommand, LinePathCommand, MoveToPathCommand, QuadraticBezierPathCommand, CubicBezierPathCommand, } from './shapes/Path';
|
21
21
|
export { Rect2 } from './shapes/Rect2';
|
22
22
|
export { QuadraticBezier } from './shapes/QuadraticBezier';
|
23
23
|
export { Abstract2DShape } from './shapes/Abstract2DShape';
|
@@ -38,6 +38,9 @@ export declare abstract class Abstract2DShape {
|
|
38
38
|
containsPoint(point: Point2, epsilon?: number): boolean;
|
39
39
|
/**
|
40
40
|
* Returns a bounding box that precisely fits the content of this shape.
|
41
|
+
*
|
42
|
+
* **Note**: This bounding box should aligned with the x/y axes. (Thus, it may be
|
43
|
+
* possible to find a tighter bounding box not axes-aligned).
|
41
44
|
*/
|
42
45
|
abstract getTightBoundingBox(): Rect2;
|
43
46
|
/**
|
@@ -1,21 +1,22 @@
|
|
1
1
|
import { Bezier } from 'bezier-js';
|
2
2
|
import { Point2, Vec2 } from '../Vec2';
|
3
|
-
import Abstract2DShape from './Abstract2DShape';
|
4
3
|
import LineSegment2 from './LineSegment2';
|
5
4
|
import Rect2 from './Rect2';
|
5
|
+
import Parameterized2DShape from './Parameterized2DShape';
|
6
6
|
/**
|
7
7
|
* A lazy-initializing wrapper around Bezier-js.
|
8
8
|
*
|
9
9
|
* Subclasses may override `at`, `derivativeAt`, and `normal` with functions
|
10
10
|
* that do not initialize a `bezier-js` `Bezier`.
|
11
11
|
*
|
12
|
-
* Do not use this class directly
|
12
|
+
* **Do not use this class directly.** It may be removed/replaced in a future release.
|
13
13
|
* @internal
|
14
14
|
*/
|
15
|
-
declare abstract class BezierJSWrapper extends
|
15
|
+
export declare abstract class BezierJSWrapper extends Parameterized2DShape {
|
16
16
|
#private;
|
17
|
+
protected constructor(bezierJsBezier?: Bezier);
|
17
18
|
/** Returns the start, control points, and end point of this Bézier. */
|
18
|
-
abstract getPoints(): Point2[];
|
19
|
+
abstract getPoints(): readonly Point2[];
|
19
20
|
protected getBezier(): Bezier;
|
20
21
|
signedDistance(point: Point2): number;
|
21
22
|
/**
|
@@ -29,8 +30,17 @@ declare abstract class BezierJSWrapper extends Abstract2DShape {
|
|
29
30
|
*/
|
30
31
|
at(t: number): Point2;
|
31
32
|
derivativeAt(t: number): Point2;
|
33
|
+
secondDerivativeAt(t: number): Point2;
|
32
34
|
normal(t: number): Vec2;
|
35
|
+
normalAt(t: number): Vec2;
|
36
|
+
tangentAt(t: number): Vec2;
|
33
37
|
getTightBoundingBox(): Rect2;
|
34
|
-
|
38
|
+
argIntersectsLineSegment(line: LineSegment2): number[];
|
39
|
+
splitAt(t: number): [BezierJSWrapper] | [BezierJSWrapper, BezierJSWrapper];
|
40
|
+
nearestPointTo(point: Point2): {
|
41
|
+
parameterValue: number;
|
42
|
+
point: import("../Vec3").Vec3;
|
43
|
+
};
|
44
|
+
toString(): string;
|
35
45
|
}
|
36
46
|
export default BezierJSWrapper;
|
@@ -1,37 +1,41 @@
|
|
1
1
|
"use strict";
|
2
|
-
var __classPrivateFieldGet = (this && this.__classPrivateFieldGet) || function (receiver, state, kind, f) {
|
3
|
-
if (kind === "a" && !f) throw new TypeError("Private accessor was defined without a getter");
|
4
|
-
if (typeof state === "function" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError("Cannot read private member from an object whose class did not declare it");
|
5
|
-
return kind === "m" ? f : kind === "a" ? f.call(receiver) : f ? f.value : state.get(receiver);
|
6
|
-
};
|
7
2
|
var __classPrivateFieldSet = (this && this.__classPrivateFieldSet) || function (receiver, state, value, kind, f) {
|
8
3
|
if (kind === "m") throw new TypeError("Private method is not writable");
|
9
4
|
if (kind === "a" && !f) throw new TypeError("Private accessor was defined without a setter");
|
10
5
|
if (typeof state === "function" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError("Cannot write private member to an object whose class did not declare it");
|
11
6
|
return (kind === "a" ? f.call(receiver, value) : f ? f.value = value : state.set(receiver, value)), value;
|
12
7
|
};
|
8
|
+
var __classPrivateFieldGet = (this && this.__classPrivateFieldGet) || function (receiver, state, kind, f) {
|
9
|
+
if (kind === "a" && !f) throw new TypeError("Private accessor was defined without a getter");
|
10
|
+
if (typeof state === "function" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError("Cannot read private member from an object whose class did not declare it");
|
11
|
+
return kind === "m" ? f : kind === "a" ? f.call(receiver) : f ? f.value : state.get(receiver);
|
12
|
+
};
|
13
13
|
var __importDefault = (this && this.__importDefault) || function (mod) {
|
14
14
|
return (mod && mod.__esModule) ? mod : { "default": mod };
|
15
15
|
};
|
16
16
|
var _BezierJSWrapper_bezierJs;
|
17
17
|
Object.defineProperty(exports, "__esModule", { value: true });
|
18
|
+
exports.BezierJSWrapper = void 0;
|
18
19
|
const bezier_js_1 = require("bezier-js");
|
19
20
|
const Vec2_1 = require("../Vec2");
|
20
|
-
const Abstract2DShape_1 = __importDefault(require("./Abstract2DShape"));
|
21
21
|
const Rect2_1 = __importDefault(require("./Rect2"));
|
22
|
+
const Parameterized2DShape_1 = __importDefault(require("./Parameterized2DShape"));
|
22
23
|
/**
|
23
24
|
* A lazy-initializing wrapper around Bezier-js.
|
24
25
|
*
|
25
26
|
* Subclasses may override `at`, `derivativeAt`, and `normal` with functions
|
26
27
|
* that do not initialize a `bezier-js` `Bezier`.
|
27
28
|
*
|
28
|
-
* Do not use this class directly
|
29
|
+
* **Do not use this class directly.** It may be removed/replaced in a future release.
|
29
30
|
* @internal
|
30
31
|
*/
|
31
|
-
class BezierJSWrapper extends
|
32
|
-
constructor() {
|
33
|
-
super(
|
32
|
+
class BezierJSWrapper extends Parameterized2DShape_1.default {
|
33
|
+
constructor(bezierJsBezier) {
|
34
|
+
super();
|
34
35
|
_BezierJSWrapper_bezierJs.set(this, null);
|
36
|
+
if (bezierJsBezier) {
|
37
|
+
__classPrivateFieldSet(this, _BezierJSWrapper_bezierJs, bezierJsBezier, "f");
|
38
|
+
}
|
35
39
|
}
|
36
40
|
getBezier() {
|
37
41
|
if (!__classPrivateFieldGet(this, _BezierJSWrapper_bezierJs, "f")) {
|
@@ -41,7 +45,7 @@ class BezierJSWrapper extends Abstract2DShape_1.default {
|
|
41
45
|
}
|
42
46
|
signedDistance(point) {
|
43
47
|
// .d: Distance
|
44
|
-
return this.
|
48
|
+
return this.nearestPointTo(point).point.distanceTo(point);
|
45
49
|
}
|
46
50
|
/**
|
47
51
|
* @returns the (more) exact distance from `point` to this.
|
@@ -61,34 +65,147 @@ class BezierJSWrapper extends Abstract2DShape_1.default {
|
|
61
65
|
derivativeAt(t) {
|
62
66
|
return Vec2_1.Vec2.ofXY(this.getBezier().derivative(t));
|
63
67
|
}
|
68
|
+
secondDerivativeAt(t) {
|
69
|
+
return Vec2_1.Vec2.ofXY(this.getBezier().dderivative(t));
|
70
|
+
}
|
64
71
|
normal(t) {
|
65
72
|
return Vec2_1.Vec2.ofXY(this.getBezier().normal(t));
|
66
73
|
}
|
74
|
+
normalAt(t) {
|
75
|
+
return this.normal(t);
|
76
|
+
}
|
77
|
+
tangentAt(t) {
|
78
|
+
return this.derivativeAt(t).normalized();
|
79
|
+
}
|
67
80
|
getTightBoundingBox() {
|
68
81
|
const bbox = this.getBezier().bbox();
|
69
82
|
const width = bbox.x.max - bbox.x.min;
|
70
83
|
const height = bbox.y.max - bbox.y.min;
|
71
84
|
return new Rect2_1.default(bbox.x.min, bbox.y.min, width, height);
|
72
85
|
}
|
73
|
-
|
86
|
+
argIntersectsLineSegment(line) {
|
74
87
|
const bezier = this.getBezier();
|
75
|
-
|
88
|
+
return bezier.intersects(line).map(t => {
|
76
89
|
// We're using the .intersects(line) function, which is documented
|
77
90
|
// to always return numbers. However, to satisfy the type checker (and
|
78
91
|
// possibly improperly-defined types),
|
79
92
|
if (typeof t === 'string') {
|
80
93
|
t = parseFloat(t);
|
81
94
|
}
|
82
|
-
const point = Vec2_1.Vec2.ofXY(
|
95
|
+
const point = Vec2_1.Vec2.ofXY(this.at(t));
|
83
96
|
// Ensure that the intersection is on the line segment
|
84
|
-
if (point.
|
85
|
-
|| point.
|
97
|
+
if (point.distanceTo(line.p1) > line.length
|
98
|
+
|| point.distanceTo(line.p2) > line.length) {
|
86
99
|
return null;
|
87
100
|
}
|
88
|
-
return
|
101
|
+
return t;
|
89
102
|
}).filter(entry => entry !== null);
|
90
|
-
|
103
|
+
}
|
104
|
+
splitAt(t) {
|
105
|
+
if (t <= 0 || t >= 1) {
|
106
|
+
return [this];
|
107
|
+
}
|
108
|
+
const bezier = this.getBezier();
|
109
|
+
const split = bezier.split(t);
|
110
|
+
return [
|
111
|
+
new BezierJSWrapperImpl(split.left.points.map(point => Vec2_1.Vec2.ofXY(point)), split.left),
|
112
|
+
new BezierJSWrapperImpl(split.right.points.map(point => Vec2_1.Vec2.ofXY(point)), split.right),
|
113
|
+
];
|
114
|
+
}
|
115
|
+
nearestPointTo(point) {
|
116
|
+
// One implementation could be similar to this:
|
117
|
+
// const projection = this.getBezier().project(point);
|
118
|
+
// return {
|
119
|
+
// point: Vec2.ofXY(projection),
|
120
|
+
// parameterValue: projection.t!,
|
121
|
+
// };
|
122
|
+
// However, Bezier-js is rather impercise (and relies on a lookup table).
|
123
|
+
// Thus, we instead use Newton's Method:
|
124
|
+
// We want to find t such that f(t) = |B(t) - p|² is minimized.
|
125
|
+
// Expanding,
|
126
|
+
// f(t) = (Bₓ(t) - pₓ)² + (Bᵧ(t) - pᵧ)²
|
127
|
+
// ⇒ f'(t) = Dₜ(Bₓ(t) - pₓ)² + Dₜ(Bᵧ(t) - pᵧ)²
|
128
|
+
// ⇒ f'(t) = 2(Bₓ(t) - pₓ)(Bₓ'(t)) + 2(Bᵧ(t) - pᵧ)(Bᵧ'(t))
|
129
|
+
// = 2Bₓ(t)Bₓ'(t) - 2pₓBₓ'(t) + 2Bᵧ(t)Bᵧ'(t) - 2pᵧBᵧ'(t)
|
130
|
+
// ⇒ f''(t)= 2Bₓ'(t)Bₓ'(t) + 2Bₓ(t)Bₓ''(t) - 2pₓBₓ''(t) + 2Bᵧ'(t)Bᵧ'(t)
|
131
|
+
// + 2Bᵧ(t)Bᵧ''(t) - 2pᵧBᵧ''(t)
|
132
|
+
// Because f'(t) = 0 at relative extrema, we can use Newton's Method
|
133
|
+
// to improve on an initial guess.
|
134
|
+
const sqrDistAt = (t) => point.squareDistanceTo(this.at(t));
|
135
|
+
const yIntercept = sqrDistAt(0);
|
136
|
+
let t = 0;
|
137
|
+
let minSqrDist = yIntercept;
|
138
|
+
// Start by testing a few points:
|
139
|
+
const pointsToTest = 4;
|
140
|
+
for (let i = 0; i < pointsToTest; i++) {
|
141
|
+
const testT = i / (pointsToTest - 1);
|
142
|
+
const testMinSqrDist = sqrDistAt(testT);
|
143
|
+
if (testMinSqrDist < minSqrDist) {
|
144
|
+
t = testT;
|
145
|
+
minSqrDist = testMinSqrDist;
|
146
|
+
}
|
147
|
+
}
|
148
|
+
// To use Newton's Method, we need to evaluate the second derivative of the distance
|
149
|
+
// function:
|
150
|
+
const secondDerivativeAt = (t) => {
|
151
|
+
// f''(t) = 2Bₓ'(t)Bₓ'(t) + 2Bₓ(t)Bₓ''(t) - 2pₓBₓ''(t)
|
152
|
+
// + 2Bᵧ'(t)Bᵧ'(t) + 2Bᵧ(t)Bᵧ''(t) - 2pᵧBᵧ''(t)
|
153
|
+
const b = this.at(t);
|
154
|
+
const bPrime = this.derivativeAt(t);
|
155
|
+
const bPrimePrime = this.secondDerivativeAt(t);
|
156
|
+
return (2 * bPrime.x * bPrime.x + 2 * b.x * bPrimePrime.x - 2 * point.x * bPrimePrime.x
|
157
|
+
+ 2 * bPrime.y * bPrime.y + 2 * b.y * bPrimePrime.y - 2 * point.y * bPrimePrime.y);
|
158
|
+
};
|
159
|
+
// Because we're zeroing f'(t), we also need to be able to compute it:
|
160
|
+
const derivativeAt = (t) => {
|
161
|
+
// f'(t) = 2Bₓ(t)Bₓ'(t) - 2pₓBₓ'(t) + 2Bᵧ(t)Bᵧ'(t) - 2pᵧBᵧ'(t)
|
162
|
+
const b = this.at(t);
|
163
|
+
const bPrime = this.derivativeAt(t);
|
164
|
+
return (2 * b.x * bPrime.x - 2 * point.x * bPrime.x
|
165
|
+
+ 2 * b.y * bPrime.y - 2 * point.y * bPrime.y);
|
166
|
+
};
|
167
|
+
const iterate = () => {
|
168
|
+
const slope = secondDerivativeAt(t);
|
169
|
+
// We intersect a line through the point on f'(t) at t with the x-axis:
|
170
|
+
// y = m(x - x₀) + y₀
|
171
|
+
// ⇒ x - x₀ = (y - y₀) / m
|
172
|
+
// ⇒ x = (y - y₀) / m + x₀
|
173
|
+
//
|
174
|
+
// Thus, when zeroed,
|
175
|
+
// tN = (0 - f'(t)) / m + t
|
176
|
+
const newT = (0 - derivativeAt(t)) / slope + t;
|
177
|
+
//const distDiff = sqrDistAt(newT) - sqrDistAt(t);
|
178
|
+
//console.assert(distDiff <= 0, `${-distDiff} >= 0`);
|
179
|
+
t = newT;
|
180
|
+
if (t > 1) {
|
181
|
+
t = 1;
|
182
|
+
}
|
183
|
+
else if (t < 0) {
|
184
|
+
t = 0;
|
185
|
+
}
|
186
|
+
};
|
187
|
+
for (let i = 0; i < 12; i++) {
|
188
|
+
iterate();
|
189
|
+
}
|
190
|
+
return { parameterValue: t, point: this.at(t) };
|
191
|
+
}
|
192
|
+
toString() {
|
193
|
+
return `Bézier(${this.getPoints().map(point => point.toString()).join(', ')})`;
|
91
194
|
}
|
92
195
|
}
|
196
|
+
exports.BezierJSWrapper = BezierJSWrapper;
|
93
197
|
_BezierJSWrapper_bezierJs = new WeakMap();
|
198
|
+
/**
|
199
|
+
* Private concrete implementation of `BezierJSWrapper`, used by methods above that need to return a wrapper
|
200
|
+
* around a `Bezier`.
|
201
|
+
*/
|
202
|
+
class BezierJSWrapperImpl extends BezierJSWrapper {
|
203
|
+
constructor(controlPoints, curve) {
|
204
|
+
super(curve);
|
205
|
+
this.controlPoints = controlPoints;
|
206
|
+
}
|
207
|
+
getPoints() {
|
208
|
+
return this.controlPoints;
|
209
|
+
}
|
210
|
+
}
|
94
211
|
exports.default = BezierJSWrapper;
|
@@ -1,13 +1,14 @@
|
|
1
1
|
import Mat33 from '../Mat33';
|
2
2
|
import Rect2 from './Rect2';
|
3
3
|
import { Vec2, Point2 } from '../Vec2';
|
4
|
-
import
|
4
|
+
import Parameterized2DShape from './Parameterized2DShape';
|
5
|
+
import Vec3 from '../Vec3';
|
5
6
|
interface IntersectionResult {
|
6
7
|
point: Point2;
|
7
8
|
t: number;
|
8
9
|
}
|
9
10
|
/** Represents a line segment. A `LineSegment2` is immutable. */
|
10
|
-
export declare class LineSegment2 extends
|
11
|
+
export declare class LineSegment2 extends Parameterized2DShape {
|
11
12
|
private readonly point1;
|
12
13
|
private readonly point2;
|
13
14
|
/**
|
@@ -28,8 +29,9 @@ export declare class LineSegment2 extends Abstract2DShape {
|
|
28
29
|
get p1(): Point2;
|
29
30
|
/** Alias for `point2`. */
|
30
31
|
get p2(): Point2;
|
32
|
+
get center(): Point2;
|
31
33
|
/**
|
32
|
-
* Gets a point a distance `t` along this line.
|
34
|
+
* Gets a point a **distance** `t` along this line.
|
33
35
|
*
|
34
36
|
* @deprecated
|
35
37
|
*/
|
@@ -42,8 +44,20 @@ export declare class LineSegment2 extends Abstract2DShape {
|
|
42
44
|
* `t` should be in `[0, 1]`.
|
43
45
|
*/
|
44
46
|
at(t: number): Point2;
|
47
|
+
normalAt(_t: number): Vec2;
|
48
|
+
tangentAt(_t: number): Vec3;
|
49
|
+
splitAt(t: number): [LineSegment2] | [LineSegment2, LineSegment2];
|
50
|
+
/**
|
51
|
+
* Returns the intersection of this with another line segment.
|
52
|
+
*
|
53
|
+
* **WARNING**: The parameter value returned by this method does not range from 0 to 1 and
|
54
|
+
* is currently a length.
|
55
|
+
* This will change in a future release.
|
56
|
+
* @deprecated
|
57
|
+
*/
|
45
58
|
intersection(other: LineSegment2): IntersectionResult | null;
|
46
59
|
intersects(other: LineSegment2): boolean;
|
60
|
+
argIntersectsLineSegment(lineSegment: LineSegment2): number[];
|
47
61
|
/**
|
48
62
|
* Returns the points at which this line segment intersects the
|
49
63
|
* given line segment.
|
@@ -52,8 +66,12 @@ export declare class LineSegment2 extends Abstract2DShape {
|
|
52
66
|
* line segment. This method, by contrast, returns **the point** at which the intersection
|
53
67
|
* occurs, if such a point exists.
|
54
68
|
*/
|
55
|
-
intersectsLineSegment(lineSegment: LineSegment2):
|
56
|
-
closestPointTo(target: Point2):
|
69
|
+
intersectsLineSegment(lineSegment: LineSegment2): Vec3[];
|
70
|
+
closestPointTo(target: Point2): Vec3;
|
71
|
+
nearestPointTo(target: Vec3): {
|
72
|
+
point: Vec3;
|
73
|
+
parameterValue: number;
|
74
|
+
};
|
57
75
|
/**
|
58
76
|
* Returns the distance from this line segment to `target`.
|
59
77
|
*
|
@@ -66,5 +84,16 @@ export declare class LineSegment2 extends Abstract2DShape {
|
|
66
84
|
/** @inheritdoc */
|
67
85
|
getTightBoundingBox(): Rect2;
|
68
86
|
toString(): string;
|
87
|
+
/**
|
88
|
+
* Returns `true` iff this is equivalent to `other`.
|
89
|
+
*
|
90
|
+
* **Options**:
|
91
|
+
* - `tolerance`: The maximum difference between endpoints. (Default: 0)
|
92
|
+
* - `ignoreDirection`: Allow matching a version of `this` with opposite direction. (Default: `true`)
|
93
|
+
*/
|
94
|
+
eq(other: LineSegment2, options?: {
|
95
|
+
tolerance?: number;
|
96
|
+
ignoreDirection?: boolean;
|
97
|
+
}): boolean;
|
69
98
|
}
|
70
99
|
export default LineSegment2;
|
@@ -6,9 +6,9 @@ Object.defineProperty(exports, "__esModule", { value: true });
|
|
6
6
|
exports.LineSegment2 = void 0;
|
7
7
|
const Rect2_1 = __importDefault(require("./Rect2"));
|
8
8
|
const Vec2_1 = require("../Vec2");
|
9
|
-
const
|
9
|
+
const Parameterized2DShape_1 = __importDefault(require("./Parameterized2DShape"));
|
10
10
|
/** Represents a line segment. A `LineSegment2` is immutable. */
|
11
|
-
class LineSegment2 extends
|
11
|
+
class LineSegment2 extends Parameterized2DShape_1.default {
|
12
12
|
/** Creates a new `LineSegment2` from its endpoints. */
|
13
13
|
constructor(point1, point2) {
|
14
14
|
super();
|
@@ -32,8 +32,11 @@ class LineSegment2 extends Abstract2DShape_1.default {
|
|
32
32
|
get p2() {
|
33
33
|
return this.point2;
|
34
34
|
}
|
35
|
+
get center() {
|
36
|
+
return this.point1.lerp(this.point2, 0.5);
|
37
|
+
}
|
35
38
|
/**
|
36
|
-
* Gets a point a distance `t` along this line.
|
39
|
+
* Gets a point a **distance** `t` along this line.
|
37
40
|
*
|
38
41
|
* @deprecated
|
39
42
|
*/
|
@@ -50,7 +53,31 @@ class LineSegment2 extends Abstract2DShape_1.default {
|
|
50
53
|
at(t) {
|
51
54
|
return this.get(t * this.length);
|
52
55
|
}
|
56
|
+
normalAt(_t) {
|
57
|
+
return this.direction.orthog();
|
58
|
+
}
|
59
|
+
tangentAt(_t) {
|
60
|
+
return this.direction;
|
61
|
+
}
|
62
|
+
splitAt(t) {
|
63
|
+
if (t <= 0 || t >= 1) {
|
64
|
+
return [this];
|
65
|
+
}
|
66
|
+
return [
|
67
|
+
new LineSegment2(this.point1, this.at(t)),
|
68
|
+
new LineSegment2(this.at(t), this.point2),
|
69
|
+
];
|
70
|
+
}
|
71
|
+
/**
|
72
|
+
* Returns the intersection of this with another line segment.
|
73
|
+
*
|
74
|
+
* **WARNING**: The parameter value returned by this method does not range from 0 to 1 and
|
75
|
+
* is currently a length.
|
76
|
+
* This will change in a future release.
|
77
|
+
* @deprecated
|
78
|
+
*/
|
53
79
|
intersection(other) {
|
80
|
+
// TODO(v2.0.0): Make this return a `t` value from `0` to `1`.
|
54
81
|
// We want x₁(t) = x₂(t) and y₁(t) = y₂(t)
|
55
82
|
// Observe that
|
56
83
|
// x = this.point1.x + this.direction.x · t₁
|
@@ -109,10 +136,10 @@ class LineSegment2 extends Abstract2DShape_1.default {
|
|
109
136
|
resultT = (xIntersect - this.point1.x) / this.direction.x;
|
110
137
|
}
|
111
138
|
// Ensure the result is in this/the other segment.
|
112
|
-
const resultToP1 = resultPoint.
|
113
|
-
const resultToP2 = resultPoint.
|
114
|
-
const resultToP3 = resultPoint.
|
115
|
-
const resultToP4 = resultPoint.
|
139
|
+
const resultToP1 = resultPoint.distanceTo(this.point1);
|
140
|
+
const resultToP2 = resultPoint.distanceTo(this.point2);
|
141
|
+
const resultToP3 = resultPoint.distanceTo(other.point1);
|
142
|
+
const resultToP4 = resultPoint.distanceTo(other.point2);
|
116
143
|
if (resultToP1 > this.length
|
117
144
|
|| resultToP2 > this.length
|
118
145
|
|| resultToP3 > other.length
|
@@ -127,6 +154,13 @@ class LineSegment2 extends Abstract2DShape_1.default {
|
|
127
154
|
intersects(other) {
|
128
155
|
return this.intersection(other) !== null;
|
129
156
|
}
|
157
|
+
argIntersectsLineSegment(lineSegment) {
|
158
|
+
const intersection = this.intersection(lineSegment);
|
159
|
+
if (intersection) {
|
160
|
+
return [intersection.t / this.length];
|
161
|
+
}
|
162
|
+
return [];
|
163
|
+
}
|
130
164
|
/**
|
131
165
|
* Returns the points at which this line segment intersects the
|
132
166
|
* given line segment.
|
@@ -144,18 +178,21 @@ class LineSegment2 extends Abstract2DShape_1.default {
|
|
144
178
|
}
|
145
179
|
// Returns the closest point on this to [target]
|
146
180
|
closestPointTo(target) {
|
181
|
+
return this.nearestPointTo(target).point;
|
182
|
+
}
|
183
|
+
nearestPointTo(target) {
|
147
184
|
// Distance from P1 along this' direction.
|
148
185
|
const projectedDistFromP1 = target.minus(this.p1).dot(this.direction);
|
149
186
|
const projectedDistFromP2 = this.length - projectedDistFromP1;
|
150
187
|
const projection = this.p1.plus(this.direction.times(projectedDistFromP1));
|
151
188
|
if (projectedDistFromP1 > 0 && projectedDistFromP1 < this.length) {
|
152
|
-
return projection;
|
189
|
+
return { point: projection, parameterValue: projectedDistFromP1 / this.length };
|
153
190
|
}
|
154
191
|
if (Math.abs(projectedDistFromP2) < Math.abs(projectedDistFromP1)) {
|
155
|
-
return this.p2;
|
192
|
+
return { point: this.p2, parameterValue: 1 };
|
156
193
|
}
|
157
194
|
else {
|
158
|
-
return this.p1;
|
195
|
+
return { point: this.p1, parameterValue: 0 };
|
159
196
|
}
|
160
197
|
}
|
161
198
|
/**
|
@@ -178,6 +215,22 @@ class LineSegment2 extends Abstract2DShape_1.default {
|
|
178
215
|
toString() {
|
179
216
|
return `LineSegment(${this.p1.toString()}, ${this.p2.toString()})`;
|
180
217
|
}
|
218
|
+
/**
|
219
|
+
* Returns `true` iff this is equivalent to `other`.
|
220
|
+
*
|
221
|
+
* **Options**:
|
222
|
+
* - `tolerance`: The maximum difference between endpoints. (Default: 0)
|
223
|
+
* - `ignoreDirection`: Allow matching a version of `this` with opposite direction. (Default: `true`)
|
224
|
+
*/
|
225
|
+
eq(other, options) {
|
226
|
+
if (!(other instanceof LineSegment2)) {
|
227
|
+
return false;
|
228
|
+
}
|
229
|
+
const tolerance = options?.tolerance;
|
230
|
+
const ignoreDirection = options?.ignoreDirection ?? true;
|
231
|
+
return ((other.p1.eq(this.p1, tolerance) && other.p2.eq(this.p2, tolerance))
|
232
|
+
|| (ignoreDirection && other.p1.eq(this.p2, tolerance) && other.p2.eq(this.p1, tolerance)));
|
233
|
+
}
|
181
234
|
}
|
182
235
|
exports.LineSegment2 = LineSegment2;
|
183
236
|
exports.default = LineSegment2;
|
@@ -0,0 +1,31 @@
|
|
1
|
+
import { Point2, Vec2 } from '../Vec2';
|
2
|
+
import Abstract2DShape from './Abstract2DShape';
|
3
|
+
import LineSegment2 from './LineSegment2';
|
4
|
+
/** A 2-dimensional path with parameter interval $t \in [0, 1]$. */
|
5
|
+
export declare abstract class Parameterized2DShape extends Abstract2DShape {
|
6
|
+
/** Returns this at a given parameter. $t \in [0, 1]$ */
|
7
|
+
abstract at(t: number): Point2;
|
8
|
+
/** Computes the unit normal vector at $t$. */
|
9
|
+
abstract normalAt(t: number): Vec2;
|
10
|
+
abstract tangentAt(t: number): Vec2;
|
11
|
+
/**
|
12
|
+
* Divides this shape into two separate shapes at parameter value $t$.
|
13
|
+
*/
|
14
|
+
abstract splitAt(t: number): [Parameterized2DShape] | [Parameterized2DShape, Parameterized2DShape];
|
15
|
+
/**
|
16
|
+
* Returns the nearest point on `this` to `point` and the `parameterValue` at which
|
17
|
+
* that point occurs.
|
18
|
+
*/
|
19
|
+
abstract nearestPointTo(point: Point2): {
|
20
|
+
point: Point2;
|
21
|
+
parameterValue: number;
|
22
|
+
};
|
23
|
+
/**
|
24
|
+
* Returns the **parameter values** at which `lineSegment` intersects this shape.
|
25
|
+
*
|
26
|
+
* See also {@link intersectsLineSegment}
|
27
|
+
*/
|
28
|
+
abstract argIntersectsLineSegment(lineSegment: LineSegment2): number[];
|
29
|
+
intersectsLineSegment(line: LineSegment2): Point2[];
|
30
|
+
}
|
31
|
+
export default Parameterized2DShape;
|
@@ -0,0 +1,15 @@
|
|
1
|
+
"use strict";
|
2
|
+
var __importDefault = (this && this.__importDefault) || function (mod) {
|
3
|
+
return (mod && mod.__esModule) ? mod : { "default": mod };
|
4
|
+
};
|
5
|
+
Object.defineProperty(exports, "__esModule", { value: true });
|
6
|
+
exports.Parameterized2DShape = void 0;
|
7
|
+
const Abstract2DShape_1 = __importDefault(require("./Abstract2DShape"));
|
8
|
+
/** A 2-dimensional path with parameter interval $t \in [0, 1]$. */
|
9
|
+
class Parameterized2DShape extends Abstract2DShape_1.default {
|
10
|
+
intersectsLineSegment(line) {
|
11
|
+
return this.argIntersectsLineSegment(line).map(t => this.at(t));
|
12
|
+
}
|
13
|
+
}
|
14
|
+
exports.Parameterized2DShape = Parameterized2DShape;
|
15
|
+
exports.default = Parameterized2DShape;
|