@js-draw/math 1.16.0 → 1.17.0
Sign up to get free protection for your applications and to get access to all the features.
- package/dist/cjs/Vec3.d.ts +21 -0
- package/dist/cjs/Vec3.js +28 -0
- package/dist/cjs/lib.d.ts +1 -1
- package/dist/cjs/shapes/Abstract2DShape.d.ts +3 -0
- package/dist/cjs/shapes/BezierJSWrapper.d.ts +15 -5
- package/dist/cjs/shapes/BezierJSWrapper.js +135 -18
- package/dist/cjs/shapes/LineSegment2.d.ts +34 -5
- package/dist/cjs/shapes/LineSegment2.js +63 -10
- package/dist/cjs/shapes/Parameterized2DShape.d.ts +31 -0
- package/dist/cjs/shapes/Parameterized2DShape.js +15 -0
- package/dist/cjs/shapes/Path.d.ts +40 -6
- package/dist/cjs/shapes/Path.js +173 -15
- package/dist/cjs/shapes/PointShape2D.d.ts +14 -3
- package/dist/cjs/shapes/PointShape2D.js +28 -5
- package/dist/cjs/shapes/QuadraticBezier.d.ts +4 -0
- package/dist/cjs/shapes/QuadraticBezier.js +19 -4
- package/dist/cjs/shapes/Rect2.d.ts +3 -0
- package/dist/cjs/shapes/Rect2.js +4 -1
- package/dist/mjs/Vec3.d.ts +21 -0
- package/dist/mjs/Vec3.mjs +28 -0
- package/dist/mjs/lib.d.ts +1 -1
- package/dist/mjs/shapes/Abstract2DShape.d.ts +3 -0
- package/dist/mjs/shapes/BezierJSWrapper.d.ts +15 -5
- package/dist/mjs/shapes/BezierJSWrapper.mjs +133 -18
- package/dist/mjs/shapes/LineSegment2.d.ts +34 -5
- package/dist/mjs/shapes/LineSegment2.mjs +63 -10
- package/dist/mjs/shapes/Parameterized2DShape.d.ts +31 -0
- package/dist/mjs/shapes/Parameterized2DShape.mjs +8 -0
- package/dist/mjs/shapes/Path.d.ts +40 -6
- package/dist/mjs/shapes/Path.mjs +173 -15
- package/dist/mjs/shapes/PointShape2D.d.ts +14 -3
- package/dist/mjs/shapes/PointShape2D.mjs +28 -5
- package/dist/mjs/shapes/QuadraticBezier.d.ts +4 -0
- package/dist/mjs/shapes/QuadraticBezier.mjs +19 -4
- package/dist/mjs/shapes/Rect2.d.ts +3 -0
- package/dist/mjs/shapes/Rect2.mjs +4 -1
- package/package.json +5 -5
- package/src/Vec3.test.ts +26 -7
- package/src/Vec3.ts +30 -0
- package/src/lib.ts +2 -0
- package/src/shapes/Abstract2DShape.ts +3 -0
- package/src/shapes/BezierJSWrapper.ts +154 -14
- package/src/shapes/LineSegment2.test.ts +35 -1
- package/src/shapes/LineSegment2.ts +79 -11
- package/src/shapes/Parameterized2DShape.ts +39 -0
- package/src/shapes/Path.test.ts +63 -3
- package/src/shapes/Path.ts +209 -25
- package/src/shapes/PointShape2D.ts +33 -6
- package/src/shapes/QuadraticBezier.test.ts +48 -12
- package/src/shapes/QuadraticBezier.ts +23 -5
- package/src/shapes/Rect2.ts +4 -1
package/dist/cjs/Vec3.d.ts
CHANGED
@@ -35,11 +35,31 @@ export declare class Vec3 {
|
|
35
35
|
length(): number;
|
36
36
|
magnitude(): number;
|
37
37
|
magnitudeSquared(): number;
|
38
|
+
/**
|
39
|
+
* Interpreting this vector as a point in ℝ^3, computes the square distance
|
40
|
+
* to another point, `p`.
|
41
|
+
*
|
42
|
+
* Equivalent to `.minus(p).magnitudeSquared()`.
|
43
|
+
*/
|
44
|
+
squareDistanceTo(p: Vec3): number;
|
45
|
+
/**
|
46
|
+
* Interpreting this vector as a point in ℝ³, returns the distance to the point
|
47
|
+
* `p`.
|
48
|
+
*
|
49
|
+
* Equivalent to `.minus(p).magnitude()`.
|
50
|
+
*/
|
51
|
+
distanceTo(p: Vec3): number;
|
38
52
|
/**
|
39
53
|
* Returns the entry of this with the greatest magnitude.
|
40
54
|
*
|
41
55
|
* In other words, returns $\max \{ |x| : x \in {\bf v} \}$, where ${\bf v}$ is the set of
|
42
56
|
* all entries of this vector.
|
57
|
+
*
|
58
|
+
* **Example**:
|
59
|
+
* ```ts,runnable,console
|
60
|
+
* import { Vec3 } from '@js-draw/math';
|
61
|
+
* console.log(Vec3.of(-1, -10, 8).maximumEntryMagnitude()); // -> 10
|
62
|
+
* ```
|
43
63
|
*/
|
44
64
|
maximumEntryMagnitude(): number;
|
45
65
|
/**
|
@@ -50,6 +70,7 @@ export declare class Vec3 {
|
|
50
70
|
* As such, observing that `Math.atan2(-0, -1)` $\approx -\pi$ and `Math.atan2(0, -1)`$\approx \pi$
|
51
71
|
* the resultant angle is in the range $[-\pi, pi]$.
|
52
72
|
*
|
73
|
+
* **Example**:
|
53
74
|
* ```ts,runnable,console
|
54
75
|
* import { Vec2 } from '@js-draw/math';
|
55
76
|
* console.log(Vec2.of(-1, -0).angle()); // atan2(-0, -1)
|
package/dist/cjs/Vec3.js
CHANGED
@@ -58,11 +58,38 @@ class Vec3 {
|
|
58
58
|
magnitudeSquared() {
|
59
59
|
return this.dot(this);
|
60
60
|
}
|
61
|
+
/**
|
62
|
+
* Interpreting this vector as a point in ℝ^3, computes the square distance
|
63
|
+
* to another point, `p`.
|
64
|
+
*
|
65
|
+
* Equivalent to `.minus(p).magnitudeSquared()`.
|
66
|
+
*/
|
67
|
+
squareDistanceTo(p) {
|
68
|
+
const dx = this.x - p.x;
|
69
|
+
const dy = this.y - p.y;
|
70
|
+
const dz = this.z - p.z;
|
71
|
+
return dx * dx + dy * dy + dz * dz;
|
72
|
+
}
|
73
|
+
/**
|
74
|
+
* Interpreting this vector as a point in ℝ³, returns the distance to the point
|
75
|
+
* `p`.
|
76
|
+
*
|
77
|
+
* Equivalent to `.minus(p).magnitude()`.
|
78
|
+
*/
|
79
|
+
distanceTo(p) {
|
80
|
+
return Math.sqrt(this.squareDistanceTo(p));
|
81
|
+
}
|
61
82
|
/**
|
62
83
|
* Returns the entry of this with the greatest magnitude.
|
63
84
|
*
|
64
85
|
* In other words, returns $\max \{ |x| : x \in {\bf v} \}$, where ${\bf v}$ is the set of
|
65
86
|
* all entries of this vector.
|
87
|
+
*
|
88
|
+
* **Example**:
|
89
|
+
* ```ts,runnable,console
|
90
|
+
* import { Vec3 } from '@js-draw/math';
|
91
|
+
* console.log(Vec3.of(-1, -10, 8).maximumEntryMagnitude()); // -> 10
|
92
|
+
* ```
|
66
93
|
*/
|
67
94
|
maximumEntryMagnitude() {
|
68
95
|
return Math.max(Math.abs(this.x), Math.max(Math.abs(this.y), Math.abs(this.z)));
|
@@ -75,6 +102,7 @@ class Vec3 {
|
|
75
102
|
* As such, observing that `Math.atan2(-0, -1)` $\approx -\pi$ and `Math.atan2(0, -1)`$\approx \pi$
|
76
103
|
* the resultant angle is in the range $[-\pi, pi]$.
|
77
104
|
*
|
105
|
+
* **Example**:
|
78
106
|
* ```ts,runnable,console
|
79
107
|
* import { Vec2 } from '@js-draw/math';
|
80
108
|
* console.log(Vec2.of(-1, -0).angle()); // atan2(-0, -1)
|
package/dist/cjs/lib.d.ts
CHANGED
@@ -17,7 +17,7 @@
|
|
17
17
|
* @packageDocumentation
|
18
18
|
*/
|
19
19
|
export { LineSegment2 } from './shapes/LineSegment2';
|
20
|
-
export { Path, PathCommandType, PathCommand, LinePathCommand, MoveToPathCommand, QuadraticBezierPathCommand, CubicBezierPathCommand, } from './shapes/Path';
|
20
|
+
export { Path, IntersectionResult as PathIntersectionResult, CurveIndexRecord as PathCurveIndex, PathCommandType, PathCommand, LinePathCommand, MoveToPathCommand, QuadraticBezierPathCommand, CubicBezierPathCommand, } from './shapes/Path';
|
21
21
|
export { Rect2 } from './shapes/Rect2';
|
22
22
|
export { QuadraticBezier } from './shapes/QuadraticBezier';
|
23
23
|
export { Abstract2DShape } from './shapes/Abstract2DShape';
|
@@ -38,6 +38,9 @@ export declare abstract class Abstract2DShape {
|
|
38
38
|
containsPoint(point: Point2, epsilon?: number): boolean;
|
39
39
|
/**
|
40
40
|
* Returns a bounding box that precisely fits the content of this shape.
|
41
|
+
*
|
42
|
+
* **Note**: This bounding box should aligned with the x/y axes. (Thus, it may be
|
43
|
+
* possible to find a tighter bounding box not axes-aligned).
|
41
44
|
*/
|
42
45
|
abstract getTightBoundingBox(): Rect2;
|
43
46
|
/**
|
@@ -1,21 +1,22 @@
|
|
1
1
|
import { Bezier } from 'bezier-js';
|
2
2
|
import { Point2, Vec2 } from '../Vec2';
|
3
|
-
import Abstract2DShape from './Abstract2DShape';
|
4
3
|
import LineSegment2 from './LineSegment2';
|
5
4
|
import Rect2 from './Rect2';
|
5
|
+
import Parameterized2DShape from './Parameterized2DShape';
|
6
6
|
/**
|
7
7
|
* A lazy-initializing wrapper around Bezier-js.
|
8
8
|
*
|
9
9
|
* Subclasses may override `at`, `derivativeAt`, and `normal` with functions
|
10
10
|
* that do not initialize a `bezier-js` `Bezier`.
|
11
11
|
*
|
12
|
-
* Do not use this class directly
|
12
|
+
* **Do not use this class directly.** It may be removed/replaced in a future release.
|
13
13
|
* @internal
|
14
14
|
*/
|
15
|
-
declare abstract class BezierJSWrapper extends
|
15
|
+
export declare abstract class BezierJSWrapper extends Parameterized2DShape {
|
16
16
|
#private;
|
17
|
+
protected constructor(bezierJsBezier?: Bezier);
|
17
18
|
/** Returns the start, control points, and end point of this Bézier. */
|
18
|
-
abstract getPoints(): Point2[];
|
19
|
+
abstract getPoints(): readonly Point2[];
|
19
20
|
protected getBezier(): Bezier;
|
20
21
|
signedDistance(point: Point2): number;
|
21
22
|
/**
|
@@ -29,8 +30,17 @@ declare abstract class BezierJSWrapper extends Abstract2DShape {
|
|
29
30
|
*/
|
30
31
|
at(t: number): Point2;
|
31
32
|
derivativeAt(t: number): Point2;
|
33
|
+
secondDerivativeAt(t: number): Point2;
|
32
34
|
normal(t: number): Vec2;
|
35
|
+
normalAt(t: number): Vec2;
|
36
|
+
tangentAt(t: number): Vec2;
|
33
37
|
getTightBoundingBox(): Rect2;
|
34
|
-
|
38
|
+
argIntersectsLineSegment(line: LineSegment2): number[];
|
39
|
+
splitAt(t: number): [BezierJSWrapper] | [BezierJSWrapper, BezierJSWrapper];
|
40
|
+
nearestPointTo(point: Point2): {
|
41
|
+
parameterValue: number;
|
42
|
+
point: import("../Vec3").Vec3;
|
43
|
+
};
|
44
|
+
toString(): string;
|
35
45
|
}
|
36
46
|
export default BezierJSWrapper;
|
@@ -1,37 +1,41 @@
|
|
1
1
|
"use strict";
|
2
|
-
var __classPrivateFieldGet = (this && this.__classPrivateFieldGet) || function (receiver, state, kind, f) {
|
3
|
-
if (kind === "a" && !f) throw new TypeError("Private accessor was defined without a getter");
|
4
|
-
if (typeof state === "function" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError("Cannot read private member from an object whose class did not declare it");
|
5
|
-
return kind === "m" ? f : kind === "a" ? f.call(receiver) : f ? f.value : state.get(receiver);
|
6
|
-
};
|
7
2
|
var __classPrivateFieldSet = (this && this.__classPrivateFieldSet) || function (receiver, state, value, kind, f) {
|
8
3
|
if (kind === "m") throw new TypeError("Private method is not writable");
|
9
4
|
if (kind === "a" && !f) throw new TypeError("Private accessor was defined without a setter");
|
10
5
|
if (typeof state === "function" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError("Cannot write private member to an object whose class did not declare it");
|
11
6
|
return (kind === "a" ? f.call(receiver, value) : f ? f.value = value : state.set(receiver, value)), value;
|
12
7
|
};
|
8
|
+
var __classPrivateFieldGet = (this && this.__classPrivateFieldGet) || function (receiver, state, kind, f) {
|
9
|
+
if (kind === "a" && !f) throw new TypeError("Private accessor was defined without a getter");
|
10
|
+
if (typeof state === "function" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError("Cannot read private member from an object whose class did not declare it");
|
11
|
+
return kind === "m" ? f : kind === "a" ? f.call(receiver) : f ? f.value : state.get(receiver);
|
12
|
+
};
|
13
13
|
var __importDefault = (this && this.__importDefault) || function (mod) {
|
14
14
|
return (mod && mod.__esModule) ? mod : { "default": mod };
|
15
15
|
};
|
16
16
|
var _BezierJSWrapper_bezierJs;
|
17
17
|
Object.defineProperty(exports, "__esModule", { value: true });
|
18
|
+
exports.BezierJSWrapper = void 0;
|
18
19
|
const bezier_js_1 = require("bezier-js");
|
19
20
|
const Vec2_1 = require("../Vec2");
|
20
|
-
const Abstract2DShape_1 = __importDefault(require("./Abstract2DShape"));
|
21
21
|
const Rect2_1 = __importDefault(require("./Rect2"));
|
22
|
+
const Parameterized2DShape_1 = __importDefault(require("./Parameterized2DShape"));
|
22
23
|
/**
|
23
24
|
* A lazy-initializing wrapper around Bezier-js.
|
24
25
|
*
|
25
26
|
* Subclasses may override `at`, `derivativeAt`, and `normal` with functions
|
26
27
|
* that do not initialize a `bezier-js` `Bezier`.
|
27
28
|
*
|
28
|
-
* Do not use this class directly
|
29
|
+
* **Do not use this class directly.** It may be removed/replaced in a future release.
|
29
30
|
* @internal
|
30
31
|
*/
|
31
|
-
class BezierJSWrapper extends
|
32
|
-
constructor() {
|
33
|
-
super(
|
32
|
+
class BezierJSWrapper extends Parameterized2DShape_1.default {
|
33
|
+
constructor(bezierJsBezier) {
|
34
|
+
super();
|
34
35
|
_BezierJSWrapper_bezierJs.set(this, null);
|
36
|
+
if (bezierJsBezier) {
|
37
|
+
__classPrivateFieldSet(this, _BezierJSWrapper_bezierJs, bezierJsBezier, "f");
|
38
|
+
}
|
35
39
|
}
|
36
40
|
getBezier() {
|
37
41
|
if (!__classPrivateFieldGet(this, _BezierJSWrapper_bezierJs, "f")) {
|
@@ -41,7 +45,7 @@ class BezierJSWrapper extends Abstract2DShape_1.default {
|
|
41
45
|
}
|
42
46
|
signedDistance(point) {
|
43
47
|
// .d: Distance
|
44
|
-
return this.
|
48
|
+
return this.nearestPointTo(point).point.distanceTo(point);
|
45
49
|
}
|
46
50
|
/**
|
47
51
|
* @returns the (more) exact distance from `point` to this.
|
@@ -61,34 +65,147 @@ class BezierJSWrapper extends Abstract2DShape_1.default {
|
|
61
65
|
derivativeAt(t) {
|
62
66
|
return Vec2_1.Vec2.ofXY(this.getBezier().derivative(t));
|
63
67
|
}
|
68
|
+
secondDerivativeAt(t) {
|
69
|
+
return Vec2_1.Vec2.ofXY(this.getBezier().dderivative(t));
|
70
|
+
}
|
64
71
|
normal(t) {
|
65
72
|
return Vec2_1.Vec2.ofXY(this.getBezier().normal(t));
|
66
73
|
}
|
74
|
+
normalAt(t) {
|
75
|
+
return this.normal(t);
|
76
|
+
}
|
77
|
+
tangentAt(t) {
|
78
|
+
return this.derivativeAt(t).normalized();
|
79
|
+
}
|
67
80
|
getTightBoundingBox() {
|
68
81
|
const bbox = this.getBezier().bbox();
|
69
82
|
const width = bbox.x.max - bbox.x.min;
|
70
83
|
const height = bbox.y.max - bbox.y.min;
|
71
84
|
return new Rect2_1.default(bbox.x.min, bbox.y.min, width, height);
|
72
85
|
}
|
73
|
-
|
86
|
+
argIntersectsLineSegment(line) {
|
74
87
|
const bezier = this.getBezier();
|
75
|
-
|
88
|
+
return bezier.intersects(line).map(t => {
|
76
89
|
// We're using the .intersects(line) function, which is documented
|
77
90
|
// to always return numbers. However, to satisfy the type checker (and
|
78
91
|
// possibly improperly-defined types),
|
79
92
|
if (typeof t === 'string') {
|
80
93
|
t = parseFloat(t);
|
81
94
|
}
|
82
|
-
const point = Vec2_1.Vec2.ofXY(
|
95
|
+
const point = Vec2_1.Vec2.ofXY(this.at(t));
|
83
96
|
// Ensure that the intersection is on the line segment
|
84
|
-
if (point.
|
85
|
-
|| point.
|
97
|
+
if (point.distanceTo(line.p1) > line.length
|
98
|
+
|| point.distanceTo(line.p2) > line.length) {
|
86
99
|
return null;
|
87
100
|
}
|
88
|
-
return
|
101
|
+
return t;
|
89
102
|
}).filter(entry => entry !== null);
|
90
|
-
|
103
|
+
}
|
104
|
+
splitAt(t) {
|
105
|
+
if (t <= 0 || t >= 1) {
|
106
|
+
return [this];
|
107
|
+
}
|
108
|
+
const bezier = this.getBezier();
|
109
|
+
const split = bezier.split(t);
|
110
|
+
return [
|
111
|
+
new BezierJSWrapperImpl(split.left.points.map(point => Vec2_1.Vec2.ofXY(point)), split.left),
|
112
|
+
new BezierJSWrapperImpl(split.right.points.map(point => Vec2_1.Vec2.ofXY(point)), split.right),
|
113
|
+
];
|
114
|
+
}
|
115
|
+
nearestPointTo(point) {
|
116
|
+
// One implementation could be similar to this:
|
117
|
+
// const projection = this.getBezier().project(point);
|
118
|
+
// return {
|
119
|
+
// point: Vec2.ofXY(projection),
|
120
|
+
// parameterValue: projection.t!,
|
121
|
+
// };
|
122
|
+
// However, Bezier-js is rather impercise (and relies on a lookup table).
|
123
|
+
// Thus, we instead use Newton's Method:
|
124
|
+
// We want to find t such that f(t) = |B(t) - p|² is minimized.
|
125
|
+
// Expanding,
|
126
|
+
// f(t) = (Bₓ(t) - pₓ)² + (Bᵧ(t) - pᵧ)²
|
127
|
+
// ⇒ f'(t) = Dₜ(Bₓ(t) - pₓ)² + Dₜ(Bᵧ(t) - pᵧ)²
|
128
|
+
// ⇒ f'(t) = 2(Bₓ(t) - pₓ)(Bₓ'(t)) + 2(Bᵧ(t) - pᵧ)(Bᵧ'(t))
|
129
|
+
// = 2Bₓ(t)Bₓ'(t) - 2pₓBₓ'(t) + 2Bᵧ(t)Bᵧ'(t) - 2pᵧBᵧ'(t)
|
130
|
+
// ⇒ f''(t)= 2Bₓ'(t)Bₓ'(t) + 2Bₓ(t)Bₓ''(t) - 2pₓBₓ''(t) + 2Bᵧ'(t)Bᵧ'(t)
|
131
|
+
// + 2Bᵧ(t)Bᵧ''(t) - 2pᵧBᵧ''(t)
|
132
|
+
// Because f'(t) = 0 at relative extrema, we can use Newton's Method
|
133
|
+
// to improve on an initial guess.
|
134
|
+
const sqrDistAt = (t) => point.squareDistanceTo(this.at(t));
|
135
|
+
const yIntercept = sqrDistAt(0);
|
136
|
+
let t = 0;
|
137
|
+
let minSqrDist = yIntercept;
|
138
|
+
// Start by testing a few points:
|
139
|
+
const pointsToTest = 4;
|
140
|
+
for (let i = 0; i < pointsToTest; i++) {
|
141
|
+
const testT = i / (pointsToTest - 1);
|
142
|
+
const testMinSqrDist = sqrDistAt(testT);
|
143
|
+
if (testMinSqrDist < minSqrDist) {
|
144
|
+
t = testT;
|
145
|
+
minSqrDist = testMinSqrDist;
|
146
|
+
}
|
147
|
+
}
|
148
|
+
// To use Newton's Method, we need to evaluate the second derivative of the distance
|
149
|
+
// function:
|
150
|
+
const secondDerivativeAt = (t) => {
|
151
|
+
// f''(t) = 2Bₓ'(t)Bₓ'(t) + 2Bₓ(t)Bₓ''(t) - 2pₓBₓ''(t)
|
152
|
+
// + 2Bᵧ'(t)Bᵧ'(t) + 2Bᵧ(t)Bᵧ''(t) - 2pᵧBᵧ''(t)
|
153
|
+
const b = this.at(t);
|
154
|
+
const bPrime = this.derivativeAt(t);
|
155
|
+
const bPrimePrime = this.secondDerivativeAt(t);
|
156
|
+
return (2 * bPrime.x * bPrime.x + 2 * b.x * bPrimePrime.x - 2 * point.x * bPrimePrime.x
|
157
|
+
+ 2 * bPrime.y * bPrime.y + 2 * b.y * bPrimePrime.y - 2 * point.y * bPrimePrime.y);
|
158
|
+
};
|
159
|
+
// Because we're zeroing f'(t), we also need to be able to compute it:
|
160
|
+
const derivativeAt = (t) => {
|
161
|
+
// f'(t) = 2Bₓ(t)Bₓ'(t) - 2pₓBₓ'(t) + 2Bᵧ(t)Bᵧ'(t) - 2pᵧBᵧ'(t)
|
162
|
+
const b = this.at(t);
|
163
|
+
const bPrime = this.derivativeAt(t);
|
164
|
+
return (2 * b.x * bPrime.x - 2 * point.x * bPrime.x
|
165
|
+
+ 2 * b.y * bPrime.y - 2 * point.y * bPrime.y);
|
166
|
+
};
|
167
|
+
const iterate = () => {
|
168
|
+
const slope = secondDerivativeAt(t);
|
169
|
+
// We intersect a line through the point on f'(t) at t with the x-axis:
|
170
|
+
// y = m(x - x₀) + y₀
|
171
|
+
// ⇒ x - x₀ = (y - y₀) / m
|
172
|
+
// ⇒ x = (y - y₀) / m + x₀
|
173
|
+
//
|
174
|
+
// Thus, when zeroed,
|
175
|
+
// tN = (0 - f'(t)) / m + t
|
176
|
+
const newT = (0 - derivativeAt(t)) / slope + t;
|
177
|
+
//const distDiff = sqrDistAt(newT) - sqrDistAt(t);
|
178
|
+
//console.assert(distDiff <= 0, `${-distDiff} >= 0`);
|
179
|
+
t = newT;
|
180
|
+
if (t > 1) {
|
181
|
+
t = 1;
|
182
|
+
}
|
183
|
+
else if (t < 0) {
|
184
|
+
t = 0;
|
185
|
+
}
|
186
|
+
};
|
187
|
+
for (let i = 0; i < 12; i++) {
|
188
|
+
iterate();
|
189
|
+
}
|
190
|
+
return { parameterValue: t, point: this.at(t) };
|
191
|
+
}
|
192
|
+
toString() {
|
193
|
+
return `Bézier(${this.getPoints().map(point => point.toString()).join(', ')})`;
|
91
194
|
}
|
92
195
|
}
|
196
|
+
exports.BezierJSWrapper = BezierJSWrapper;
|
93
197
|
_BezierJSWrapper_bezierJs = new WeakMap();
|
198
|
+
/**
|
199
|
+
* Private concrete implementation of `BezierJSWrapper`, used by methods above that need to return a wrapper
|
200
|
+
* around a `Bezier`.
|
201
|
+
*/
|
202
|
+
class BezierJSWrapperImpl extends BezierJSWrapper {
|
203
|
+
constructor(controlPoints, curve) {
|
204
|
+
super(curve);
|
205
|
+
this.controlPoints = controlPoints;
|
206
|
+
}
|
207
|
+
getPoints() {
|
208
|
+
return this.controlPoints;
|
209
|
+
}
|
210
|
+
}
|
94
211
|
exports.default = BezierJSWrapper;
|
@@ -1,13 +1,14 @@
|
|
1
1
|
import Mat33 from '../Mat33';
|
2
2
|
import Rect2 from './Rect2';
|
3
3
|
import { Vec2, Point2 } from '../Vec2';
|
4
|
-
import
|
4
|
+
import Parameterized2DShape from './Parameterized2DShape';
|
5
|
+
import Vec3 from '../Vec3';
|
5
6
|
interface IntersectionResult {
|
6
7
|
point: Point2;
|
7
8
|
t: number;
|
8
9
|
}
|
9
10
|
/** Represents a line segment. A `LineSegment2` is immutable. */
|
10
|
-
export declare class LineSegment2 extends
|
11
|
+
export declare class LineSegment2 extends Parameterized2DShape {
|
11
12
|
private readonly point1;
|
12
13
|
private readonly point2;
|
13
14
|
/**
|
@@ -28,8 +29,9 @@ export declare class LineSegment2 extends Abstract2DShape {
|
|
28
29
|
get p1(): Point2;
|
29
30
|
/** Alias for `point2`. */
|
30
31
|
get p2(): Point2;
|
32
|
+
get center(): Point2;
|
31
33
|
/**
|
32
|
-
* Gets a point a distance `t` along this line.
|
34
|
+
* Gets a point a **distance** `t` along this line.
|
33
35
|
*
|
34
36
|
* @deprecated
|
35
37
|
*/
|
@@ -42,8 +44,20 @@ export declare class LineSegment2 extends Abstract2DShape {
|
|
42
44
|
* `t` should be in `[0, 1]`.
|
43
45
|
*/
|
44
46
|
at(t: number): Point2;
|
47
|
+
normalAt(_t: number): Vec2;
|
48
|
+
tangentAt(_t: number): Vec3;
|
49
|
+
splitAt(t: number): [LineSegment2] | [LineSegment2, LineSegment2];
|
50
|
+
/**
|
51
|
+
* Returns the intersection of this with another line segment.
|
52
|
+
*
|
53
|
+
* **WARNING**: The parameter value returned by this method does not range from 0 to 1 and
|
54
|
+
* is currently a length.
|
55
|
+
* This will change in a future release.
|
56
|
+
* @deprecated
|
57
|
+
*/
|
45
58
|
intersection(other: LineSegment2): IntersectionResult | null;
|
46
59
|
intersects(other: LineSegment2): boolean;
|
60
|
+
argIntersectsLineSegment(lineSegment: LineSegment2): number[];
|
47
61
|
/**
|
48
62
|
* Returns the points at which this line segment intersects the
|
49
63
|
* given line segment.
|
@@ -52,8 +66,12 @@ export declare class LineSegment2 extends Abstract2DShape {
|
|
52
66
|
* line segment. This method, by contrast, returns **the point** at which the intersection
|
53
67
|
* occurs, if such a point exists.
|
54
68
|
*/
|
55
|
-
intersectsLineSegment(lineSegment: LineSegment2):
|
56
|
-
closestPointTo(target: Point2):
|
69
|
+
intersectsLineSegment(lineSegment: LineSegment2): Vec3[];
|
70
|
+
closestPointTo(target: Point2): Vec3;
|
71
|
+
nearestPointTo(target: Vec3): {
|
72
|
+
point: Vec3;
|
73
|
+
parameterValue: number;
|
74
|
+
};
|
57
75
|
/**
|
58
76
|
* Returns the distance from this line segment to `target`.
|
59
77
|
*
|
@@ -66,5 +84,16 @@ export declare class LineSegment2 extends Abstract2DShape {
|
|
66
84
|
/** @inheritdoc */
|
67
85
|
getTightBoundingBox(): Rect2;
|
68
86
|
toString(): string;
|
87
|
+
/**
|
88
|
+
* Returns `true` iff this is equivalent to `other`.
|
89
|
+
*
|
90
|
+
* **Options**:
|
91
|
+
* - `tolerance`: The maximum difference between endpoints. (Default: 0)
|
92
|
+
* - `ignoreDirection`: Allow matching a version of `this` with opposite direction. (Default: `true`)
|
93
|
+
*/
|
94
|
+
eq(other: LineSegment2, options?: {
|
95
|
+
tolerance?: number;
|
96
|
+
ignoreDirection?: boolean;
|
97
|
+
}): boolean;
|
69
98
|
}
|
70
99
|
export default LineSegment2;
|
@@ -6,9 +6,9 @@ Object.defineProperty(exports, "__esModule", { value: true });
|
|
6
6
|
exports.LineSegment2 = void 0;
|
7
7
|
const Rect2_1 = __importDefault(require("./Rect2"));
|
8
8
|
const Vec2_1 = require("../Vec2");
|
9
|
-
const
|
9
|
+
const Parameterized2DShape_1 = __importDefault(require("./Parameterized2DShape"));
|
10
10
|
/** Represents a line segment. A `LineSegment2` is immutable. */
|
11
|
-
class LineSegment2 extends
|
11
|
+
class LineSegment2 extends Parameterized2DShape_1.default {
|
12
12
|
/** Creates a new `LineSegment2` from its endpoints. */
|
13
13
|
constructor(point1, point2) {
|
14
14
|
super();
|
@@ -32,8 +32,11 @@ class LineSegment2 extends Abstract2DShape_1.default {
|
|
32
32
|
get p2() {
|
33
33
|
return this.point2;
|
34
34
|
}
|
35
|
+
get center() {
|
36
|
+
return this.point1.lerp(this.point2, 0.5);
|
37
|
+
}
|
35
38
|
/**
|
36
|
-
* Gets a point a distance `t` along this line.
|
39
|
+
* Gets a point a **distance** `t` along this line.
|
37
40
|
*
|
38
41
|
* @deprecated
|
39
42
|
*/
|
@@ -50,7 +53,31 @@ class LineSegment2 extends Abstract2DShape_1.default {
|
|
50
53
|
at(t) {
|
51
54
|
return this.get(t * this.length);
|
52
55
|
}
|
56
|
+
normalAt(_t) {
|
57
|
+
return this.direction.orthog();
|
58
|
+
}
|
59
|
+
tangentAt(_t) {
|
60
|
+
return this.direction;
|
61
|
+
}
|
62
|
+
splitAt(t) {
|
63
|
+
if (t <= 0 || t >= 1) {
|
64
|
+
return [this];
|
65
|
+
}
|
66
|
+
return [
|
67
|
+
new LineSegment2(this.point1, this.at(t)),
|
68
|
+
new LineSegment2(this.at(t), this.point2),
|
69
|
+
];
|
70
|
+
}
|
71
|
+
/**
|
72
|
+
* Returns the intersection of this with another line segment.
|
73
|
+
*
|
74
|
+
* **WARNING**: The parameter value returned by this method does not range from 0 to 1 and
|
75
|
+
* is currently a length.
|
76
|
+
* This will change in a future release.
|
77
|
+
* @deprecated
|
78
|
+
*/
|
53
79
|
intersection(other) {
|
80
|
+
// TODO(v2.0.0): Make this return a `t` value from `0` to `1`.
|
54
81
|
// We want x₁(t) = x₂(t) and y₁(t) = y₂(t)
|
55
82
|
// Observe that
|
56
83
|
// x = this.point1.x + this.direction.x · t₁
|
@@ -109,10 +136,10 @@ class LineSegment2 extends Abstract2DShape_1.default {
|
|
109
136
|
resultT = (xIntersect - this.point1.x) / this.direction.x;
|
110
137
|
}
|
111
138
|
// Ensure the result is in this/the other segment.
|
112
|
-
const resultToP1 = resultPoint.
|
113
|
-
const resultToP2 = resultPoint.
|
114
|
-
const resultToP3 = resultPoint.
|
115
|
-
const resultToP4 = resultPoint.
|
139
|
+
const resultToP1 = resultPoint.distanceTo(this.point1);
|
140
|
+
const resultToP2 = resultPoint.distanceTo(this.point2);
|
141
|
+
const resultToP3 = resultPoint.distanceTo(other.point1);
|
142
|
+
const resultToP4 = resultPoint.distanceTo(other.point2);
|
116
143
|
if (resultToP1 > this.length
|
117
144
|
|| resultToP2 > this.length
|
118
145
|
|| resultToP3 > other.length
|
@@ -127,6 +154,13 @@ class LineSegment2 extends Abstract2DShape_1.default {
|
|
127
154
|
intersects(other) {
|
128
155
|
return this.intersection(other) !== null;
|
129
156
|
}
|
157
|
+
argIntersectsLineSegment(lineSegment) {
|
158
|
+
const intersection = this.intersection(lineSegment);
|
159
|
+
if (intersection) {
|
160
|
+
return [intersection.t / this.length];
|
161
|
+
}
|
162
|
+
return [];
|
163
|
+
}
|
130
164
|
/**
|
131
165
|
* Returns the points at which this line segment intersects the
|
132
166
|
* given line segment.
|
@@ -144,18 +178,21 @@ class LineSegment2 extends Abstract2DShape_1.default {
|
|
144
178
|
}
|
145
179
|
// Returns the closest point on this to [target]
|
146
180
|
closestPointTo(target) {
|
181
|
+
return this.nearestPointTo(target).point;
|
182
|
+
}
|
183
|
+
nearestPointTo(target) {
|
147
184
|
// Distance from P1 along this' direction.
|
148
185
|
const projectedDistFromP1 = target.minus(this.p1).dot(this.direction);
|
149
186
|
const projectedDistFromP2 = this.length - projectedDistFromP1;
|
150
187
|
const projection = this.p1.plus(this.direction.times(projectedDistFromP1));
|
151
188
|
if (projectedDistFromP1 > 0 && projectedDistFromP1 < this.length) {
|
152
|
-
return projection;
|
189
|
+
return { point: projection, parameterValue: projectedDistFromP1 / this.length };
|
153
190
|
}
|
154
191
|
if (Math.abs(projectedDistFromP2) < Math.abs(projectedDistFromP1)) {
|
155
|
-
return this.p2;
|
192
|
+
return { point: this.p2, parameterValue: 1 };
|
156
193
|
}
|
157
194
|
else {
|
158
|
-
return this.p1;
|
195
|
+
return { point: this.p1, parameterValue: 0 };
|
159
196
|
}
|
160
197
|
}
|
161
198
|
/**
|
@@ -178,6 +215,22 @@ class LineSegment2 extends Abstract2DShape_1.default {
|
|
178
215
|
toString() {
|
179
216
|
return `LineSegment(${this.p1.toString()}, ${this.p2.toString()})`;
|
180
217
|
}
|
218
|
+
/**
|
219
|
+
* Returns `true` iff this is equivalent to `other`.
|
220
|
+
*
|
221
|
+
* **Options**:
|
222
|
+
* - `tolerance`: The maximum difference between endpoints. (Default: 0)
|
223
|
+
* - `ignoreDirection`: Allow matching a version of `this` with opposite direction. (Default: `true`)
|
224
|
+
*/
|
225
|
+
eq(other, options) {
|
226
|
+
if (!(other instanceof LineSegment2)) {
|
227
|
+
return false;
|
228
|
+
}
|
229
|
+
const tolerance = options?.tolerance;
|
230
|
+
const ignoreDirection = options?.ignoreDirection ?? true;
|
231
|
+
return ((other.p1.eq(this.p1, tolerance) && other.p2.eq(this.p2, tolerance))
|
232
|
+
|| (ignoreDirection && other.p1.eq(this.p2, tolerance) && other.p2.eq(this.p1, tolerance)));
|
233
|
+
}
|
181
234
|
}
|
182
235
|
exports.LineSegment2 = LineSegment2;
|
183
236
|
exports.default = LineSegment2;
|
@@ -0,0 +1,31 @@
|
|
1
|
+
import { Point2, Vec2 } from '../Vec2';
|
2
|
+
import Abstract2DShape from './Abstract2DShape';
|
3
|
+
import LineSegment2 from './LineSegment2';
|
4
|
+
/** A 2-dimensional path with parameter interval $t \in [0, 1]$. */
|
5
|
+
export declare abstract class Parameterized2DShape extends Abstract2DShape {
|
6
|
+
/** Returns this at a given parameter. $t \in [0, 1]$ */
|
7
|
+
abstract at(t: number): Point2;
|
8
|
+
/** Computes the unit normal vector at $t$. */
|
9
|
+
abstract normalAt(t: number): Vec2;
|
10
|
+
abstract tangentAt(t: number): Vec2;
|
11
|
+
/**
|
12
|
+
* Divides this shape into two separate shapes at parameter value $t$.
|
13
|
+
*/
|
14
|
+
abstract splitAt(t: number): [Parameterized2DShape] | [Parameterized2DShape, Parameterized2DShape];
|
15
|
+
/**
|
16
|
+
* Returns the nearest point on `this` to `point` and the `parameterValue` at which
|
17
|
+
* that point occurs.
|
18
|
+
*/
|
19
|
+
abstract nearestPointTo(point: Point2): {
|
20
|
+
point: Point2;
|
21
|
+
parameterValue: number;
|
22
|
+
};
|
23
|
+
/**
|
24
|
+
* Returns the **parameter values** at which `lineSegment` intersects this shape.
|
25
|
+
*
|
26
|
+
* See also {@link intersectsLineSegment}
|
27
|
+
*/
|
28
|
+
abstract argIntersectsLineSegment(lineSegment: LineSegment2): number[];
|
29
|
+
intersectsLineSegment(line: LineSegment2): Point2[];
|
30
|
+
}
|
31
|
+
export default Parameterized2DShape;
|
@@ -0,0 +1,15 @@
|
|
1
|
+
"use strict";
|
2
|
+
var __importDefault = (this && this.__importDefault) || function (mod) {
|
3
|
+
return (mod && mod.__esModule) ? mod : { "default": mod };
|
4
|
+
};
|
5
|
+
Object.defineProperty(exports, "__esModule", { value: true });
|
6
|
+
exports.Parameterized2DShape = void 0;
|
7
|
+
const Abstract2DShape_1 = __importDefault(require("./Abstract2DShape"));
|
8
|
+
/** A 2-dimensional path with parameter interval $t \in [0, 1]$. */
|
9
|
+
class Parameterized2DShape extends Abstract2DShape_1.default {
|
10
|
+
intersectsLineSegment(line) {
|
11
|
+
return this.argIntersectsLineSegment(line).map(t => this.at(t));
|
12
|
+
}
|
13
|
+
}
|
14
|
+
exports.Parameterized2DShape = Parameterized2DShape;
|
15
|
+
exports.default = Parameterized2DShape;
|