@js-draw/math 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- package/README.md +3 -0
- package/build-config.json +4 -0
- package/dist/cjs/Color4.d.ts +83 -0
- package/dist/cjs/Color4.js +277 -0
- package/dist/cjs/Mat33.d.ts +131 -0
- package/dist/cjs/Mat33.js +345 -0
- package/dist/cjs/Vec2.d.ts +42 -0
- package/dist/cjs/Vec2.js +48 -0
- package/dist/cjs/Vec3.d.ts +126 -0
- package/dist/cjs/Vec3.js +203 -0
- package/dist/cjs/lib.d.ts +27 -0
- package/dist/cjs/lib.js +42 -0
- package/dist/cjs/polynomial/solveQuadratic.d.ts +9 -0
- package/dist/cjs/polynomial/solveQuadratic.js +39 -0
- package/dist/cjs/rounding.d.ts +15 -0
- package/dist/cjs/rounding.js +146 -0
- package/dist/cjs/shapes/Abstract2DShape.d.ts +49 -0
- package/dist/cjs/shapes/Abstract2DShape.js +38 -0
- package/dist/cjs/shapes/BezierJSWrapper.d.ts +36 -0
- package/dist/cjs/shapes/BezierJSWrapper.js +94 -0
- package/dist/cjs/shapes/CubicBezier.d.ts +17 -0
- package/dist/cjs/shapes/CubicBezier.js +35 -0
- package/dist/cjs/shapes/LineSegment2.d.ts +70 -0
- package/dist/cjs/shapes/LineSegment2.js +183 -0
- package/dist/cjs/shapes/Path.d.ts +96 -0
- package/dist/cjs/shapes/Path.js +766 -0
- package/dist/cjs/shapes/PointShape2D.d.ts +18 -0
- package/dist/cjs/shapes/PointShape2D.js +31 -0
- package/dist/cjs/shapes/QuadraticBezier.d.ts +35 -0
- package/dist/cjs/shapes/QuadraticBezier.js +120 -0
- package/dist/cjs/shapes/Rect2.d.ts +58 -0
- package/dist/cjs/shapes/Rect2.js +259 -0
- package/dist/cjs/shapes/Triangle.d.ts +46 -0
- package/dist/cjs/shapes/Triangle.js +126 -0
- package/dist/mjs/Color4.d.ts +83 -0
- package/dist/mjs/Color4.mjs +271 -0
- package/dist/mjs/Mat33.d.ts +131 -0
- package/dist/mjs/Mat33.mjs +338 -0
- package/dist/mjs/Vec2.d.ts +42 -0
- package/dist/mjs/Vec2.mjs +42 -0
- package/dist/mjs/Vec3.d.ts +126 -0
- package/dist/mjs/Vec3.mjs +199 -0
- package/dist/mjs/lib.d.ts +27 -0
- package/dist/mjs/lib.mjs +29 -0
- package/dist/mjs/polynomial/solveQuadratic.d.ts +9 -0
- package/dist/mjs/polynomial/solveQuadratic.mjs +37 -0
- package/dist/mjs/rounding.d.ts +15 -0
- package/dist/mjs/rounding.mjs +139 -0
- package/dist/mjs/shapes/Abstract2DShape.d.ts +49 -0
- package/dist/mjs/shapes/Abstract2DShape.mjs +36 -0
- package/dist/mjs/shapes/BezierJSWrapper.d.ts +36 -0
- package/dist/mjs/shapes/BezierJSWrapper.mjs +89 -0
- package/dist/mjs/shapes/CubicBezier.d.ts +17 -0
- package/dist/mjs/shapes/CubicBezier.mjs +30 -0
- package/dist/mjs/shapes/LineSegment2.d.ts +70 -0
- package/dist/mjs/shapes/LineSegment2.mjs +176 -0
- package/dist/mjs/shapes/Path.d.ts +96 -0
- package/dist/mjs/shapes/Path.mjs +759 -0
- package/dist/mjs/shapes/PointShape2D.d.ts +18 -0
- package/dist/mjs/shapes/PointShape2D.mjs +26 -0
- package/dist/mjs/shapes/QuadraticBezier.d.ts +35 -0
- package/dist/mjs/shapes/QuadraticBezier.mjs +113 -0
- package/dist/mjs/shapes/Rect2.d.ts +58 -0
- package/dist/mjs/shapes/Rect2.mjs +252 -0
- package/dist/mjs/shapes/Triangle.d.ts +46 -0
- package/dist/mjs/shapes/Triangle.mjs +121 -0
- package/package.json +48 -0
- package/tsconfig.json +7 -0
- package/typedoc.json +5 -0
@@ -0,0 +1,338 @@
|
|
1
|
+
import { Vec2 } from './Vec2.mjs';
|
2
|
+
import Vec3 from './Vec3.mjs';
|
3
|
+
/**
|
4
|
+
* Represents a three dimensional linear transformation or
|
5
|
+
* a two-dimensional affine transformation. (An affine transformation scales/rotates/shears
|
6
|
+
* **and** translates while a linear transformation just scales/rotates/shears).
|
7
|
+
*/
|
8
|
+
export class Mat33 {
|
9
|
+
/**
|
10
|
+
* Creates a matrix from inputs in the form,
|
11
|
+
* $$
|
12
|
+
* \begin{bmatrix}
|
13
|
+
* a1 & a2 & a3 \\
|
14
|
+
* b1 & b2 & b3 \\
|
15
|
+
* c1 & c2 & c3
|
16
|
+
* \end{bmatrix}
|
17
|
+
* $$
|
18
|
+
*/
|
19
|
+
constructor(a1, a2, a3, b1, b2, b3, c1, c2, c3) {
|
20
|
+
this.a1 = a1;
|
21
|
+
this.a2 = a2;
|
22
|
+
this.a3 = a3;
|
23
|
+
this.b1 = b1;
|
24
|
+
this.b2 = b2;
|
25
|
+
this.b3 = b3;
|
26
|
+
this.c1 = c1;
|
27
|
+
this.c2 = c2;
|
28
|
+
this.c3 = c3;
|
29
|
+
this.cachedInverse = undefined;
|
30
|
+
this.rows = [
|
31
|
+
Vec3.of(a1, a2, a3),
|
32
|
+
Vec3.of(b1, b2, b3),
|
33
|
+
Vec3.of(c1, c2, c3),
|
34
|
+
];
|
35
|
+
}
|
36
|
+
/**
|
37
|
+
* Creates a matrix from the given rows:
|
38
|
+
* $$
|
39
|
+
* \begin{bmatrix}
|
40
|
+
* \texttt{r1.x} & \texttt{r1.y} & \texttt{r1.z}\\
|
41
|
+
* \texttt{r2.x} & \texttt{r2.y} & \texttt{r2.z}\\
|
42
|
+
* \texttt{r3.x} & \texttt{r3.y} & \texttt{r3.z}\\
|
43
|
+
* \end{bmatrix}
|
44
|
+
* $$
|
45
|
+
*/
|
46
|
+
static ofRows(r1, r2, r3) {
|
47
|
+
return new Mat33(r1.x, r1.y, r1.z, r2.x, r2.y, r2.z, r3.x, r3.y, r3.z);
|
48
|
+
}
|
49
|
+
/**
|
50
|
+
* Either returns the inverse of this, or, if this matrix is singular/uninvertable,
|
51
|
+
* returns Mat33.identity.
|
52
|
+
*
|
53
|
+
* This may cache the computed inverse and return the cached version instead of recomputing
|
54
|
+
* it.
|
55
|
+
*/
|
56
|
+
inverse() {
|
57
|
+
return this.computeInverse() ?? Mat33.identity;
|
58
|
+
}
|
59
|
+
invertable() {
|
60
|
+
return this.computeInverse() !== null;
|
61
|
+
}
|
62
|
+
computeInverse() {
|
63
|
+
if (this.cachedInverse !== undefined) {
|
64
|
+
return this.cachedInverse;
|
65
|
+
}
|
66
|
+
const toIdentity = [
|
67
|
+
this.rows[0],
|
68
|
+
this.rows[1],
|
69
|
+
this.rows[2],
|
70
|
+
];
|
71
|
+
const toResult = [
|
72
|
+
Vec3.unitX,
|
73
|
+
Vec3.unitY,
|
74
|
+
Vec3.unitZ,
|
75
|
+
];
|
76
|
+
// Convert toIdentity to the identity matrix and
|
77
|
+
// toResult to the inverse through elementary row operations
|
78
|
+
for (let cursor = 0; cursor < 3; cursor++) {
|
79
|
+
// Select the [cursor]th diagonal entry
|
80
|
+
let pivot = toIdentity[cursor].at(cursor);
|
81
|
+
// Don't divide by zero (treat very small numbers as zero).
|
82
|
+
const minDivideBy = 1e-10;
|
83
|
+
if (Math.abs(pivot) < minDivideBy) {
|
84
|
+
let swapIndex = -1;
|
85
|
+
// For all other rows,
|
86
|
+
for (let i = 1; i <= 2; i++) {
|
87
|
+
const otherRowIdx = (cursor + i) % 3;
|
88
|
+
if (Math.abs(toIdentity[otherRowIdx].at(cursor)) >= minDivideBy) {
|
89
|
+
swapIndex = otherRowIdx;
|
90
|
+
break;
|
91
|
+
}
|
92
|
+
}
|
93
|
+
// Can't swap with another row?
|
94
|
+
if (swapIndex === -1) {
|
95
|
+
this.cachedInverse = null;
|
96
|
+
return null;
|
97
|
+
}
|
98
|
+
const tmpIdentityRow = toIdentity[cursor];
|
99
|
+
const tmpResultRow = toResult[cursor];
|
100
|
+
// Swap!
|
101
|
+
toIdentity[cursor] = toIdentity[swapIndex];
|
102
|
+
toResult[cursor] = toResult[swapIndex];
|
103
|
+
toIdentity[swapIndex] = tmpIdentityRow;
|
104
|
+
toResult[swapIndex] = tmpResultRow;
|
105
|
+
pivot = toIdentity[cursor].at(cursor);
|
106
|
+
}
|
107
|
+
// Make toIdentity[k = cursor] = 1
|
108
|
+
let scale = 1.0 / pivot;
|
109
|
+
toIdentity[cursor] = toIdentity[cursor].times(scale);
|
110
|
+
toResult[cursor] = toResult[cursor].times(scale);
|
111
|
+
const cursorToIdentityRow = toIdentity[cursor];
|
112
|
+
const cursorToResultRow = toResult[cursor];
|
113
|
+
// Make toIdentity[k ≠ cursor] = 0
|
114
|
+
for (let i = 1; i <= 2; i++) {
|
115
|
+
const otherRowIdx = (cursor + i) % 3;
|
116
|
+
scale = -toIdentity[otherRowIdx].at(cursor);
|
117
|
+
toIdentity[otherRowIdx] = toIdentity[otherRowIdx].plus(cursorToIdentityRow.times(scale));
|
118
|
+
toResult[otherRowIdx] = toResult[otherRowIdx].plus(cursorToResultRow.times(scale));
|
119
|
+
}
|
120
|
+
}
|
121
|
+
const inverse = Mat33.ofRows(toResult[0], toResult[1], toResult[2]);
|
122
|
+
this.cachedInverse = inverse;
|
123
|
+
return inverse;
|
124
|
+
}
|
125
|
+
transposed() {
|
126
|
+
return new Mat33(this.a1, this.b1, this.c1, this.a2, this.b2, this.c2, this.a3, this.b3, this.c3);
|
127
|
+
}
|
128
|
+
rightMul(other) {
|
129
|
+
other = other.transposed();
|
130
|
+
const at = (row, col) => {
|
131
|
+
return this.rows[row].dot(other.rows[col]);
|
132
|
+
};
|
133
|
+
return new Mat33(at(0, 0), at(0, 1), at(0, 2), at(1, 0), at(1, 1), at(1, 2), at(2, 0), at(2, 1), at(2, 2));
|
134
|
+
}
|
135
|
+
/**
|
136
|
+
* Applies this as an **affine** transformation to the given vector.
|
137
|
+
* Returns a transformed version of `other`.
|
138
|
+
*
|
139
|
+
* Unlike {@link transformVec3}, this **does** translate the given vector.
|
140
|
+
*/
|
141
|
+
transformVec2(other) {
|
142
|
+
// When transforming a Vec2, we want to use the z transformation
|
143
|
+
// components of this for translation:
|
144
|
+
// ⎡ . . tX ⎤
|
145
|
+
// ⎢ . . tY ⎥
|
146
|
+
// ⎣ 0 0 1 ⎦
|
147
|
+
// For this, we need other's z component to be 1 (so that tX and tY
|
148
|
+
// are scaled by 1):
|
149
|
+
let intermediate = Vec3.of(other.x, other.y, 1);
|
150
|
+
intermediate = this.transformVec3(intermediate);
|
151
|
+
// Drop the z=1 to allow magnitude to work as expected
|
152
|
+
return Vec2.of(intermediate.x, intermediate.y);
|
153
|
+
}
|
154
|
+
/**
|
155
|
+
* Applies this as a linear transformation to the given vector (doesn't translate).
|
156
|
+
* This is the standard way of transforming vectors in ℝ³.
|
157
|
+
*/
|
158
|
+
transformVec3(other) {
|
159
|
+
return Vec3.of(this.rows[0].dot(other), this.rows[1].dot(other), this.rows[2].dot(other));
|
160
|
+
}
|
161
|
+
/** @returns true iff this is the identity matrix. */
|
162
|
+
isIdentity() {
|
163
|
+
if (this === Mat33.identity) {
|
164
|
+
return true;
|
165
|
+
}
|
166
|
+
return this.eq(Mat33.identity);
|
167
|
+
}
|
168
|
+
/** Returns true iff this = other ± fuzz */
|
169
|
+
eq(other, fuzz = 0) {
|
170
|
+
for (let i = 0; i < 3; i++) {
|
171
|
+
if (!this.rows[i].eq(other.rows[i], fuzz)) {
|
172
|
+
return false;
|
173
|
+
}
|
174
|
+
}
|
175
|
+
return true;
|
176
|
+
}
|
177
|
+
toString() {
|
178
|
+
let result = '';
|
179
|
+
const maxColumnLens = [0, 0, 0];
|
180
|
+
// Determine the longest item in each column so we can pad the others to that
|
181
|
+
// length.
|
182
|
+
for (const row of this.rows) {
|
183
|
+
for (let i = 0; i < 3; i++) {
|
184
|
+
maxColumnLens[i] = Math.max(maxColumnLens[0], `${row.at(i)}`.length);
|
185
|
+
}
|
186
|
+
}
|
187
|
+
for (let i = 0; i < 3; i++) {
|
188
|
+
if (i === 0) {
|
189
|
+
result += '⎡ ';
|
190
|
+
}
|
191
|
+
else if (i === 1) {
|
192
|
+
result += '⎢ ';
|
193
|
+
}
|
194
|
+
else {
|
195
|
+
result += '⎣ ';
|
196
|
+
}
|
197
|
+
// Add each component of the ith row (after padding it)
|
198
|
+
for (let j = 0; j < 3; j++) {
|
199
|
+
const val = this.rows[i].at(j).toString();
|
200
|
+
let padding = '';
|
201
|
+
for (let i = val.length; i < maxColumnLens[j]; i++) {
|
202
|
+
padding += ' ';
|
203
|
+
}
|
204
|
+
result += val + ', ' + padding;
|
205
|
+
}
|
206
|
+
if (i === 0) {
|
207
|
+
result += ' ⎤';
|
208
|
+
}
|
209
|
+
else if (i === 1) {
|
210
|
+
result += ' ⎥';
|
211
|
+
}
|
212
|
+
else {
|
213
|
+
result += ' ⎦';
|
214
|
+
}
|
215
|
+
result += '\n';
|
216
|
+
}
|
217
|
+
return result.trimEnd();
|
218
|
+
}
|
219
|
+
/**
|
220
|
+
* ```
|
221
|
+
* result[0] = top left element
|
222
|
+
* result[1] = element at row zero, column 1
|
223
|
+
* ...
|
224
|
+
* ```
|
225
|
+
*/
|
226
|
+
toArray() {
|
227
|
+
return [
|
228
|
+
this.a1, this.a2, this.a3,
|
229
|
+
this.b1, this.b2, this.b3,
|
230
|
+
this.c1, this.c2, this.c3,
|
231
|
+
];
|
232
|
+
}
|
233
|
+
/**
|
234
|
+
* Returns a new `Mat33` where each entry is the output of the function
|
235
|
+
* `mapping`.
|
236
|
+
*
|
237
|
+
* @example
|
238
|
+
* ```
|
239
|
+
* new Mat33(
|
240
|
+
* 1, 2, 3,
|
241
|
+
* 4, 5, 6,
|
242
|
+
* 7, 8, 9,
|
243
|
+
* ).mapEntries(component => component - 1);
|
244
|
+
* // → ⎡ 0, 1, 2 ⎤
|
245
|
+
* // ⎢ 3, 4, 5 ⎥
|
246
|
+
* // ⎣ 6, 7, 8 ⎦
|
247
|
+
* ```
|
248
|
+
*/
|
249
|
+
mapEntries(mapping) {
|
250
|
+
return new Mat33(mapping(this.a1, [0, 0]), mapping(this.a2, [0, 1]), mapping(this.a3, [0, 2]), mapping(this.b1, [1, 0]), mapping(this.b2, [1, 1]), mapping(this.b3, [1, 2]), mapping(this.c1, [2, 0]), mapping(this.c2, [2, 1]), mapping(this.c3, [2, 2]));
|
251
|
+
}
|
252
|
+
/** Estimate the scale factor of this matrix (based on the first row). */
|
253
|
+
getScaleFactor() {
|
254
|
+
return Math.hypot(this.a1, this.a2);
|
255
|
+
}
|
256
|
+
/**
|
257
|
+
* Constructs a 3x3 translation matrix (for translating `Vec2`s) using
|
258
|
+
* **transformVec2**.
|
259
|
+
*/
|
260
|
+
static translation(amount) {
|
261
|
+
// When transforming Vec2s by a 3x3 matrix, we give the input
|
262
|
+
// Vec2s z = 1. As such,
|
263
|
+
// outVec2.x = inVec2.x * 1 + inVec2.y * 0 + 1 * amount.x
|
264
|
+
// ...
|
265
|
+
return new Mat33(1, 0, amount.x, 0, 1, amount.y, 0, 0, 1);
|
266
|
+
}
|
267
|
+
static zRotation(radians, center = Vec2.zero) {
|
268
|
+
if (radians === 0) {
|
269
|
+
return Mat33.identity;
|
270
|
+
}
|
271
|
+
const cos = Math.cos(radians);
|
272
|
+
const sin = Math.sin(radians);
|
273
|
+
// Translate everything so that rotation is about the origin
|
274
|
+
let result = Mat33.translation(center);
|
275
|
+
result = result.rightMul(new Mat33(cos, -sin, 0, sin, cos, 0, 0, 0, 1));
|
276
|
+
return result.rightMul(Mat33.translation(center.times(-1)));
|
277
|
+
}
|
278
|
+
static scaling2D(amount, center = Vec2.zero) {
|
279
|
+
let result = Mat33.translation(center);
|
280
|
+
let xAmount, yAmount;
|
281
|
+
if (typeof amount === 'number') {
|
282
|
+
xAmount = amount;
|
283
|
+
yAmount = amount;
|
284
|
+
}
|
285
|
+
else {
|
286
|
+
xAmount = amount.x;
|
287
|
+
yAmount = amount.y;
|
288
|
+
}
|
289
|
+
result = result.rightMul(new Mat33(xAmount, 0, 0, 0, yAmount, 0, 0, 0, 1));
|
290
|
+
// Translate such that [center] goes to (0, 0)
|
291
|
+
return result.rightMul(Mat33.translation(center.times(-1)));
|
292
|
+
}
|
293
|
+
/** @see {@link fromCSSMatrix} */
|
294
|
+
toCSSMatrix() {
|
295
|
+
return `matrix(${this.a1},${this.b1},${this.a2},${this.b2},${this.a3},${this.b3})`;
|
296
|
+
}
|
297
|
+
/**
|
298
|
+
* Converts a CSS-form `matrix(a, b, c, d, e, f)` to a Mat33.
|
299
|
+
*
|
300
|
+
* Note that such a matrix has the form,
|
301
|
+
* ```
|
302
|
+
* ⎡ a c e ⎤
|
303
|
+
* ⎢ b d f ⎥
|
304
|
+
* ⎣ 0 0 1 ⎦
|
305
|
+
* ```
|
306
|
+
*/
|
307
|
+
static fromCSSMatrix(cssString) {
|
308
|
+
if (cssString === '' || cssString === 'none') {
|
309
|
+
return Mat33.identity;
|
310
|
+
}
|
311
|
+
const numberExp = '([-]?\\d*(?:\\.\\d*)?(?:[eE][-]?\\d+)?)';
|
312
|
+
const numberSepExp = '[, \\t\\n]';
|
313
|
+
const regExpSource = `^\\s*matrix\\s*\\(${[
|
314
|
+
// According to MDN, matrix(a,b,c,d,e,f) has form:
|
315
|
+
// ⎡ a c e ⎤
|
316
|
+
// ⎢ b d f ⎥
|
317
|
+
// ⎣ 0 0 1 ⎦
|
318
|
+
numberExp, numberExp, numberExp,
|
319
|
+
numberExp, numberExp, numberExp, // b, d, f
|
320
|
+
].join(`${numberSepExp}+`)}${numberSepExp}*\\)\\s*$`;
|
321
|
+
const matrixExp = new RegExp(regExpSource, 'i');
|
322
|
+
const match = matrixExp.exec(cssString);
|
323
|
+
if (!match) {
|
324
|
+
throw new Error(`Unsupported transformation: ${cssString}`);
|
325
|
+
}
|
326
|
+
const matrixData = match.slice(1).map(entry => parseFloat(entry));
|
327
|
+
const a = matrixData[0];
|
328
|
+
const b = matrixData[1];
|
329
|
+
const c = matrixData[2];
|
330
|
+
const d = matrixData[3];
|
331
|
+
const e = matrixData[4];
|
332
|
+
const f = matrixData[5];
|
333
|
+
const transform = new Mat33(a, c, e, b, d, f, 0, 0, 1);
|
334
|
+
return transform;
|
335
|
+
}
|
336
|
+
}
|
337
|
+
Mat33.identity = new Mat33(1, 0, 0, 0, 1, 0, 0, 0, 1);
|
338
|
+
export default Mat33;
|
@@ -0,0 +1,42 @@
|
|
1
|
+
import Vec3 from './Vec3';
|
2
|
+
/**
|
3
|
+
* Utility functions that facilitate treating `Vec3`s as 2D vectors.
|
4
|
+
*
|
5
|
+
* @example
|
6
|
+
* ```ts,runnable,console
|
7
|
+
* import { Vec2 } from '@js-draw/math';
|
8
|
+
* console.log(Vec2.of(1, 2));
|
9
|
+
* ```
|
10
|
+
*/
|
11
|
+
export declare namespace Vec2 {
|
12
|
+
/**
|
13
|
+
* Creates a `Vec2` from an x and y coordinate.
|
14
|
+
*
|
15
|
+
* For example,
|
16
|
+
* ```ts
|
17
|
+
* const v = Vec2.of(3, 4); // x=3, y=4.
|
18
|
+
* ```
|
19
|
+
*/
|
20
|
+
const of: (x: number, y: number) => Vec2;
|
21
|
+
/**
|
22
|
+
* Creates a `Vec2` from an object containing x and y coordinates.
|
23
|
+
*
|
24
|
+
* For example,
|
25
|
+
* ```ts
|
26
|
+
* const v1 = Vec2.ofXY({ x: 3, y: 4.5 });
|
27
|
+
* const v2 = Vec2.ofXY({ x: -123.4, y: 1 });
|
28
|
+
* ```
|
29
|
+
*/
|
30
|
+
const ofXY: ({ x, y }: {
|
31
|
+
x: number;
|
32
|
+
y: number;
|
33
|
+
}) => Vec2;
|
34
|
+
/** A vector of length 1 in the X direction (→). */
|
35
|
+
const unitX: Vec3;
|
36
|
+
/** A vector of length 1 in the Y direction (↑). */
|
37
|
+
const unitY: Vec3;
|
38
|
+
/** The zero vector: A vector with x=0, y=0. */
|
39
|
+
const zero: Vec3;
|
40
|
+
}
|
41
|
+
export type Point2 = Vec3;
|
42
|
+
export type Vec2 = Vec3;
|
@@ -0,0 +1,42 @@
|
|
1
|
+
import Vec3 from './Vec3.mjs';
|
2
|
+
/**
|
3
|
+
* Utility functions that facilitate treating `Vec3`s as 2D vectors.
|
4
|
+
*
|
5
|
+
* @example
|
6
|
+
* ```ts,runnable,console
|
7
|
+
* import { Vec2 } from '@js-draw/math';
|
8
|
+
* console.log(Vec2.of(1, 2));
|
9
|
+
* ```
|
10
|
+
*/
|
11
|
+
export var Vec2;
|
12
|
+
(function (Vec2) {
|
13
|
+
/**
|
14
|
+
* Creates a `Vec2` from an x and y coordinate.
|
15
|
+
*
|
16
|
+
* For example,
|
17
|
+
* ```ts
|
18
|
+
* const v = Vec2.of(3, 4); // x=3, y=4.
|
19
|
+
* ```
|
20
|
+
*/
|
21
|
+
Vec2.of = (x, y) => {
|
22
|
+
return Vec3.of(x, y, 0);
|
23
|
+
};
|
24
|
+
/**
|
25
|
+
* Creates a `Vec2` from an object containing x and y coordinates.
|
26
|
+
*
|
27
|
+
* For example,
|
28
|
+
* ```ts
|
29
|
+
* const v1 = Vec2.ofXY({ x: 3, y: 4.5 });
|
30
|
+
* const v2 = Vec2.ofXY({ x: -123.4, y: 1 });
|
31
|
+
* ```
|
32
|
+
*/
|
33
|
+
Vec2.ofXY = ({ x, y }) => {
|
34
|
+
return Vec3.of(x, y, 0);
|
35
|
+
};
|
36
|
+
/** A vector of length 1 in the X direction (→). */
|
37
|
+
Vec2.unitX = Vec2.of(1, 0);
|
38
|
+
/** A vector of length 1 in the Y direction (↑). */
|
39
|
+
Vec2.unitY = Vec2.of(0, 1);
|
40
|
+
/** The zero vector: A vector with x=0, y=0. */
|
41
|
+
Vec2.zero = Vec2.of(0, 0);
|
42
|
+
})(Vec2 || (Vec2 = {}));
|
@@ -0,0 +1,126 @@
|
|
1
|
+
/**
|
2
|
+
* A vector with three components, $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$.
|
3
|
+
* Can also be used to represent a two-component vector.
|
4
|
+
*
|
5
|
+
* A `Vec3` is immutable.
|
6
|
+
*
|
7
|
+
* @example
|
8
|
+
*
|
9
|
+
* ```ts,runnable,console
|
10
|
+
* import { Vec3 } from '@js-draw/math';
|
11
|
+
*
|
12
|
+
* console.log('Vector addition:', Vec3.of(1, 2, 3).plus(Vec3.of(0, 1, 0)));
|
13
|
+
* console.log('Scalar multiplication:', Vec3.of(1, 2, 3).times(2));
|
14
|
+
* console.log('Cross products:', Vec3.unitX.cross(Vec3.unitY));
|
15
|
+
* console.log('Magnitude:', Vec3.of(1, 2, 3).length(), 'or', Vec3.of(1, 2, 3).magnitude());
|
16
|
+
* console.log('Square Magnitude:', Vec3.of(1, 2, 3).magnitudeSquared());
|
17
|
+
* console.log('As an array:', Vec3.unitZ.asArray());
|
18
|
+
* ```
|
19
|
+
*/
|
20
|
+
export declare class Vec3 {
|
21
|
+
readonly x: number;
|
22
|
+
readonly y: number;
|
23
|
+
readonly z: number;
|
24
|
+
private constructor();
|
25
|
+
/** Returns the x, y components of this. */
|
26
|
+
get xy(): {
|
27
|
+
x: number;
|
28
|
+
y: number;
|
29
|
+
};
|
30
|
+
/** Construct a vector from three components. */
|
31
|
+
static of(x: number, y: number, z: number): Vec3;
|
32
|
+
/** Returns this' `idx`th component. For example, `Vec3.of(1, 2, 3).at(1) → 2`. */
|
33
|
+
at(idx: number): number;
|
34
|
+
/** Alias for this.magnitude. */
|
35
|
+
length(): number;
|
36
|
+
magnitude(): number;
|
37
|
+
magnitudeSquared(): number;
|
38
|
+
/**
|
39
|
+
* Return this' angle in the XY plane (treats this as a Vec2).
|
40
|
+
*
|
41
|
+
* This is equivalent to `Math.atan2(vec.y, vec.x)`.
|
42
|
+
*/
|
43
|
+
angle(): number;
|
44
|
+
/**
|
45
|
+
* Returns a unit vector in the same direction as this.
|
46
|
+
*
|
47
|
+
* If `this` has zero length, the resultant vector has `NaN` components.
|
48
|
+
*/
|
49
|
+
normalized(): Vec3;
|
50
|
+
/**
|
51
|
+
* Like {@link normalized}, except returns zero if this has zero magnitude.
|
52
|
+
*/
|
53
|
+
normalizedOrZero(): Vec3;
|
54
|
+
/** @returns A copy of `this` multiplied by a scalar. */
|
55
|
+
times(c: number): Vec3;
|
56
|
+
plus(v: Vec3): Vec3;
|
57
|
+
minus(v: Vec3): Vec3;
|
58
|
+
dot(other: Vec3): number;
|
59
|
+
cross(other: Vec3): Vec3;
|
60
|
+
/**
|
61
|
+
* If `other` is a `Vec3`, multiplies `this` component-wise by `other`. Otherwise,
|
62
|
+
* if `other is a `number`, returns the result of scalar multiplication.
|
63
|
+
*
|
64
|
+
* @example
|
65
|
+
* ```
|
66
|
+
* Vec3.of(1, 2, 3).scale(Vec3.of(2, 4, 6)); // → Vec3(2, 8, 18)
|
67
|
+
* ```
|
68
|
+
*/
|
69
|
+
scale(other: Vec3 | number): Vec3;
|
70
|
+
/**
|
71
|
+
* Returns a vector orthogonal to this. If this is a Vec2, returns `this` rotated
|
72
|
+
* 90 degrees counter-clockwise.
|
73
|
+
*/
|
74
|
+
orthog(): Vec3;
|
75
|
+
/** Returns this plus a vector of length `distance` in `direction`. */
|
76
|
+
extend(distance: number, direction: Vec3): Vec3;
|
77
|
+
/** Returns a vector `fractionTo` of the way to target from this. */
|
78
|
+
lerp(target: Vec3, fractionTo: number): Vec3;
|
79
|
+
/**
|
80
|
+
* `zip` Maps a component of this and a corresponding component of
|
81
|
+
* `other` to a component of the output vector.
|
82
|
+
*
|
83
|
+
* @example
|
84
|
+
* ```
|
85
|
+
* const a = Vec3.of(1, 2, 3);
|
86
|
+
* const b = Vec3.of(0.5, 2.1, 2.9);
|
87
|
+
*
|
88
|
+
* const zipped = a.zip(b, (aComponent, bComponent) => {
|
89
|
+
* return Math.min(aComponent, bComponent);
|
90
|
+
* });
|
91
|
+
*
|
92
|
+
* console.log(zipped.toString()); // → Vec(0.5, 2, 2.9)
|
93
|
+
* ```
|
94
|
+
*/
|
95
|
+
zip(other: Vec3, zip: (componentInThis: number, componentInOther: number) => number): Vec3;
|
96
|
+
/**
|
97
|
+
* Returns a vector with each component acted on by `fn`.
|
98
|
+
*
|
99
|
+
* @example
|
100
|
+
* ```
|
101
|
+
* console.log(Vec3.of(1, 2, 3).map(val => val + 1)); // → Vec(2, 3, 4)
|
102
|
+
* ```
|
103
|
+
*/
|
104
|
+
map(fn: (component: number, index: number) => number): Vec3;
|
105
|
+
asArray(): [number, number, number];
|
106
|
+
/**
|
107
|
+
* [fuzz] The maximum difference between two components for this and [other]
|
108
|
+
* to be considered equal.
|
109
|
+
*
|
110
|
+
* @example
|
111
|
+
* ```
|
112
|
+
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 100); // → true
|
113
|
+
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 0.1); // → false
|
114
|
+
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 3); // → true
|
115
|
+
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 3.01); // → true
|
116
|
+
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 2.99); // → false
|
117
|
+
* ```
|
118
|
+
*/
|
119
|
+
eq(other: Vec3, fuzz?: number): boolean;
|
120
|
+
toString(): string;
|
121
|
+
static unitX: Vec3;
|
122
|
+
static unitY: Vec3;
|
123
|
+
static unitZ: Vec3;
|
124
|
+
static zero: Vec3;
|
125
|
+
}
|
126
|
+
export default Vec3;
|