@js-draw/math 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (69) hide show
  1. package/README.md +3 -0
  2. package/build-config.json +4 -0
  3. package/dist/cjs/Color4.d.ts +83 -0
  4. package/dist/cjs/Color4.js +277 -0
  5. package/dist/cjs/Mat33.d.ts +131 -0
  6. package/dist/cjs/Mat33.js +345 -0
  7. package/dist/cjs/Vec2.d.ts +42 -0
  8. package/dist/cjs/Vec2.js +48 -0
  9. package/dist/cjs/Vec3.d.ts +126 -0
  10. package/dist/cjs/Vec3.js +203 -0
  11. package/dist/cjs/lib.d.ts +27 -0
  12. package/dist/cjs/lib.js +42 -0
  13. package/dist/cjs/polynomial/solveQuadratic.d.ts +9 -0
  14. package/dist/cjs/polynomial/solveQuadratic.js +39 -0
  15. package/dist/cjs/rounding.d.ts +15 -0
  16. package/dist/cjs/rounding.js +146 -0
  17. package/dist/cjs/shapes/Abstract2DShape.d.ts +49 -0
  18. package/dist/cjs/shapes/Abstract2DShape.js +38 -0
  19. package/dist/cjs/shapes/BezierJSWrapper.d.ts +36 -0
  20. package/dist/cjs/shapes/BezierJSWrapper.js +94 -0
  21. package/dist/cjs/shapes/CubicBezier.d.ts +17 -0
  22. package/dist/cjs/shapes/CubicBezier.js +35 -0
  23. package/dist/cjs/shapes/LineSegment2.d.ts +70 -0
  24. package/dist/cjs/shapes/LineSegment2.js +183 -0
  25. package/dist/cjs/shapes/Path.d.ts +96 -0
  26. package/dist/cjs/shapes/Path.js +766 -0
  27. package/dist/cjs/shapes/PointShape2D.d.ts +18 -0
  28. package/dist/cjs/shapes/PointShape2D.js +31 -0
  29. package/dist/cjs/shapes/QuadraticBezier.d.ts +35 -0
  30. package/dist/cjs/shapes/QuadraticBezier.js +120 -0
  31. package/dist/cjs/shapes/Rect2.d.ts +58 -0
  32. package/dist/cjs/shapes/Rect2.js +259 -0
  33. package/dist/cjs/shapes/Triangle.d.ts +46 -0
  34. package/dist/cjs/shapes/Triangle.js +126 -0
  35. package/dist/mjs/Color4.d.ts +83 -0
  36. package/dist/mjs/Color4.mjs +271 -0
  37. package/dist/mjs/Mat33.d.ts +131 -0
  38. package/dist/mjs/Mat33.mjs +338 -0
  39. package/dist/mjs/Vec2.d.ts +42 -0
  40. package/dist/mjs/Vec2.mjs +42 -0
  41. package/dist/mjs/Vec3.d.ts +126 -0
  42. package/dist/mjs/Vec3.mjs +199 -0
  43. package/dist/mjs/lib.d.ts +27 -0
  44. package/dist/mjs/lib.mjs +29 -0
  45. package/dist/mjs/polynomial/solveQuadratic.d.ts +9 -0
  46. package/dist/mjs/polynomial/solveQuadratic.mjs +37 -0
  47. package/dist/mjs/rounding.d.ts +15 -0
  48. package/dist/mjs/rounding.mjs +139 -0
  49. package/dist/mjs/shapes/Abstract2DShape.d.ts +49 -0
  50. package/dist/mjs/shapes/Abstract2DShape.mjs +36 -0
  51. package/dist/mjs/shapes/BezierJSWrapper.d.ts +36 -0
  52. package/dist/mjs/shapes/BezierJSWrapper.mjs +89 -0
  53. package/dist/mjs/shapes/CubicBezier.d.ts +17 -0
  54. package/dist/mjs/shapes/CubicBezier.mjs +30 -0
  55. package/dist/mjs/shapes/LineSegment2.d.ts +70 -0
  56. package/dist/mjs/shapes/LineSegment2.mjs +176 -0
  57. package/dist/mjs/shapes/Path.d.ts +96 -0
  58. package/dist/mjs/shapes/Path.mjs +759 -0
  59. package/dist/mjs/shapes/PointShape2D.d.ts +18 -0
  60. package/dist/mjs/shapes/PointShape2D.mjs +26 -0
  61. package/dist/mjs/shapes/QuadraticBezier.d.ts +35 -0
  62. package/dist/mjs/shapes/QuadraticBezier.mjs +113 -0
  63. package/dist/mjs/shapes/Rect2.d.ts +58 -0
  64. package/dist/mjs/shapes/Rect2.mjs +252 -0
  65. package/dist/mjs/shapes/Triangle.d.ts +46 -0
  66. package/dist/mjs/shapes/Triangle.mjs +121 -0
  67. package/package.json +48 -0
  68. package/tsconfig.json +7 -0
  69. package/typedoc.json +5 -0
@@ -0,0 +1,18 @@
1
+ import { Point2 } from '../Vec2';
2
+ import Vec3 from '../Vec3';
3
+ import Abstract2DShape from './Abstract2DShape';
4
+ import LineSegment2 from './LineSegment2';
5
+ import Rect2 from './Rect2';
6
+ /**
7
+ * Like a {@link Point2}, but with additional functionality (e.g. SDF).
8
+ *
9
+ * Access the internal `Point2` using the `p` property.
10
+ */
11
+ declare class PointShape2D extends Abstract2DShape {
12
+ readonly p: Point2;
13
+ constructor(p: Point2);
14
+ signedDistance(point: Vec3): number;
15
+ intersectsLineSegment(lineSegment: LineSegment2, epsilon?: number): Vec3[];
16
+ getTightBoundingBox(): Rect2;
17
+ }
18
+ export default PointShape2D;
@@ -0,0 +1,26 @@
1
+ import Abstract2DShape from './Abstract2DShape.mjs';
2
+ import Rect2 from './Rect2.mjs';
3
+ /**
4
+ * Like a {@link Point2}, but with additional functionality (e.g. SDF).
5
+ *
6
+ * Access the internal `Point2` using the `p` property.
7
+ */
8
+ class PointShape2D extends Abstract2DShape {
9
+ constructor(p) {
10
+ super();
11
+ this.p = p;
12
+ }
13
+ signedDistance(point) {
14
+ return this.p.minus(point).magnitude();
15
+ }
16
+ intersectsLineSegment(lineSegment, epsilon) {
17
+ if (lineSegment.containsPoint(this.p, epsilon)) {
18
+ return [this.p];
19
+ }
20
+ return [];
21
+ }
22
+ getTightBoundingBox() {
23
+ return new Rect2(this.p.x, this.p.y, 0, 0);
24
+ }
25
+ }
26
+ export default PointShape2D;
@@ -0,0 +1,35 @@
1
+ import { Point2, Vec2 } from '../Vec2';
2
+ import BezierJSWrapper from './BezierJSWrapper';
3
+ import Rect2 from './Rect2';
4
+ /**
5
+ * A wrapper around `bezier-js`'s quadratic Bézier.
6
+ *
7
+ * This wrappper lazy-loads `bezier-js`'s Bézier and can perform some operations
8
+ * without loading it at all (e.g. `normal`, `at`, and `approximateDistance`).
9
+ */
10
+ export declare class QuadraticBezier extends BezierJSWrapper {
11
+ readonly p0: Point2;
12
+ readonly p1: Point2;
13
+ readonly p2: Point2;
14
+ constructor(p0: Point2, p1: Point2, p2: Point2);
15
+ /**
16
+ * Returns a component of a quadratic Bézier curve at t, where p0,p1,p2 are either all x or
17
+ * all y components of the target curve.
18
+ */
19
+ private static componentAt;
20
+ private static derivativeComponentAt;
21
+ /**
22
+ * @returns the curve evaluated at `t`.
23
+ */
24
+ at(t: number): Point2;
25
+ derivativeAt(t: number): Point2;
26
+ normal(t: number): Vec2;
27
+ /** @returns an overestimate of this shape's bounding box. */
28
+ getLooseBoundingBox(): Rect2;
29
+ /**
30
+ * @returns the *approximate* distance from `point` to this curve.
31
+ */
32
+ approximateDistance(point: Point2): number;
33
+ getPoints(): import("../Vec3").Vec3[];
34
+ }
35
+ export default QuadraticBezier;
@@ -0,0 +1,113 @@
1
+ import { Vec2 } from '../Vec2.mjs';
2
+ import solveQuadratic from '../polynomial/solveQuadratic.mjs';
3
+ import BezierJSWrapper from './BezierJSWrapper.mjs';
4
+ import Rect2 from './Rect2.mjs';
5
+ /**
6
+ * A wrapper around `bezier-js`'s quadratic Bézier.
7
+ *
8
+ * This wrappper lazy-loads `bezier-js`'s Bézier and can perform some operations
9
+ * without loading it at all (e.g. `normal`, `at`, and `approximateDistance`).
10
+ */
11
+ export class QuadraticBezier extends BezierJSWrapper {
12
+ constructor(p0, p1, p2) {
13
+ super();
14
+ this.p0 = p0;
15
+ this.p1 = p1;
16
+ this.p2 = p2;
17
+ }
18
+ /**
19
+ * Returns a component of a quadratic Bézier curve at t, where p0,p1,p2 are either all x or
20
+ * all y components of the target curve.
21
+ */
22
+ static componentAt(t, p0, p1, p2) {
23
+ return p0 + t * (-2 * p0 + 2 * p1) + t * t * (p0 - 2 * p1 + p2);
24
+ }
25
+ static derivativeComponentAt(t, p0, p1, p2) {
26
+ return -2 * p0 + 2 * p1 + 2 * t * (p0 - 2 * p1 + p2);
27
+ }
28
+ /**
29
+ * @returns the curve evaluated at `t`.
30
+ */
31
+ at(t) {
32
+ const p0 = this.p0;
33
+ const p1 = this.p1;
34
+ const p2 = this.p2;
35
+ return Vec2.of(QuadraticBezier.componentAt(t, p0.x, p1.x, p2.x), QuadraticBezier.componentAt(t, p0.y, p1.y, p2.y));
36
+ }
37
+ derivativeAt(t) {
38
+ const p0 = this.p0;
39
+ const p1 = this.p1;
40
+ const p2 = this.p2;
41
+ return Vec2.of(QuadraticBezier.derivativeComponentAt(t, p0.x, p1.x, p2.x), QuadraticBezier.derivativeComponentAt(t, p0.y, p1.y, p2.y));
42
+ }
43
+ normal(t) {
44
+ const tangent = this.derivativeAt(t);
45
+ return tangent.orthog().normalized();
46
+ }
47
+ /** @returns an overestimate of this shape's bounding box. */
48
+ getLooseBoundingBox() {
49
+ return Rect2.bboxOf([this.p0, this.p1, this.p2]);
50
+ }
51
+ /**
52
+ * @returns the *approximate* distance from `point` to this curve.
53
+ */
54
+ approximateDistance(point) {
55
+ // We want to minimize f(t) = |B(t) - p|².
56
+ // Expanding,
57
+ // f(t) = (Bₓ(t) - pₓ)² + (Bᵧ(t) - pᵧ)²
58
+ // ⇒ f'(t) = Dₜ(Bₓ(t) - pₓ)² + Dₜ(Bᵧ(t) - pᵧ)²
59
+ //
60
+ // Considering just one component,
61
+ // Dₜ(Bₓ(t) - pₓ)² = 2(Bₓ(t) - pₓ)(DₜBₓ(t))
62
+ // = 2(Bₓ(t)DₜBₓ(t) - pₓBₓ(t))
63
+ // = 2(p0ₓ + (t)(-2p0ₓ + 2p1ₓ) + (t²)(p0ₓ - 2p1ₓ + p2ₓ) - pₓ)((-2p0ₓ + 2p1ₓ) + 2(t)(p0ₓ - 2p1ₓ + p2ₓ))
64
+ // - (pₓ)((-2p0ₓ + 2p1ₓ) + (t)(p0ₓ - 2p1ₓ + p2ₓ))
65
+ const A = this.p0.x - point.x;
66
+ const B = -2 * this.p0.x + 2 * this.p1.x;
67
+ const C = this.p0.x - 2 * this.p1.x + this.p2.x;
68
+ // Let A = p0ₓ - pₓ, B = -2p0ₓ + 2p1ₓ, C = p0ₓ - 2p1ₓ + p2ₓ. We then have,
69
+ // Dₜ(Bₓ(t) - pₓ)²
70
+ // = 2(A + tB + t²C)(B + 2tC) - (pₓ)(B + 2tC)
71
+ // = 2(AB + tB² + t²BC + 2tCA + 2tCtB + 2tCt²C) - pₓB - pₓ2tC
72
+ // = 2(AB + tB² + 2tCA + t²BC + 2t²CB + 2C²t³) - pₓB - pₓ2tC
73
+ // = 2AB + 2t(B² + 2CA) + 2t²(BC + 2CB) + 4C²t³ - pₓB - pₓ2tC
74
+ // = 2AB + 2t(B² + 2CA - pₓC) + 2t²(BC + 2CB) + 4C²t³ - pₓB
75
+ //
76
+ const D = this.p0.y - point.y;
77
+ const E = -2 * this.p0.y + 2 * this.p1.y;
78
+ const F = this.p0.y - 2 * this.p1.y + this.p2.y;
79
+ // Using D = p0ᵧ - pᵧ, E = -2p0ᵧ + 2p1ᵧ, F = p0ᵧ - 2p1ᵧ + p2ᵧ, we thus have,
80
+ // f'(t) = 2AB + 2t(B² + 2CA - pₓC) + 2t²(BC + 2CB) + 4C²t³ - pₓB
81
+ // + 2DE + 2t(E² + 2FD - pᵧF) + 2t²(EF + 2FE) + 4F²t³ - pᵧE
82
+ const a = 2 * A * B + 2 * D * E - point.x * B - point.y * E;
83
+ const b = 2 * B * B + 2 * E * E + 2 * C * A + 2 * F * D - point.x * C - point.y * F;
84
+ const c = 2 * E * F + 2 * B * C + 2 * C * B + 2 * F * E;
85
+ //const d = 4 * C * C + 4 * F * F;
86
+ // Thus,
87
+ // f'(t) = a + bt + ct² + dt³
88
+ const fDerivAtZero = a;
89
+ const f2ndDerivAtZero = b;
90
+ const f3rdDerivAtZero = 2 * c;
91
+ // Using the first few terms of a Maclaurin series to approximate f'(t),
92
+ // f'(t) ≈ f'(0) + t f''(0) + t² f'''(0) / 2
93
+ let [min1, min2] = solveQuadratic(f3rdDerivAtZero / 2, f2ndDerivAtZero, fDerivAtZero);
94
+ // If the quadratic has no solutions, approximate.
95
+ if (isNaN(min1)) {
96
+ min1 = 0.25;
97
+ }
98
+ if (isNaN(min2)) {
99
+ min2 = 0.75;
100
+ }
101
+ const at1 = this.at(min1);
102
+ const at2 = this.at(min2);
103
+ const sqrDist1 = at1.minus(point).magnitudeSquared();
104
+ const sqrDist2 = at2.minus(point).magnitudeSquared();
105
+ const sqrDist3 = this.at(0).minus(point).magnitudeSquared();
106
+ const sqrDist4 = this.at(1).minus(point).magnitudeSquared();
107
+ return Math.sqrt(Math.min(sqrDist1, sqrDist2, sqrDist3, sqrDist4));
108
+ }
109
+ getPoints() {
110
+ return [this.p0, this.p1, this.p2];
111
+ }
112
+ }
113
+ export default QuadraticBezier;
@@ -0,0 +1,58 @@
1
+ import LineSegment2 from './LineSegment2';
2
+ import Mat33 from '../Mat33';
3
+ import { Point2, Vec2 } from '../Vec2';
4
+ import Abstract2DShape from './Abstract2DShape';
5
+ import Vec3 from '../Vec3';
6
+ /** An object that can be converted to a Rect2. */
7
+ export interface RectTemplate {
8
+ x: number;
9
+ y: number;
10
+ w?: number;
11
+ h?: number;
12
+ width?: number;
13
+ height?: number;
14
+ }
15
+ export declare class Rect2 extends Abstract2DShape {
16
+ readonly x: number;
17
+ readonly y: number;
18
+ readonly w: number;
19
+ readonly h: number;
20
+ readonly topLeft: Point2;
21
+ readonly size: Vec2;
22
+ readonly bottomRight: Point2;
23
+ readonly area: number;
24
+ constructor(x: number, y: number, w: number, h: number);
25
+ translatedBy(vec: Vec2): Rect2;
26
+ resizedTo(size: Vec2): Rect2;
27
+ containsPoint(other: Point2): boolean;
28
+ containsRect(other: Rect2): boolean;
29
+ intersects(other: Rect2): boolean;
30
+ intersection(other: Rect2): Rect2 | null;
31
+ union(other: Rect2): Rect2;
32
+ divideIntoGrid(columns: number, rows: number): Rect2[];
33
+ grownToPoint(point: Point2, margin?: number): Rect2;
34
+ grownBy(margin: number): Rect2;
35
+ getClosestPointOnBoundaryTo(target: Point2): Vec3;
36
+ get corners(): Point2[];
37
+ get maxDimension(): number;
38
+ get topRight(): Vec3;
39
+ get bottomLeft(): Vec3;
40
+ get width(): number;
41
+ get height(): number;
42
+ get center(): Vec3;
43
+ getEdges(): LineSegment2[];
44
+ intersectsLineSegment(lineSegment: LineSegment2): Point2[];
45
+ signedDistance(point: Vec3): number;
46
+ getTightBoundingBox(): Rect2;
47
+ transformedBoundingBox(affineTransform: Mat33): Rect2;
48
+ /** @return true iff this is equal to [other] ± fuzz */
49
+ eq(other: Rect2, fuzz?: number): boolean;
50
+ toString(): string;
51
+ static fromCorners(corner1: Point2, corner2: Point2): Rect2;
52
+ static bboxOf(points: Point2[], margin?: number): Rect2;
53
+ static union(...rects: Rect2[]): Rect2;
54
+ static of(template: RectTemplate): Rect2;
55
+ static empty: Rect2;
56
+ static unitSquare: Rect2;
57
+ }
58
+ export default Rect2;
@@ -0,0 +1,252 @@
1
+ import LineSegment2 from './LineSegment2.mjs';
2
+ import { Vec2 } from '../Vec2.mjs';
3
+ import Abstract2DShape from './Abstract2DShape.mjs';
4
+ // invariant: w ≥ 0, h ≥ 0, immutable
5
+ export class Rect2 extends Abstract2DShape {
6
+ constructor(x, y, w, h) {
7
+ super();
8
+ this.x = x;
9
+ this.y = y;
10
+ this.w = w;
11
+ this.h = h;
12
+ if (w < 0) {
13
+ this.x += w;
14
+ this.w = Math.abs(w);
15
+ }
16
+ if (h < 0) {
17
+ this.y += h;
18
+ this.h = Math.abs(h);
19
+ }
20
+ // Precompute/store vector forms.
21
+ this.topLeft = Vec2.of(this.x, this.y);
22
+ this.size = Vec2.of(this.w, this.h);
23
+ this.bottomRight = this.topLeft.plus(this.size);
24
+ this.area = this.w * this.h;
25
+ }
26
+ translatedBy(vec) {
27
+ return new Rect2(vec.x + this.x, vec.y + this.y, this.w, this.h);
28
+ }
29
+ // Returns a copy of this with the given size (but same top-left).
30
+ resizedTo(size) {
31
+ return new Rect2(this.x, this.y, size.x, size.y);
32
+ }
33
+ containsPoint(other) {
34
+ return this.x <= other.x && this.y <= other.y
35
+ && this.x + this.w >= other.x && this.y + this.h >= other.y;
36
+ }
37
+ containsRect(other) {
38
+ return this.x <= other.x && this.y <= other.y
39
+ && this.bottomRight.x >= other.bottomRight.x
40
+ && this.bottomRight.y >= other.bottomRight.y;
41
+ }
42
+ intersects(other) {
43
+ // Project along x/y axes.
44
+ const thisMinX = this.x;
45
+ const thisMaxX = thisMinX + this.w;
46
+ const otherMinX = other.x;
47
+ const otherMaxX = other.x + other.w;
48
+ if (thisMaxX < otherMinX || thisMinX > otherMaxX) {
49
+ return false;
50
+ }
51
+ const thisMinY = this.y;
52
+ const thisMaxY = thisMinY + this.h;
53
+ const otherMinY = other.y;
54
+ const otherMaxY = other.y + other.h;
55
+ if (thisMaxY < otherMinY || thisMinY > otherMaxY) {
56
+ return false;
57
+ }
58
+ return true;
59
+ }
60
+ // Returns the overlap of this and [other], or null, if no such
61
+ // overlap exists
62
+ intersection(other) {
63
+ if (!this.intersects(other)) {
64
+ return null;
65
+ }
66
+ const topLeft = this.topLeft.zip(other.topLeft, Math.max);
67
+ const bottomRight = this.bottomRight.zip(other.bottomRight, Math.min);
68
+ return Rect2.fromCorners(topLeft, bottomRight);
69
+ }
70
+ // Returns a new rectangle containing both [this] and [other].
71
+ union(other) {
72
+ return Rect2.union(this, other);
73
+ }
74
+ // Returns a the subdivision of this into [columns] columns
75
+ // and [rows] rows. For example,
76
+ // Rect2.unitSquare.divideIntoGrid(2, 2)
77
+ // -> [ Rect2(0, 0, 0.5, 0.5), Rect2(0.5, 0, 0.5, 0.5), Rect2(0, 0.5, 0.5, 0.5), Rect2(0.5, 0.5, 0.5, 0.5) ]
78
+ // The rectangles are ordered in row-major order.
79
+ divideIntoGrid(columns, rows) {
80
+ const result = [];
81
+ if (columns <= 0 || rows <= 0) {
82
+ return result;
83
+ }
84
+ const eachRectWidth = this.w / columns;
85
+ const eachRectHeight = this.h / rows;
86
+ if (eachRectWidth === 0) {
87
+ columns = 1;
88
+ }
89
+ if (eachRectHeight === 0) {
90
+ rows = 1;
91
+ }
92
+ for (let j = 0; j < rows; j++) {
93
+ for (let i = 0; i < columns; i++) {
94
+ const x = eachRectWidth * i + this.x;
95
+ const y = eachRectHeight * j + this.y;
96
+ result.push(new Rect2(x, y, eachRectWidth, eachRectHeight));
97
+ }
98
+ }
99
+ return result;
100
+ }
101
+ // Returns a rectangle containing this and [point].
102
+ // [margin] is the minimum distance between the new point and the edge
103
+ // of the resultant rectangle.
104
+ grownToPoint(point, margin = 0) {
105
+ const otherRect = new Rect2(point.x - margin, point.y - margin, margin * 2, margin * 2);
106
+ return this.union(otherRect);
107
+ }
108
+ // Returns this grown by [margin] in both the x and y directions.
109
+ grownBy(margin) {
110
+ if (margin === 0) {
111
+ return this;
112
+ }
113
+ return new Rect2(this.x - margin, this.y - margin, this.w + margin * 2, this.h + margin * 2);
114
+ }
115
+ getClosestPointOnBoundaryTo(target) {
116
+ const closestEdgePoints = this.getEdges().map(edge => {
117
+ return edge.closestPointTo(target);
118
+ });
119
+ let closest = null;
120
+ let closestDist = null;
121
+ for (const point of closestEdgePoints) {
122
+ const dist = point.minus(target).length();
123
+ if (closestDist === null || dist < closestDist) {
124
+ closest = point;
125
+ closestDist = dist;
126
+ }
127
+ }
128
+ return closest;
129
+ }
130
+ get corners() {
131
+ return [
132
+ this.bottomRight,
133
+ this.topRight,
134
+ this.topLeft,
135
+ this.bottomLeft,
136
+ ];
137
+ }
138
+ get maxDimension() {
139
+ return Math.max(this.w, this.h);
140
+ }
141
+ get topRight() {
142
+ return this.bottomRight.plus(Vec2.of(0, -this.h));
143
+ }
144
+ get bottomLeft() {
145
+ return this.topLeft.plus(Vec2.of(0, this.h));
146
+ }
147
+ get width() {
148
+ return this.w;
149
+ }
150
+ get height() {
151
+ return this.h;
152
+ }
153
+ get center() {
154
+ return this.topLeft.plus(this.size.times(0.5));
155
+ }
156
+ // Returns edges in the order
157
+ // [ rightEdge, topEdge, leftEdge, bottomEdge ]
158
+ getEdges() {
159
+ const corners = this.corners;
160
+ return [
161
+ new LineSegment2(corners[0], corners[1]),
162
+ new LineSegment2(corners[1], corners[2]),
163
+ new LineSegment2(corners[2], corners[3]),
164
+ new LineSegment2(corners[3], corners[0]),
165
+ ];
166
+ }
167
+ intersectsLineSegment(lineSegment) {
168
+ const result = [];
169
+ for (const edge of this.getEdges()) {
170
+ const intersection = edge.intersectsLineSegment(lineSegment);
171
+ intersection.forEach(point => result.push(point));
172
+ }
173
+ return result;
174
+ }
175
+ signedDistance(point) {
176
+ const closestBoundaryPoint = this.getClosestPointOnBoundaryTo(point);
177
+ const dist = point.minus(closestBoundaryPoint).magnitude();
178
+ if (this.containsPoint(point)) {
179
+ return -dist;
180
+ }
181
+ return dist;
182
+ }
183
+ getTightBoundingBox() {
184
+ return this;
185
+ }
186
+ // [affineTransform] is a transformation matrix that both scales and **translates**.
187
+ // the bounding box of this' four corners after transformed by the given affine transformation.
188
+ transformedBoundingBox(affineTransform) {
189
+ return Rect2.bboxOf(this.corners.map(corner => affineTransform.transformVec2(corner)));
190
+ }
191
+ /** @return true iff this is equal to [other] ± fuzz */
192
+ eq(other, fuzz = 0) {
193
+ return this.topLeft.eq(other.topLeft, fuzz) && this.size.eq(other.size, fuzz);
194
+ }
195
+ toString() {
196
+ return `Rect(point(${this.x}, ${this.y}), size(${this.w}, ${this.h}))`;
197
+ }
198
+ static fromCorners(corner1, corner2) {
199
+ return new Rect2(Math.min(corner1.x, corner2.x), Math.min(corner1.y, corner2.y), Math.abs(corner1.x - corner2.x), Math.abs(corner1.y - corner2.y));
200
+ }
201
+ // Returns a box that contains all points in [points] with at least [margin]
202
+ // between each point and the edge of the box.
203
+ static bboxOf(points, margin = 0) {
204
+ let minX = 0;
205
+ let minY = 0;
206
+ let maxX = 0;
207
+ let maxY = 0;
208
+ let isFirst = true;
209
+ for (const point of points) {
210
+ if (isFirst) {
211
+ minX = point.x;
212
+ minY = point.y;
213
+ maxX = point.x;
214
+ maxY = point.y;
215
+ isFirst = false;
216
+ }
217
+ minX = Math.min(minX, point.x);
218
+ minY = Math.min(minY, point.y);
219
+ maxX = Math.max(maxX, point.x);
220
+ maxY = Math.max(maxY, point.y);
221
+ }
222
+ return Rect2.fromCorners(Vec2.of(minX - margin, minY - margin), Vec2.of(maxX + margin, maxY + margin));
223
+ }
224
+ // @returns a rectangle that contains all of the given rectangles, the bounding box
225
+ // of the given rectangles.
226
+ static union(...rects) {
227
+ if (rects.length === 0) {
228
+ return Rect2.empty;
229
+ }
230
+ const firstRect = rects[0];
231
+ let minX = firstRect.topLeft.x;
232
+ let minY = firstRect.topLeft.y;
233
+ let maxX = firstRect.bottomRight.x;
234
+ let maxY = firstRect.bottomRight.y;
235
+ for (let i = 1; i < rects.length; i++) {
236
+ const rect = rects[i];
237
+ minX = Math.min(minX, rect.topLeft.x);
238
+ minY = Math.min(minY, rect.topLeft.y);
239
+ maxX = Math.max(maxX, rect.bottomRight.x);
240
+ maxY = Math.max(maxY, rect.bottomRight.y);
241
+ }
242
+ return new Rect2(minX, minY, maxX - minX, maxY - minY);
243
+ }
244
+ static of(template) {
245
+ const width = template.width ?? template.w ?? 0;
246
+ const height = template.height ?? template.h ?? 0;
247
+ return new Rect2(template.x, template.y, width, height);
248
+ }
249
+ }
250
+ Rect2.empty = new Rect2(0, 0, 0, 0);
251
+ Rect2.unitSquare = new Rect2(0, 0, 1, 1);
252
+ export default Rect2;
@@ -0,0 +1,46 @@
1
+ import Mat33 from '../Mat33';
2
+ import { Point2 } from '../Vec2';
3
+ import Vec3 from '../Vec3';
4
+ import Abstract2DShape from './Abstract2DShape';
5
+ import LineSegment2 from './LineSegment2';
6
+ import Rect2 from './Rect2';
7
+ type TriangleBoundary = [LineSegment2, LineSegment2, LineSegment2];
8
+ export default class Triangle extends Abstract2DShape {
9
+ #private;
10
+ readonly vertex1: Vec3;
11
+ readonly vertex2: Vec3;
12
+ readonly vertex3: Vec3;
13
+ /**
14
+ * @see {@link fromVertices}
15
+ */
16
+ protected constructor(vertex1: Vec3, vertex2: Vec3, vertex3: Vec3);
17
+ /**
18
+ * Creates a triangle from its three corners. Corners may be stored in a different
19
+ * order than given.
20
+ */
21
+ static fromVertices(vertex1: Vec3, vertex2: Vec3, vertex3: Vec3): Triangle;
22
+ get vertices(): [Point2, Point2, Point2];
23
+ map(mapping: (vertex: Vec3) => Vec3): Triangle;
24
+ transformed2DBy(affineTransform: Mat33): Triangle;
25
+ transformedBy(linearTransform: Mat33): Triangle;
26
+ /**
27
+ * Returns the sides of this triangle, as an array of `LineSegment2`s.
28
+ *
29
+ * The first side is from `vertex1` to `vertex2`, the next from `vertex2` to `vertex3`,
30
+ * and the last from `vertex3` to `vertex1`.
31
+ */
32
+ getEdges(): TriangleBoundary;
33
+ intersectsLineSegment(lineSegment: LineSegment2): Vec3[];
34
+ /** @inheritdoc */
35
+ containsPoint(point: Vec3, epsilon?: number): boolean;
36
+ /**
37
+ * @returns the signed distance from `point` to the closest edge of this triangle.
38
+ *
39
+ * If `point` is inside `this`, the result is negative, otherwise, the result is
40
+ * positive.
41
+ */
42
+ signedDistance(point: Vec3): number;
43
+ /** @inheritdoc */
44
+ getTightBoundingBox(): Rect2;
45
+ }
46
+ export {};
@@ -0,0 +1,121 @@
1
+ var __classPrivateFieldGet = (this && this.__classPrivateFieldGet) || function (receiver, state, kind, f) {
2
+ if (kind === "a" && !f) throw new TypeError("Private accessor was defined without a getter");
3
+ if (typeof state === "function" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError("Cannot read private member from an object whose class did not declare it");
4
+ return kind === "m" ? f : kind === "a" ? f.call(receiver) : f ? f.value : state.get(receiver);
5
+ };
6
+ var __classPrivateFieldSet = (this && this.__classPrivateFieldSet) || function (receiver, state, value, kind, f) {
7
+ if (kind === "m") throw new TypeError("Private method is not writable");
8
+ if (kind === "a" && !f) throw new TypeError("Private accessor was defined without a setter");
9
+ if (typeof state === "function" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError("Cannot write private member to an object whose class did not declare it");
10
+ return (kind === "a" ? f.call(receiver, value) : f ? f.value = value : state.set(receiver, value)), value;
11
+ };
12
+ var _Triangle_sides;
13
+ import Abstract2DShape from './Abstract2DShape.mjs';
14
+ import LineSegment2 from './LineSegment2.mjs';
15
+ import Rect2 from './Rect2.mjs';
16
+ class Triangle extends Abstract2DShape {
17
+ /**
18
+ * @see {@link fromVertices}
19
+ */
20
+ constructor(vertex1, vertex2, vertex3) {
21
+ super();
22
+ this.vertex1 = vertex1;
23
+ this.vertex2 = vertex2;
24
+ this.vertex3 = vertex3;
25
+ _Triangle_sides.set(this, undefined);
26
+ }
27
+ /**
28
+ * Creates a triangle from its three corners. Corners may be stored in a different
29
+ * order than given.
30
+ */
31
+ static fromVertices(vertex1, vertex2, vertex3) {
32
+ return new Triangle(vertex1, vertex2, vertex3);
33
+ }
34
+ get vertices() {
35
+ return [this.vertex1, this.vertex2, this.vertex3];
36
+ }
37
+ map(mapping) {
38
+ return new Triangle(mapping(this.vertex1), mapping(this.vertex2), mapping(this.vertex3));
39
+ }
40
+ // Transform, treating this as composed of 2D points.
41
+ transformed2DBy(affineTransform) {
42
+ return this.map(affineTransform.transformVec2);
43
+ }
44
+ // Transforms this by a linear transform --- verticies are treated as
45
+ // 3D points.
46
+ transformedBy(linearTransform) {
47
+ return this.map(linearTransform.transformVec3);
48
+ }
49
+ /**
50
+ * Returns the sides of this triangle, as an array of `LineSegment2`s.
51
+ *
52
+ * The first side is from `vertex1` to `vertex2`, the next from `vertex2` to `vertex3`,
53
+ * and the last from `vertex3` to `vertex1`.
54
+ */
55
+ getEdges() {
56
+ if (__classPrivateFieldGet(this, _Triangle_sides, "f")) {
57
+ return __classPrivateFieldGet(this, _Triangle_sides, "f");
58
+ }
59
+ const side1 = new LineSegment2(this.vertex1, this.vertex2);
60
+ const side2 = new LineSegment2(this.vertex2, this.vertex3);
61
+ const side3 = new LineSegment2(this.vertex3, this.vertex1);
62
+ const sides = [side1, side2, side3];
63
+ __classPrivateFieldSet(this, _Triangle_sides, sides, "f");
64
+ return sides;
65
+ }
66
+ intersectsLineSegment(lineSegment) {
67
+ const result = [];
68
+ for (const edge of this.getEdges()) {
69
+ edge.intersectsLineSegment(lineSegment)
70
+ .forEach(point => result.push(point));
71
+ }
72
+ return result;
73
+ }
74
+ /** @inheritdoc */
75
+ containsPoint(point, epsilon = Abstract2DShape.smallValue) {
76
+ // Project `point` onto normals to each of this' sides.
77
+ // Uses the Separating Axis Theorem (https://en.wikipedia.org/wiki/Hyperplane_separation_theorem#Use_in_collision_detection)
78
+ const sides = this.getEdges();
79
+ for (const side of sides) {
80
+ const orthog = side.direction.orthog();
81
+ // Project all three vertices
82
+ // TODO: Performance can be improved here (two vertices will always have the same projection)
83
+ const projv1 = orthog.dot(this.vertex1);
84
+ const projv2 = orthog.dot(this.vertex2);
85
+ const projv3 = orthog.dot(this.vertex3);
86
+ const minProjVertex = Math.min(projv1, projv2, projv3);
87
+ const maxProjVertex = Math.max(projv1, projv2, projv3);
88
+ const projPoint = orthog.dot(point);
89
+ const inProjection = projPoint >= minProjVertex - epsilon && projPoint <= maxProjVertex + epsilon;
90
+ if (!inProjection) {
91
+ return false;
92
+ }
93
+ }
94
+ return true;
95
+ }
96
+ /**
97
+ * @returns the signed distance from `point` to the closest edge of this triangle.
98
+ *
99
+ * If `point` is inside `this`, the result is negative, otherwise, the result is
100
+ * positive.
101
+ */
102
+ signedDistance(point) {
103
+ const sides = this.getEdges();
104
+ const distances = sides.map(side => side.distance(point));
105
+ const distance = Math.min(...distances);
106
+ // If the point is in this' interior, signedDistance must return a negative
107
+ // number.
108
+ if (this.containsPoint(point, 0)) {
109
+ return -distance;
110
+ }
111
+ else {
112
+ return distance;
113
+ }
114
+ }
115
+ /** @inheritdoc */
116
+ getTightBoundingBox() {
117
+ return Rect2.bboxOf(this.vertices);
118
+ }
119
+ }
120
+ _Triangle_sides = new WeakMap();
121
+ export default Triangle;