@itwin/core-geometry 5.3.0-dev.9 → 5.4.0-dev.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (162) hide show
  1. package/CHANGELOG.md +21 -1
  2. package/lib/cjs/curve/Arc3d.d.ts +15 -1
  3. package/lib/cjs/curve/Arc3d.d.ts.map +1 -1
  4. package/lib/cjs/curve/Arc3d.js +31 -2
  5. package/lib/cjs/curve/Arc3d.js.map +1 -1
  6. package/lib/cjs/curve/CurveFactory.d.ts +25 -8
  7. package/lib/cjs/curve/CurveFactory.d.ts.map +1 -1
  8. package/lib/cjs/curve/CurveFactory.js +51 -55
  9. package/lib/cjs/curve/CurveFactory.js.map +1 -1
  10. package/lib/cjs/curve/spiral/AustralianRailCorpXYEvaluator.d.ts +10 -13
  11. package/lib/cjs/curve/spiral/AustralianRailCorpXYEvaluator.d.ts.map +1 -1
  12. package/lib/cjs/curve/spiral/AustralianRailCorpXYEvaluator.js +23 -22
  13. package/lib/cjs/curve/spiral/AustralianRailCorpXYEvaluator.js.map +1 -1
  14. package/lib/cjs/curve/spiral/ClothoidSeries.d.ts +10 -6
  15. package/lib/cjs/curve/spiral/ClothoidSeries.d.ts.map +1 -1
  16. package/lib/cjs/curve/spiral/ClothoidSeries.js +36 -19
  17. package/lib/cjs/curve/spiral/ClothoidSeries.js.map +1 -1
  18. package/lib/cjs/curve/spiral/CubicEvaluator.d.ts +7 -6
  19. package/lib/cjs/curve/spiral/CubicEvaluator.d.ts.map +1 -1
  20. package/lib/cjs/curve/spiral/CubicEvaluator.js +29 -14
  21. package/lib/cjs/curve/spiral/CubicEvaluator.js.map +1 -1
  22. package/lib/cjs/curve/spiral/CzechSpiralEvaluator.d.ts +34 -44
  23. package/lib/cjs/curve/spiral/CzechSpiralEvaluator.d.ts.map +1 -1
  24. package/lib/cjs/curve/spiral/CzechSpiralEvaluator.js +47 -53
  25. package/lib/cjs/curve/spiral/CzechSpiralEvaluator.js.map +1 -1
  26. package/lib/cjs/curve/spiral/DirectHalfCosineSpiralEvaluator.d.ts +2 -2
  27. package/lib/cjs/curve/spiral/DirectHalfCosineSpiralEvaluator.d.ts.map +1 -1
  28. package/lib/cjs/curve/spiral/DirectHalfCosineSpiralEvaluator.js +17 -7
  29. package/lib/cjs/curve/spiral/DirectHalfCosineSpiralEvaluator.js.map +1 -1
  30. package/lib/cjs/curve/spiral/DirectSpiral3d.d.ts +112 -104
  31. package/lib/cjs/curve/spiral/DirectSpiral3d.d.ts.map +1 -1
  32. package/lib/cjs/curve/spiral/DirectSpiral3d.js +143 -117
  33. package/lib/cjs/curve/spiral/DirectSpiral3d.js.map +1 -1
  34. package/lib/cjs/curve/spiral/IntegratedSpiral3d.d.ts +71 -53
  35. package/lib/cjs/curve/spiral/IntegratedSpiral3d.d.ts.map +1 -1
  36. package/lib/cjs/curve/spiral/IntegratedSpiral3d.js +99 -66
  37. package/lib/cjs/curve/spiral/IntegratedSpiral3d.js.map +1 -1
  38. package/lib/cjs/curve/spiral/MXCubicAlongArcSpiralEvaluator.d.ts +8 -12
  39. package/lib/cjs/curve/spiral/MXCubicAlongArcSpiralEvaluator.d.ts.map +1 -1
  40. package/lib/cjs/curve/spiral/MXCubicAlongArcSpiralEvaluator.js +11 -13
  41. package/lib/cjs/curve/spiral/MXCubicAlongArcSpiralEvaluator.js.map +1 -1
  42. package/lib/cjs/curve/spiral/NormalizedTransition.d.ts +36 -29
  43. package/lib/cjs/curve/spiral/NormalizedTransition.d.ts.map +1 -1
  44. package/lib/cjs/curve/spiral/NormalizedTransition.js +62 -40
  45. package/lib/cjs/curve/spiral/NormalizedTransition.js.map +1 -1
  46. package/lib/cjs/curve/spiral/PolishCubicSpiralEvaluator.d.ts +13 -18
  47. package/lib/cjs/curve/spiral/PolishCubicSpiralEvaluator.d.ts.map +1 -1
  48. package/lib/cjs/curve/spiral/PolishCubicSpiralEvaluator.js +21 -24
  49. package/lib/cjs/curve/spiral/PolishCubicSpiralEvaluator.js.map +1 -1
  50. package/lib/cjs/curve/spiral/TransitionConditionalProperties.d.ts +41 -27
  51. package/lib/cjs/curve/spiral/TransitionConditionalProperties.d.ts.map +1 -1
  52. package/lib/cjs/curve/spiral/TransitionConditionalProperties.js +50 -33
  53. package/lib/cjs/curve/spiral/TransitionConditionalProperties.js.map +1 -1
  54. package/lib/cjs/curve/spiral/TransitionSpiral3d.d.ts +45 -34
  55. package/lib/cjs/curve/spiral/TransitionSpiral3d.d.ts.map +1 -1
  56. package/lib/cjs/curve/spiral/TransitionSpiral3d.js +56 -38
  57. package/lib/cjs/curve/spiral/TransitionSpiral3d.js.map +1 -1
  58. package/lib/cjs/curve/spiral/XYCurveEvaluator.d.ts +27 -21
  59. package/lib/cjs/curve/spiral/XYCurveEvaluator.d.ts.map +1 -1
  60. package/lib/cjs/curve/spiral/XYCurveEvaluator.js +23 -18
  61. package/lib/cjs/curve/spiral/XYCurveEvaluator.js.map +1 -1
  62. package/lib/cjs/geometry3d/GrowableXYArray.d.ts +96 -98
  63. package/lib/cjs/geometry3d/GrowableXYArray.d.ts.map +1 -1
  64. package/lib/cjs/geometry3d/GrowableXYArray.js +121 -110
  65. package/lib/cjs/geometry3d/GrowableXYArray.js.map +1 -1
  66. package/lib/cjs/geometry3d/GrowableXYZArray.d.ts +135 -142
  67. package/lib/cjs/geometry3d/GrowableXYZArray.d.ts.map +1 -1
  68. package/lib/cjs/geometry3d/GrowableXYZArray.js +165 -160
  69. package/lib/cjs/geometry3d/GrowableXYZArray.js.map +1 -1
  70. package/lib/cjs/geometry3d/IndexedXYCollection.d.ts +51 -34
  71. package/lib/cjs/geometry3d/IndexedXYCollection.d.ts.map +1 -1
  72. package/lib/cjs/geometry3d/IndexedXYCollection.js +16 -6
  73. package/lib/cjs/geometry3d/IndexedXYCollection.js.map +1 -1
  74. package/lib/cjs/geometry3d/IndexedXYZCollection.d.ts +78 -77
  75. package/lib/cjs/geometry3d/IndexedXYZCollection.d.ts.map +1 -1
  76. package/lib/cjs/geometry3d/IndexedXYZCollection.js +38 -35
  77. package/lib/cjs/geometry3d/IndexedXYZCollection.js.map +1 -1
  78. package/lib/cjs/geometry3d/PolygonOps.d.ts +27 -7
  79. package/lib/cjs/geometry3d/PolygonOps.d.ts.map +1 -1
  80. package/lib/cjs/geometry3d/PolygonOps.js +30 -9
  81. package/lib/cjs/geometry3d/PolygonOps.js.map +1 -1
  82. package/lib/esm/curve/Arc3d.d.ts +15 -1
  83. package/lib/esm/curve/Arc3d.d.ts.map +1 -1
  84. package/lib/esm/curve/Arc3d.js +31 -2
  85. package/lib/esm/curve/Arc3d.js.map +1 -1
  86. package/lib/esm/curve/CurveFactory.d.ts +25 -8
  87. package/lib/esm/curve/CurveFactory.d.ts.map +1 -1
  88. package/lib/esm/curve/CurveFactory.js +51 -55
  89. package/lib/esm/curve/CurveFactory.js.map +1 -1
  90. package/lib/esm/curve/spiral/AustralianRailCorpXYEvaluator.d.ts +10 -13
  91. package/lib/esm/curve/spiral/AustralianRailCorpXYEvaluator.d.ts.map +1 -1
  92. package/lib/esm/curve/spiral/AustralianRailCorpXYEvaluator.js +23 -22
  93. package/lib/esm/curve/spiral/AustralianRailCorpXYEvaluator.js.map +1 -1
  94. package/lib/esm/curve/spiral/ClothoidSeries.d.ts +10 -6
  95. package/lib/esm/curve/spiral/ClothoidSeries.d.ts.map +1 -1
  96. package/lib/esm/curve/spiral/ClothoidSeries.js +36 -19
  97. package/lib/esm/curve/spiral/ClothoidSeries.js.map +1 -1
  98. package/lib/esm/curve/spiral/CubicEvaluator.d.ts +7 -6
  99. package/lib/esm/curve/spiral/CubicEvaluator.d.ts.map +1 -1
  100. package/lib/esm/curve/spiral/CubicEvaluator.js +29 -14
  101. package/lib/esm/curve/spiral/CubicEvaluator.js.map +1 -1
  102. package/lib/esm/curve/spiral/CzechSpiralEvaluator.d.ts +34 -44
  103. package/lib/esm/curve/spiral/CzechSpiralEvaluator.d.ts.map +1 -1
  104. package/lib/esm/curve/spiral/CzechSpiralEvaluator.js +47 -53
  105. package/lib/esm/curve/spiral/CzechSpiralEvaluator.js.map +1 -1
  106. package/lib/esm/curve/spiral/DirectHalfCosineSpiralEvaluator.d.ts +2 -2
  107. package/lib/esm/curve/spiral/DirectHalfCosineSpiralEvaluator.d.ts.map +1 -1
  108. package/lib/esm/curve/spiral/DirectHalfCosineSpiralEvaluator.js +17 -7
  109. package/lib/esm/curve/spiral/DirectHalfCosineSpiralEvaluator.js.map +1 -1
  110. package/lib/esm/curve/spiral/DirectSpiral3d.d.ts +112 -104
  111. package/lib/esm/curve/spiral/DirectSpiral3d.d.ts.map +1 -1
  112. package/lib/esm/curve/spiral/DirectSpiral3d.js +143 -117
  113. package/lib/esm/curve/spiral/DirectSpiral3d.js.map +1 -1
  114. package/lib/esm/curve/spiral/IntegratedSpiral3d.d.ts +71 -53
  115. package/lib/esm/curve/spiral/IntegratedSpiral3d.d.ts.map +1 -1
  116. package/lib/esm/curve/spiral/IntegratedSpiral3d.js +99 -66
  117. package/lib/esm/curve/spiral/IntegratedSpiral3d.js.map +1 -1
  118. package/lib/esm/curve/spiral/MXCubicAlongArcSpiralEvaluator.d.ts +8 -12
  119. package/lib/esm/curve/spiral/MXCubicAlongArcSpiralEvaluator.d.ts.map +1 -1
  120. package/lib/esm/curve/spiral/MXCubicAlongArcSpiralEvaluator.js +11 -13
  121. package/lib/esm/curve/spiral/MXCubicAlongArcSpiralEvaluator.js.map +1 -1
  122. package/lib/esm/curve/spiral/NormalizedTransition.d.ts +36 -29
  123. package/lib/esm/curve/spiral/NormalizedTransition.d.ts.map +1 -1
  124. package/lib/esm/curve/spiral/NormalizedTransition.js +62 -40
  125. package/lib/esm/curve/spiral/NormalizedTransition.js.map +1 -1
  126. package/lib/esm/curve/spiral/PolishCubicSpiralEvaluator.d.ts +13 -18
  127. package/lib/esm/curve/spiral/PolishCubicSpiralEvaluator.d.ts.map +1 -1
  128. package/lib/esm/curve/spiral/PolishCubicSpiralEvaluator.js +21 -24
  129. package/lib/esm/curve/spiral/PolishCubicSpiralEvaluator.js.map +1 -1
  130. package/lib/esm/curve/spiral/TransitionConditionalProperties.d.ts +41 -27
  131. package/lib/esm/curve/spiral/TransitionConditionalProperties.d.ts.map +1 -1
  132. package/lib/esm/curve/spiral/TransitionConditionalProperties.js +50 -33
  133. package/lib/esm/curve/spiral/TransitionConditionalProperties.js.map +1 -1
  134. package/lib/esm/curve/spiral/TransitionSpiral3d.d.ts +45 -34
  135. package/lib/esm/curve/spiral/TransitionSpiral3d.d.ts.map +1 -1
  136. package/lib/esm/curve/spiral/TransitionSpiral3d.js +56 -38
  137. package/lib/esm/curve/spiral/TransitionSpiral3d.js.map +1 -1
  138. package/lib/esm/curve/spiral/XYCurveEvaluator.d.ts +27 -21
  139. package/lib/esm/curve/spiral/XYCurveEvaluator.d.ts.map +1 -1
  140. package/lib/esm/curve/spiral/XYCurveEvaluator.js +23 -18
  141. package/lib/esm/curve/spiral/XYCurveEvaluator.js.map +1 -1
  142. package/lib/esm/geometry3d/GrowableXYArray.d.ts +96 -98
  143. package/lib/esm/geometry3d/GrowableXYArray.d.ts.map +1 -1
  144. package/lib/esm/geometry3d/GrowableXYArray.js +122 -111
  145. package/lib/esm/geometry3d/GrowableXYArray.js.map +1 -1
  146. package/lib/esm/geometry3d/GrowableXYZArray.d.ts +135 -142
  147. package/lib/esm/geometry3d/GrowableXYZArray.d.ts.map +1 -1
  148. package/lib/esm/geometry3d/GrowableXYZArray.js +165 -160
  149. package/lib/esm/geometry3d/GrowableXYZArray.js.map +1 -1
  150. package/lib/esm/geometry3d/IndexedXYCollection.d.ts +51 -34
  151. package/lib/esm/geometry3d/IndexedXYCollection.d.ts.map +1 -1
  152. package/lib/esm/geometry3d/IndexedXYCollection.js +14 -5
  153. package/lib/esm/geometry3d/IndexedXYCollection.js.map +1 -1
  154. package/lib/esm/geometry3d/IndexedXYZCollection.d.ts +78 -77
  155. package/lib/esm/geometry3d/IndexedXYZCollection.d.ts.map +1 -1
  156. package/lib/esm/geometry3d/IndexedXYZCollection.js +38 -35
  157. package/lib/esm/geometry3d/IndexedXYZCollection.js.map +1 -1
  158. package/lib/esm/geometry3d/PolygonOps.d.ts +27 -7
  159. package/lib/esm/geometry3d/PolygonOps.d.ts.map +1 -1
  160. package/lib/esm/geometry3d/PolygonOps.js +30 -9
  161. package/lib/esm/geometry3d/PolygonOps.js.map +1 -1
  162. package/package.json +3 -3
@@ -1 +1 @@
1
- {"version":3,"file":"MXCubicAlongArcSpiralEvaluator.js","sourceRoot":"","sources":["../../../../src/curve/spiral/MXCubicAlongArcSpiralEvaluator.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AACH,OAAO,EAAE,QAAQ,EAAE,MAAM,gBAAgB,CAAC;AAC1C,OAAO,EAAE,cAAc,EAAE,MAAM,kBAAkB,CAAC;AAClD;;;;;;;;;;;;;;GAcG;AACH,MAAM,OAAO,wBAAyB,SAAQ,cAAc;IACnD,cAAc,CAAS;IACvB,cAAc,CAAS;IAE9B,uEAAuE;IACvE,YAAoB,OAAe,EAAE,OAAe,EAAE,UAAkB,EAAE,MAAc;QACtF,KAAK,CAAC,UAAU,EAAE,MAAM,CAAC,CAAC;QAC1B,IAAI,CAAC,cAAc,GAAG,OAAO,CAAC;QAC9B,IAAI,CAAC,cAAc,GAAG,OAAO,CAAC;IAChC,CAAC;IAED,kCAAkC;IAC3B,MAAM,CAAC,aAAa,CAAC,OAAe,EAAE,OAAe;QAC1D,MAAM,UAAU,GAAG,wBAAwB,CAAC,2BAA2B,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;QACnG,OAAO,GAAG,GAAG,CAAC,GAAG,GAAG,OAAO,GAAG,UAAU,CAAC,CAAC;IAC5C,CAAC;IAEM,MAAM,CAAC,MAAM,CAAC,OAAe,EAAE,OAAe;QACnD,MAAM,CAAC,GAAG,IAAI,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;QAC/C,IAAI,CAAC,KAAK,SAAS;YACjB,OAAO,SAAS,CAAC;QACnB,MAAM,IAAI,GAAG,wBAAwB,CAAC,2BAA2B,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;QAC7F,OAAO,IAAI,wBAAwB,CAAC,OAAO,EAAE,OAAO,EAAE,IAAI,EAAE,CAAC,CAAC,CAAC;IACjE,CAAC;IAEe,YAAY,CAAC,WAAmB;QAC9C,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,KAAK,CAAC,YAAY,CAAC,WAAW,CAAC,CAAC;IAClC,CAAC;IACD,0CAA0C;IACnC,KAAK,KAA+B,OAAO,IAAI,wBAAwB,CAAC,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;IACzJ,mCAAmC;IAC5B,aAAa,CAAC,KAAU;QAC7B,IAAI,KAAK,YAAY,wBAAwB,EAAE,CAAC;YAC9C,OAAO,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC;mBACtE,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC,CAAC;QAC5E,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;;OAKG;IACI,MAAM,CAAC,2BAA2B,CAAC,cAAsB,EAAE,cAAsB,EAAE,oBAA4B;QACpH,MAAM,EAAE,GAAG,cAAc,GAAG,cAAc,CAAC;QAC3C,MAAM,EAAE,GAAG,cAAc,GAAG,cAAc,CAAC;QAC3C,MAAM,EAAE,GAAG,oBAAoB,GAAG,oBAAoB,CAAC;QACvD,OAAO,oBAAoB,GAAG,CAAC,GAAG,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,IAAI,GAAG,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC;IACnE,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\n* See LICENSE.md in the project root for license terms and full copyright notice.\n*--------------------------------------------------------------------------------------------*/\n\n/** @packageDocumentation\n * @module Curve\n */\nimport { Geometry } from \"../../Geometry\";\nimport { CubicEvaluator } from \"./CubicEvaluator\";\n/**\n * MX Cubic along arc.\n * This is y= m*x^3 with\n * * x any point on the x axis\n * * `fraction` along the spiral goes to `x = fraction * Lx`\n * * m is (1/6RL)\n * * construction length L is nominal along the curve.\n * * x length Lx is along the axis, determined by two terms of the clothoid x series.\n * *\n * @param localToWorld\n * @param nominalL1\n * @param nominalR1\n * @param activeInterval\n * @internal\n */\nexport class MXCubicAlongArcEvaluator extends CubicEvaluator {\n public nominalLength1: number;\n public nominalRadius1: number;\n\n /** Constructor is private. Caller responsible for cubicM validity. */\n private constructor(length1: number, radius1: number, axisLength: number, cubicM: number) {\n super(axisLength, cubicM);\n this.nominalLength1 = length1;\n this.nominalRadius1 = radius1;\n }\n\n /** Compute the cubic constant. */\n public static computeCubicM(length1: number, radius1: number): number | undefined {\n const axisLength = MXCubicAlongArcEvaluator.approximateDistanceAlongToX(length1, radius1, length1);\n return 1.0 / (6.0 * radius1 * axisLength);\n }\n\n public static create(length1: number, radius1: number): MXCubicAlongArcEvaluator | undefined {\n const m = this.computeCubicM(length1, radius1);\n if (m === undefined)\n return undefined;\n const xMax = MXCubicAlongArcEvaluator.approximateDistanceAlongToX(length1, radius1, length1);\n return new MXCubicAlongArcEvaluator(length1, radius1, xMax, m);\n }\n\n public override scaleInPlace(scaleFactor: number) {\n this.nominalLength1 *= scaleFactor;\n this.nominalRadius1 *= scaleFactor;\n super.scaleInPlace(scaleFactor);\n }\n /** return a deep copy of the evaluator */\n public clone(): MXCubicAlongArcEvaluator { return new MXCubicAlongArcEvaluator(this.nominalLength1, this.nominalRadius1, this.axisLength, this.cubicM); }\n /** Member by member matchup ... */\n public isAlmostEqual(other: any): boolean {\n if (other instanceof MXCubicAlongArcEvaluator) {\n return Geometry.isSameCoordinate(this.nominalLength1, other.nominalLength1)\n && Geometry.isSameCoordinate(this.nominalRadius1, other.nominalRadius1);\n }\n return false;\n }\n /**\n * Return a (fast but mediocre) approximation of spiral x position as function of approximate distance along the curve.\n * * This x-to-distance relation is not as precise as the CurvePrimitive method moveSignedDistanceFromFraction.\n * * It is supported here for users interested in replicating the Czech distance mapping rather than the more accurate CurvePrimitive measurements.\n * @param x distance along the x axis.\n */\n public static approximateDistanceAlongToX(nominalLength1: number, nominalRadius1: number, nominalDistanceAlong: number): number {\n const l2 = nominalLength1 * nominalLength1;\n const r2 = nominalRadius1 * nominalRadius1;\n const xx = nominalDistanceAlong * nominalDistanceAlong;\n return nominalDistanceAlong * (1.0 - xx * xx / (40.0 * r2 * l2));\n }\n}\n"]}
1
+ {"version":3,"file":"MXCubicAlongArcSpiralEvaluator.js","sourceRoot":"","sources":["../../../../src/curve/spiral/MXCubicAlongArcSpiralEvaluator.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AACH,OAAO,EAAE,QAAQ,EAAE,MAAM,gBAAgB,CAAC;AAC1C,OAAO,EAAE,cAAc,EAAE,MAAM,kBAAkB,CAAC;AAElD;;;;;;;;;GASG;AACH,MAAM,OAAO,wBAAyB,SAAQ,cAAc;IACnD,cAAc,CAAS;IACvB,cAAc,CAAS;IAC9B,uEAAuE;IACvE,YAAoB,OAAe,EAAE,OAAe,EAAE,UAAkB,EAAE,MAAc;QACtF,KAAK,CAAC,UAAU,EAAE,MAAM,CAAC,CAAC;QAC1B,IAAI,CAAC,cAAc,GAAG,OAAO,CAAC;QAC9B,IAAI,CAAC,cAAc,GAAG,OAAO,CAAC;IAChC,CAAC;IACD,kCAAkC;IAC3B,MAAM,CAAC,aAAa,CAAC,OAAe,EAAE,OAAe;QAC1D,MAAM,UAAU,GAAG,wBAAwB,CAAC,2BAA2B,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;QACnG,OAAO,GAAG,GAAG,CAAC,GAAG,GAAG,OAAO,GAAG,UAAU,CAAC,CAAC;IAC5C,CAAC;IACM,MAAM,CAAC,MAAM,CAAC,OAAe,EAAE,OAAe;QACnD,MAAM,CAAC,GAAG,IAAI,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;QAC/C,IAAI,CAAC,KAAK,SAAS;YACjB,OAAO,SAAS,CAAC;QACnB,MAAM,IAAI,GAAG,wBAAwB,CAAC,2BAA2B,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;QAC7F,OAAO,IAAI,wBAAwB,CAAC,OAAO,EAAE,OAAO,EAAE,IAAI,EAAE,CAAC,CAAC,CAAC;IACjE,CAAC;IACe,YAAY,CAAC,WAAmB;QAC9C,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,KAAK,CAAC,YAAY,CAAC,WAAW,CAAC,CAAC;IAClC,CAAC;IACD,2CAA2C;IACpC,KAAK;QACV,OAAO,IAAI,wBAAwB,CAAC,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC;IAC9G,CAAC;IACD,gCAAgC;IACzB,aAAa,CAAC,KAAU;QAC7B,IAAI,KAAK,YAAY,wBAAwB,EAAE,CAAC;YAC9C,OAAO,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC;mBACtE,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC,CAAC;QAC5E,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;;;OAMG;IACI,MAAM,CAAC,2BAA2B,CACvC,cAAsB,EAAE,cAAsB,EAAE,oBAA4B;QAE5E,MAAM,EAAE,GAAG,cAAc,GAAG,cAAc,CAAC;QAC3C,MAAM,EAAE,GAAG,cAAc,GAAG,cAAc,CAAC;QAC3C,MAAM,EAAE,GAAG,oBAAoB,GAAG,oBAAoB,CAAC;QACvD,OAAO,oBAAoB,GAAG,CAAC,GAAG,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,IAAI,GAAG,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC;IACnE,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\n* See LICENSE.md in the project root for license terms and full copyright notice.\n*--------------------------------------------------------------------------------------------*/\n\n/** @packageDocumentation\n * @module Curve\n */\nimport { Geometry } from \"../../Geometry\";\nimport { CubicEvaluator } from \"./CubicEvaluator\";\n\n/**\n * MX Cubic along arc.\n * This is y = m*x^3 with\n * * x any point on the x axis.\n * * `fraction` along the spiral goes to `x = fraction * Lx`.\n * * m is (1/6RL).\n * * construction length L is nominal along the curve.\n * * x length Lx is along the axis, determined by two terms of the clothoid x series.\n * @internal\n */\nexport class MXCubicAlongArcEvaluator extends CubicEvaluator {\n public nominalLength1: number;\n public nominalRadius1: number;\n /** Constructor is private. Caller responsible for cubicM validity. */\n private constructor(length1: number, radius1: number, axisLength: number, cubicM: number) {\n super(axisLength, cubicM);\n this.nominalLength1 = length1;\n this.nominalRadius1 = radius1;\n }\n /** Compute the cubic constant. */\n public static computeCubicM(length1: number, radius1: number): number | undefined {\n const axisLength = MXCubicAlongArcEvaluator.approximateDistanceAlongToX(length1, radius1, length1);\n return 1.0 / (6.0 * radius1 * axisLength);\n }\n public static create(length1: number, radius1: number): MXCubicAlongArcEvaluator | undefined {\n const m = this.computeCubicM(length1, radius1);\n if (m === undefined)\n return undefined;\n const xMax = MXCubicAlongArcEvaluator.approximateDistanceAlongToX(length1, radius1, length1);\n return new MXCubicAlongArcEvaluator(length1, radius1, xMax, m);\n }\n public override scaleInPlace(scaleFactor: number) {\n this.nominalLength1 *= scaleFactor;\n this.nominalRadius1 *= scaleFactor;\n super.scaleInPlace(scaleFactor);\n }\n /** Return a deep copy of the evaluator. */\n public clone(): MXCubicAlongArcEvaluator {\n return new MXCubicAlongArcEvaluator(this.nominalLength1, this.nominalRadius1, this.axisLength, this.cubicM);\n }\n /** Member by member matchup. */\n public isAlmostEqual(other: any): boolean {\n if (other instanceof MXCubicAlongArcEvaluator) {\n return Geometry.isSameCoordinate(this.nominalLength1, other.nominalLength1)\n && Geometry.isSameCoordinate(this.nominalRadius1, other.nominalRadius1);\n }\n return false;\n }\n /**\n * Return a (fast but mediocre) approximation of spiral x position as function of approximate distance along the curve.\n * * This x-to-distance relation is not as precise as the CurvePrimitive method moveSignedDistanceFromFraction.\n * * It is supported here for users interested in replicating the Czech distance mapping rather than the more accurate\n * CurvePrimitive measurements.\n * @param x distance along the x axis.\n */\n public static approximateDistanceAlongToX(\n nominalLength1: number, nominalRadius1: number, nominalDistanceAlong: number,\n ): number {\n const l2 = nominalLength1 * nominalLength1;\n const r2 = nominalRadius1 * nominalRadius1;\n const xx = nominalDistanceAlong * nominalDistanceAlong;\n return nominalDistanceAlong * (1.0 - xx * xx / (40.0 * r2 * l2));\n }\n}\n"]}
@@ -6,22 +6,23 @@
6
6
  * * Each function maps fractional progress to a curvature value.
7
7
  * * f(0) === 0
8
8
  * * f(1) === 1
9
- * * f(u) === 1 - f (1-u)
9
+ * * f(u) === 1 - f(1-u)
10
10
  * * Each implementation provides:
11
11
  * * fractionToCurvature -- the f(u) function described above
12
12
  * * fractionToCurvatureDerivative -- df(u)/du
13
13
  * * fractionToArea -- integral of the area under f(u) from 0 to u.
14
- * * the symmetry condition ensures that the integral from 0 to 1 is 1/2
14
+ * * The symmetry condition ensures that the integral from 0 to 1 is 1/2.
15
15
  * @internal
16
16
  */
17
17
  export declare abstract class NormalizedTransition {
18
- /** Constructor initializes with 0..1 values .. call "setBearingCurvatureLengthCurvature" to apply real values */
18
+ /** Constructor initializes with 0..1 values. Call "setBearingCurvatureLengthCurvature" to apply real values. */
19
19
  constructor();
20
20
  /** At fractional position on the x axis, return the (normalized) curvature fraction. */
21
21
  abstract fractionToCurvatureFraction(fractionX: number): number;
22
- /** Return the derivative of the (normalized) curvature fraction */
22
+ /** Return the derivative of the (normalized) curvature fraction. */
23
23
  abstract fractionToCurvatureFractionDerivative(fractionX: number): number;
24
- /** Return the integrated area under the curve
24
+ /**
25
+ * Return the integrated area under the curve.
25
26
  * * This is equal to the accumulated angle change.
26
27
  */
27
28
  abstract fractionToArea(fractionX: number): number;
@@ -53,34 +54,36 @@ export declare class NormalizedClothoidTransition extends NormalizedTransition {
53
54
  constructor();
54
55
  /** At fractional position on the x axis, return the (normalized) curvature fraction. */
55
56
  fractionToCurvatureFraction(fractionX: number): number;
56
- /** Return the derivative of the (normalized) curvature fraction */
57
+ /** Return the derivative of the (normalized) curvature fraction. */
57
58
  fractionToCurvatureFractionDerivative(_u: number): number;
58
- /** Return the integrated area under the curve.
59
+ /**
60
+ * Return the integrated area under the curve.
59
61
  * * This fraction is the angular change fraction.
60
62
  */
61
63
  fractionToArea(fractionX: number): number;
62
64
  }
63
65
  /**
64
66
  * Transition functions for bloss spiral.
65
- * * curvature variation is cubic from (0,0) with slope 0 to (1,1) with slope 1
67
+ * * curvature variation is cubic from (0,0) with slope 0 to (1,1) with slope 1.
66
68
  * @internal
67
69
  */
68
70
  export declare class NormalizedBlossTransition extends NormalizedTransition {
69
71
  constructor();
70
72
  /** At fractional position on the x axis, return the (normalized) curvature fraction. */
71
73
  fractionToCurvatureFraction(u: number): number;
72
- /** Return the derivative of the (normalized) curvature fraction */
74
+ /** Return the derivative of the (normalized) curvature fraction. */
73
75
  fractionToCurvatureFractionDerivative(u: number): number;
74
- /** Return the integrated area under the curve.
76
+ /**
77
+ * Return the integrated area under the curve.
75
78
  * * This fraction is the angular change fraction.
76
79
  */
77
80
  fractionToArea(u: number): number;
78
81
  }
79
82
  /**
80
- * Transition functions for biquadratic transition
83
+ * Transition functions for biquadratic transition.
81
84
  * * Curvature is a pair of joining quadratics.
82
- * * In lower half of the interval, the quadratic is from (0,0) to (0.5, 0.5) with zero slope at origin
83
- * * In upper half of the interval, the quadratic is from (0.5,0.5) to (1,1) with zero slope at 1
85
+ * * In lower half of the interval, the quadratic is from (0,0) to (0.5, 0.5) with zero slope at origin.
86
+ * * In upper half of the interval, the quadratic is from (0.5,0.5) to (1,1) with zero slope at 1.
84
87
  * @internal
85
88
  */
86
89
  export declare class NormalizedBiQuadraticTransition extends NormalizedTransition {
@@ -88,50 +91,54 @@ export declare class NormalizedBiQuadraticTransition extends NormalizedTransitio
88
91
  private integratedBasis;
89
92
  private basis;
90
93
  private basisDerivative;
91
- /** At fractional position on the x axis, return the (normalized) curvature fraction.
92
- * * * For [u <= 0.5, u >= 0.5]
93
- * * f(u) = [2 u^2, 1 - 2 (1-u)^2]
94
- * * f'(u) = [4 u, 4 (1-u)]
95
- * * If(u) = [2 u^3 / 3, 0.5 (1 -u )^3/3]
94
+ /**
95
+ * At fractional position on the x axis, return the (normalized) curvature fraction.
96
+ * * For [u <= 0.5, u >= 0.5]
97
+ * * f(u) = [2 u^2, 1 - 2 (1-u)^2]
98
+ * * f'(u) = [4 u, 4 (1-u)]
99
+ * * If(u) = [2 u^3 / 3, 0.5 (1 -u )^3/3]
96
100
  */
97
101
  fractionToCurvatureFraction(u: number): number;
98
- /** Return the derivative of the (normalized) curvature fraction */
102
+ /** Return the derivative of the (normalized) curvature fraction. */
99
103
  fractionToCurvatureFractionDerivative(u: number): number;
100
- /** Return the integrated area under the curve.
104
+ /**
105
+ * Return the integrated area under the curve.
101
106
  * * This fraction is the angular change fraction.
102
107
  */
103
108
  fractionToArea(u: number): number;
104
109
  }
105
110
  /**
106
- * Transition functions for sine transition
111
+ * Transition functions for sine transition.
107
112
  * * curvature variation is the sum of
108
- * * straight line from (0,0) to (1,1), like clothoid
109
- * * additional full period of a sine wave, producing 0 slope at both ends
113
+ * * straight line from (0,0) to (1,1), like clothoid.
114
+ * * additional full period of a sine wave, producing 0 slope at both ends.
110
115
  * @internal
111
116
  */
112
117
  export declare class NormalizedSineTransition extends NormalizedTransition {
113
118
  constructor();
114
119
  /** At fractional position on the x axis, return the (normalized) curvature fraction. */
115
120
  fractionToCurvatureFraction(u: number): number;
116
- /** Return the derivative of the (normalized) curvature fraction */
121
+ /** Return the derivative of the (normalized) curvature fraction. */
117
122
  fractionToCurvatureFractionDerivative(u: number): number;
118
- /** Return the integrated area under the curve.
123
+ /**
124
+ * Return the integrated area under the curve.
119
125
  * * This fraction is the angular change fraction.
120
126
  */
121
127
  fractionToArea(u: number): number;
122
128
  }
123
129
  /**
124
- * Transition functions for cosine
125
- * * curvature variation is a half period of a cosine
130
+ * Transition functions for cosine.
131
+ * * curvature variation is a half period of a cosine.
126
132
  * @internal
127
133
  */
128
134
  export declare class NormalizedCosineTransition extends NormalizedTransition {
129
135
  constructor();
130
136
  /** At fractional position on the x axis, return the (normalized) curvature fraction. */
131
137
  fractionToCurvatureFraction(u: number): number;
132
- /** Return the derivative of the (normalized) curvature fraction */
138
+ /** Return the derivative of the (normalized) curvature fraction. */
133
139
  fractionToCurvatureFractionDerivative(u: number): number;
134
- /** Return the integrated area under the curve.
140
+ /**
141
+ * Return the integrated area under the curve.
135
142
  * * This fraction is the angular change fraction.
136
143
  */
137
144
  fractionToArea(u: number): number;
@@ -1 +1 @@
1
- {"version":3,"file":"NormalizedTransition.d.ts","sourceRoot":"","sources":["../../../../src/curve/spiral/NormalizedTransition.ts"],"names":[],"mappings":"AAKA;;GAEG;AACH;;;;;;;;;;;;GAYG;AACH,8BAAsB,oBAAoB;IACxC,iHAAiH;;IAEjH,wFAAwF;aACxE,2BAA2B,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM;IACtE,mEAAmE;aACnD,qCAAqC,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM;IAChF;;OAEG;aACa,cAAc,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM;IACzD,OAAO,CAAC,MAAM,CAAC,kBAAkB,CAAC,CAA+B;IACjE,OAAO,CAAC,MAAM,CAAC,qBAAqB,CAAC,CAAkC;IACvE,OAAO,CAAC,MAAM,CAAC,eAAe,CAAC,CAA4B;IAC3D,OAAO,CAAC,MAAM,CAAC,cAAc,CAAC,CAA2B;IACzD,OAAO,CAAC,MAAM,CAAC,gBAAgB,CAAC,CAA6B;IAE7D;;;;;;;;;;;OAWG;WACW,aAAa,CAAC,IAAI,EAAE,MAAM,GAAG,oBAAoB,GAAG,SAAS;CAa5E;AACD;;;;GAIG;AACH,qBAAa,4BAA6B,SAAQ,oBAAoB;;IAEpE,wFAAwF;IACjF,2BAA2B,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM;IAC7D,mEAAmE;IAC5D,qCAAqC,CAAC,EAAE,EAAE,MAAM,GAAG,MAAM;IAChE;;OAEG;IACI,cAAc,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM;CAGjD;AAED;;;;GAIG;AACH,qBAAa,yBAA0B,SAAQ,oBAAoB;;IAQjE,wFAAwF;IACjF,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IACrD,mEAAmE;IAC5D,qCAAqC,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAG/D;;OAEG;IACI,cAAc,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;CAGzC;AAED;;;;;;GAMG;AACH,qBAAa,+BAAgC,SAAQ,oBAAoB;;IAEvE,OAAO,CAAC,eAAe;IACvB,OAAO,CAAC,KAAK;IACb,OAAO,CAAC,eAAe;IACvB;;;;;OAKG;IACI,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAGrD,mEAAmE;IAC5D,qCAAqC,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAG/D;;OAEG;IACI,cAAc,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;CAMzC;AAED;;;;;;GAMG;AACH,qBAAa,wBAAyB,SAAQ,oBAAoB;;IAEhE,wFAAwF;IACjF,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAIrD,mEAAmE;IAC5D,qCAAqC,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAI/D;;OAEG;IACI,cAAc,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;CAIzC;AACD;;;;GAIG;AACH,qBAAa,0BAA2B,SAAQ,oBAAoB;;IAElE,wFAAwF;IACjF,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAIrD,mEAAmE;IAC5D,qCAAqC,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAI/D;;OAEG;IACI,cAAc,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;CAIzC"}
1
+ {"version":3,"file":"NormalizedTransition.d.ts","sourceRoot":"","sources":["../../../../src/curve/spiral/NormalizedTransition.ts"],"names":[],"mappings":"AAKA;;GAEG;AAEH;;;;;;;;;;;;GAYG;AACH,8BAAsB,oBAAoB;IACxC,gHAAgH;;IAEhH,wFAAwF;aACxE,2BAA2B,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM;IACtE,oEAAoE;aACpD,qCAAqC,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM;IAChF;;;OAGG;aACa,cAAc,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM;IACzD,OAAO,CAAC,MAAM,CAAC,kBAAkB,CAAC,CAA+B;IACjE,OAAO,CAAC,MAAM,CAAC,qBAAqB,CAAC,CAAkC;IACvE,OAAO,CAAC,MAAM,CAAC,eAAe,CAAC,CAA4B;IAC3D,OAAO,CAAC,MAAM,CAAC,cAAc,CAAC,CAA2B;IACzD,OAAO,CAAC,MAAM,CAAC,gBAAgB,CAAC,CAA6B;IAC7D;;;;;;;;;;;OAWG;WACW,aAAa,CAAC,IAAI,EAAE,MAAM,GAAG,oBAAoB,GAAG,SAAS;CAa5E;AAED;;;;GAIG;AACH,qBAAa,4BAA6B,SAAQ,oBAAoB;;IAIpE,wFAAwF;IACjF,2BAA2B,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM;IAG7D,oEAAoE;IAC7D,qCAAqC,CAAC,EAAE,EAAE,MAAM,GAAG,MAAM;IAGhE;;;OAGG;IACI,cAAc,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM;CAGjD;AAED;;;;GAIG;AACH,qBAAa,yBAA0B,SAAQ,oBAAoB;;IAQjE,wFAAwF;IACjF,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAGrD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAG/D;;;OAGG;IACI,cAAc,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;CAGzC;AAED;;;;;;GAMG;AACH,qBAAa,+BAAgC,SAAQ,oBAAoB;;IAIvE,OAAO,CAAC,eAAe;IAGvB,OAAO,CAAC,KAAK;IAGb,OAAO,CAAC,eAAe;IAGvB;;;;;;OAMG;IACI,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAGrD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAG/D;;;OAGG;IACI,cAAc,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;CAMzC;AAED;;;;;;GAMG;AACH,qBAAa,wBAAyB,SAAQ,oBAAoB;;IAEhE,wFAAwF;IACjF,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAIrD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAI/D;;;OAGG;IACI,cAAc,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;CAIzC;AAED;;;;GAIG;AACH,qBAAa,0BAA2B,SAAQ,oBAAoB;;IAElE,wFAAwF;IACjF,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAIrD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAI/D;;;OAGG;IACI,cAAc,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;CAIzC"}
@@ -10,16 +10,16 @@
10
10
  * * Each function maps fractional progress to a curvature value.
11
11
  * * f(0) === 0
12
12
  * * f(1) === 1
13
- * * f(u) === 1 - f (1-u)
13
+ * * f(u) === 1 - f(1-u)
14
14
  * * Each implementation provides:
15
15
  * * fractionToCurvature -- the f(u) function described above
16
16
  * * fractionToCurvatureDerivative -- df(u)/du
17
17
  * * fractionToArea -- integral of the area under f(u) from 0 to u.
18
- * * the symmetry condition ensures that the integral from 0 to 1 is 1/2
18
+ * * The symmetry condition ensures that the integral from 0 to 1 is 1/2.
19
19
  * @internal
20
20
  */
21
21
  export class NormalizedTransition {
22
- /** Constructor initializes with 0..1 values .. call "setBearingCurvatureLengthCurvature" to apply real values */
22
+ /** Constructor initializes with 0..1 values. Call "setBearingCurvatureLengthCurvature" to apply real values. */
23
23
  constructor() { }
24
24
  static _clothoidEvaluator;
25
25
  static _biquadraticEvaluator;
@@ -58,12 +58,19 @@ export class NormalizedTransition {
58
58
  * @internal
59
59
  */
60
60
  export class NormalizedClothoidTransition extends NormalizedTransition {
61
- constructor() { super(); }
61
+ constructor() {
62
+ super();
63
+ }
62
64
  /** At fractional position on the x axis, return the (normalized) curvature fraction. */
63
- fractionToCurvatureFraction(fractionX) { return fractionX; }
64
- /** Return the derivative of the (normalized) curvature fraction */
65
- fractionToCurvatureFractionDerivative(_u) { return 1.0; }
66
- /** Return the integrated area under the curve.
65
+ fractionToCurvatureFraction(fractionX) {
66
+ return fractionX;
67
+ }
68
+ /** Return the derivative of the (normalized) curvature fraction. */
69
+ fractionToCurvatureFractionDerivative(_u) {
70
+ return 1.0;
71
+ }
72
+ /**
73
+ * Return the integrated area under the curve.
67
74
  * * This fraction is the angular change fraction.
68
75
  */
69
76
  fractionToArea(fractionX) {
@@ -72,24 +79,27 @@ export class NormalizedClothoidTransition extends NormalizedTransition {
72
79
  }
73
80
  /**
74
81
  * Transition functions for bloss spiral.
75
- * * curvature variation is cubic from (0,0) with slope 0 to (1,1) with slope 1
82
+ * * curvature variation is cubic from (0,0) with slope 0 to (1,1) with slope 1.
76
83
  * @internal
77
84
  */
78
85
  export class NormalizedBlossTransition extends NormalizedTransition {
79
86
  // bloss curve is (3 - 2x) x ^2 = 3 x^2 - 2 x^3
80
- // derivative 6x (1-x)
81
- // 2nd derivative 6 - 12 x
82
- // derivatives zero at 0,1
83
- // inflection zero at 0.5
84
- // integral is x^3 - x^4 / 2 = x^3 ( 1-x/2)
87
+ // derivative 6x (1-x)
88
+ // 2nd derivative 6 - 12 x
89
+ // derivatives zero at 0,1
90
+ // inflection zero at 0.5
91
+ // integral is x^3 - x^4 / 2 = x^3 (1-x/2)
85
92
  constructor() { super(); }
86
93
  /** At fractional position on the x axis, return the (normalized) curvature fraction. */
87
- fractionToCurvatureFraction(u) { return u * u * (3 - 2 * u); }
88
- /** Return the derivative of the (normalized) curvature fraction */
94
+ fractionToCurvatureFraction(u) {
95
+ return u * u * (3 - 2 * u);
96
+ }
97
+ /** Return the derivative of the (normalized) curvature fraction. */
89
98
  fractionToCurvatureFractionDerivative(u) {
90
99
  return 6.0 * u * (1.0 - u);
91
100
  }
92
- /** Return the integrated area under the curve.
101
+ /**
102
+ * Return the integrated area under the curve.
93
103
  * * This fraction is the angular change fraction.
94
104
  */
95
105
  fractionToArea(u) {
@@ -97,31 +107,41 @@ export class NormalizedBlossTransition extends NormalizedTransition {
97
107
  }
98
108
  }
99
109
  /**
100
- * Transition functions for biquadratic transition
110
+ * Transition functions for biquadratic transition.
101
111
  * * Curvature is a pair of joining quadratics.
102
- * * In lower half of the interval, the quadratic is from (0,0) to (0.5, 0.5) with zero slope at origin
103
- * * In upper half of the interval, the quadratic is from (0.5,0.5) to (1,1) with zero slope at 1
112
+ * * In lower half of the interval, the quadratic is from (0,0) to (0.5, 0.5) with zero slope at origin.
113
+ * * In upper half of the interval, the quadratic is from (0.5,0.5) to (1,1) with zero slope at 1.
104
114
  * @internal
105
115
  */
106
116
  export class NormalizedBiQuadraticTransition extends NormalizedTransition {
107
- constructor() { super(); }
108
- integratedBasis(u) { return u * u * u * (2.0 / 3.0); }
109
- basis(u) { return 2 * u * u; }
110
- basisDerivative(u) { return 4 * u; }
111
- /** At fractional position on the x axis, return the (normalized) curvature fraction.
112
- * * * For [u <= 0.5, u >= 0.5]
113
- * * f(u) = [2 u^2, 1 - 2 (1-u)^2]
114
- * * f'(u) = [4 u, 4 (1-u)]
115
- * * If(u) = [2 u^3 / 3, 0.5 (1 -u )^3/3]
117
+ constructor() {
118
+ super();
119
+ }
120
+ integratedBasis(u) {
121
+ return u * u * u * (2.0 / 3.0);
122
+ }
123
+ basis(u) {
124
+ return 2 * u * u;
125
+ }
126
+ basisDerivative(u) {
127
+ return 4 * u;
128
+ }
129
+ /**
130
+ * At fractional position on the x axis, return the (normalized) curvature fraction.
131
+ * * For [u <= 0.5, u >= 0.5]
132
+ * * f(u) = [2 u^2, 1 - 2 (1-u)^2]
133
+ * * f'(u) = [4 u, 4 (1-u)]
134
+ * * If(u) = [2 u^3 / 3, 0.5 (1 -u )^3/3]
116
135
  */
117
136
  fractionToCurvatureFraction(u) {
118
137
  return u <= 0.5 ? this.basis(u) : 1.0 - this.basis(1.0 - u);
119
138
  }
120
- /** Return the derivative of the (normalized) curvature fraction */
139
+ /** Return the derivative of the (normalized) curvature fraction. */
121
140
  fractionToCurvatureFractionDerivative(u) {
122
141
  return u < 0.5 ? this.basisDerivative(u) : this.basisDerivative(1 - u);
123
142
  }
124
- /** Return the integrated area under the curve.
143
+ /**
144
+ * Return the integrated area under the curve.
125
145
  * * This fraction is the angular change fraction.
126
146
  */
127
147
  fractionToArea(u) {
@@ -132,10 +152,10 @@ export class NormalizedBiQuadraticTransition extends NormalizedTransition {
132
152
  }
133
153
  }
134
154
  /**
135
- * Transition functions for sine transition
155
+ * Transition functions for sine transition.
136
156
  * * curvature variation is the sum of
137
- * * straight line from (0,0) to (1,1), like clothoid
138
- * * additional full period of a sine wave, producing 0 slope at both ends
157
+ * * straight line from (0,0) to (1,1), like clothoid.
158
+ * * additional full period of a sine wave, producing 0 slope at both ends.
139
159
  * @internal
140
160
  */
141
161
  export class NormalizedSineTransition extends NormalizedTransition {
@@ -145,12 +165,13 @@ export class NormalizedSineTransition extends NormalizedTransition {
145
165
  const a = 2.0 * Math.PI;
146
166
  return u - Math.sin(u * a) / a;
147
167
  }
148
- /** Return the derivative of the (normalized) curvature fraction */
168
+ /** Return the derivative of the (normalized) curvature fraction. */
149
169
  fractionToCurvatureFractionDerivative(u) {
150
170
  const a = 2.0 * Math.PI;
151
171
  return 1 - Math.cos(u * a);
152
172
  }
153
- /** Return the integrated area under the curve.
173
+ /**
174
+ * Return the integrated area under the curve.
154
175
  * * This fraction is the angular change fraction.
155
176
  */
156
177
  fractionToArea(u) {
@@ -159,8 +180,8 @@ export class NormalizedSineTransition extends NormalizedTransition {
159
180
  }
160
181
  }
161
182
  /**
162
- * Transition functions for cosine
163
- * * curvature variation is a half period of a cosine
183
+ * Transition functions for cosine.
184
+ * * curvature variation is a half period of a cosine.
164
185
  * @internal
165
186
  */
166
187
  export class NormalizedCosineTransition extends NormalizedTransition {
@@ -170,12 +191,13 @@ export class NormalizedCosineTransition extends NormalizedTransition {
170
191
  const a = Math.PI;
171
192
  return 0.5 * (1 - Math.cos(u * a));
172
193
  }
173
- /** Return the derivative of the (normalized) curvature fraction */
194
+ /** Return the derivative of the (normalized) curvature fraction. */
174
195
  fractionToCurvatureFractionDerivative(u) {
175
196
  const a = Math.PI;
176
197
  return 0.5 * a * Math.sin(u * a);
177
198
  }
178
- /** Return the integrated area under the curve.
199
+ /**
200
+ * Return the integrated area under the curve.
179
201
  * * This fraction is the angular change fraction.
180
202
  */
181
203
  fractionToArea(u) {
@@ -1 +1 @@
1
- {"version":3,"file":"NormalizedTransition.js","sourceRoot":"","sources":["../../../../src/curve/spiral/NormalizedTransition.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AACH;;;;;;;;;;;;GAYG;AACH,MAAM,OAAgB,oBAAoB;IACxC,iHAAiH;IACjH,gBAAgB,CAAC;IAST,MAAM,CAAC,kBAAkB,CAAgC;IACzD,MAAM,CAAC,qBAAqB,CAAmC;IAC/D,MAAM,CAAC,eAAe,CAA6B;IACnD,MAAM,CAAC,cAAc,CAA4B;IACjD,MAAM,CAAC,gBAAgB,CAA8B;IAE7D;;;;;;;;;;;OAWG;IACI,MAAM,CAAC,aAAa,CAAC,IAAY;QACtC,IAAI,IAAI,KAAK,UAAU;YACrB,OAAO,IAAI,CAAC,kBAAkB,CAAC,CAAC,CAAC,IAAI,CAAC,kBAAkB,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,kBAAkB,GAAG,IAAI,4BAA4B,EAAE,CAAC,CAAC;QAC5H,IAAI,IAAI,KAAK,OAAO;YAClB,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,GAAG,IAAI,yBAAyB,EAAE,CAAC,CAAC;QAChH,IAAI,IAAI,KAAK,aAAa;YACxB,OAAO,IAAI,CAAC,qBAAqB,CAAC,CAAC,CAAC,IAAI,CAAC,qBAAqB,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,qBAAqB,GAAG,IAAI,+BAA+B,EAAE,CAAC,CAAC;QACxI,IAAI,IAAI,KAAK,MAAM;YACjB,OAAO,IAAI,CAAC,cAAc,CAAC,CAAC,CAAC,IAAI,CAAC,cAAc,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,cAAc,GAAG,IAAI,wBAAwB,EAAE,CAAC,CAAC;QAC5G,IAAI,IAAI,KAAK,QAAQ;YACnB,OAAO,IAAI,CAAC,gBAAgB,CAAC,CAAC,CAAC,IAAI,CAAC,gBAAgB,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,gBAAgB,GAAG,IAAI,0BAA0B,EAAE,CAAC,CAAC;QACpH,OAAO,SAAS,CAAC;IACnB,CAAC;CACF;AACD;;;;GAIG;AACH,MAAM,OAAO,4BAA6B,SAAQ,oBAAoB;IACpE,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAC1B,wFAAwF;IACjF,2BAA2B,CAAC,SAAiB,IAAY,OAAO,SAAS,CAAC,CAAC,CAAC;IACnF,mEAAmE;IAC5D,qCAAqC,CAAC,EAAU,IAAY,OAAO,GAAG,CAAC,CAAC,CAAC;IAChF;;OAEG;IACI,cAAc,CAAC,SAAiB;QACrC,OAAO,SAAS,GAAG,SAAS,GAAG,GAAG,CAAC;IACrC,CAAC;CACF;AAED;;;;GAIG;AACH,MAAM,OAAO,yBAA0B,SAAQ,oBAAoB;IACjE,+CAA+C;IAC/C,4BAA4B;IAC5B,4BAA4B;IAC5B,8BAA8B;IAC9B,6BAA6B;IAC7B,+CAA+C;IAC/C,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAC1B,wFAAwF;IACjF,2BAA2B,CAAC,CAAS,IAAY,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACrF,mEAAmE;IAC5D,qCAAqC,CAAC,CAAS;QACpD,OAAO,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;IAC7B,CAAC;IACD;;OAEG;IACI,cAAc,CAAC,CAAS;QAC7B,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC;IACnC,CAAC;CACF;AAED;;;;;;GAMG;AACH,MAAM,OAAO,+BAAgC,SAAQ,oBAAoB;IACvE,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAClB,eAAe,CAAC,CAAS,IAAY,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC;IACtE,KAAK,CAAC,CAAS,IAAY,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;IAC9C,eAAe,CAAC,CAAS,IAAY,OAAO,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;IAC5D;;;;;OAKG;IACI,2BAA2B,CAAC,CAAS;QAC1C,OAAO,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,IAAI,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;IAC9D,CAAC;IACD,mEAAmE;IAC5D,qCAAqC,CAAC,CAAS;QACpD,OAAO,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACzE,CAAC;IACD;;OAEG;IACI,cAAc,CAAC,CAAS;QAC7B,IAAI,CAAC,IAAI,GAAG;YACV,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC;QACjC,MAAM,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;QAChB,OAAO,GAAG,GAAG,CAAC,GAAG,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC;IAC3C,CAAC;CACF;AAED;;;;;;GAMG;AACH,MAAM,OAAO,wBAAyB,SAAQ,oBAAoB;IAChE,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAC1B,wFAAwF;IACjF,2BAA2B,CAAC,CAAS;QAC1C,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,EAAE,CAAC;QACxB,OAAO,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;IACjC,CAAC;IACD,mEAAmE;IAC5D,qCAAqC,CAAC,CAAS;QACpD,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,EAAE,CAAC;QACxB,OAAO,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IAC7B,CAAC;IACD;;OAEG;IACI,cAAc,CAAC,CAAS;QAC7B,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,EAAE,CAAC;QACxB,OAAO,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACzD,CAAC;CACF;AACD;;;;GAIG;AACH,MAAM,OAAO,0BAA2B,SAAQ,oBAAoB;IAClE,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAC1B,wFAAwF;IACjF,2BAA2B,CAAC,CAAS;QAC1C,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAClB,OAAO,GAAG,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;IACrC,CAAC;IACD,mEAAmE;IAC5D,qCAAqC,CAAC,CAAS;QACpD,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAClB,OAAO,GAAG,GAAG,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACnC,CAAC;IACD;;OAEG;IACI,cAAc,CAAC,CAAS;QAC7B,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAClB,OAAO,GAAG,GAAG,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;IAC7C,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\n* See LICENSE.md in the project root for license terms and full copyright notice.\n*--------------------------------------------------------------------------------------------*/\n\n/** @packageDocumentation\n * @module Curve\n */\n/**\n * NormalizedTransition is the (abstract) base class for clothoid, bloss, biquadratic, sine, and cosine transition functions.\n * * Each function maps fractional progress to a curvature value.\n * * f(0) === 0\n * * f(1) === 1\n * * f(u) === 1 - f (1-u)\n * * Each implementation provides:\n * * fractionToCurvature -- the f(u) function described above\n * * fractionToCurvatureDerivative -- df(u)/du\n * * fractionToArea -- integral of the area under f(u) from 0 to u.\n * * the symmetry condition ensures that the integral from 0 to 1 is 1/2\n * @internal\n */\nexport abstract class NormalizedTransition {\n /** Constructor initializes with 0..1 values .. call \"setBearingCurvatureLengthCurvature\" to apply real values */\n constructor() { }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public abstract fractionToCurvatureFraction(fractionX: number): number;\n /** Return the derivative of the (normalized) curvature fraction */\n public abstract fractionToCurvatureFractionDerivative(fractionX: number): number;\n /** Return the integrated area under the curve\n * * This is equal to the accumulated angle change.\n */\n public abstract fractionToArea(fractionX: number): number;\n private static _clothoidEvaluator?: NormalizedClothoidTransition;\n private static _biquadraticEvaluator?: NormalizedBiQuadraticTransition;\n private static _blossEvaluator?: NormalizedBlossTransition;\n private static _sineEvaluator?: NormalizedSineTransition;\n private static _cosineEvaluator?: NormalizedCosineTransition;\n\n /**\n * Return a standard evaluator identified by string as:\n * * clothoid\n * * bloss\n * * biquadratic\n * * sine\n * * cosine\n * Each of these types\n * * is instantiated (only once) as a single static object within the NormalizedTransition class.\n * * has no instance data or mutator methods.\n * @param name string name of the transition.\n */\n public static findEvaluator(name: string): NormalizedTransition | undefined {\n if (name === \"clothoid\")\n return this._clothoidEvaluator ? this._clothoidEvaluator : (this._clothoidEvaluator = new NormalizedClothoidTransition());\n if (name === \"bloss\")\n return this._blossEvaluator ? this._blossEvaluator : (this._blossEvaluator = new NormalizedBlossTransition());\n if (name === \"biquadratic\")\n return this._biquadraticEvaluator ? this._biquadraticEvaluator : (this._biquadraticEvaluator = new NormalizedBiQuadraticTransition());\n if (name === \"sine\")\n return this._sineEvaluator ? this._sineEvaluator : (this._sineEvaluator = new NormalizedSineTransition());\n if (name === \"cosine\")\n return this._cosineEvaluator ? this._cosineEvaluator : (this._cosineEvaluator = new NormalizedCosineTransition());\n return undefined;\n }\n}\n/**\n * Transition functions for clothoid spiral.\n * * curvature variation is linear from (0,0) to (1,1)\n * @internal\n */\nexport class NormalizedClothoidTransition extends NormalizedTransition {\n constructor() { super(); }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(fractionX: number): number { return fractionX; }\n /** Return the derivative of the (normalized) curvature fraction */\n public fractionToCurvatureFractionDerivative(_u: number): number { return 1.0; }\n /** Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(fractionX: number): number {\n return fractionX * fractionX * 0.5;\n }\n}\n\n/**\n * Transition functions for bloss spiral.\n * * curvature variation is cubic from (0,0) with slope 0 to (1,1) with slope 1\n * @internal\n */\nexport class NormalizedBlossTransition extends NormalizedTransition {\n // bloss curve is (3 - 2x) x ^2 = 3 x^2 - 2 x^3\n // derivative 6x (1-x)\n // 2nd derivative 6 - 12 x\n // derivatives zero at 0,1\n // inflection zero at 0.5\n // integral is x^3 - x^4 / 2 = x^3 ( 1-x/2)\n constructor() { super(); }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(u: number): number { return u * u * (3 - 2 * u); }\n /** Return the derivative of the (normalized) curvature fraction */\n public fractionToCurvatureFractionDerivative(u: number): number {\n return 6.0 * u * (1.0 - u);\n }\n /** Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n return u * u * u * (1 - 0.5 * u);\n }\n}\n\n/**\n * Transition functions for biquadratic transition\n * * Curvature is a pair of joining quadratics.\n * * In lower half of the interval, the quadratic is from (0,0) to (0.5, 0.5) with zero slope at origin\n * * In upper half of the interval, the quadratic is from (0.5,0.5) to (1,1) with zero slope at 1\n * @internal\n */\nexport class NormalizedBiQuadraticTransition extends NormalizedTransition {\n constructor() { super(); }\n private integratedBasis(u: number): number { return u * u * u * (2.0 / 3.0); }\n private basis(u: number): number { return 2 * u * u; }\n private basisDerivative(u: number): number { return 4 * u; }\n /** At fractional position on the x axis, return the (normalized) curvature fraction.\n * * * For [u <= 0.5, u >= 0.5]\n * * f(u) = [2 u^2, 1 - 2 (1-u)^2]\n * * f'(u) = [4 u, 4 (1-u)]\n * * If(u) = [2 u^3 / 3, 0.5 (1 -u )^3/3]\n */\n public fractionToCurvatureFraction(u: number): number {\n return u <= 0.5 ? this.basis(u) : 1.0 - this.basis(1.0 - u);\n }\n /** Return the derivative of the (normalized) curvature fraction */\n public fractionToCurvatureFractionDerivative(u: number): number {\n return u < 0.5 ? this.basisDerivative(u) : this.basisDerivative(1 - u);\n }\n /** Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n if (u <= 0.5)\n return this.integratedBasis(u);\n const v = 1 - u;\n return 0.5 - v + this.integratedBasis(v);\n }\n}\n\n/**\n * Transition functions for sine transition\n * * curvature variation is the sum of\n * * straight line from (0,0) to (1,1), like clothoid\n * * additional full period of a sine wave, producing 0 slope at both ends\n * @internal\n */\nexport class NormalizedSineTransition extends NormalizedTransition {\n constructor() { super(); }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(u: number): number {\n const a = 2.0 * Math.PI;\n return u - Math.sin(u * a) / a;\n }\n /** Return the derivative of the (normalized) curvature fraction */\n public fractionToCurvatureFractionDerivative(u: number): number {\n const a = 2.0 * Math.PI;\n return 1 - Math.cos(u * a);\n }\n /** Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n const a = 2.0 * Math.PI;\n return 0.5 * u * u + (Math.cos(u * a) - 1.0) / (a * a);\n }\n}\n/**\n * Transition functions for cosine\n * * curvature variation is a half period of a cosine\n * @internal\n */\nexport class NormalizedCosineTransition extends NormalizedTransition {\n constructor() { super(); }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(u: number): number {\n const a = Math.PI;\n return 0.5 * (1 - Math.cos(u * a));\n }\n /** Return the derivative of the (normalized) curvature fraction */\n public fractionToCurvatureFractionDerivative(u: number): number {\n const a = Math.PI;\n return 0.5 * a * Math.sin(u * a);\n }\n /** Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n const a = Math.PI;\n return 0.5 * u - 0.5 * Math.sin(u * a) / a;\n }\n}\n"]}
1
+ {"version":3,"file":"NormalizedTransition.js","sourceRoot":"","sources":["../../../../src/curve/spiral/NormalizedTransition.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AAEH;;;;;;;;;;;;GAYG;AACH,MAAM,OAAgB,oBAAoB;IACxC,gHAAgH;IAChH,gBAAgB,CAAC;IAUT,MAAM,CAAC,kBAAkB,CAAgC;IACzD,MAAM,CAAC,qBAAqB,CAAmC;IAC/D,MAAM,CAAC,eAAe,CAA6B;IACnD,MAAM,CAAC,cAAc,CAA4B;IACjD,MAAM,CAAC,gBAAgB,CAA8B;IAC7D;;;;;;;;;;;OAWG;IACI,MAAM,CAAC,aAAa,CAAC,IAAY;QACtC,IAAI,IAAI,KAAK,UAAU;YACrB,OAAO,IAAI,CAAC,kBAAkB,CAAC,CAAC,CAAC,IAAI,CAAC,kBAAkB,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,kBAAkB,GAAG,IAAI,4BAA4B,EAAE,CAAC,CAAC;QAC5H,IAAI,IAAI,KAAK,OAAO;YAClB,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,GAAG,IAAI,yBAAyB,EAAE,CAAC,CAAC;QAChH,IAAI,IAAI,KAAK,aAAa;YACxB,OAAO,IAAI,CAAC,qBAAqB,CAAC,CAAC,CAAC,IAAI,CAAC,qBAAqB,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,qBAAqB,GAAG,IAAI,+BAA+B,EAAE,CAAC,CAAC;QACxI,IAAI,IAAI,KAAK,MAAM;YACjB,OAAO,IAAI,CAAC,cAAc,CAAC,CAAC,CAAC,IAAI,CAAC,cAAc,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,cAAc,GAAG,IAAI,wBAAwB,EAAE,CAAC,CAAC;QAC5G,IAAI,IAAI,KAAK,QAAQ;YACnB,OAAO,IAAI,CAAC,gBAAgB,CAAC,CAAC,CAAC,IAAI,CAAC,gBAAgB,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,gBAAgB,GAAG,IAAI,0BAA0B,EAAE,CAAC,CAAC;QACpH,OAAO,SAAS,CAAC;IACnB,CAAC;CACF;AAED;;;;GAIG;AACH,MAAM,OAAO,4BAA6B,SAAQ,oBAAoB;IACpE;QACE,KAAK,EAAE,CAAC;IACV,CAAC;IACD,wFAAwF;IACjF,2BAA2B,CAAC,SAAiB;QAClD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,oEAAoE;IAC7D,qCAAqC,CAAC,EAAU;QACrD,OAAO,GAAG,CAAC;IACb,CAAC;IACD;;;OAGG;IACI,cAAc,CAAC,SAAiB;QACrC,OAAO,SAAS,GAAG,SAAS,GAAG,GAAG,CAAC;IACrC,CAAC;CACF;AAED;;;;GAIG;AACH,MAAM,OAAO,yBAA0B,SAAQ,oBAAoB;IACjE,+CAA+C;IAC/C,sBAAsB;IACtB,0BAA0B;IAC1B,0BAA0B;IAC1B,yBAAyB;IACzB,0CAA0C;IAC1C,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAC1B,wFAAwF;IACjF,2BAA2B,CAAC,CAAS;QAC1C,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;IAC7B,CAAC;IACD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAS;QACpD,OAAO,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;IAC7B,CAAC;IACD;;;OAGG;IACI,cAAc,CAAC,CAAS;QAC7B,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC;IACnC,CAAC;CACF;AAED;;;;;;GAMG;AACH,MAAM,OAAO,+BAAgC,SAAQ,oBAAoB;IACvE;QACE,KAAK,EAAE,CAAC;IACV,CAAC;IACO,eAAe,CAAC,CAAS;QAC/B,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;IACjC,CAAC;IACO,KAAK,CAAC,CAAS;QACrB,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;IACnB,CAAC;IACO,eAAe,CAAC,CAAS;QAC/B,OAAO,CAAC,GAAG,CAAC,CAAC;IACf,CAAC;IACD;;;;;;OAMG;IACI,2BAA2B,CAAC,CAAS;QAC1C,OAAO,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,IAAI,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;IAC9D,CAAC;IACD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAS;QACpD,OAAO,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACzE,CAAC;IACD;;;OAGG;IACI,cAAc,CAAC,CAAS;QAC7B,IAAI,CAAC,IAAI,GAAG;YACV,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC;QACjC,MAAM,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;QAChB,OAAO,GAAG,GAAG,CAAC,GAAG,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC;IAC3C,CAAC;CACF;AAED;;;;;;GAMG;AACH,MAAM,OAAO,wBAAyB,SAAQ,oBAAoB;IAChE,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAC1B,wFAAwF;IACjF,2BAA2B,CAAC,CAAS;QAC1C,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,EAAE,CAAC;QACxB,OAAO,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;IACjC,CAAC;IACD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAS;QACpD,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,EAAE,CAAC;QACxB,OAAO,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IAC7B,CAAC;IACD;;;OAGG;IACI,cAAc,CAAC,CAAS;QAC7B,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,EAAE,CAAC;QACxB,OAAO,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACzD,CAAC;CACF;AAED;;;;GAIG;AACH,MAAM,OAAO,0BAA2B,SAAQ,oBAAoB;IAClE,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAC1B,wFAAwF;IACjF,2BAA2B,CAAC,CAAS;QAC1C,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAClB,OAAO,GAAG,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;IACrC,CAAC;IACD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAS;QACpD,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAClB,OAAO,GAAG,GAAG,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACnC,CAAC;IACD;;;OAGG;IACI,cAAc,CAAC,CAAS;QAC7B,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAClB,OAAO,GAAG,GAAG,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;IAC7C,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\n* See LICENSE.md in the project root for license terms and full copyright notice.\n*--------------------------------------------------------------------------------------------*/\n\n/** @packageDocumentation\n * @module Curve\n */\n\n/**\n * NormalizedTransition is the (abstract) base class for clothoid, bloss, biquadratic, sine, and cosine transition functions.\n * * Each function maps fractional progress to a curvature value.\n * * f(0) === 0\n * * f(1) === 1\n * * f(u) === 1 - f(1-u)\n * * Each implementation provides:\n * * fractionToCurvature -- the f(u) function described above\n * * fractionToCurvatureDerivative -- df(u)/du\n * * fractionToArea -- integral of the area under f(u) from 0 to u.\n * * The symmetry condition ensures that the integral from 0 to 1 is 1/2.\n * @internal\n */\nexport abstract class NormalizedTransition {\n /** Constructor initializes with 0..1 values. Call \"setBearingCurvatureLengthCurvature\" to apply real values. */\n constructor() { }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public abstract fractionToCurvatureFraction(fractionX: number): number;\n /** Return the derivative of the (normalized) curvature fraction. */\n public abstract fractionToCurvatureFractionDerivative(fractionX: number): number;\n /**\n * Return the integrated area under the curve.\n * * This is equal to the accumulated angle change.\n */\n public abstract fractionToArea(fractionX: number): number;\n private static _clothoidEvaluator?: NormalizedClothoidTransition;\n private static _biquadraticEvaluator?: NormalizedBiQuadraticTransition;\n private static _blossEvaluator?: NormalizedBlossTransition;\n private static _sineEvaluator?: NormalizedSineTransition;\n private static _cosineEvaluator?: NormalizedCosineTransition;\n /**\n * Return a standard evaluator identified by string as:\n * * clothoid\n * * bloss\n * * biquadratic\n * * sine\n * * cosine\n * Each of these types\n * * is instantiated (only once) as a single static object within the NormalizedTransition class.\n * * has no instance data or mutator methods.\n * @param name string name of the transition.\n */\n public static findEvaluator(name: string): NormalizedTransition | undefined {\n if (name === \"clothoid\")\n return this._clothoidEvaluator ? this._clothoidEvaluator : (this._clothoidEvaluator = new NormalizedClothoidTransition());\n if (name === \"bloss\")\n return this._blossEvaluator ? this._blossEvaluator : (this._blossEvaluator = new NormalizedBlossTransition());\n if (name === \"biquadratic\")\n return this._biquadraticEvaluator ? this._biquadraticEvaluator : (this._biquadraticEvaluator = new NormalizedBiQuadraticTransition());\n if (name === \"sine\")\n return this._sineEvaluator ? this._sineEvaluator : (this._sineEvaluator = new NormalizedSineTransition());\n if (name === \"cosine\")\n return this._cosineEvaluator ? this._cosineEvaluator : (this._cosineEvaluator = new NormalizedCosineTransition());\n return undefined;\n }\n}\n\n/**\n * Transition functions for clothoid spiral.\n * * curvature variation is linear from (0,0) to (1,1)\n * @internal\n */\nexport class NormalizedClothoidTransition extends NormalizedTransition {\n constructor() {\n super();\n }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(fractionX: number): number {\n return fractionX;\n }\n /** Return the derivative of the (normalized) curvature fraction. */\n public fractionToCurvatureFractionDerivative(_u: number): number {\n return 1.0;\n }\n /**\n * Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(fractionX: number): number {\n return fractionX * fractionX * 0.5;\n }\n}\n\n/**\n * Transition functions for bloss spiral.\n * * curvature variation is cubic from (0,0) with slope 0 to (1,1) with slope 1.\n * @internal\n */\nexport class NormalizedBlossTransition extends NormalizedTransition {\n // bloss curve is (3 - 2x) x ^2 = 3 x^2 - 2 x^3\n // derivative 6x (1-x)\n // 2nd derivative 6 - 12 x\n // derivatives zero at 0,1\n // inflection zero at 0.5\n // integral is x^3 - x^4 / 2 = x^3 (1-x/2)\n constructor() { super(); }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(u: number): number {\n return u * u * (3 - 2 * u);\n }\n /** Return the derivative of the (normalized) curvature fraction. */\n public fractionToCurvatureFractionDerivative(u: number): number {\n return 6.0 * u * (1.0 - u);\n }\n /**\n * Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n return u * u * u * (1 - 0.5 * u);\n }\n}\n\n/**\n * Transition functions for biquadratic transition.\n * * Curvature is a pair of joining quadratics.\n * * In lower half of the interval, the quadratic is from (0,0) to (0.5, 0.5) with zero slope at origin.\n * * In upper half of the interval, the quadratic is from (0.5,0.5) to (1,1) with zero slope at 1.\n * @internal\n */\nexport class NormalizedBiQuadraticTransition extends NormalizedTransition {\n constructor() {\n super();\n }\n private integratedBasis(u: number): number {\n return u * u * u * (2.0 / 3.0);\n }\n private basis(u: number): number {\n return 2 * u * u;\n }\n private basisDerivative(u: number): number {\n return 4 * u;\n }\n /**\n * At fractional position on the x axis, return the (normalized) curvature fraction.\n * * For [u <= 0.5, u >= 0.5]\n * * f(u) = [2 u^2, 1 - 2 (1-u)^2]\n * * f'(u) = [4 u, 4 (1-u)]\n * * If(u) = [2 u^3 / 3, 0.5 (1 -u )^3/3]\n */\n public fractionToCurvatureFraction(u: number): number {\n return u <= 0.5 ? this.basis(u) : 1.0 - this.basis(1.0 - u);\n }\n /** Return the derivative of the (normalized) curvature fraction. */\n public fractionToCurvatureFractionDerivative(u: number): number {\n return u < 0.5 ? this.basisDerivative(u) : this.basisDerivative(1 - u);\n }\n /**\n * Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n if (u <= 0.5)\n return this.integratedBasis(u);\n const v = 1 - u;\n return 0.5 - v + this.integratedBasis(v);\n }\n}\n\n/**\n * Transition functions for sine transition.\n * * curvature variation is the sum of\n * * straight line from (0,0) to (1,1), like clothoid.\n * * additional full period of a sine wave, producing 0 slope at both ends.\n * @internal\n */\nexport class NormalizedSineTransition extends NormalizedTransition {\n constructor() { super(); }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(u: number): number {\n const a = 2.0 * Math.PI;\n return u - Math.sin(u * a) / a;\n }\n /** Return the derivative of the (normalized) curvature fraction. */\n public fractionToCurvatureFractionDerivative(u: number): number {\n const a = 2.0 * Math.PI;\n return 1 - Math.cos(u * a);\n }\n /**\n * Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n const a = 2.0 * Math.PI;\n return 0.5 * u * u + (Math.cos(u * a) - 1.0) / (a * a);\n }\n}\n\n/**\n * Transition functions for cosine.\n * * curvature variation is a half period of a cosine.\n * @internal\n */\nexport class NormalizedCosineTransition extends NormalizedTransition {\n constructor() { super(); }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(u: number): number {\n const a = Math.PI;\n return 0.5 * (1 - Math.cos(u * a));\n }\n /** Return the derivative of the (normalized) curvature fraction. */\n public fractionToCurvatureFractionDerivative(u: number): number {\n const a = Math.PI;\n return 0.5 * a * Math.sin(u * a);\n }\n /**\n * Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n const a = Math.PI;\n return 0.5 * u - 0.5 * Math.sin(u * a) / a;\n }\n}\n"]}
@@ -2,15 +2,10 @@ import { CubicEvaluator } from "./CubicEvaluator";
2
2
  /**
3
3
  * Polish Cubic.
4
4
  * * Construction takes nominal length and end radius.
5
- * curve is is y= m*x^3 with
6
- * * x any point on the x axis
7
- * * m is (1/6RL)
8
- * * Lx = x length is along the axis, determined by inversion of a distance series at nominal length
9
- * *
10
- * @param localToWorld
11
- * @param nominalL1
12
- * @param nominalR1
13
- * @param activeInterval
5
+ * curve is y = m*x^3 with
6
+ * * x any point on the x axis.
7
+ * * m is (1/6RL).
8
+ * * Lx = x length is along the axis, determined by inversion of a distance series at nominal length.
14
9
  * @internal
15
10
  */
16
11
  export declare class PolishCubicEvaluator extends CubicEvaluator {
@@ -22,25 +17,25 @@ export declare class PolishCubicEvaluator extends CubicEvaluator {
22
17
  static computeCubicM(length1: number, radius1: number): number;
23
18
  static create(length1: number, radius1: number): PolishCubicEvaluator | undefined;
24
19
  scaleInPlace(scaleFactor: number): void;
25
- /** return a deep copy of the evaluator */
20
+ /** Return a deep copy of the evaluator. */
26
21
  clone(): PolishCubicEvaluator;
27
- /** Member by member matchup ... */
22
+ /** Member by member matchup. */
28
23
  isAlmostEqual(other: any): boolean;
29
- /** Compute the coefficient of x^4 in the x-to-distance series expansion */
24
+ /** Compute the coefficient of x^4 in the x-to-distance series expansion. */
30
25
  static computeX4SeriesCoefficient(length1: number, radius1: number): number;
31
26
  /**
32
27
  * Evaluate a series approximation of distance along the true curve.
33
- * @param x distance along x axis
34
- * @param radius1 nominal end radius
35
- * @param length1 nominal length along curve
28
+ * @param x distance along x axis.
29
+ * @param radius1 nominal end radius.
30
+ * @param length1 nominal length along curve.
36
31
  * @returns
37
32
  */
38
33
  static xToApproximateDistance(x: number, radius1: number, length1: number): number;
39
34
  /**
40
35
  * Evaluate the derivative of the x-to-distance series.
41
- * @param x distance along x axis
42
- * @param radius1 nominal end radius
43
- * @param length1 nominal length along curve
36
+ * @param x distance along x axis.
37
+ * @param radius1 nominal end radius.
38
+ * @param length1 nominal length along curve.
44
39
  * @returns
45
40
  */
46
41
  static xToApproximateDistanceDerivative(x: number, radius1: number, length1: number): number;
@@ -1 +1 @@
1
- {"version":3,"file":"PolishCubicSpiralEvaluator.d.ts","sourceRoot":"","sources":["../../../../src/curve/spiral/PolishCubicSpiralEvaluator.ts"],"names":[],"mappings":"AAUA,OAAO,EAAE,cAAc,EAAE,MAAM,kBAAkB,CAAC;AAClD;;;;;;;;;;;;;GAaG;AACH,qBAAa,oBAAqB,SAAQ,cAAc;IAC/C,cAAc,EAAE,MAAM,CAAC;IACvB,cAAc,EAAE,MAAM,CAAC;IAE9B,uEAAuE;IACvE,OAAO;IAMP,wCAAwC;WAC1B,aAAa,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM;WAIvD,MAAM,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,oBAAoB,GAAG,SAAS;IAUxE,YAAY,CAAC,WAAW,EAAE,MAAM;IAKhD,0CAA0C;IACnC,KAAK,IAAI,oBAAoB;IACpC,mCAAmC;IAC5B,aAAa,CAAC,KAAK,EAAE,GAAG,GAAG,OAAO;IAQzC,2EAA2E;WAC7D,0BAA0B,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM;IAGlF;;;;;;OAMG;WACW,sBAAsB,CAAC,CAAC,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM;IAUzF;;;;;;OAMG;WACW,gCAAgC,CAAC,CAAC,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM;IAiBnG,kDAAkD;WACpC,2BAA2B,CAAC,CAAC,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM,GAAG,SAAS;CAM3G"}
1
+ {"version":3,"file":"PolishCubicSpiralEvaluator.d.ts","sourceRoot":"","sources":["../../../../src/curve/spiral/PolishCubicSpiralEvaluator.ts"],"names":[],"mappings":"AAUA,OAAO,EAAE,cAAc,EAAE,MAAM,kBAAkB,CAAC;AAElD;;;;;;;;GAQG;AACH,qBAAa,oBAAqB,SAAQ,cAAc;IAC/C,cAAc,EAAE,MAAM,CAAC;IACvB,cAAc,EAAE,MAAM,CAAC;IAC9B,uEAAuE;IACvE,OAAO;IAKP,wCAAwC;WAC1B,aAAa,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM;WAGvD,MAAM,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,oBAAoB,GAAG,SAAS;IASxE,YAAY,CAAC,WAAW,EAAE,MAAM;IAKhD,2CAA2C;IACpC,KAAK,IAAI,oBAAoB;IAGpC,gCAAgC;IACzB,aAAa,CAAC,KAAK,EAAE,GAAG,GAAG,OAAO;IAOzC,4EAA4E;WAC9D,0BAA0B,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM;IAGlF;;;;;;OAMG;WACW,sBAAsB,CAAC,CAAC,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM;IASzF;;;;;;OAMG;WACW,gCAAgC,CAAC,CAAC,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM;IAgBnG,kDAAkD;WACpC,2BAA2B,CAAC,CAAC,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM,GAAG,SAAS;CAM3G"}
@@ -11,15 +11,10 @@ import { CubicEvaluator } from "./CubicEvaluator";
11
11
  /**
12
12
  * Polish Cubic.
13
13
  * * Construction takes nominal length and end radius.
14
- * curve is is y= m*x^3 with
15
- * * x any point on the x axis
16
- * * m is (1/6RL)
17
- * * Lx = x length is along the axis, determined by inversion of a distance series at nominal length
18
- * *
19
- * @param localToWorld
20
- * @param nominalL1
21
- * @param nominalR1
22
- * @param activeInterval
14
+ * curve is y = m*x^3 with
15
+ * * x any point on the x axis.
16
+ * * m is (1/6RL).
17
+ * * Lx = x length is along the axis, determined by inversion of a distance series at nominal length.
23
18
  * @internal
24
19
  */
25
20
  export class PolishCubicEvaluator extends CubicEvaluator {
@@ -49,9 +44,11 @@ export class PolishCubicEvaluator extends CubicEvaluator {
49
44
  this.nominalRadius1 *= scaleFactor;
50
45
  super.scaleInPlace(scaleFactor);
51
46
  }
52
- /** return a deep copy of the evaluator */
53
- clone() { return new PolishCubicEvaluator(this.nominalLength1, this.nominalRadius1, this.axisLength, this.cubicM); }
54
- /** Member by member matchup ... */
47
+ /** Return a deep copy of the evaluator. */
48
+ clone() {
49
+ return new PolishCubicEvaluator(this.nominalLength1, this.nominalRadius1, this.axisLength, this.cubicM);
50
+ }
51
+ /** Member by member matchup. */
55
52
  isAlmostEqual(other) {
56
53
  if (other instanceof PolishCubicEvaluator) {
57
54
  return Geometry.isSameCoordinate(this.nominalLength1, other.nominalLength1)
@@ -59,15 +56,15 @@ export class PolishCubicEvaluator extends CubicEvaluator {
59
56
  }
60
57
  return false;
61
58
  }
62
- /** Compute the coefficient of x^4 in the x-to-distance series expansion */
59
+ /** Compute the coefficient of x^4 in the x-to-distance series expansion. */
63
60
  static computeX4SeriesCoefficient(length1, radius1) {
64
61
  return 1.0 / (4.0 * length1 * length1 * radius1 * radius1);
65
62
  }
66
63
  /**
67
64
  * Evaluate a series approximation of distance along the true curve.
68
- * @param x distance along x axis
69
- * @param radius1 nominal end radius
70
- * @param length1 nominal length along curve
65
+ * @param x distance along x axis.
66
+ * @param radius1 nominal end radius.
67
+ * @param length1 nominal length along curve.
71
68
  * @returns
72
69
  */
73
70
  static xToApproximateDistance(x, radius1, length1) {
@@ -81,9 +78,9 @@ export class PolishCubicEvaluator extends CubicEvaluator {
81
78
  }
82
79
  /**
83
80
  * Evaluate the derivative of the x-to-distance series.
84
- * @param x distance along x axis
85
- * @param radius1 nominal end radius
86
- * @param length1 nominal length along curve
81
+ * @param x distance along x axis.
82
+ * @param radius1 nominal end radius.
83
+ * @param length1 nominal length along curve.
87
84
  * @returns
88
85
  */
89
86
  static xToApproximateDistanceDerivative(x, radius1, length1) {
@@ -92,13 +89,13 @@ export class PolishCubicEvaluator extends CubicEvaluator {
92
89
  const ax2 = a4 * x * x;
93
90
  const ax3 = ax2 * x;
94
91
  const ax4 = ax3 * x;
95
- // derivative notes ..
92
+ // derivative notes:
96
93
  // take away leading x -- this reduces each power by 1
97
94
  // multiply each coefficient by its original power:
98
- // 0.1==>0.5
99
- // 1/72==> 9/72 = 1/8
100
- // 1/208==>13/208=1/16
101
- // 1/2176==>17/2176= 1/128
95
+ // 0.1 ==> 0.5
96
+ // 1/72 ==> 9/72 = 1/8
97
+ // 1/208 ==> 13/208 = 1/16
98
+ // 1/2176 ==> 17/2176 = 1/128
102
99
  const ds = (1.0 + ax4 * (0.5 + ax4 * (-1.0 / 8.0 + ax4 * (1.0 / 16.0 - 5.0 * ax4 / 128.0))));
103
100
  return ds;
104
101
  }