@itwin/core-geometry 5.3.0-dev.17 → 5.3.0-dev.18
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +6 -1
- package/lib/cjs/curve/spiral/AustralianRailCorpXYEvaluator.d.ts +10 -13
- package/lib/cjs/curve/spiral/AustralianRailCorpXYEvaluator.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/AustralianRailCorpXYEvaluator.js +23 -22
- package/lib/cjs/curve/spiral/AustralianRailCorpXYEvaluator.js.map +1 -1
- package/lib/cjs/curve/spiral/ClothoidSeries.d.ts +5 -5
- package/lib/cjs/curve/spiral/ClothoidSeries.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/ClothoidSeries.js +28 -16
- package/lib/cjs/curve/spiral/ClothoidSeries.js.map +1 -1
- package/lib/cjs/curve/spiral/CubicEvaluator.d.ts +7 -6
- package/lib/cjs/curve/spiral/CubicEvaluator.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/CubicEvaluator.js +29 -14
- package/lib/cjs/curve/spiral/CubicEvaluator.js.map +1 -1
- package/lib/cjs/curve/spiral/CzechSpiralEvaluator.d.ts +30 -40
- package/lib/cjs/curve/spiral/CzechSpiralEvaluator.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/CzechSpiralEvaluator.js +43 -49
- package/lib/cjs/curve/spiral/CzechSpiralEvaluator.js.map +1 -1
- package/lib/cjs/curve/spiral/DirectHalfCosineSpiralEvaluator.d.ts +2 -2
- package/lib/cjs/curve/spiral/DirectHalfCosineSpiralEvaluator.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/DirectHalfCosineSpiralEvaluator.js +17 -7
- package/lib/cjs/curve/spiral/DirectHalfCosineSpiralEvaluator.js.map +1 -1
- package/lib/cjs/curve/spiral/DirectSpiral3d.d.ts +103 -95
- package/lib/cjs/curve/spiral/DirectSpiral3d.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/DirectSpiral3d.js +132 -106
- package/lib/cjs/curve/spiral/DirectSpiral3d.js.map +1 -1
- package/lib/cjs/curve/spiral/IntegratedSpiral3d.d.ts +70 -52
- package/lib/cjs/curve/spiral/IntegratedSpiral3d.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/IntegratedSpiral3d.js +97 -65
- package/lib/cjs/curve/spiral/IntegratedSpiral3d.js.map +1 -1
- package/lib/cjs/curve/spiral/MXCubicAlongArcSpiralEvaluator.d.ts +7 -11
- package/lib/cjs/curve/spiral/MXCubicAlongArcSpiralEvaluator.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/MXCubicAlongArcSpiralEvaluator.js +10 -12
- package/lib/cjs/curve/spiral/MXCubicAlongArcSpiralEvaluator.js.map +1 -1
- package/lib/cjs/curve/spiral/NormalizedTransition.d.ts +29 -24
- package/lib/cjs/curve/spiral/NormalizedTransition.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/NormalizedTransition.js +53 -35
- package/lib/cjs/curve/spiral/NormalizedTransition.js.map +1 -1
- package/lib/cjs/curve/spiral/PolishCubicSpiralEvaluator.d.ts +12 -17
- package/lib/cjs/curve/spiral/PolishCubicSpiralEvaluator.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/PolishCubicSpiralEvaluator.js +20 -23
- package/lib/cjs/curve/spiral/PolishCubicSpiralEvaluator.js.map +1 -1
- package/lib/cjs/curve/spiral/TransitionConditionalProperties.d.ts +25 -23
- package/lib/cjs/curve/spiral/TransitionConditionalProperties.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/TransitionConditionalProperties.js +34 -29
- package/lib/cjs/curve/spiral/TransitionConditionalProperties.js.map +1 -1
- package/lib/cjs/curve/spiral/TransitionSpiral3d.d.ts +43 -33
- package/lib/cjs/curve/spiral/TransitionSpiral3d.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/TransitionSpiral3d.js +56 -38
- package/lib/cjs/curve/spiral/TransitionSpiral3d.js.map +1 -1
- package/lib/cjs/curve/spiral/XYCurveEvaluator.d.ts +27 -21
- package/lib/cjs/curve/spiral/XYCurveEvaluator.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/XYCurveEvaluator.js +23 -18
- package/lib/cjs/curve/spiral/XYCurveEvaluator.js.map +1 -1
- package/lib/esm/curve/spiral/AustralianRailCorpXYEvaluator.d.ts +10 -13
- package/lib/esm/curve/spiral/AustralianRailCorpXYEvaluator.d.ts.map +1 -1
- package/lib/esm/curve/spiral/AustralianRailCorpXYEvaluator.js +23 -22
- package/lib/esm/curve/spiral/AustralianRailCorpXYEvaluator.js.map +1 -1
- package/lib/esm/curve/spiral/ClothoidSeries.d.ts +5 -5
- package/lib/esm/curve/spiral/ClothoidSeries.d.ts.map +1 -1
- package/lib/esm/curve/spiral/ClothoidSeries.js +28 -16
- package/lib/esm/curve/spiral/ClothoidSeries.js.map +1 -1
- package/lib/esm/curve/spiral/CubicEvaluator.d.ts +7 -6
- package/lib/esm/curve/spiral/CubicEvaluator.d.ts.map +1 -1
- package/lib/esm/curve/spiral/CubicEvaluator.js +29 -14
- package/lib/esm/curve/spiral/CubicEvaluator.js.map +1 -1
- package/lib/esm/curve/spiral/CzechSpiralEvaluator.d.ts +30 -40
- package/lib/esm/curve/spiral/CzechSpiralEvaluator.d.ts.map +1 -1
- package/lib/esm/curve/spiral/CzechSpiralEvaluator.js +43 -49
- package/lib/esm/curve/spiral/CzechSpiralEvaluator.js.map +1 -1
- package/lib/esm/curve/spiral/DirectHalfCosineSpiralEvaluator.d.ts +2 -2
- package/lib/esm/curve/spiral/DirectHalfCosineSpiralEvaluator.d.ts.map +1 -1
- package/lib/esm/curve/spiral/DirectHalfCosineSpiralEvaluator.js +17 -7
- package/lib/esm/curve/spiral/DirectHalfCosineSpiralEvaluator.js.map +1 -1
- package/lib/esm/curve/spiral/DirectSpiral3d.d.ts +103 -95
- package/lib/esm/curve/spiral/DirectSpiral3d.d.ts.map +1 -1
- package/lib/esm/curve/spiral/DirectSpiral3d.js +132 -106
- package/lib/esm/curve/spiral/DirectSpiral3d.js.map +1 -1
- package/lib/esm/curve/spiral/IntegratedSpiral3d.d.ts +70 -52
- package/lib/esm/curve/spiral/IntegratedSpiral3d.d.ts.map +1 -1
- package/lib/esm/curve/spiral/IntegratedSpiral3d.js +97 -65
- package/lib/esm/curve/spiral/IntegratedSpiral3d.js.map +1 -1
- package/lib/esm/curve/spiral/MXCubicAlongArcSpiralEvaluator.d.ts +7 -11
- package/lib/esm/curve/spiral/MXCubicAlongArcSpiralEvaluator.d.ts.map +1 -1
- package/lib/esm/curve/spiral/MXCubicAlongArcSpiralEvaluator.js +10 -12
- package/lib/esm/curve/spiral/MXCubicAlongArcSpiralEvaluator.js.map +1 -1
- package/lib/esm/curve/spiral/NormalizedTransition.d.ts +29 -24
- package/lib/esm/curve/spiral/NormalizedTransition.d.ts.map +1 -1
- package/lib/esm/curve/spiral/NormalizedTransition.js +53 -35
- package/lib/esm/curve/spiral/NormalizedTransition.js.map +1 -1
- package/lib/esm/curve/spiral/PolishCubicSpiralEvaluator.d.ts +12 -17
- package/lib/esm/curve/spiral/PolishCubicSpiralEvaluator.d.ts.map +1 -1
- package/lib/esm/curve/spiral/PolishCubicSpiralEvaluator.js +20 -23
- package/lib/esm/curve/spiral/PolishCubicSpiralEvaluator.js.map +1 -1
- package/lib/esm/curve/spiral/TransitionConditionalProperties.d.ts +25 -23
- package/lib/esm/curve/spiral/TransitionConditionalProperties.d.ts.map +1 -1
- package/lib/esm/curve/spiral/TransitionConditionalProperties.js +34 -29
- package/lib/esm/curve/spiral/TransitionConditionalProperties.js.map +1 -1
- package/lib/esm/curve/spiral/TransitionSpiral3d.d.ts +43 -33
- package/lib/esm/curve/spiral/TransitionSpiral3d.d.ts.map +1 -1
- package/lib/esm/curve/spiral/TransitionSpiral3d.js +56 -38
- package/lib/esm/curve/spiral/TransitionSpiral3d.js.map +1 -1
- package/lib/esm/curve/spiral/XYCurveEvaluator.d.ts +27 -21
- package/lib/esm/curve/spiral/XYCurveEvaluator.d.ts.map +1 -1
- package/lib/esm/curve/spiral/XYCurveEvaluator.js +23 -18
- package/lib/esm/curve/spiral/XYCurveEvaluator.js.map +1 -1
- package/package.json +3 -3
|
@@ -15,13 +15,14 @@
|
|
|
15
15
|
* @internal
|
|
16
16
|
*/
|
|
17
17
|
export declare abstract class NormalizedTransition {
|
|
18
|
-
/** Constructor initializes with 0..1 values
|
|
18
|
+
/** Constructor initializes with 0..1 values. Call "setBearingCurvatureLengthCurvature" to apply real values. */
|
|
19
19
|
constructor();
|
|
20
20
|
/** At fractional position on the x axis, return the (normalized) curvature fraction. */
|
|
21
21
|
abstract fractionToCurvatureFraction(fractionX: number): number;
|
|
22
22
|
/** Return the derivative of the (normalized) curvature fraction */
|
|
23
23
|
abstract fractionToCurvatureFractionDerivative(fractionX: number): number;
|
|
24
|
-
/**
|
|
24
|
+
/**
|
|
25
|
+
* Return the integrated area under the curve
|
|
25
26
|
* * This is equal to the accumulated angle change.
|
|
26
27
|
*/
|
|
27
28
|
abstract fractionToArea(fractionX: number): number;
|
|
@@ -53,34 +54,36 @@ export declare class NormalizedClothoidTransition extends NormalizedTransition {
|
|
|
53
54
|
constructor();
|
|
54
55
|
/** At fractional position on the x axis, return the (normalized) curvature fraction. */
|
|
55
56
|
fractionToCurvatureFraction(fractionX: number): number;
|
|
56
|
-
/** Return the derivative of the (normalized) curvature fraction */
|
|
57
|
+
/** Return the derivative of the (normalized) curvature fraction. */
|
|
57
58
|
fractionToCurvatureFractionDerivative(_u: number): number;
|
|
58
|
-
/**
|
|
59
|
+
/**
|
|
60
|
+
* Return the integrated area under the curve.
|
|
59
61
|
* * This fraction is the angular change fraction.
|
|
60
62
|
*/
|
|
61
63
|
fractionToArea(fractionX: number): number;
|
|
62
64
|
}
|
|
63
65
|
/**
|
|
64
66
|
* Transition functions for bloss spiral.
|
|
65
|
-
* * curvature variation is cubic from (0,0) with slope 0 to (1,1) with slope 1
|
|
67
|
+
* * curvature variation is cubic from (0,0) with slope 0 to (1,1) with slope 1.
|
|
66
68
|
* @internal
|
|
67
69
|
*/
|
|
68
70
|
export declare class NormalizedBlossTransition extends NormalizedTransition {
|
|
69
71
|
constructor();
|
|
70
72
|
/** At fractional position on the x axis, return the (normalized) curvature fraction. */
|
|
71
73
|
fractionToCurvatureFraction(u: number): number;
|
|
72
|
-
/** Return the derivative of the (normalized) curvature fraction */
|
|
74
|
+
/** Return the derivative of the (normalized) curvature fraction. */
|
|
73
75
|
fractionToCurvatureFractionDerivative(u: number): number;
|
|
74
|
-
/**
|
|
76
|
+
/**
|
|
77
|
+
* Return the integrated area under the curve.
|
|
75
78
|
* * This fraction is the angular change fraction.
|
|
76
79
|
*/
|
|
77
80
|
fractionToArea(u: number): number;
|
|
78
81
|
}
|
|
79
82
|
/**
|
|
80
|
-
* Transition functions for biquadratic transition
|
|
83
|
+
* Transition functions for biquadratic transition.
|
|
81
84
|
* * Curvature is a pair of joining quadratics.
|
|
82
|
-
* * In lower half of the interval, the quadratic is from (0,0) to (0.5, 0.5) with zero slope at origin
|
|
83
|
-
* * In upper half of the interval, the quadratic is from (0.5,0.5) to (1,1) with zero slope at 1
|
|
85
|
+
* * In lower half of the interval, the quadratic is from (0,0) to (0.5, 0.5) with zero slope at origin.
|
|
86
|
+
* * In upper half of the interval, the quadratic is from (0.5,0.5) to (1,1) with zero slope at 1.
|
|
84
87
|
* @internal
|
|
85
88
|
*/
|
|
86
89
|
export declare class NormalizedBiQuadraticTransition extends NormalizedTransition {
|
|
@@ -88,32 +91,34 @@ export declare class NormalizedBiQuadraticTransition extends NormalizedTransitio
|
|
|
88
91
|
private integratedBasis;
|
|
89
92
|
private basis;
|
|
90
93
|
private basisDerivative;
|
|
91
|
-
/**
|
|
92
|
-
*
|
|
93
|
-
*
|
|
94
|
-
*
|
|
95
|
-
*
|
|
94
|
+
/**
|
|
95
|
+
* At fractional position on the x axis, return the (normalized) curvature fraction.
|
|
96
|
+
* * For [u <= 0.5, u >= 0.5]
|
|
97
|
+
* * f(u) = [2 u^2, 1 - 2 (1-u)^2]
|
|
98
|
+
* * f'(u) = [4 u, 4 (1-u)]
|
|
99
|
+
* * If(u) = [2 u^3 / 3, 0.5 (1 -u )^3/3]
|
|
96
100
|
*/
|
|
97
101
|
fractionToCurvatureFraction(u: number): number;
|
|
98
|
-
/** Return the derivative of the (normalized) curvature fraction */
|
|
102
|
+
/** Return the derivative of the (normalized) curvature fraction. */
|
|
99
103
|
fractionToCurvatureFractionDerivative(u: number): number;
|
|
100
|
-
/**
|
|
104
|
+
/**
|
|
105
|
+
* Return the integrated area under the curve.
|
|
101
106
|
* * This fraction is the angular change fraction.
|
|
102
107
|
*/
|
|
103
108
|
fractionToArea(u: number): number;
|
|
104
109
|
}
|
|
105
110
|
/**
|
|
106
|
-
* Transition functions for sine transition
|
|
111
|
+
* Transition functions for sine transition.
|
|
107
112
|
* * curvature variation is the sum of
|
|
108
|
-
* * straight line from (0,0) to (1,1), like clothoid
|
|
109
|
-
* * additional full period of a sine wave, producing 0 slope at both ends
|
|
113
|
+
* * straight line from (0,0) to (1,1), like clothoid.
|
|
114
|
+
* * additional full period of a sine wave, producing 0 slope at both ends.
|
|
110
115
|
* @internal
|
|
111
116
|
*/
|
|
112
117
|
export declare class NormalizedSineTransition extends NormalizedTransition {
|
|
113
118
|
constructor();
|
|
114
119
|
/** At fractional position on the x axis, return the (normalized) curvature fraction. */
|
|
115
120
|
fractionToCurvatureFraction(u: number): number;
|
|
116
|
-
/** Return the derivative of the (normalized) curvature fraction */
|
|
121
|
+
/** Return the derivative of the (normalized) curvature fraction. */
|
|
117
122
|
fractionToCurvatureFractionDerivative(u: number): number;
|
|
118
123
|
/** Return the integrated area under the curve.
|
|
119
124
|
* * This fraction is the angular change fraction.
|
|
@@ -121,15 +126,15 @@ export declare class NormalizedSineTransition extends NormalizedTransition {
|
|
|
121
126
|
fractionToArea(u: number): number;
|
|
122
127
|
}
|
|
123
128
|
/**
|
|
124
|
-
* Transition functions for cosine
|
|
125
|
-
* * curvature variation is a half period of a cosine
|
|
129
|
+
* Transition functions for cosine.
|
|
130
|
+
* * curvature variation is a half period of a cosine.
|
|
126
131
|
* @internal
|
|
127
132
|
*/
|
|
128
133
|
export declare class NormalizedCosineTransition extends NormalizedTransition {
|
|
129
134
|
constructor();
|
|
130
135
|
/** At fractional position on the x axis, return the (normalized) curvature fraction. */
|
|
131
136
|
fractionToCurvatureFraction(u: number): number;
|
|
132
|
-
/** Return the derivative of the (normalized) curvature fraction */
|
|
137
|
+
/** Return the derivative of the (normalized) curvature fraction. */
|
|
133
138
|
fractionToCurvatureFractionDerivative(u: number): number;
|
|
134
139
|
/** Return the integrated area under the curve.
|
|
135
140
|
* * This fraction is the angular change fraction.
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"NormalizedTransition.d.ts","sourceRoot":"","sources":["../../../../src/curve/spiral/NormalizedTransition.ts"],"names":[],"mappings":"AAKA;;GAEG;
|
|
1
|
+
{"version":3,"file":"NormalizedTransition.d.ts","sourceRoot":"","sources":["../../../../src/curve/spiral/NormalizedTransition.ts"],"names":[],"mappings":"AAKA;;GAEG;AAEH;;;;;;;;;;;;GAYG;AACH,8BAAsB,oBAAoB;IACxC,gHAAgH;;IAEhH,wFAAwF;aACxE,2BAA2B,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM;IACtE,mEAAmE;aACnD,qCAAqC,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM;IAChF;;;OAGG;aACa,cAAc,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM;IACzD,OAAO,CAAC,MAAM,CAAC,kBAAkB,CAAC,CAA+B;IACjE,OAAO,CAAC,MAAM,CAAC,qBAAqB,CAAC,CAAkC;IACvE,OAAO,CAAC,MAAM,CAAC,eAAe,CAAC,CAA4B;IAC3D,OAAO,CAAC,MAAM,CAAC,cAAc,CAAC,CAA2B;IACzD,OAAO,CAAC,MAAM,CAAC,gBAAgB,CAAC,CAA6B;IAC7D;;;;;;;;;;;OAWG;WACW,aAAa,CAAC,IAAI,EAAE,MAAM,GAAG,oBAAoB,GAAG,SAAS;CAa5E;AAED;;;;GAIG;AACH,qBAAa,4BAA6B,SAAQ,oBAAoB;;IAEpE,wFAAwF;IACjF,2BAA2B,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM;IAG7D,oEAAoE;IAC7D,qCAAqC,CAAC,EAAE,EAAE,MAAM,GAAG,MAAM;IAGhE;;;OAGG;IACI,cAAc,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM;CAGjD;AAED;;;;GAIG;AACH,qBAAa,yBAA0B,SAAQ,oBAAoB;;IAQjE,wFAAwF;IACjF,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAGrD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAG/D;;;OAGG;IACI,cAAc,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;CAGzC;AAED;;;;;;GAMG;AACH,qBAAa,+BAAgC,SAAQ,oBAAoB;;IAIvE,OAAO,CAAC,eAAe;IAGvB,OAAO,CAAC,KAAK;IAGb,OAAO,CAAC,eAAe;IAGvB;;;;;;OAMG;IACI,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAGrD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAG/D;;;OAGG;IACI,cAAc,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;CAMzC;AAED;;;;;;GAMG;AACH,qBAAa,wBAAyB,SAAQ,oBAAoB;;IAEhE,wFAAwF;IACjF,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAIrD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAI/D;;OAEG;IACI,cAAc,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;CAIzC;AAED;;;;GAIG;AACH,qBAAa,0BAA2B,SAAQ,oBAAoB;;IAElE,wFAAwF;IACjF,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAIrD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAI/D;;OAEG;IACI,cAAc,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;CAIzC"}
|
|
@@ -19,7 +19,7 @@
|
|
|
19
19
|
* @internal
|
|
20
20
|
*/
|
|
21
21
|
export class NormalizedTransition {
|
|
22
|
-
/** Constructor initializes with 0..1 values
|
|
22
|
+
/** Constructor initializes with 0..1 values. Call "setBearingCurvatureLengthCurvature" to apply real values. */
|
|
23
23
|
constructor() { }
|
|
24
24
|
static _clothoidEvaluator;
|
|
25
25
|
static _biquadraticEvaluator;
|
|
@@ -60,10 +60,15 @@ export class NormalizedTransition {
|
|
|
60
60
|
export class NormalizedClothoidTransition extends NormalizedTransition {
|
|
61
61
|
constructor() { super(); }
|
|
62
62
|
/** At fractional position on the x axis, return the (normalized) curvature fraction. */
|
|
63
|
-
fractionToCurvatureFraction(fractionX) {
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
/** Return the
|
|
63
|
+
fractionToCurvatureFraction(fractionX) {
|
|
64
|
+
return fractionX;
|
|
65
|
+
}
|
|
66
|
+
/** Return the derivative of the (normalized) curvature fraction. */
|
|
67
|
+
fractionToCurvatureFractionDerivative(_u) {
|
|
68
|
+
return 1.0;
|
|
69
|
+
}
|
|
70
|
+
/**
|
|
71
|
+
* Return the integrated area under the curve.
|
|
67
72
|
* * This fraction is the angular change fraction.
|
|
68
73
|
*/
|
|
69
74
|
fractionToArea(fractionX) {
|
|
@@ -72,24 +77,27 @@ export class NormalizedClothoidTransition extends NormalizedTransition {
|
|
|
72
77
|
}
|
|
73
78
|
/**
|
|
74
79
|
* Transition functions for bloss spiral.
|
|
75
|
-
* * curvature variation is cubic from (0,0) with slope 0 to (1,1) with slope 1
|
|
80
|
+
* * curvature variation is cubic from (0,0) with slope 0 to (1,1) with slope 1.
|
|
76
81
|
* @internal
|
|
77
82
|
*/
|
|
78
83
|
export class NormalizedBlossTransition extends NormalizedTransition {
|
|
79
84
|
// bloss curve is (3 - 2x) x ^2 = 3 x^2 - 2 x^3
|
|
80
|
-
//
|
|
81
|
-
//
|
|
82
|
-
//
|
|
83
|
-
//
|
|
84
|
-
//
|
|
85
|
+
// derivative 6x (1-x)
|
|
86
|
+
// 2nd derivative 6 - 12 x
|
|
87
|
+
// derivatives zero at 0,1
|
|
88
|
+
// inflection zero at 0.5
|
|
89
|
+
// integral is x^3 - x^4 / 2 = x^3 ( 1-x/2)
|
|
85
90
|
constructor() { super(); }
|
|
86
91
|
/** At fractional position on the x axis, return the (normalized) curvature fraction. */
|
|
87
|
-
fractionToCurvatureFraction(u) {
|
|
88
|
-
|
|
92
|
+
fractionToCurvatureFraction(u) {
|
|
93
|
+
return u * u * (3 - 2 * u);
|
|
94
|
+
}
|
|
95
|
+
/** Return the derivative of the (normalized) curvature fraction. */
|
|
89
96
|
fractionToCurvatureFractionDerivative(u) {
|
|
90
97
|
return 6.0 * u * (1.0 - u);
|
|
91
98
|
}
|
|
92
|
-
/**
|
|
99
|
+
/**
|
|
100
|
+
* Return the integrated area under the curve.
|
|
93
101
|
* * This fraction is the angular change fraction.
|
|
94
102
|
*/
|
|
95
103
|
fractionToArea(u) {
|
|
@@ -97,31 +105,41 @@ export class NormalizedBlossTransition extends NormalizedTransition {
|
|
|
97
105
|
}
|
|
98
106
|
}
|
|
99
107
|
/**
|
|
100
|
-
* Transition functions for biquadratic transition
|
|
108
|
+
* Transition functions for biquadratic transition.
|
|
101
109
|
* * Curvature is a pair of joining quadratics.
|
|
102
|
-
* * In lower half of the interval, the quadratic is from (0,0) to (0.5, 0.5) with zero slope at origin
|
|
103
|
-
* * In upper half of the interval, the quadratic is from (0.5,0.5) to (1,1) with zero slope at 1
|
|
110
|
+
* * In lower half of the interval, the quadratic is from (0,0) to (0.5, 0.5) with zero slope at origin.
|
|
111
|
+
* * In upper half of the interval, the quadratic is from (0.5,0.5) to (1,1) with zero slope at 1.
|
|
104
112
|
* @internal
|
|
105
113
|
*/
|
|
106
114
|
export class NormalizedBiQuadraticTransition extends NormalizedTransition {
|
|
107
|
-
constructor() {
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
115
|
+
constructor() {
|
|
116
|
+
super();
|
|
117
|
+
}
|
|
118
|
+
integratedBasis(u) {
|
|
119
|
+
return u * u * u * (2.0 / 3.0);
|
|
120
|
+
}
|
|
121
|
+
basis(u) {
|
|
122
|
+
return 2 * u * u;
|
|
123
|
+
}
|
|
124
|
+
basisDerivative(u) {
|
|
125
|
+
return 4 * u;
|
|
126
|
+
}
|
|
127
|
+
/**
|
|
128
|
+
* At fractional position on the x axis, return the (normalized) curvature fraction.
|
|
129
|
+
* * For [u <= 0.5, u >= 0.5]
|
|
130
|
+
* * f(u) = [2 u^2, 1 - 2 (1-u)^2]
|
|
131
|
+
* * f'(u) = [4 u, 4 (1-u)]
|
|
132
|
+
* * If(u) = [2 u^3 / 3, 0.5 (1 -u )^3/3]
|
|
116
133
|
*/
|
|
117
134
|
fractionToCurvatureFraction(u) {
|
|
118
135
|
return u <= 0.5 ? this.basis(u) : 1.0 - this.basis(1.0 - u);
|
|
119
136
|
}
|
|
120
|
-
/** Return the derivative of the (normalized) curvature fraction */
|
|
137
|
+
/** Return the derivative of the (normalized) curvature fraction. */
|
|
121
138
|
fractionToCurvatureFractionDerivative(u) {
|
|
122
139
|
return u < 0.5 ? this.basisDerivative(u) : this.basisDerivative(1 - u);
|
|
123
140
|
}
|
|
124
|
-
/**
|
|
141
|
+
/**
|
|
142
|
+
* Return the integrated area under the curve.
|
|
125
143
|
* * This fraction is the angular change fraction.
|
|
126
144
|
*/
|
|
127
145
|
fractionToArea(u) {
|
|
@@ -132,10 +150,10 @@ export class NormalizedBiQuadraticTransition extends NormalizedTransition {
|
|
|
132
150
|
}
|
|
133
151
|
}
|
|
134
152
|
/**
|
|
135
|
-
* Transition functions for sine transition
|
|
153
|
+
* Transition functions for sine transition.
|
|
136
154
|
* * curvature variation is the sum of
|
|
137
|
-
* * straight line from (0,0) to (1,1), like clothoid
|
|
138
|
-
* * additional full period of a sine wave, producing 0 slope at both ends
|
|
155
|
+
* * straight line from (0,0) to (1,1), like clothoid.
|
|
156
|
+
* * additional full period of a sine wave, producing 0 slope at both ends.
|
|
139
157
|
* @internal
|
|
140
158
|
*/
|
|
141
159
|
export class NormalizedSineTransition extends NormalizedTransition {
|
|
@@ -145,7 +163,7 @@ export class NormalizedSineTransition extends NormalizedTransition {
|
|
|
145
163
|
const a = 2.0 * Math.PI;
|
|
146
164
|
return u - Math.sin(u * a) / a;
|
|
147
165
|
}
|
|
148
|
-
/** Return the derivative of the (normalized) curvature fraction */
|
|
166
|
+
/** Return the derivative of the (normalized) curvature fraction. */
|
|
149
167
|
fractionToCurvatureFractionDerivative(u) {
|
|
150
168
|
const a = 2.0 * Math.PI;
|
|
151
169
|
return 1 - Math.cos(u * a);
|
|
@@ -159,8 +177,8 @@ export class NormalizedSineTransition extends NormalizedTransition {
|
|
|
159
177
|
}
|
|
160
178
|
}
|
|
161
179
|
/**
|
|
162
|
-
* Transition functions for cosine
|
|
163
|
-
* * curvature variation is a half period of a cosine
|
|
180
|
+
* Transition functions for cosine.
|
|
181
|
+
* * curvature variation is a half period of a cosine.
|
|
164
182
|
* @internal
|
|
165
183
|
*/
|
|
166
184
|
export class NormalizedCosineTransition extends NormalizedTransition {
|
|
@@ -170,7 +188,7 @@ export class NormalizedCosineTransition extends NormalizedTransition {
|
|
|
170
188
|
const a = Math.PI;
|
|
171
189
|
return 0.5 * (1 - Math.cos(u * a));
|
|
172
190
|
}
|
|
173
|
-
/** Return the derivative of the (normalized) curvature fraction */
|
|
191
|
+
/** Return the derivative of the (normalized) curvature fraction. */
|
|
174
192
|
fractionToCurvatureFractionDerivative(u) {
|
|
175
193
|
const a = Math.PI;
|
|
176
194
|
return 0.5 * a * Math.sin(u * a);
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"NormalizedTransition.js","sourceRoot":"","sources":["../../../../src/curve/spiral/NormalizedTransition.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AACH;;;;;;;;;;;;GAYG;AACH,MAAM,OAAgB,oBAAoB;IACxC,iHAAiH;IACjH,gBAAgB,CAAC;IAST,MAAM,CAAC,kBAAkB,CAAgC;IACzD,MAAM,CAAC,qBAAqB,CAAmC;IAC/D,MAAM,CAAC,eAAe,CAA6B;IACnD,MAAM,CAAC,cAAc,CAA4B;IACjD,MAAM,CAAC,gBAAgB,CAA8B;IAE7D;;;;;;;;;;;OAWG;IACI,MAAM,CAAC,aAAa,CAAC,IAAY;QACtC,IAAI,IAAI,KAAK,UAAU;YACrB,OAAO,IAAI,CAAC,kBAAkB,CAAC,CAAC,CAAC,IAAI,CAAC,kBAAkB,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,kBAAkB,GAAG,IAAI,4BAA4B,EAAE,CAAC,CAAC;QAC5H,IAAI,IAAI,KAAK,OAAO;YAClB,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,GAAG,IAAI,yBAAyB,EAAE,CAAC,CAAC;QAChH,IAAI,IAAI,KAAK,aAAa;YACxB,OAAO,IAAI,CAAC,qBAAqB,CAAC,CAAC,CAAC,IAAI,CAAC,qBAAqB,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,qBAAqB,GAAG,IAAI,+BAA+B,EAAE,CAAC,CAAC;QACxI,IAAI,IAAI,KAAK,MAAM;YACjB,OAAO,IAAI,CAAC,cAAc,CAAC,CAAC,CAAC,IAAI,CAAC,cAAc,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,cAAc,GAAG,IAAI,wBAAwB,EAAE,CAAC,CAAC;QAC5G,IAAI,IAAI,KAAK,QAAQ;YACnB,OAAO,IAAI,CAAC,gBAAgB,CAAC,CAAC,CAAC,IAAI,CAAC,gBAAgB,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,gBAAgB,GAAG,IAAI,0BAA0B,EAAE,CAAC,CAAC;QACpH,OAAO,SAAS,CAAC;IACnB,CAAC;CACF;AACD;;;;GAIG;AACH,MAAM,OAAO,4BAA6B,SAAQ,oBAAoB;IACpE,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAC1B,wFAAwF;IACjF,2BAA2B,CAAC,SAAiB,IAAY,OAAO,SAAS,CAAC,CAAC,CAAC;IACnF,mEAAmE;IAC5D,qCAAqC,CAAC,EAAU,IAAY,OAAO,GAAG,CAAC,CAAC,CAAC;IAChF;;OAEG;IACI,cAAc,CAAC,SAAiB;QACrC,OAAO,SAAS,GAAG,SAAS,GAAG,GAAG,CAAC;IACrC,CAAC;CACF;AAED;;;;GAIG;AACH,MAAM,OAAO,yBAA0B,SAAQ,oBAAoB;IACjE,+CAA+C;IAC/C,4BAA4B;IAC5B,4BAA4B;IAC5B,8BAA8B;IAC9B,6BAA6B;IAC7B,+CAA+C;IAC/C,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAC1B,wFAAwF;IACjF,2BAA2B,CAAC,CAAS,IAAY,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACrF,mEAAmE;IAC5D,qCAAqC,CAAC,CAAS;QACpD,OAAO,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;IAC7B,CAAC;IACD;;OAEG;IACI,cAAc,CAAC,CAAS;QAC7B,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC;IACnC,CAAC;CACF;AAED;;;;;;GAMG;AACH,MAAM,OAAO,+BAAgC,SAAQ,oBAAoB;IACvE,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAClB,eAAe,CAAC,CAAS,IAAY,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC;IACtE,KAAK,CAAC,CAAS,IAAY,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;IAC9C,eAAe,CAAC,CAAS,IAAY,OAAO,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;IAC5D;;;;;OAKG;IACI,2BAA2B,CAAC,CAAS;QAC1C,OAAO,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,IAAI,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;IAC9D,CAAC;IACD,mEAAmE;IAC5D,qCAAqC,CAAC,CAAS;QACpD,OAAO,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACzE,CAAC;IACD;;OAEG;IACI,cAAc,CAAC,CAAS;QAC7B,IAAI,CAAC,IAAI,GAAG;YACV,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC;QACjC,MAAM,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;QAChB,OAAO,GAAG,GAAG,CAAC,GAAG,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC;IAC3C,CAAC;CACF;AAED;;;;;;GAMG;AACH,MAAM,OAAO,wBAAyB,SAAQ,oBAAoB;IAChE,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAC1B,wFAAwF;IACjF,2BAA2B,CAAC,CAAS;QAC1C,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,EAAE,CAAC;QACxB,OAAO,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;IACjC,CAAC;IACD,mEAAmE;IAC5D,qCAAqC,CAAC,CAAS;QACpD,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,EAAE,CAAC;QACxB,OAAO,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IAC7B,CAAC;IACD;;OAEG;IACI,cAAc,CAAC,CAAS;QAC7B,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,EAAE,CAAC;QACxB,OAAO,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACzD,CAAC;CACF;AACD;;;;GAIG;AACH,MAAM,OAAO,0BAA2B,SAAQ,oBAAoB;IAClE,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAC1B,wFAAwF;IACjF,2BAA2B,CAAC,CAAS;QAC1C,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAClB,OAAO,GAAG,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;IACrC,CAAC;IACD,mEAAmE;IAC5D,qCAAqC,CAAC,CAAS;QACpD,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAClB,OAAO,GAAG,GAAG,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACnC,CAAC;IACD;;OAEG;IACI,cAAc,CAAC,CAAS;QAC7B,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAClB,OAAO,GAAG,GAAG,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;IAC7C,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\n* See LICENSE.md in the project root for license terms and full copyright notice.\n*--------------------------------------------------------------------------------------------*/\n\n/** @packageDocumentation\n * @module Curve\n */\n/**\n * NormalizedTransition is the (abstract) base class for clothoid, bloss, biquadratic, sine, and cosine transition functions.\n * * Each function maps fractional progress to a curvature value.\n * * f(0) === 0\n * * f(1) === 1\n * * f(u) === 1 - f (1-u)\n * * Each implementation provides:\n * * fractionToCurvature -- the f(u) function described above\n * * fractionToCurvatureDerivative -- df(u)/du\n * * fractionToArea -- integral of the area under f(u) from 0 to u.\n * * the symmetry condition ensures that the integral from 0 to 1 is 1/2\n * @internal\n */\nexport abstract class NormalizedTransition {\n /** Constructor initializes with 0..1 values .. call \"setBearingCurvatureLengthCurvature\" to apply real values */\n constructor() { }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public abstract fractionToCurvatureFraction(fractionX: number): number;\n /** Return the derivative of the (normalized) curvature fraction */\n public abstract fractionToCurvatureFractionDerivative(fractionX: number): number;\n /** Return the integrated area under the curve\n * * This is equal to the accumulated angle change.\n */\n public abstract fractionToArea(fractionX: number): number;\n private static _clothoidEvaluator?: NormalizedClothoidTransition;\n private static _biquadraticEvaluator?: NormalizedBiQuadraticTransition;\n private static _blossEvaluator?: NormalizedBlossTransition;\n private static _sineEvaluator?: NormalizedSineTransition;\n private static _cosineEvaluator?: NormalizedCosineTransition;\n\n /**\n * Return a standard evaluator identified by string as:\n * * clothoid\n * * bloss\n * * biquadratic\n * * sine\n * * cosine\n * Each of these types\n * * is instantiated (only once) as a single static object within the NormalizedTransition class.\n * * has no instance data or mutator methods.\n * @param name string name of the transition.\n */\n public static findEvaluator(name: string): NormalizedTransition | undefined {\n if (name === \"clothoid\")\n return this._clothoidEvaluator ? this._clothoidEvaluator : (this._clothoidEvaluator = new NormalizedClothoidTransition());\n if (name === \"bloss\")\n return this._blossEvaluator ? this._blossEvaluator : (this._blossEvaluator = new NormalizedBlossTransition());\n if (name === \"biquadratic\")\n return this._biquadraticEvaluator ? this._biquadraticEvaluator : (this._biquadraticEvaluator = new NormalizedBiQuadraticTransition());\n if (name === \"sine\")\n return this._sineEvaluator ? this._sineEvaluator : (this._sineEvaluator = new NormalizedSineTransition());\n if (name === \"cosine\")\n return this._cosineEvaluator ? this._cosineEvaluator : (this._cosineEvaluator = new NormalizedCosineTransition());\n return undefined;\n }\n}\n/**\n * Transition functions for clothoid spiral.\n * * curvature variation is linear from (0,0) to (1,1)\n * @internal\n */\nexport class NormalizedClothoidTransition extends NormalizedTransition {\n constructor() { super(); }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(fractionX: number): number { return fractionX; }\n /** Return the derivative of the (normalized) curvature fraction */\n public fractionToCurvatureFractionDerivative(_u: number): number { return 1.0; }\n /** Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(fractionX: number): number {\n return fractionX * fractionX * 0.5;\n }\n}\n\n/**\n * Transition functions for bloss spiral.\n * * curvature variation is cubic from (0,0) with slope 0 to (1,1) with slope 1\n * @internal\n */\nexport class NormalizedBlossTransition extends NormalizedTransition {\n // bloss curve is (3 - 2x) x ^2 = 3 x^2 - 2 x^3\n // derivative 6x (1-x)\n // 2nd derivative 6 - 12 x\n // derivatives zero at 0,1\n // inflection zero at 0.5\n // integral is x^3 - x^4 / 2 = x^3 ( 1-x/2)\n constructor() { super(); }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(u: number): number { return u * u * (3 - 2 * u); }\n /** Return the derivative of the (normalized) curvature fraction */\n public fractionToCurvatureFractionDerivative(u: number): number {\n return 6.0 * u * (1.0 - u);\n }\n /** Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n return u * u * u * (1 - 0.5 * u);\n }\n}\n\n/**\n * Transition functions for biquadratic transition\n * * Curvature is a pair of joining quadratics.\n * * In lower half of the interval, the quadratic is from (0,0) to (0.5, 0.5) with zero slope at origin\n * * In upper half of the interval, the quadratic is from (0.5,0.5) to (1,1) with zero slope at 1\n * @internal\n */\nexport class NormalizedBiQuadraticTransition extends NormalizedTransition {\n constructor() { super(); }\n private integratedBasis(u: number): number { return u * u * u * (2.0 / 3.0); }\n private basis(u: number): number { return 2 * u * u; }\n private basisDerivative(u: number): number { return 4 * u; }\n /** At fractional position on the x axis, return the (normalized) curvature fraction.\n * * * For [u <= 0.5, u >= 0.5]\n * * f(u) = [2 u^2, 1 - 2 (1-u)^2]\n * * f'(u) = [4 u, 4 (1-u)]\n * * If(u) = [2 u^3 / 3, 0.5 (1 -u )^3/3]\n */\n public fractionToCurvatureFraction(u: number): number {\n return u <= 0.5 ? this.basis(u) : 1.0 - this.basis(1.0 - u);\n }\n /** Return the derivative of the (normalized) curvature fraction */\n public fractionToCurvatureFractionDerivative(u: number): number {\n return u < 0.5 ? this.basisDerivative(u) : this.basisDerivative(1 - u);\n }\n /** Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n if (u <= 0.5)\n return this.integratedBasis(u);\n const v = 1 - u;\n return 0.5 - v + this.integratedBasis(v);\n }\n}\n\n/**\n * Transition functions for sine transition\n * * curvature variation is the sum of\n * * straight line from (0,0) to (1,1), like clothoid\n * * additional full period of a sine wave, producing 0 slope at both ends\n * @internal\n */\nexport class NormalizedSineTransition extends NormalizedTransition {\n constructor() { super(); }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(u: number): number {\n const a = 2.0 * Math.PI;\n return u - Math.sin(u * a) / a;\n }\n /** Return the derivative of the (normalized) curvature fraction */\n public fractionToCurvatureFractionDerivative(u: number): number {\n const a = 2.0 * Math.PI;\n return 1 - Math.cos(u * a);\n }\n /** Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n const a = 2.0 * Math.PI;\n return 0.5 * u * u + (Math.cos(u * a) - 1.0) / (a * a);\n }\n}\n/**\n * Transition functions for cosine\n * * curvature variation is a half period of a cosine\n * @internal\n */\nexport class NormalizedCosineTransition extends NormalizedTransition {\n constructor() { super(); }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(u: number): number {\n const a = Math.PI;\n return 0.5 * (1 - Math.cos(u * a));\n }\n /** Return the derivative of the (normalized) curvature fraction */\n public fractionToCurvatureFractionDerivative(u: number): number {\n const a = Math.PI;\n return 0.5 * a * Math.sin(u * a);\n }\n /** Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n const a = Math.PI;\n return 0.5 * u - 0.5 * Math.sin(u * a) / a;\n }\n}\n"]}
|
|
1
|
+
{"version":3,"file":"NormalizedTransition.js","sourceRoot":"","sources":["../../../../src/curve/spiral/NormalizedTransition.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AAEH;;;;;;;;;;;;GAYG;AACH,MAAM,OAAgB,oBAAoB;IACxC,gHAAgH;IAChH,gBAAgB,CAAC;IAUT,MAAM,CAAC,kBAAkB,CAAgC;IACzD,MAAM,CAAC,qBAAqB,CAAmC;IAC/D,MAAM,CAAC,eAAe,CAA6B;IACnD,MAAM,CAAC,cAAc,CAA4B;IACjD,MAAM,CAAC,gBAAgB,CAA8B;IAC7D;;;;;;;;;;;OAWG;IACI,MAAM,CAAC,aAAa,CAAC,IAAY;QACtC,IAAI,IAAI,KAAK,UAAU;YACrB,OAAO,IAAI,CAAC,kBAAkB,CAAC,CAAC,CAAC,IAAI,CAAC,kBAAkB,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,kBAAkB,GAAG,IAAI,4BAA4B,EAAE,CAAC,CAAC;QAC5H,IAAI,IAAI,KAAK,OAAO;YAClB,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,GAAG,IAAI,yBAAyB,EAAE,CAAC,CAAC;QAChH,IAAI,IAAI,KAAK,aAAa;YACxB,OAAO,IAAI,CAAC,qBAAqB,CAAC,CAAC,CAAC,IAAI,CAAC,qBAAqB,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,qBAAqB,GAAG,IAAI,+BAA+B,EAAE,CAAC,CAAC;QACxI,IAAI,IAAI,KAAK,MAAM;YACjB,OAAO,IAAI,CAAC,cAAc,CAAC,CAAC,CAAC,IAAI,CAAC,cAAc,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,cAAc,GAAG,IAAI,wBAAwB,EAAE,CAAC,CAAC;QAC5G,IAAI,IAAI,KAAK,QAAQ;YACnB,OAAO,IAAI,CAAC,gBAAgB,CAAC,CAAC,CAAC,IAAI,CAAC,gBAAgB,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,gBAAgB,GAAG,IAAI,0BAA0B,EAAE,CAAC,CAAC;QACpH,OAAO,SAAS,CAAC;IACnB,CAAC;CACF;AAED;;;;GAIG;AACH,MAAM,OAAO,4BAA6B,SAAQ,oBAAoB;IACpE,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAC1B,wFAAwF;IACjF,2BAA2B,CAAC,SAAiB;QAClD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,oEAAoE;IAC7D,qCAAqC,CAAC,EAAU;QACrD,OAAO,GAAG,CAAC;IACb,CAAC;IACD;;;OAGG;IACI,cAAc,CAAC,SAAiB;QACrC,OAAO,SAAS,GAAG,SAAS,GAAG,GAAG,CAAC;IACrC,CAAC;CACF;AAED;;;;GAIG;AACH,MAAM,OAAO,yBAA0B,SAAQ,oBAAoB;IACjE,+CAA+C;IAC/C,sBAAsB;IACtB,0BAA0B;IAC1B,0BAA0B;IAC1B,yBAAyB;IACzB,6CAA6C;IAC7C,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAC1B,wFAAwF;IACjF,2BAA2B,CAAC,CAAS;QAC1C,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;IAC7B,CAAC;IACD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAS;QACpD,OAAO,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;IAC7B,CAAC;IACD;;;OAGG;IACI,cAAc,CAAC,CAAS;QAC7B,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC;IACnC,CAAC;CACF;AAED;;;;;;GAMG;AACH,MAAM,OAAO,+BAAgC,SAAQ,oBAAoB;IACvE;QACE,KAAK,EAAE,CAAC;IACV,CAAC;IACO,eAAe,CAAC,CAAS;QAC/B,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;IACjC,CAAC;IACO,KAAK,CAAC,CAAS;QACrB,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;IACnB,CAAC;IACO,eAAe,CAAC,CAAS;QAC/B,OAAO,CAAC,GAAG,CAAC,CAAC;IACf,CAAC;IACD;;;;;;OAMG;IACI,2BAA2B,CAAC,CAAS;QAC1C,OAAO,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,IAAI,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;IAC9D,CAAC;IACD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAS;QACpD,OAAO,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,eAAe,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACzE,CAAC;IACD;;;OAGG;IACI,cAAc,CAAC,CAAS;QAC7B,IAAI,CAAC,IAAI,GAAG;YACV,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC;QACjC,MAAM,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;QAChB,OAAO,GAAG,GAAG,CAAC,GAAG,IAAI,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC;IAC3C,CAAC;CACF;AAED;;;;;;GAMG;AACH,MAAM,OAAO,wBAAyB,SAAQ,oBAAoB;IAChE,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAC1B,wFAAwF;IACjF,2BAA2B,CAAC,CAAS;QAC1C,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,EAAE,CAAC;QACxB,OAAO,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;IACjC,CAAC;IACD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAS;QACpD,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,EAAE,CAAC;QACxB,OAAO,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IAC7B,CAAC;IACD;;OAEG;IACI,cAAc,CAAC,CAAS;QAC7B,MAAM,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,EAAE,CAAC;QACxB,OAAO,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACzD,CAAC;CACF;AAED;;;;GAIG;AACH,MAAM,OAAO,0BAA2B,SAAQ,oBAAoB;IAClE,gBAAgB,KAAK,EAAE,CAAC,CAAC,CAAC;IAC1B,wFAAwF;IACjF,2BAA2B,CAAC,CAAS;QAC1C,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAClB,OAAO,GAAG,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;IACrC,CAAC;IACD,oEAAoE;IAC7D,qCAAqC,CAAC,CAAS;QACpD,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAClB,OAAO,GAAG,GAAG,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACnC,CAAC;IACD;;OAEG;IACI,cAAc,CAAC,CAAS;QAC7B,MAAM,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC;QAClB,OAAO,GAAG,GAAG,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;IAC7C,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\n* See LICENSE.md in the project root for license terms and full copyright notice.\n*--------------------------------------------------------------------------------------------*/\n\n/** @packageDocumentation\n * @module Curve\n */\n\n/**\n * NormalizedTransition is the (abstract) base class for clothoid, bloss, biquadratic, sine, and cosine transition functions.\n * * Each function maps fractional progress to a curvature value.\n * * f(0) === 0\n * * f(1) === 1\n * * f(u) === 1 - f (1-u)\n * * Each implementation provides:\n * * fractionToCurvature -- the f(u) function described above\n * * fractionToCurvatureDerivative -- df(u)/du\n * * fractionToArea -- integral of the area under f(u) from 0 to u.\n * * the symmetry condition ensures that the integral from 0 to 1 is 1/2\n * @internal\n */\nexport abstract class NormalizedTransition {\n /** Constructor initializes with 0..1 values. Call \"setBearingCurvatureLengthCurvature\" to apply real values. */\n constructor() { }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public abstract fractionToCurvatureFraction(fractionX: number): number;\n /** Return the derivative of the (normalized) curvature fraction */\n public abstract fractionToCurvatureFractionDerivative(fractionX: number): number;\n /**\n * Return the integrated area under the curve\n * * This is equal to the accumulated angle change.\n */\n public abstract fractionToArea(fractionX: number): number;\n private static _clothoidEvaluator?: NormalizedClothoidTransition;\n private static _biquadraticEvaluator?: NormalizedBiQuadraticTransition;\n private static _blossEvaluator?: NormalizedBlossTransition;\n private static _sineEvaluator?: NormalizedSineTransition;\n private static _cosineEvaluator?: NormalizedCosineTransition;\n /**\n * Return a standard evaluator identified by string as:\n * * clothoid\n * * bloss\n * * biquadratic\n * * sine\n * * cosine\n * Each of these types\n * * is instantiated (only once) as a single static object within the NormalizedTransition class.\n * * has no instance data or mutator methods.\n * @param name string name of the transition.\n */\n public static findEvaluator(name: string): NormalizedTransition | undefined {\n if (name === \"clothoid\")\n return this._clothoidEvaluator ? this._clothoidEvaluator : (this._clothoidEvaluator = new NormalizedClothoidTransition());\n if (name === \"bloss\")\n return this._blossEvaluator ? this._blossEvaluator : (this._blossEvaluator = new NormalizedBlossTransition());\n if (name === \"biquadratic\")\n return this._biquadraticEvaluator ? this._biquadraticEvaluator : (this._biquadraticEvaluator = new NormalizedBiQuadraticTransition());\n if (name === \"sine\")\n return this._sineEvaluator ? this._sineEvaluator : (this._sineEvaluator = new NormalizedSineTransition());\n if (name === \"cosine\")\n return this._cosineEvaluator ? this._cosineEvaluator : (this._cosineEvaluator = new NormalizedCosineTransition());\n return undefined;\n }\n}\n\n/**\n * Transition functions for clothoid spiral.\n * * curvature variation is linear from (0,0) to (1,1)\n * @internal\n */\nexport class NormalizedClothoidTransition extends NormalizedTransition {\n constructor() { super(); }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(fractionX: number): number {\n return fractionX;\n }\n /** Return the derivative of the (normalized) curvature fraction. */\n public fractionToCurvatureFractionDerivative(_u: number): number {\n return 1.0;\n }\n /**\n * Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(fractionX: number): number {\n return fractionX * fractionX * 0.5;\n }\n}\n\n/**\n * Transition functions for bloss spiral.\n * * curvature variation is cubic from (0,0) with slope 0 to (1,1) with slope 1.\n * @internal\n */\nexport class NormalizedBlossTransition extends NormalizedTransition {\n // bloss curve is (3 - 2x) x ^2 = 3 x^2 - 2 x^3\n // derivative 6x (1-x)\n // 2nd derivative 6 - 12 x\n // derivatives zero at 0,1\n // inflection zero at 0.5\n // integral is x^3 - x^4 / 2 = x^3 ( 1-x/2)\n constructor() { super(); }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(u: number): number {\n return u * u * (3 - 2 * u);\n }\n /** Return the derivative of the (normalized) curvature fraction. */\n public fractionToCurvatureFractionDerivative(u: number): number {\n return 6.0 * u * (1.0 - u);\n }\n /**\n * Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n return u * u * u * (1 - 0.5 * u);\n }\n}\n\n/**\n * Transition functions for biquadratic transition.\n * * Curvature is a pair of joining quadratics.\n * * In lower half of the interval, the quadratic is from (0,0) to (0.5, 0.5) with zero slope at origin.\n * * In upper half of the interval, the quadratic is from (0.5,0.5) to (1,1) with zero slope at 1.\n * @internal\n */\nexport class NormalizedBiQuadraticTransition extends NormalizedTransition {\n constructor() {\n super();\n }\n private integratedBasis(u: number): number {\n return u * u * u * (2.0 / 3.0);\n }\n private basis(u: number): number {\n return 2 * u * u;\n }\n private basisDerivative(u: number): number {\n return 4 * u;\n }\n /**\n * At fractional position on the x axis, return the (normalized) curvature fraction.\n * * For [u <= 0.5, u >= 0.5]\n * * f(u) = [2 u^2, 1 - 2 (1-u)^2]\n * * f'(u) = [4 u, 4 (1-u)]\n * * If(u) = [2 u^3 / 3, 0.5 (1 -u )^3/3]\n */\n public fractionToCurvatureFraction(u: number): number {\n return u <= 0.5 ? this.basis(u) : 1.0 - this.basis(1.0 - u);\n }\n /** Return the derivative of the (normalized) curvature fraction. */\n public fractionToCurvatureFractionDerivative(u: number): number {\n return u < 0.5 ? this.basisDerivative(u) : this.basisDerivative(1 - u);\n }\n /**\n * Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n if (u <= 0.5)\n return this.integratedBasis(u);\n const v = 1 - u;\n return 0.5 - v + this.integratedBasis(v);\n }\n}\n\n/**\n * Transition functions for sine transition.\n * * curvature variation is the sum of\n * * straight line from (0,0) to (1,1), like clothoid.\n * * additional full period of a sine wave, producing 0 slope at both ends.\n * @internal\n */\nexport class NormalizedSineTransition extends NormalizedTransition {\n constructor() { super(); }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(u: number): number {\n const a = 2.0 * Math.PI;\n return u - Math.sin(u * a) / a;\n }\n /** Return the derivative of the (normalized) curvature fraction. */\n public fractionToCurvatureFractionDerivative(u: number): number {\n const a = 2.0 * Math.PI;\n return 1 - Math.cos(u * a);\n }\n /** Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n const a = 2.0 * Math.PI;\n return 0.5 * u * u + (Math.cos(u * a) - 1.0) / (a * a);\n }\n}\n\n/**\n * Transition functions for cosine.\n * * curvature variation is a half period of a cosine.\n * @internal\n */\nexport class NormalizedCosineTransition extends NormalizedTransition {\n constructor() { super(); }\n /** At fractional position on the x axis, return the (normalized) curvature fraction. */\n public fractionToCurvatureFraction(u: number): number {\n const a = Math.PI;\n return 0.5 * (1 - Math.cos(u * a));\n }\n /** Return the derivative of the (normalized) curvature fraction. */\n public fractionToCurvatureFractionDerivative(u: number): number {\n const a = Math.PI;\n return 0.5 * a * Math.sin(u * a);\n }\n /** Return the integrated area under the curve.\n * * This fraction is the angular change fraction.\n */\n public fractionToArea(u: number): number {\n const a = Math.PI;\n return 0.5 * u - 0.5 * Math.sin(u * a) / a;\n }\n}\n"]}
|
|
@@ -3,14 +3,9 @@ import { CubicEvaluator } from "./CubicEvaluator";
|
|
|
3
3
|
* Polish Cubic.
|
|
4
4
|
* * Construction takes nominal length and end radius.
|
|
5
5
|
* curve is is y= m*x^3 with
|
|
6
|
-
* * x any point on the x axis
|
|
7
|
-
* * m is (1/6RL)
|
|
8
|
-
* * Lx = x length is along the axis, determined by inversion of a distance series at nominal length
|
|
9
|
-
* *
|
|
10
|
-
* @param localToWorld
|
|
11
|
-
* @param nominalL1
|
|
12
|
-
* @param nominalR1
|
|
13
|
-
* @param activeInterval
|
|
6
|
+
* * x any point on the x axis.
|
|
7
|
+
* * m is (1/6RL).
|
|
8
|
+
* * Lx = x length is along the axis, determined by inversion of a distance series at nominal length.
|
|
14
9
|
* @internal
|
|
15
10
|
*/
|
|
16
11
|
export declare class PolishCubicEvaluator extends CubicEvaluator {
|
|
@@ -22,25 +17,25 @@ export declare class PolishCubicEvaluator extends CubicEvaluator {
|
|
|
22
17
|
static computeCubicM(length1: number, radius1: number): number;
|
|
23
18
|
static create(length1: number, radius1: number): PolishCubicEvaluator | undefined;
|
|
24
19
|
scaleInPlace(scaleFactor: number): void;
|
|
25
|
-
/**
|
|
20
|
+
/** Return a deep copy of the evaluator. */
|
|
26
21
|
clone(): PolishCubicEvaluator;
|
|
27
|
-
/** Member by member matchup
|
|
22
|
+
/** Member by member matchup. */
|
|
28
23
|
isAlmostEqual(other: any): boolean;
|
|
29
|
-
/** Compute the coefficient of x^4 in the x-to-distance series expansion */
|
|
24
|
+
/** Compute the coefficient of x^4 in the x-to-distance series expansion. */
|
|
30
25
|
static computeX4SeriesCoefficient(length1: number, radius1: number): number;
|
|
31
26
|
/**
|
|
32
27
|
* Evaluate a series approximation of distance along the true curve.
|
|
33
|
-
* @param x distance along x axis
|
|
34
|
-
* @param radius1 nominal end radius
|
|
35
|
-
* @param length1 nominal length along curve
|
|
28
|
+
* @param x distance along x axis.
|
|
29
|
+
* @param radius1 nominal end radius.
|
|
30
|
+
* @param length1 nominal length along curve.
|
|
36
31
|
* @returns
|
|
37
32
|
*/
|
|
38
33
|
static xToApproximateDistance(x: number, radius1: number, length1: number): number;
|
|
39
34
|
/**
|
|
40
35
|
* Evaluate the derivative of the x-to-distance series.
|
|
41
|
-
* @param x distance along x axis
|
|
42
|
-
* @param radius1 nominal end radius
|
|
43
|
-
* @param length1 nominal length along curve
|
|
36
|
+
* @param x distance along x axis.
|
|
37
|
+
* @param radius1 nominal end radius.
|
|
38
|
+
* @param length1 nominal length along curve.
|
|
44
39
|
* @returns
|
|
45
40
|
*/
|
|
46
41
|
static xToApproximateDistanceDerivative(x: number, radius1: number, length1: number): number;
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"PolishCubicSpiralEvaluator.d.ts","sourceRoot":"","sources":["../../../../src/curve/spiral/PolishCubicSpiralEvaluator.ts"],"names":[],"mappings":"AAUA,OAAO,EAAE,cAAc,EAAE,MAAM,kBAAkB,CAAC;
|
|
1
|
+
{"version":3,"file":"PolishCubicSpiralEvaluator.d.ts","sourceRoot":"","sources":["../../../../src/curve/spiral/PolishCubicSpiralEvaluator.ts"],"names":[],"mappings":"AAUA,OAAO,EAAE,cAAc,EAAE,MAAM,kBAAkB,CAAC;AAElD;;;;;;;;GAQG;AACH,qBAAa,oBAAqB,SAAQ,cAAc;IAC/C,cAAc,EAAE,MAAM,CAAC;IACvB,cAAc,EAAE,MAAM,CAAC;IAC9B,uEAAuE;IACvE,OAAO;IAKP,wCAAwC;WAC1B,aAAa,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM;WAGvD,MAAM,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,oBAAoB,GAAG,SAAS;IASxE,YAAY,CAAC,WAAW,EAAE,MAAM;IAKhD,2CAA2C;IACpC,KAAK,IAAI,oBAAoB;IAGpC,gCAAgC;IACzB,aAAa,CAAC,KAAK,EAAE,GAAG,GAAG,OAAO;IAOzC,4EAA4E;WAC9D,0BAA0B,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM;IAGlF;;;;;;OAMG;WACW,sBAAsB,CAAC,CAAC,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM;IASzF;;;;;;OAMG;WACW,gCAAgC,CAAC,CAAC,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM;IAgBnG,kDAAkD;WACpC,2BAA2B,CAAC,CAAC,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM,GAAG,SAAS;CAM3G"}
|
|
@@ -12,14 +12,9 @@ import { CubicEvaluator } from "./CubicEvaluator";
|
|
|
12
12
|
* Polish Cubic.
|
|
13
13
|
* * Construction takes nominal length and end radius.
|
|
14
14
|
* curve is is y= m*x^3 with
|
|
15
|
-
* * x any point on the x axis
|
|
16
|
-
* * m is (1/6RL)
|
|
17
|
-
* * Lx = x length is along the axis, determined by inversion of a distance series at nominal length
|
|
18
|
-
* *
|
|
19
|
-
* @param localToWorld
|
|
20
|
-
* @param nominalL1
|
|
21
|
-
* @param nominalR1
|
|
22
|
-
* @param activeInterval
|
|
15
|
+
* * x any point on the x axis.
|
|
16
|
+
* * m is (1/6RL).
|
|
17
|
+
* * Lx = x length is along the axis, determined by inversion of a distance series at nominal length.
|
|
23
18
|
* @internal
|
|
24
19
|
*/
|
|
25
20
|
export class PolishCubicEvaluator extends CubicEvaluator {
|
|
@@ -49,9 +44,11 @@ export class PolishCubicEvaluator extends CubicEvaluator {
|
|
|
49
44
|
this.nominalRadius1 *= scaleFactor;
|
|
50
45
|
super.scaleInPlace(scaleFactor);
|
|
51
46
|
}
|
|
52
|
-
/**
|
|
53
|
-
clone() {
|
|
54
|
-
|
|
47
|
+
/** Return a deep copy of the evaluator. */
|
|
48
|
+
clone() {
|
|
49
|
+
return new PolishCubicEvaluator(this.nominalLength1, this.nominalRadius1, this.axisLength, this.cubicM);
|
|
50
|
+
}
|
|
51
|
+
/** Member by member matchup. */
|
|
55
52
|
isAlmostEqual(other) {
|
|
56
53
|
if (other instanceof PolishCubicEvaluator) {
|
|
57
54
|
return Geometry.isSameCoordinate(this.nominalLength1, other.nominalLength1)
|
|
@@ -59,15 +56,15 @@ export class PolishCubicEvaluator extends CubicEvaluator {
|
|
|
59
56
|
}
|
|
60
57
|
return false;
|
|
61
58
|
}
|
|
62
|
-
/** Compute the coefficient of x^4 in the x-to-distance series expansion */
|
|
59
|
+
/** Compute the coefficient of x^4 in the x-to-distance series expansion. */
|
|
63
60
|
static computeX4SeriesCoefficient(length1, radius1) {
|
|
64
61
|
return 1.0 / (4.0 * length1 * length1 * radius1 * radius1);
|
|
65
62
|
}
|
|
66
63
|
/**
|
|
67
64
|
* Evaluate a series approximation of distance along the true curve.
|
|
68
|
-
* @param x distance along x axis
|
|
69
|
-
* @param radius1 nominal end radius
|
|
70
|
-
* @param length1 nominal length along curve
|
|
65
|
+
* @param x distance along x axis.
|
|
66
|
+
* @param radius1 nominal end radius.
|
|
67
|
+
* @param length1 nominal length along curve.
|
|
71
68
|
* @returns
|
|
72
69
|
*/
|
|
73
70
|
static xToApproximateDistance(x, radius1, length1) {
|
|
@@ -81,9 +78,9 @@ export class PolishCubicEvaluator extends CubicEvaluator {
|
|
|
81
78
|
}
|
|
82
79
|
/**
|
|
83
80
|
* Evaluate the derivative of the x-to-distance series.
|
|
84
|
-
* @param x distance along x axis
|
|
85
|
-
* @param radius1 nominal end radius
|
|
86
|
-
* @param length1 nominal length along curve
|
|
81
|
+
* @param x distance along x axis.
|
|
82
|
+
* @param radius1 nominal end radius.
|
|
83
|
+
* @param length1 nominal length along curve.
|
|
87
84
|
* @returns
|
|
88
85
|
*/
|
|
89
86
|
static xToApproximateDistanceDerivative(x, radius1, length1) {
|
|
@@ -92,13 +89,13 @@ export class PolishCubicEvaluator extends CubicEvaluator {
|
|
|
92
89
|
const ax2 = a4 * x * x;
|
|
93
90
|
const ax3 = ax2 * x;
|
|
94
91
|
const ax4 = ax3 * x;
|
|
95
|
-
// derivative notes
|
|
92
|
+
// derivative notes:
|
|
96
93
|
// take away leading x -- this reduces each power by 1
|
|
97
94
|
// multiply each coefficient by its original power:
|
|
98
|
-
//
|
|
99
|
-
// 1/72==>
|
|
100
|
-
// 1/208==>13/208=1/16
|
|
101
|
-
// 1/2176==>17/2176= 1/128
|
|
95
|
+
// 0.1 ==> 0.5
|
|
96
|
+
// 1/72 ==> 9/72 = 1/8
|
|
97
|
+
// 1/208 ==> 13/208 = 1/16
|
|
98
|
+
// 1/2176 ==> 17/2176 = 1/128
|
|
102
99
|
const ds = (1.0 + ax4 * (0.5 + ax4 * (-1.0 / 8.0 + ax4 * (1.0 / 16.0 - 5.0 * ax4 / 128.0))));
|
|
103
100
|
return ds;
|
|
104
101
|
}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"PolishCubicSpiralEvaluator.js","sourceRoot":"","sources":["../../../../src/curve/spiral/PolishCubicSpiralEvaluator.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AACH,OAAO,EAAE,QAAQ,EAAE,MAAM,gBAAgB,CAAC;AAC1C,OAAO,EAAE,YAAY,EAAE,MAAM,uBAAuB,CAAC;AACrD,OAAO,EAAE,cAAc,EAAE,MAAM,kBAAkB,CAAC;
|
|
1
|
+
{"version":3,"file":"PolishCubicSpiralEvaluator.js","sourceRoot":"","sources":["../../../../src/curve/spiral/PolishCubicSpiralEvaluator.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AACH,OAAO,EAAE,QAAQ,EAAE,MAAM,gBAAgB,CAAC;AAC1C,OAAO,EAAE,YAAY,EAAE,MAAM,uBAAuB,CAAC;AACrD,OAAO,EAAE,cAAc,EAAE,MAAM,kBAAkB,CAAC;AAElD;;;;;;;;GAQG;AACH,MAAM,OAAO,oBAAqB,SAAQ,cAAc;IAC/C,cAAc,CAAS;IACvB,cAAc,CAAS;IAC9B,uEAAuE;IACvE,YAAoB,OAAe,EAAE,OAAe,EAAE,UAAkB,EAAE,MAAc;QACtF,KAAK,CAAC,UAAU,EAAE,MAAM,CAAC,CAAC;QAC1B,IAAI,CAAC,cAAc,GAAG,OAAO,CAAC;QAC9B,IAAI,CAAC,cAAc,GAAG,OAAO,CAAC;IAChC,CAAC;IACD,wCAAwC;IACjC,MAAM,CAAC,aAAa,CAAC,OAAe,EAAE,OAAe;QAC1D,OAAO,GAAG,GAAG,CAAC,GAAG,GAAG,OAAO,GAAG,OAAO,CAAC,CAAC;IACzC,CAAC;IACM,MAAM,CAAC,MAAM,CAAC,OAAe,EAAE,OAAe;QACnD,MAAM,CAAC,GAAG,IAAI,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;QAC/C,IAAI,CAAC,KAAK,SAAS;YACjB,OAAO,SAAS,CAAC;QACnB,MAAM,IAAI,GAAG,oBAAoB,CAAC,2BAA2B,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;QACzF,IAAI,IAAI,KAAK,SAAS;YACpB,OAAO,SAAS,CAAC;QACnB,OAAO,IAAI,oBAAoB,CAAC,OAAO,EAAE,OAAO,EAAE,IAAI,EAAE,CAAC,CAAC,CAAC;IAC7D,CAAC;IACe,YAAY,CAAC,WAAmB;QAC9C,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,KAAK,CAAC,YAAY,CAAC,WAAW,CAAC,CAAC;IAClC,CAAC;IACD,2CAA2C;IACpC,KAAK;QACV,OAAO,IAAI,oBAAoB,CAAC,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC;IAC1G,CAAC;IACD,gCAAgC;IACzB,aAAa,CAAC,KAAU;QAC7B,IAAI,KAAK,YAAY,oBAAoB,EAAE,CAAC;YAC1C,OAAO,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC;mBACtE,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC,CAAC;QAC5E,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD,4EAA4E;IACrE,MAAM,CAAC,0BAA0B,CAAC,OAAe,EAAE,OAAe;QACvE,OAAO,GAAG,GAAG,CAAC,GAAG,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,CAAC,CAAC;IAC7D,CAAC;IACD;;;;;;OAMG;IACI,MAAM,CAAC,sBAAsB,CAAC,CAAS,EAAE,OAAe,EAAE,OAAe;QAC9E,mFAAmF;QACnF,MAAM,EAAE,GAAG,IAAI,CAAC,0BAA0B,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;QAC7D,MAAM,GAAG,GAAG,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;QACvB,MAAM,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;QACpB,MAAM,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;QACpB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC,GAAG,GAAG,IAAI,GAAG,GAAG,GAAG,CAAC,GAAG,GAAG,KAAK,GAAG,GAAG,GAAG,GAAG,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;QACpG,OAAO,EAAE,CAAC;IACZ,CAAC;IACD;;;;;;OAMG;IACI,MAAM,CAAC,gCAAgC,CAAC,CAAS,EAAE,OAAe,EAAE,OAAe;QACxF,mFAAmF;QACnF,MAAM,EAAE,GAAG,IAAI,CAAC,0BAA0B,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;QAC7D,MAAM,GAAG,GAAG,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;QACvB,MAAM,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;QACpB,MAAM,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;QACpB,oBAAoB;QACpB,sDAAsD;QACtD,mDAAmD;QACnD,cAAc;QACd,uBAAuB;QACvB,0BAA0B;QAC1B,6BAA6B;QAC7B,MAAM,EAAE,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,GAAG,GAAG,IAAI,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;QAC7F,OAAO,EAAE,CAAC;IACZ,CAAC;IACD,kDAAkD;IAC3C,MAAM,CAAC,2BAA2B,CAAC,CAAS,EAAE,OAAe,EAAE,OAAe;QACnF,MAAM,IAAI,GAAG,YAAY,CAAC,WAAW,CAAC,CAAC,EACrC,CAAC,CAAS,EAAE,EAAE,CAAC,CAAC,IAAI,CAAC,sBAAsB,CAAC,CAAC,EAAE,OAAO,EAAE,OAAO,CAAC,GAAG,CAAC,CAAC,EACrE,CAAC,CAAS,EAAE,EAAE,CAAC,IAAI,CAAC,gCAAgC,CAAC,CAAC,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,CAAC;QAC7E,OAAO,IAAI,CAAC;IACd,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\n* See LICENSE.md in the project root for license terms and full copyright notice.\n*--------------------------------------------------------------------------------------------*/\n\n/** @packageDocumentation\n * @module Curve\n */\nimport { Geometry } from \"../../Geometry\";\nimport { SimpleNewton } from \"../../numerics/Newton\";\nimport { CubicEvaluator } from \"./CubicEvaluator\";\n\n/**\n * Polish Cubic.\n * * Construction takes nominal length and end radius.\n * curve is is y= m*x^3 with\n * * x any point on the x axis.\n * * m is (1/6RL).\n * * Lx = x length is along the axis, determined by inversion of a distance series at nominal length.\n * @internal\n */\nexport class PolishCubicEvaluator extends CubicEvaluator {\n public nominalLength1: number;\n public nominalRadius1: number;\n /** Constructor is private. Caller responsible for cubicM validity. */\n private constructor(length1: number, radius1: number, axisLength: number, cubicM: number) {\n super(axisLength, cubicM);\n this.nominalLength1 = length1;\n this.nominalRadius1 = radius1;\n }\n /** Compute the czech cubic constant. */\n public static computeCubicM(length1: number, radius1: number): number {\n return 1.0 / (6.0 * length1 * radius1);\n }\n public static create(length1: number, radius1: number): PolishCubicEvaluator | undefined {\n const m = this.computeCubicM(length1, radius1);\n if (m === undefined)\n return undefined;\n const xMax = PolishCubicEvaluator.approximateDistanceAlongToX(length1, radius1, length1);\n if (xMax === undefined)\n return undefined;\n return new PolishCubicEvaluator(length1, radius1, xMax, m);\n }\n public override scaleInPlace(scaleFactor: number) {\n this.nominalLength1 *= scaleFactor;\n this.nominalRadius1 *= scaleFactor;\n super.scaleInPlace(scaleFactor);\n }\n /** Return a deep copy of the evaluator. */\n public clone(): PolishCubicEvaluator {\n return new PolishCubicEvaluator(this.nominalLength1, this.nominalRadius1, this.axisLength, this.cubicM);\n }\n /** Member by member matchup. */\n public isAlmostEqual(other: any): boolean {\n if (other instanceof PolishCubicEvaluator) {\n return Geometry.isSameCoordinate(this.nominalLength1, other.nominalLength1)\n && Geometry.isSameCoordinate(this.nominalRadius1, other.nominalRadius1);\n }\n return false;\n }\n /** Compute the coefficient of x^4 in the x-to-distance series expansion. */\n public static computeX4SeriesCoefficient(length1: number, radius1: number): number {\n return 1.0 / (4.0 * length1 * length1 * radius1 * radius1);\n }\n /**\n * Evaluate a series approximation of distance along the true curve.\n * @param x distance along x axis.\n * @param radius1 nominal end radius.\n * @param length1 nominal length along curve.\n * @returns\n */\n public static xToApproximateDistance(x: number, radius1: number, length1: number): number {\n // C31 * ( 1 + 1 / 10 * E31 - 1 / 72 * E31^2 + 1 / 208 * E31^3 - 5 / 2176 * E31^4 )\n const a4 = this.computeX4SeriesCoefficient(length1, radius1);\n const ax2 = a4 * x * x;\n const ax3 = ax2 * x;\n const ax4 = ax3 * x;\n const s0 = x * (1.0 + ax4 * (0.1 + ax4 * (-1.0 / 72.0 + ax4 * (1.0 / 208.0 - 5.0 * ax4 / 2176.0))));\n return s0;\n }\n /**\n * Evaluate the derivative of the x-to-distance series.\n * @param x distance along x axis.\n * @param radius1 nominal end radius.\n * @param length1 nominal length along curve.\n * @returns\n */\n public static xToApproximateDistanceDerivative(x: number, radius1: number, length1: number): number {\n // C31 * ( 1 + 1 / 10 * E31 - 1 / 72 * E31^2 + 1 / 208 * E31^3 - 5 / 2176 * E31^4 )\n const a4 = this.computeX4SeriesCoefficient(length1, radius1);\n const ax2 = a4 * x * x;\n const ax3 = ax2 * x;\n const ax4 = ax3 * x;\n // derivative notes:\n // take away leading x -- this reduces each power by 1\n // multiply each coefficient by its original power:\n // 0.1 ==> 0.5\n // 1/72 ==> 9/72 = 1/8\n // 1/208 ==> 13/208 = 1/16\n // 1/2176 ==> 17/2176 = 1/128\n const ds = (1.0 + ax4 * (0.5 + ax4 * (-1.0 / 8.0 + ax4 * (1.0 / 16.0 - 5.0 * ax4 / 128.0))));\n return ds;\n }\n /** Invert the xToApproximateDistance function. */\n public static approximateDistanceAlongToX(s: number, radius1: number, length1: number): number | undefined {\n const root = SimpleNewton.runNewton1D(s,\n (x: number) => (this.xToApproximateDistance(x, radius1, length1) - s),\n (x: number) => this.xToApproximateDistanceDerivative(x, radius1, length1));\n return root;\n }\n}\n"]}
|