@itwin/core-geometry 5.0.0-dev.82 → 5.0.0-dev.84

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. package/lib/cjs/Geometry.d.ts +2 -4
  2. package/lib/cjs/Geometry.d.ts.map +1 -1
  3. package/lib/cjs/Geometry.js +2 -4
  4. package/lib/cjs/Geometry.js.map +1 -1
  5. package/lib/cjs/geometry3d/AngleSweep.d.ts +1 -1
  6. package/lib/cjs/geometry3d/AngleSweep.d.ts.map +1 -1
  7. package/lib/cjs/geometry3d/AngleSweep.js +1 -1
  8. package/lib/cjs/geometry3d/AngleSweep.js.map +1 -1
  9. package/lib/cjs/geometry3d/Point3dVector3d.d.ts +1 -4
  10. package/lib/cjs/geometry3d/Point3dVector3d.d.ts.map +1 -1
  11. package/lib/cjs/geometry3d/Point3dVector3d.js +4 -4
  12. package/lib/cjs/geometry3d/Point3dVector3d.js.map +1 -1
  13. package/lib/cjs/geometry3d/PointHelpers.d.ts +1 -1
  14. package/lib/cjs/geometry3d/PointHelpers.d.ts.map +1 -1
  15. package/lib/cjs/geometry3d/PointHelpers.js.map +1 -1
  16. package/lib/cjs/geometry3d/Transform.d.ts +1 -1
  17. package/lib/cjs/geometry3d/Transform.js +1 -1
  18. package/lib/cjs/geometry3d/Transform.js.map +1 -1
  19. package/lib/cjs/serialization/IModelJsonSchema.d.ts +54 -41
  20. package/lib/cjs/serialization/IModelJsonSchema.d.ts.map +1 -1
  21. package/lib/cjs/serialization/IModelJsonSchema.js +83 -69
  22. package/lib/cjs/serialization/IModelJsonSchema.js.map +1 -1
  23. package/lib/cjs/solid/Cone.d.ts +39 -14
  24. package/lib/cjs/solid/Cone.d.ts.map +1 -1
  25. package/lib/cjs/solid/Cone.js +50 -18
  26. package/lib/cjs/solid/Cone.js.map +1 -1
  27. package/lib/cjs/solid/Sphere.d.ts +34 -17
  28. package/lib/cjs/solid/Sphere.d.ts.map +1 -1
  29. package/lib/cjs/solid/Sphere.js +47 -22
  30. package/lib/cjs/solid/Sphere.js.map +1 -1
  31. package/lib/esm/Geometry.d.ts +2 -4
  32. package/lib/esm/Geometry.d.ts.map +1 -1
  33. package/lib/esm/Geometry.js +2 -4
  34. package/lib/esm/Geometry.js.map +1 -1
  35. package/lib/esm/geometry3d/AngleSweep.d.ts +1 -1
  36. package/lib/esm/geometry3d/AngleSweep.d.ts.map +1 -1
  37. package/lib/esm/geometry3d/AngleSweep.js +1 -1
  38. package/lib/esm/geometry3d/AngleSweep.js.map +1 -1
  39. package/lib/esm/geometry3d/Point3dVector3d.d.ts +1 -4
  40. package/lib/esm/geometry3d/Point3dVector3d.d.ts.map +1 -1
  41. package/lib/esm/geometry3d/Point3dVector3d.js +4 -4
  42. package/lib/esm/geometry3d/Point3dVector3d.js.map +1 -1
  43. package/lib/esm/geometry3d/PointHelpers.d.ts +1 -1
  44. package/lib/esm/geometry3d/PointHelpers.d.ts.map +1 -1
  45. package/lib/esm/geometry3d/PointHelpers.js.map +1 -1
  46. package/lib/esm/geometry3d/Transform.d.ts +1 -1
  47. package/lib/esm/geometry3d/Transform.js +1 -1
  48. package/lib/esm/geometry3d/Transform.js.map +1 -1
  49. package/lib/esm/serialization/IModelJsonSchema.d.ts +54 -41
  50. package/lib/esm/serialization/IModelJsonSchema.d.ts.map +1 -1
  51. package/lib/esm/serialization/IModelJsonSchema.js +83 -69
  52. package/lib/esm/serialization/IModelJsonSchema.js.map +1 -1
  53. package/lib/esm/solid/Cone.d.ts +39 -14
  54. package/lib/esm/solid/Cone.d.ts.map +1 -1
  55. package/lib/esm/solid/Cone.js +51 -19
  56. package/lib/esm/solid/Cone.js.map +1 -1
  57. package/lib/esm/solid/Sphere.d.ts +34 -17
  58. package/lib/esm/solid/Sphere.d.ts.map +1 -1
  59. package/lib/esm/solid/Sphere.js +48 -23
  60. package/lib/esm/solid/Sphere.js.map +1 -1
  61. package/package.json +3 -3
@@ -1 +1 @@
1
- {"version":3,"file":"Transform.js","sourceRoot":"","sources":["../../../src/geometry3d/Transform.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AAEH,OAAO,EAAE,SAAS,EAAmB,QAAQ,EAAE,MAAM,aAAa,CAAC;AACnE,OAAO,EAAE,OAAO,EAAE,MAAM,uBAAuB,CAAC;AAChD,OAAO,EAAE,QAAQ,EAAE,MAAM,YAAY,CAAC;AACtC,OAAO,EAAE,OAAO,EAAE,MAAM,mBAAmB,CAAC;AAC5C,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAO,MAAM,mBAAmB,CAAC;AAC3D,OAAO,EAAE,OAAO,EAAE,MAAM,SAAS,CAAC;AAGlC;;;;;;;;;;;;;;;;GAgBG;AACH,MAAM,OAAO,SAAS;IACZ,OAAO,CAAM;IACb,OAAO,CAAW;IAC1B,0EAA0E;IAC1E,YAAoB,MAAW,EAAE,MAAgB;QAC/C,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;IACxB,CAAC;IACO,MAAM,CAAC,SAAS,CAAa;IACrC,sEAAsE;IAC/D,MAAM,KAAK,QAAQ;QACxB,IAAI,SAAS,KAAK,IAAI,CAAC,SAAS,EAAE,CAAC;YACjC,IAAI,CAAC,SAAS,GAAG,SAAS,CAAC,cAAc,EAAE,CAAC;YAC5C,IAAI,CAAC,SAAS,CAAC,MAAM,EAAE,CAAC;QAC1B,CAAC;QACD,OAAO,IAAI,CAAC,SAAS,CAAC;IACxB,CAAC;IACD,gEAAgE;IACzD,MAAM;QACX,IAAI,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC;QACtB,IAAI,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC;QACtB,OAAO,MAAM,CAAC,MAAM,CAAC,IAAI,CAAC,CAAC;IAC7B,CAAC;IACD;;;OAGG;IACI,OAAO,CAAC,KAAgB;QAC7B,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;QACpC,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;IACtC,CAAC;IACD,4CAA4C;IACrC,WAAW;QAChB,IAAI,CAAC,OAAO,CAAC,OAAO,EAAE,CAAC;QACvB,IAAI,CAAC,OAAO,CAAC,WAAW,EAAE,CAAC;IAC7B,CAAC;IACD;;;;;;;OAOG;IACI,WAAW,CAAC,IAAiC;QAClD,IAAI,IAAI,EAAE,CAAC;YACT,IAAI,IAAI,YAAY,MAAM,IAAK,IAAY,CAAC,MAAM,IAAK,IAAY,CAAC,MAAM,EAAE,CAAC;gBAC3E,IAAI,CAAC,OAAO,CAAC,WAAW,CAAE,IAAY,CAAC,MAAM,CAAC,CAAC;gBAC/C,IAAI,CAAC,OAAO,CAAC,WAAW,CAAE,IAAY,CAAC,MAAM,CAAC,CAAC;gBAC/C,OAAO;YACT,CAAC;YACD,IAAI,QAAQ,CAAC,oBAAoB,CAAC,IAAI,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC;gBAC9C,IAAI,CAAC,OAAO,CAAC,YAAY,CACvB,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAClC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAClC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CACnC,CAAC;gBACF,IAAI,CAAC,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBACrD,OAAO;YACT,CAAC;YACD,IAAI,QAAQ,CAAC,aAAa,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,CAAC;gBACrC,IAAI,CAAC,OAAO,CAAC,YAAY,CACvB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EACzB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EACzB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAC3B,CAAC;gBACF,IAAI,CAAC,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC;gBAC7C,OAAO;YACT,CAAC;QACH,CAAC;QACD,IAAI,CAAC,WAAW,EAAE,CAAC;IACrB,CAAC;IACD;;;;OAIG;IACI,aAAa,CAAC,KAA0B;QAC7C,OAAO,IAAI,KAAK,KAAK,IAAI,IAAI,CAAC,MAAM,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,CAAC,IAAI,IAAI,CAAC,MAAM,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;IAC9G,CAAC;IACD;;;;OAIG;IACI,2BAA2B,CAAC,KAAgB;QACjD,OAAO,IAAI,CAAC,OAAO,CAAC,aAAa,CAAC,KAAK,CAAC,OAAO,CAAC,IAAI,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;IAC9G,CAAC;IACD;;;OAGG;IACI,MAAM;QACX,OAAO;YACL,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;YACrF,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;YACrF,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;SACtF,CAAC;IACJ,CAAC;IACD;;;MAGE;IACK,MAAM;QACX,OAAO,IAAI,CAAC,MAAM,EAAE,CAAC;IACvB,CAAC;IACD,oEAAoE;IAC7D,MAAM,CAAC,QAAQ,CAAC,IAAqB;QAC1C,MAAM,MAAM,GAAG,SAAS,CAAC,cAAc,EAAE,CAAC;QAC1C,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC;QACzB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,mGAAmG;IAC5F,KAAK,CAAC,MAAkB;QAC7B,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACrC,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACrC,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAClB,OAAO,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,EAChC,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,CACrB,CAAC;IACJ,CAAC;IACD;;;OAGG;IACI,UAAU,CAAC,YAAuB,SAAS,CAAC,GAAG;QACpD,MAAM,cAAc,GAAG,QAAQ,CAAC,uBAAuB,CAAC,IAAI,CAAC,MAAM,EAAE,SAAS,CAAC,CAAC;QAChF,IAAI,CAAC,cAAc;YACjB,OAAO,SAAS,CAAC;QACnB,OAAO,IAAI,SAAS,CAAC,IAAI,CAAC,MAAM,CAAC,cAAc,EAAE,EAAE,cAAc,CAAC,CAAC;IACrE,CAAC;IACD,gGAAgG;IACzF,MAAM,CAAC,UAAU,CAAC,MAAuB,EAAE,MAAgB,EAAE,MAAkB;QACpF,IAAI,CAAC,MAAM;YACT,MAAM,GAAG,OAAO,CAAC,UAAU,EAAE,CAAC;QAChC,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,GAAG,MAAM,CAAC;YACxB,MAAM,CAAC,OAAO,GAAG,MAAM,CAAC;YACxB,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC;IACvC,CAAC;IACD,iHAAiH;IAC1G,MAAM,CAAC,eAAe,CAC3B,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,MAAkB;QAElB,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,CAAC;YAC/B,MAAM,CAAC,OAAO,CAAC,YAAY,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;YACzE,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAClB,OAAO,CAAC,MAAM,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,EAC1B,QAAQ,CAAC,eAAe,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CACtE,CAAC;IACJ,CAAC;IACD,wCAAwC;IACjC,MAAM,CAAC,UAAU,CAAC,MAAkB;QACzC,OAAO,SAAS,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC/E,CAAC;IACD;;;;;;;;;OASG;IACI,MAAM,CAAC,oBAAoB,CAAC,IAAY,CAAC,EAAE,IAAY,CAAC,EAAE,IAAY,CAAC,EAAE,MAAkB;QAChG,OAAO,SAAS,CAAC,UAAU,CAAC,QAAQ,CAAC,MAAM,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,QAAQ,CAAC,cAAc,EAAE,EAAE,MAAM,CAAC,CAAC;IAC3F,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,iBAAiB,CAAC,WAAgB,EAAE,MAAkB;QAClE,OAAO,SAAS,CAAC,UAAU,CAAC,WAAW,EAAE,QAAQ,CAAC,cAAc,EAAE,EAAE,MAAM,CAAC,CAAC;IAC9E,CAAC;IACD,iFAAiF;IACjF,IAAW,MAAM;QACf,OAAO,IAAI,CAAC,OAAO,CAAC;IACtB,CAAC;IACD,iFAAiF;IACjF,IAAW,MAAM;QACf,OAAO,IAAI,CAAC,OAAO,CAAC;IACtB,CAAC;IACD,6EAA6E;IACtE,SAAS;QACd,OAAO,OAAO,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;IAC1C,CAAC;IACD,8EAA8E;IACvE,cAAc;QACnB,OAAO,QAAQ,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;IAC3C,CAAC;IACD,8EAA8E;IACvE,SAAS;QACd,OAAO,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,CAAC;IAC9B,CAAC;IACD,yEAAyE;IACzE,IAAW,UAAU;QACnB,OAAO,IAAI,CAAC,OAAO,CAAC,UAAU,IAAI,IAAI,CAAC,OAAO,CAAC,YAAY,CAAC;IAC9D,CAAC;IACD,mCAAmC;IAC5B,MAAM,CAAC,cAAc,CAAC,MAAkB;QAC7C,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,OAAO,EAAE,CAAC;YACzB,MAAM,CAAC,OAAO,CAAC,WAAW,EAAE,CAAC;YAC7B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CAAC,OAAO,CAAC,UAAU,EAAE,EAAE,QAAQ,CAAC,cAAc,EAAE,CAAC,CAAC;IAC/E,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,qBAAqB,CACjC,MAAuB,EAAE,MAA4B,EAAE,MAAkB;QAEzE,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,CAAC,CAAC;YACtC,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;YAC/B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CACzB,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,cAAc,EAAE,CAAC,CAAC,CAAC,OAAO,CAAC,UAAU,EAAE,EACvD,MAAM,KAAK,SAAS,CAAC,CAAC,CAAC,QAAQ,CAAC,cAAc,EAAE,CAAC,CAAC,CAAC,MAAM,CAAC,KAAK,EAAE,EACjE,MAAM,CACP,CAAC;IACJ,CAAC;IACD,4GAA4G;IACrG,yBAAyB,CAC9B,MAAuB,EAAE,OAA6B,EAAE,OAA6B,EAAE,OAA6B;QAEpH,IAAI,MAAM,KAAK,SAAS;YACtB,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;QAC/B,IAAI,CAAC,OAAO,CAAC,UAAU,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;IACrD,CAAC;IACD,8EAA8E;IACvE,MAAM,CAAC,4BAA4B,CACxC,MAAW,EAAE,OAAiB,EAAE,OAAiB,EAAE,OAAiB,EAAE,MAAkB;QAExF,IAAI,MAAM;YACR,MAAM,CAAC,yBAAyB,CAAC,MAAM,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;;YAEpE,MAAM,GAAG,SAAS,CAAC,UAAU,CAAC,QAAQ,CAAC,UAAU,CAAC,MAAM,CAAC,EAAE,QAAQ,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,CAAC;QAChH,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,+BAA+B,CAC3C,MAAuB,EAAE,OAAiB,EAAE,OAAiB,EAAE,SAAoB,EAAE,MAAkB;QAEvG,MAAM,MAAM,GAAG,QAAQ,CAAC,sBAAsB,CAAC,OAAO,EAAE,OAAO,EAAE,SAAS,EAAE,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QACjH,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC;QACnB,IAAI,MAAM,EAAE,CAAC;YACX,iFAAiF;YACjF,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;YAC/B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD;;;;;WAKG;QACH,MAAM,GAAG,SAAS,CAAC,UAAU,CAAC,SAAS,EAAE,MAAM,CAAC,CAAC;QACjD,MAAM,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,CAAC,CAAC;QACtC,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,MAAM,CAAC,yBAAyB,CACrC,UAA8B,EAAE,MAAgB,EAAE,MAAkB;QAEpE,IAAI,UAAU,EAAE,CAAC;YACf;;;eAGG;YACH,MAAM,MAAM,GAAG,QAAQ,CAAC,sBAAsB,CAAC,UAAU,EAAE,MAAM,EAAE,UAAU,CAAC,CAAC;YAC/E,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,CAAC,KAAK,EAAE,EAAE,MAAM,CAAC,CAAC;QAC9D,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CAAC,SAAS,EAAE,MAAM,CAAC,KAAK,EAAE,CAAC,CAAC;IACzD,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,yBAAyB,CACrC,MAAgB,EAAE,CAAU,EAAE,CAAU,EAAE,MAAkB;QAE5D,mFAAmF;QACnF,MAAM,MAAM,GAAG,QAAQ,CAAC,sBAAsB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,CAAC,CAAC;QAC7D,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,CAAC,KAAK,EAAE,EAAE,MAAM,CAAC,CAAC;IAC9D,CAAC;IACD;;;;;OAKG;IACI,MAAM,CAAC,qBAAqB,CAAC,UAAmB,EAAE,KAAa,EAAE,MAAkB;QACxF,MAAM,MAAM,GAAG,QAAQ,CAAC,WAAW,CAAC,KAAK,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACzD;;;WAGG;QACH,MAAM,MAAM,GAAG,QAAQ,CAAC,sBAAsB,CAAC,UAAU,EAAE,MAAM,EAAE,UAAU,CAAC,CAAC;QAC/E,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,CAAC;IACtD,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,+BAA+B,CAAC,WAAqB,EAAE,UAAkB,EAAE,WAAqB;QAC5G,MAAM,MAAM,GAAG,QAAQ,CAAC,+BAA+B,CAAC,WAAW,EAAE,WAAW,CAAC,CAAC;QAClF,IAAI,MAAM,KAAK,SAAS;YACtB,OAAO,SAAS,CAAC;QACnB,OAAO,SAAS,CAAC,yBAAyB,CAAC,UAAU,EAAE,MAAM,CAAC,CAAC;IACjE,CAAC;IACD;;;OAGG;IACI,eAAe,CAAC,KAAY,EAAE,MAAgB;QACnD,OAAO,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC;IACjF,CAAC;IACD;;;OAGG;IACI,eAAe,CAAC,KAAa,EAAE,MAAgB;QACpD,kCAAkC;QAClC,OAAO,QAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC;IACnF,CAAC;IACD;;;OAGG;IACI,qBAAqB,CAAC,KAAa;QACxC,OAAO,QAAQ,CAAC,4BAA4B,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,CAAC,CAAC;IAClF,CAAC;IACD;;;OAGG;IACI,WAAW,CAAC,CAAS,EAAE,CAAS,EAAE,IAAY,CAAC,EAAE,MAAgB;QACtE,kCAAkC;QAClC,OAAO,QAAQ,CAAC,6BAA6B,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC7F,CAAC;IACD;;OAEG;IACI,oBAAoB,CAAC,cAAsB,EAAE,CAAS,EAAE,CAAS,EAAE,IAAY,CAAC;QACrF,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,GAAG,GAAG,CAAC,GAAG,cAAc,CAAC;QAC/B,OAAO,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,cAAc,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACzG,CAAC;IACD;;OAEG;IACI,qBAAqB,CAAC,cAAsB,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS;QAC7F,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,GAAG,GAAG,CAAC,GAAG,cAAc,CAAC;QAC/B,OAAO,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,cAAc,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IAC/G,CAAC;IACD;;;;;OAKG;IACI,YAAY,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QAC9E,OAAO,QAAQ,CAAC,qCAAqC,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACxG,CAAC;IACD;;;;;OAKG;IACI,0BAA0B,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAqB;QACjG,OAAO,QAAQ,CAAC,mDAAmD,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACtH,CAAC;IACD;;;OAGG;IACI,yBAAyB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAqB;QACrF,OAAO,QAAQ,CAAC,2CAA2C,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC3G,CAAC;IACD;;;;;;;OAOG;IACI,qBAAqB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QACvF,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,MAAM,GAAG,IAAI,CAAC,OAAO,CAAC;QAC5B,OAAO,OAAO,CAAC,MAAM,CACnB,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,EACpD,MAAM,CACP,CAAC;IACJ,CAAC;IACD,iGAAiG;IAC1F,2BAA2B,CAAC,MAAiB;QAClD,IAAI,KAAK,CAAC;QACV,KAAK,KAAK,IAAI,MAAM;YAClB,QAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;IAC7E,CAAC;IACD,oGAAoG;IAC7F,gCAAgC,CAAC,MAAmB;QACzD,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,IAAI,CAAC,2BAA2B,CAAC,KAAK,CAAC,CAAC;IAC5C,CAAC;IACD;;;;;;OAMG;IACI,sBAAsB,CAAC,KAAa,EAAE,MAAgB;QAC3D,OAAO,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAC7C,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;;;;;;OAUG;IACI,sBAAsB,CAAC,aAAsB,EAAE,MAAgB;QACpE,MAAM,CAAC,GAAG,aAAa,CAAC,CAAC,CAAC;QAC1B,OAAO,IAAI,CAAC,OAAO,CAAC,mBAAmB,CACrC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,CAAC,EACD,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;;OAMG;IACI,kBAAkB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QACzE,OAAO,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAC7C,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;OAKG;IACI,oBAAoB,CAAC,YAAqB,IAAI;QACnD,OAAO,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,SAAS,CAAC,CAAC;IACtD,CAAC;IACD;;;;;;;;OAQG;IACI,MAAM,CAAC,iBAAiB,CAAC,MAAa,EAAE,IAAW,EAAE,oBAA+B;QACzF,MAAM,SAAS,GAAG,MAAM,CAAC,MAAM,CAAC;QAChC,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC;QAC5B,IAAI,SAAS,GAAG,OAAO,EAAE,CAAC;YACxB,KAAK,IAAI,CAAC,GAAG,OAAO,EAAE,CAAC,GAAG,SAAS,EAAE,CAAC,EAAE,EAAE,CAAC;gBACzC,IAAI,CAAC,IAAI,CAAC,oBAAoB,EAAE,CAAC,CAAC;YACpC,CAAC;QACH,CAAC;aAAM,IAAI,OAAO,GAAG,SAAS,EAAE,CAAC;YAC/B,IAAI,CAAC,MAAM,GAAG,SAAS,CAAC;QAC1B,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD;;;;;;;OAOG;IACI,2BAA2B,CAAC,MAAiB,EAAE,MAAkB;QACtE,IAAI,CAAC,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,IAAI,CAAC;YAC1C,OAAO,SAAS,CAAC;QACnB,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,OAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CACV,CAAC;YACJ,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,MAAM,CAAC,IAAI,CACT,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,KAAK,CAAC,CAAC,GAAG,OAAO,EACjB,KAAK,CAAC,CAAC,GAAG,OAAO,EACjB,KAAK,CAAC,CAAC,GAAG,OAAO,CACjB,CACH,CAAC;QACJ,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;OAKG;IACI,kCAAkC,CAAC,MAAiB;QACzD,IAAI,CAAC,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,IAAI,CAAC;YAC1C,OAAO,KAAK,CAAC;QACf,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CACN,CAAC;QACJ,OAAO,IAAI,CAAC;IACd,CAAC;IACD;;;;OAIG;IACI,oBAAoB,CAAC,MAAiB,EAAE,MAAkB;QAC/D,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,OAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;YACjF,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,CAAC,IAAI,MAAM;YACpB,MAAM,CAAC,IAAI,CAAC,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;QAC3E,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,oBAAoB,CAAC,MAAiB,EAAE,MAAkB;QAC/D,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,OAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,QAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;YACnF,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,CAAC,IAAI,MAAM;YACpB,MAAM,CAAC,IAAI,CAAC,QAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;QAC7E,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,cAAc,CAAC,MAAgB,EAAE,MAAiB;QACvD,OAAO,IAAI,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC;IACrD,CAAC;IACD;;;OAGG;IACI,qBAAqB,CAAC,MAAgB;QAC3C,IAAI,CAAC,OAAO,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC;IAC7C,CAAC;IACD;;;;OAIG;IACI,iBAAiB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAiB;QACzE,OAAO,IAAI,CAAC,OAAO,CAAC,WAAW,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACnD,CAAC;IACD;;;;;;;OAOG;IACI,6BAA6B,CAAC,UAAqB,EAAE,UAAqB;QAC/E,QAAQ,CAAC,qBAAqB,CAC5B,UAAU,CAAC,OAAO,EAClB,UAAU,CAAC,OAAO,EAClB,UAAU,CAAC,OAAO,EAClB,IAAI,CAAC,OAAkB,CACxB,CAAC;QACF,UAAU,CAAC,OAAO,CAAC,oBAAoB,CAAC,UAAU,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;IAC5E,CAAC;IACD;;;;;;;;;;;;;OAaG;IACI,0BAA0B,CAAC,KAAgB,EAAE,MAAkB;QACpE,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC,UAAU,CACzB,QAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,CAAC,OAAO,CAAC,EACzE,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,CAAC,OAAO,CAAC,CACjD,CAAC;QACJ,MAAM,CAAC,6BAA6B,CAAC,IAAI,EAAE,KAAK,CAAC,CAAC;QAClD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;;;;;;OAaG;IACI,yBAAyB,CAAC,KAAe,EAAE,MAAkB;QAClE,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC,UAAU,CACzB,IAAI,CAAC,OAAO,CAAC,cAAc,EAAE,EAC7B,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,CAAC,CACzC,CAAC;QACJ,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,EAAE,MAAM,CAAC,OAAO,CAAC,CAAC;QACzD,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;QACrC,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;OAQG;IACI,aAAa,CAAC,KAAc,EAAE,MAAgB;QACnD,IAAI,KAAK,CAAC,MAAM;YACd,OAAO,KAAK,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;QAC7B,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,GAAG,OAAO,CAAC,UAAU,CAAC,MAAM,CAAC,CAAC;QACpC,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,CAAC,CAAC;QACpD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,IAAI,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,KAAK,EAAE,IAAI,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,IAAI,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACvD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,OAAO,CAAC,MAAkB;QAC/B,MAAM,aAAa,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QAChF,IAAI,CAAC,aAAa;YAChB,OAAO,SAAS,CAAC;QACnB,IAAI,MAAM,EAAE,CAAC;YACX,oCAAoC;YACpC,aAAa,CAAC,WAAW,CAAC,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,MAAM,CAAC,OAAmB,CAAC,CAAC;YACzG,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CACzB,aAAa,CAAC,WAAW,CAAC,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC,EAC5E,aAAa,CACd,CAAC;IACJ,CAAC;IACD;;;;;;;;;;OAUG;IACI,MAAM,CAAC,aAAa,CAAC,GAAY,EAAE,GAAY,EAAE,WAAuB,EAAE,WAAuB;QACtG,MAAM,IAAI,GAAG,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,CAAC;QAC5B,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,MAAM,OAAO,GAAG,IAAI,QAAQ,EAAE,CAAC;QAC/B;;;;;;;WAOG;QACH,IAAI,WAAW,EAAE,CAAC;YAChB,QAAQ,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACtD,SAAS,CAAC,qBAAqB,CAAC,GAAG,EAAE,OAAO,EAAE,WAAW,CAAC,CAAC;QAC7D,CAAC;QACD;;;;;;;WAOG;QACH,IAAI,WAAW,EAAE,CAAC;YAChB,MAAM,MAAM,GAAG,IAAI,OAAO,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YAC9E,QAAQ,CAAC,WAAW,CAAC,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxE,SAAS,CAAC,qBAAqB,CAAC,MAAM,EAAE,OAAO,EAAE,WAAW,CAAC,CAAC;QAChE,CAAC;IACH,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\n* See LICENSE.md in the project root for license terms and full copyright notice.\n*--------------------------------------------------------------------------------------------*/\n\n/** @packageDocumentation\n * @module CartesianGeometry\n */\n\nimport { AxisOrder, BeJSONFunctions, Geometry } from \"../Geometry\";\nimport { Point4d } from \"../geometry4d/Point4d\";\nimport { Matrix3d } from \"./Matrix3d\";\nimport { Point2d } from \"./Point2dVector2d\";\nimport { Point3d, Vector3d, XYZ } from \"./Point3dVector3d\";\nimport { Range3d } from \"./Range\";\nimport { TransformProps, XAndY, XYAndZ } from \"./XYZProps\";\n\n/**\n * A Transform consists of an origin and a Matrix3d. This describes a coordinate frame with this origin, with\n * the columns of the Matrix3d being the local x,y,z axis directions.\n * * The math for a Transform `T` consisting of a Matrix3d `M` and a Point3d `o` on a Vector3d `p` is: `Tp = M*p + o`.\n * In other words, `T` is a combination of two operations on `p`: the action of matrix multiplication, followed by a\n * translation. `Origin` is a traditional term for `o`, because `T` can be interpreted as a change of basis from the\n * global axes centered at the global origin, to a new set of axes specified by matrix M columns centered at `o`.\n * * Beware that for common transformations (e.g. scale about point, rotate around an axis) the `fixed point` that\n * is used when describing the transform is NOT the `origin` stored in the transform. Setup methods (e.g\n * createFixedPointAndMatrix, createScaleAboutPoint) take care of determining the appropriate origin coordinates.\n * * If `T` is a translation, no point is fixed by `T`.\n * * If `T` is the identity, all points are fixed by `T`.\n * * If `T` is a scale about a point, one point is fixed by `T`.\n * * If `T` is a rotation about an axis, a line is fixed by `T`.\n * * If `T` is a projection to the plane, a plane is fixed by `T`.\n * @public\n */\nexport class Transform implements BeJSONFunctions {\n private _origin: XYZ;\n private _matrix: Matrix3d;\n // Constructor accepts and uses pointer to content (no copy is done here).\n private constructor(origin: XYZ, matrix: Matrix3d) {\n this._origin = origin;\n this._matrix = matrix;\n }\n private static _identity?: Transform;\n /** The identity Transform. Value is frozen and cannot be modified. */\n public static get identity(): Transform {\n if (undefined === this._identity) {\n this._identity = Transform.createIdentity();\n this._identity.freeze();\n }\n return this._identity;\n }\n /** Freeze this instance (and its members) so it is read-only */\n public freeze(): Readonly<this> {\n this._origin.freeze();\n this._matrix.freeze();\n return Object.freeze(this);\n }\n /**\n * Copy contents from other Transform into this Transform\n * @param other source transform\n */\n public setFrom(other: Transform) {\n this._origin.setFrom(other._origin);\n this._matrix.setFrom(other._matrix);\n }\n /** Set this Transform to be an identity. */\n public setIdentity() {\n this._origin.setZero();\n this._matrix.setIdentity();\n }\n /**\n * Set this Transform instance from flexible inputs:\n * * Any object (such as another Transform or TransformProps) that has `origin` and `matrix` members\n * accepted by `Point3d.setFromJSON` and `Matrix3d.setFromJSON`\n * * An array of 3 number arrays, each with 4 entries which are rows in a 3x4 matrix.\n * * An array of 12 numbers, each block of 4 entries as a row 3x4 matrix.\n * * If no input is provided, the identity Transform is returned.\n */\n public setFromJSON(json?: TransformProps | Transform): void {\n if (json) {\n if (json instanceof Object && (json as any).origin && (json as any).matrix) {\n this._origin.setFromJSON((json as any).origin);\n this._matrix.setFromJSON((json as any).matrix);\n return;\n }\n if (Geometry.isArrayOfNumberArray(json, 3, 4)) {\n this._matrix.setRowValues(\n json[0][0], json[0][1], json[0][2],\n json[1][0], json[1][1], json[1][2],\n json[2][0], json[2][1], json[2][2],\n );\n this._origin.set(json[0][3], json[1][3], json[2][3]);\n return;\n }\n if (Geometry.isNumberArray(json, 12)) {\n this._matrix.setRowValues(\n json[0], json[1], json[2],\n json[4], json[5], json[6],\n json[8], json[9], json[10],\n );\n this._origin.set(json[3], json[7], json[11]);\n return;\n }\n }\n this.setIdentity();\n }\n /**\n * Test for near equality with `other` Transform. Comparison uses the `isAlmostEqual` methods on the `origin` and\n * `matrix` parts.\n * @param other Transform to compare to.\n */\n public isAlmostEqual(other: Readonly<Transform>): boolean {\n return this === other || this.origin.isAlmostEqual(other.origin) && this.matrix.isAlmostEqual(other.matrix);\n }\n /**\n * Test for near equality with `other` Transform. Comparison uses the `isAlmostEqual` methods on the `origin` part\n * and the `isAlmostEqualAllowZRotation` method on the `matrix` part.\n * @param other Transform to compare to.\n */\n public isAlmostEqualAllowZRotation(other: Transform): boolean {\n return this._origin.isAlmostEqual(other._origin) && this._matrix.isAlmostEqualAllowZRotation(other._matrix);\n }\n /**\n * Return a 3 by 4 matrix containing the rows of this Transform.\n * * The transform's origin coordinates are the last entries of the 3 json arrays\n */\n public toRows(): number[][] {\n return [\n [this._matrix.coffs[0], this._matrix.coffs[1], this._matrix.coffs[2], this._origin.x],\n [this._matrix.coffs[3], this._matrix.coffs[4], this._matrix.coffs[5], this._origin.y],\n [this._matrix.coffs[6], this._matrix.coffs[7], this._matrix.coffs[8], this._origin.z],\n ];\n }\n /**\n * Return a 3 by 4 matrix containing the rows of this Transform.\n * * The transform's origin coordinates are the last entries of the 3 json arrays\n */\n public toJSON(): TransformProps {\n return this.toRows();\n }\n /** Return a new Transform initialized by `Transform.setFromJSON` */\n public static fromJSON(json?: TransformProps): Transform {\n const result = Transform.createIdentity();\n result.setFromJSON(json);\n return result;\n }\n /** Copy the contents of `this` transform into a new Transform (or to the result, if specified). */\n public clone(result?: Transform): Transform {\n if (result) {\n result._matrix.setFrom(this._matrix);\n result._origin.setFrom(this._origin);\n return result;\n }\n return new Transform(\n Point3d.createFrom(this._origin),\n this._matrix.clone(),\n );\n }\n /**\n * Return a modified copy of `this` Transform so that its `matrix` part is rigid (`origin` part is untouched).\n * * @see [[Matrix3d.axisOrderCrossProductsInPlace]] documentation for details of how the matrix is modified to rigid.\n */\n public cloneRigid(axisOrder: AxisOrder = AxisOrder.XYZ): Transform | undefined {\n const modifiedMatrix = Matrix3d.createRigidFromMatrix3d(this.matrix, axisOrder);\n if (!modifiedMatrix)\n return undefined;\n return new Transform(this.origin.cloneAsPoint3d(), modifiedMatrix);\n }\n /** Create a Transform with the given `origin` and `matrix`. Inputs are captured, not cloned. */\n public static createRefs(origin: XYZ | undefined, matrix: Matrix3d, result?: Transform): Transform {\n if (!origin)\n origin = Point3d.createZero();\n if (result) {\n result._origin = origin;\n result._matrix = matrix;\n return result;\n }\n return new Transform(origin, matrix);\n }\n /** Create a Transform with complete contents given. `q` inputs make the matrix and `a` inputs make the origin */\n public static createRowValues(\n qxx: number, qxy: number, qxz: number, ax: number,\n qyx: number, qyy: number, qyz: number, ay: number,\n qzx: number, qzy: number, qzz: number, az: number,\n result?: Transform,\n ): Transform {\n if (result) {\n result._origin.set(ax, ay, az);\n result._matrix.setRowValues(qxx, qxy, qxz, qyx, qyy, qyz, qzx, qzy, qzz);\n return result;\n }\n return new Transform(\n Point3d.create(ax, ay, az),\n Matrix3d.createRowValues(qxx, qxy, qxz, qyx, qyy, qyz, qzx, qzy, qzz),\n );\n }\n /** Create a Transform with all zeros */\n public static createZero(result?: Transform): Transform {\n return Transform.createRowValues(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, result);\n }\n /**\n * Create a Transform with translation provided by x,y,z parts.\n * * Translation Transform maps any vector `v` to `v + p` where `p = (x,y,z)`\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\n * @param x x part of translation\n * @param y y part of translation\n * @param z z part of translation\n * @param result optional pre-allocated Transform\n * @returns new or updated transform\n */\n public static createTranslationXYZ(x: number = 0, y: number = 0, z: number = 0, result?: Transform): Transform {\n return Transform.createRefs(Vector3d.create(x, y, z), Matrix3d.createIdentity(), result);\n }\n /**\n * Create a Transform with specified `translation` part.\n * * Translation Transform maps any vector `v` to `v + translation`\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\n * @param translation x,y,z parts of the translation\n * @param result optional pre-allocated Transform\n * @returns new or updated transform\n */\n public static createTranslation(translation: XYZ, result?: Transform): Transform {\n return Transform.createRefs(translation, Matrix3d.createIdentity(), result);\n }\n /** Return a reference (and NOT a copy) to the `matrix` part of the Transform. */\n public get matrix(): Matrix3d {\n return this._matrix;\n }\n /** Return a reference (and NOT a copy) to the `origin` part of the Transform. */\n public get origin(): XYZ {\n return this._origin;\n }\n /** return a (clone of) the `origin` part of the Transform, as a `Point3d` */\n public getOrigin(): Point3d {\n return Point3d.createFrom(this._origin);\n }\n /** return a (clone of) the `origin` part of the Transform, as a `Vector3d` */\n public getTranslation(): Vector3d {\n return Vector3d.createFrom(this._origin);\n }\n /** return a (clone of) the `matrix` part of the Transform, as a `Matrix3d` */\n public getMatrix(): Matrix3d {\n return this._matrix.clone();\n }\n /** test if the transform has `origin` = (0,0,0) and identity `matrix` */\n public get isIdentity(): boolean {\n return this._matrix.isIdentity && this._origin.isAlmostZero;\n }\n /** Create an identity transform */\n public static createIdentity(result?: Transform): Transform {\n if (result) {\n result._origin.setZero();\n result._matrix.setIdentity();\n return result;\n }\n return Transform.createRefs(Point3d.createZero(), Matrix3d.createIdentity());\n }\n /**\n * Create a Transform using the given `origin` and `matrix`.\n * * This is the appropriate construction when the columns of the matrix are coordinate axes of a\n * local-to-world mapping, and the given point is the axes' origin in world coordinates.\n * * This function is closely related to `createFixedPointAndMatrix` whose point input is the fixed point\n * of the world-to-world transformation.\n * * If origin is `undefined`, (0,0,0) is used. If matrix is `undefined` the identity matrix is used.\n */\n public static createOriginAndMatrix(\n origin: XYZ | undefined, matrix: Matrix3d | undefined, result?: Transform,\n ): Transform {\n if (result) {\n result._origin.setFromPoint3d(origin);\n result._matrix.setFrom(matrix);\n return result;\n }\n return Transform.createRefs(\n origin ? origin.cloneAsPoint3d() : Point3d.createZero(),\n matrix === undefined ? Matrix3d.createIdentity() : matrix.clone(),\n result,\n );\n }\n /** Create a Transform using the given `origin` and columns of the `matrix`. If `undefined` zero is used. */\n public setOriginAndMatrixColumns(\n origin: XYZ | undefined, vectorX: Vector3d | undefined, vectorY: Vector3d | undefined, vectorZ: Vector3d | undefined,\n ): void {\n if (origin !== undefined)\n this._origin.setFrom(origin);\n this._matrix.setColumns(vectorX, vectorY, vectorZ);\n }\n /** Create a Transform using the given `origin` and columns of the `matrix` */\n public static createOriginAndMatrixColumns(\n origin: XYZ, vectorX: Vector3d, vectorY: Vector3d, vectorZ: Vector3d, result?: Transform,\n ): Transform {\n if (result)\n result.setOriginAndMatrixColumns(origin, vectorX, vectorY, vectorZ);\n else\n result = Transform.createRefs(Vector3d.createFrom(origin), Matrix3d.createColumns(vectorX, vectorY, vectorZ));\n return result;\n }\n /**\n * Create a Transform such that its `matrix` part is rigid.\n * @see [[Matrix3d.createRigidFromColumns]] for details of how the matrix is created to be rigid.\n */\n public static createRigidFromOriginAndColumns(\n origin: XYZ | undefined, vectorX: Vector3d, vectorY: Vector3d, axisOrder: AxisOrder, result?: Transform,\n ): Transform | undefined {\n const matrix = Matrix3d.createRigidFromColumns(vectorX, vectorY, axisOrder, result ? result._matrix : undefined);\n if (!matrix)\n return undefined;\n if (result) {\n // result._matrix was already modified to become rigid via createRigidFromColumns\n result._origin.setFrom(origin);\n return result;\n }\n /**\n * We don't want to pass \"origin\" to createRefs because createRefs does not clone \"origin\". That means if \"origin\"\n * is changed via Transform at any point, the initial \"origin\" passed by the user is also changed. To avoid that,\n * we pass \"undefined\" to createRefs so that it allocates a new point which then we set it to the \"origin\" which\n * is passed by user in the next line.\n */\n result = Transform.createRefs(undefined, matrix);\n result._origin.setFromPoint3d(origin);\n return result;\n }\n /**\n * Create a Transform with the specified `matrix`. Compute an `origin` (different from the given `fixedPoint`)\n * so that the `fixedPoint` maps back to itself. The returned Transform, transforms a point `p` to `M*p + (f - M*f)`\n * where `f` is the fixedPoint (i.e., `Tp = M*(p-f) + f`).\n */\n public static createFixedPointAndMatrix(\n fixedPoint: XYAndZ | undefined, matrix: Matrix3d, result?: Transform,\n ): Transform {\n if (fixedPoint) {\n /**\n * if f is a fixed point, then Tf = M*f + o = f where M is the matrix and o is the origin.\n * we define the origin o = f - M*f. Therefore, Tf = Mf + o = M*f + (f - M*f) = f.\n */\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(fixedPoint, matrix, fixedPoint);\n return Transform.createRefs(origin, matrix.clone(), result);\n }\n return Transform.createRefs(undefined, matrix.clone());\n }\n /**\n * Create a transform with the specified `matrix` and points `a` and `b`. The returned Transform maps\n * point `p` to `M*(p-a) + b` (i.e., `Tp = M*(p-a) + b`), so maps `a` to `b`.\n */\n public static createMatrixPickupPutdown(\n matrix: Matrix3d, a: Point3d, b: Point3d, result?: Transform,\n ): Transform {\n // we define the origin o = b - M*a so Tp = M*p + o = M*p + (b - M*a) = M*(p-a) + b\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(b, matrix, a);\n return Transform.createRefs(origin, matrix.clone(), result);\n }\n /**\n * Create a Transform which leaves the fixedPoint unchanged and scales everything else around it by\n * a single scale factor. The returned Transform maps a point `p` to `M*p + (f - M*f)`\n * where `f` is the fixedPoint and M is the scale matrix (i.e., `Tp = M*(p-f) + f`).\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\n */\n public static createScaleAboutPoint(fixedPoint: Point3d, scale: number, result?: Transform): Transform {\n const matrix = Matrix3d.createScale(scale, scale, scale);\n /**\n * if f is a fixed point, then Tf = M*f + o = f where M is the matrix and o is the origin.\n * we define the origin o = f - M*f. Therefore, Tf = M*f + o = M*f + (f - M*f) = f.\n */\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(fixedPoint, matrix, fixedPoint);\n return Transform.createRefs(origin, matrix, result);\n }\n /**\n * Return a transformation which flattens space onto a plane, sweeping along a direction which may be different\n * from the plane normal.\n * * See [Matrix3d.createFlattenAlongVectorToPlane] for math details.\n * @param sweepVector sweep direction. If same as `planeNormal`, the resulting transformation flattens to the plane.\n * @param planePoint any point on the plane\n * @param planeNormal vector normal to the plane.\n */\n public static createFlattenAlongVectorToPlane(sweepVector: Vector3d, planePoint: XYAndZ, planeNormal: Vector3d): Transform | undefined {\n const matrix = Matrix3d.createFlattenAlongVectorToPlane(sweepVector, planeNormal);\n if (matrix === undefined)\n return undefined;\n return Transform.createFixedPointAndMatrix(planePoint, matrix);\n }\n /**\n * Transform the input 2d point (using `Tp = M*p + o`).\n * Return as a new point or in the pre-allocated result (if result is given).\n */\n public multiplyPoint2d(point: XAndY, result?: Point2d): Point2d {\n return Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, point, result);\n }\n /**\n * Transform the input 3d point (using `Tp = M*p + o`).\n * Return as a new point or in the pre-allocated result (if result is given).\n */\n public multiplyPoint3d(point: XYAndZ, result?: Point3d): Point3d {\n // Tx = Mx + o so we return Mx + o\n return Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, point, result);\n }\n /**\n * Transform the input 3d point in place (using `Tp = M*p + o`).\n * Return as a new point or in the pre-allocated result (if result is given).\n */\n public multiplyXYAndZInPlace(point: XYAndZ): void {\n return Matrix3d.xyzPlusMatrixTimesXYZInPlace(this._origin, this._matrix, point);\n }\n /**\n * Transform the input 3d point (using `Tp = M*p + o`).\n * Return as a new point or in the pre-allocated result (if result is given).\n */\n public multiplyXYZ(x: number, y: number, z: number = 0, result?: Point3d): Point3d {\n // Tx = Mx + o so we return Mx + o\n return Matrix3d.xyzPlusMatrixTimesCoordinates(this._origin, this._matrix, x, y, z, result);\n }\n /**\n * Multiply a specific row (component) of the 3x4 instance times (x,y,z,1). Return the result.\n */\n public multiplyComponentXYZ(componentIndex: number, x: number, y: number, z: number = 0): number {\n const coffs = this._matrix.coffs;\n const idx = 3 * componentIndex;\n return this.origin.at(componentIndex) + (coffs[idx] * x) + (coffs[idx + 1] * y) + (coffs[idx + 2] * z);\n }\n /**\n * Multiply a specific row (component) of the 3x4 instance times (x,y,z,w). Return the result.\n */\n public multiplyComponentXYZW(componentIndex: number, x: number, y: number, z: number, w: number): number {\n const coffs = this._matrix.coffs;\n const idx = 3 * componentIndex;\n return (this.origin.at(componentIndex) * w) + (coffs[idx] * x) + (coffs[idx + 1] * y) + (coffs[idx + 2] * z);\n }\n /**\n * Transform the homogeneous point. Return as a new `Point4d`, or in the pre-allocated result (if result is given).\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o*w` and returns the `Point4d` formed by `Tp` in the\n * first three coordinates, and `w` in the fourth.\n * * Logically, this is multiplication by the 4x4 matrix formed from the 3x4 instance augmented with fourth row 0001.\n */\n public multiplyXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\n return Matrix3d.xyzPlusMatrixTimesWeightedCoordinates(this._origin, this._matrix, x, y, z, w, result);\n }\n /**\n * Transform the homogeneous point. Return as new `Float64Array` with size 4, or in the pre-allocated `result` of sufficient size.\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o*w` and returns the `Float64Array` formed by `Tp`\n * in the first 3 numbers of the array and `w` as the fourth.\n * * Logically, this is multiplication by the 4x4 matrix formed from the 3x4 instance augmented with fourth row 0001.\n */\n public multiplyXYZWToFloat64Array(x: number, y: number, z: number, w: number, result?: Float64Array): Float64Array {\n return Matrix3d.xyzPlusMatrixTimesWeightedCoordinatesToFloat64Array(this._origin, this._matrix, x, y, z, w, result);\n }\n /**\n * * Transform the point. Return as new `Float64Array` with size 3, or in the pre-allocated `result` of sufficient size.\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o` and returns it as the first 3 elements of the array.\n */\n public multiplyXYZToFloat64Array(x: number, y: number, z: number, result?: Float64Array): Float64Array {\n return Matrix3d.xyzPlusMatrixTimesCoordinatesToFloat64Array(this._origin, this._matrix, x, y, z, result);\n }\n /**\n * Multiply the homogeneous point by the transpose of `this` Transform. Return as a new `Point4d` or in the\n * pre-allocated result (if result is given).\n * * If `p = (x,y,z)` then this method computes `M^t*p` and returns it in the first three coordinates of the `Point4d`,\n * and `o*p + w` in the fourth.\n * * Logically, this is multiplication by the transpose of the 4x4 matrix formed from the 3x4 instance augmented with\n * fourth row 0001.\n */\n public multiplyTransposeXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\n const coffs = this._matrix.coffs;\n const origin = this._origin;\n return Point4d.create(\n (x * coffs[0]) + (y * coffs[3]) + (z * coffs[6]),\n (x * coffs[1]) + (y * coffs[4]) + (z * coffs[7]),\n (x * coffs[2]) + (y * coffs[5]) + (z * coffs[8]),\n (x * origin.x) + (y * origin.y) + (z * origin.z) + w,\n result,\n );\n }\n /** For each point in the array, replace point by the transformed point (using `Tp = M*p + o`) */\n public multiplyPoint3dArrayInPlace(points: Point3d[]) {\n let point;\n for (point of points)\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, point, point);\n }\n /** For each point in the 2d array, replace point by the transformed point (using `Tp = M*p + o`) */\n public multiplyPoint3dArrayArrayInPlace(chains: Point3d[][]) {\n for (const chain of chains)\n this.multiplyPoint3dArrayInPlace(chain);\n }\n /**\n * Multiply the point by the inverse Transform.\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse`\n * Transform has matrix part `MInverse` and origin part `-MInverse*o`.\n * * Return as a new point or in the optional `result`.\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\n */\n public multiplyInversePoint3d(point: XYAndZ, result?: Point3d): Point3d | undefined {\n return this._matrix.multiplyInverseXYZAsPoint3d(\n point.x - this._origin.x,\n point.y - this._origin.y,\n point.z - this._origin.z,\n result,\n );\n }\n /**\n * Multiply the homogenous point by the inverse Transform.\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse` Transform\n * has matrix part `MInverse` and origin part `-MInverse*o`.\n * * This method computes `TInverse p = MInverse*p - w*MInverse*o` and returns the `Point4d` formed by `TInverse*p`\n * in the first three coordinates, and `w` in the fourth.\n * * Logically, this is multiplication by the inverse of the 4x4 matrix formed from the 3x4 instance augmented with\n * fourth row 0001. This is equivalent to the 4x4 matrix formed in similar fashion from the inverse of this instance.\n * * Return as a new point or in the optional `result`.\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\n */\n public multiplyInversePoint4d(weightedPoint: Point4d, result?: Point4d): Point4d | undefined {\n const w = weightedPoint.w;\n return this._matrix.multiplyInverseXYZW(\n weightedPoint.x - w * this.origin.x,\n weightedPoint.y - w * this.origin.y,\n weightedPoint.z - w * this.origin.z,\n w,\n result,\n );\n }\n /**\n * Multiply the point by the inverse Transform.\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse` Transform\n * has matrix part `MInverse` and origin part `-MInverse*o`.\n * * Return as a new point or in the optional `result`.\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\n */\n public multiplyInverseXYZ(x: number, y: number, z: number, result?: Point3d): Point3d | undefined {\n return this._matrix.multiplyInverseXYZAsPoint3d(\n x - this._origin.x,\n y - this._origin.y,\n z - this._origin.z,\n result,\n );\n }\n /**\n * * Compute (if needed) the inverse of the `matrix` part of the Transform, thereby ensuring inverse\n * operations can complete.\n * @param useCached If true, accept prior cached inverse if available.\n * @returns `true` if matrix inverse completes, `false` otherwise.\n */\n public computeCachedInverse(useCached: boolean = true): boolean {\n return this._matrix.computeCachedInverse(useCached);\n }\n /**\n * Match the length of destination array with the length of source array\n * * If destination has more elements than source, remove the extra elements.\n * * If destination has fewer elements than source, use `constructionFunction` to create new elements.\n * *\n * @param source the source array\n * @param dest the destination array\n * @param constructionFunction function to call to create new elements.\n */\n public static matchArrayLengths(source: any[], dest: any[], constructionFunction: () => any): number {\n const numSource = source.length;\n const numDest = dest.length;\n if (numSource > numDest) {\n for (let i = numDest; i < numSource; i++) {\n dest.push(constructionFunction());\n }\n } else if (numDest > numSource) {\n dest.length = numSource;\n }\n return numSource;\n }\n /**\n * Multiply each point in the array by the inverse of `this` Transform.\n * * For a transform `T = [M o]` the inverse transform `T' = [M' -M'o]` exists if and only if `M` has an inverse\n * `M'`. Indeed, for any point `p`, we have `T'Tp = T'(Mp + o) = M'(Mp + o) - M'o = M'Mp + M'o - M'o = p.`\n * * If `result` is given, resize it to match the input `points` array and update it with original points `p[]`.\n * * If `result` is not given, return a new array.\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\n */\n public multiplyInversePoint3dArray(points: Point3d[], result?: Point3d[]): Point3d[] | undefined {\n if (!this._matrix.computeCachedInverse(true))\n return undefined;\n const originX = this.origin.x;\n const originY = this.origin.y;\n const originZ = this.origin.z;\n if (result) {\n const n = Transform.matchArrayLengths(points, result, () => Point3d.createZero());\n for (let i = 0; i < n; i++)\n this._matrix.multiplyInverseXYZAsPoint3d(\n points[i].x - originX,\n points[i].y - originY,\n points[i].z - originZ,\n result[i],\n );\n return result;\n }\n result = [];\n for (const point of points)\n result.push(\n this._matrix.multiplyInverseXYZAsPoint3d(\n point.x - originX,\n point.y - originY,\n point.z - originZ,\n )!,\n );\n return result;\n }\n /**\n * Multiply each point in the array by the inverse of `this` Transform in place.\n * * For a transform `T = [M o]` the inverse transform `T' = [M' -M'o]` exists if and only if `M` has an inverse\n * `M'`. Indeed, for any point `p`, we have `T'Tp = T'(Mp + o) = M'(Mp + o) - M'o = M'Mp + M'o - M'o = p.`\n * * Returns `true` if the `matrix` part if this Transform is invertible and `false` if singular.\n */\n public multiplyInversePoint3dArrayInPlace(points: Point3d[]): boolean {\n if (!this._matrix.computeCachedInverse(true))\n return false;\n for (const point of points)\n this._matrix.multiplyInverseXYZAsPoint3d(\n point.x - this.origin.x,\n point.y - this.origin.y,\n point.z - this.origin.z,\n point,\n );\n return true;\n }\n /**\n * Transform the input 2d point array (using `Tp = M*p + o`).\n * * If `result` is given, resize it to match the input `points` array and update it with transformed points.\n * * If `result` is not given, return a new array.\n */\n public multiplyPoint2dArray(points: Point2d[], result?: Point2d[]): Point2d[] {\n if (result) {\n const n = Transform.matchArrayLengths(points, result, () => Point2d.createZero());\n for (let i = 0; i < n; i++)\n Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, points[i], result[i]);\n return result;\n }\n result = [];\n for (const p of points)\n result.push(Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, p));\n return result;\n }\n /**\n * Transform the input 3d point array (using `Tp = M*p + o`).\n * * If `result` is given, resize it to match the input `points` array and update it with transformed points.\n * * If `result` is not given, return a new array.\n */\n public multiplyPoint3dArray(points: Point3d[], result?: Point3d[]): Point3d[] {\n if (result) {\n const n = Transform.matchArrayLengths(points, result, () => Point3d.createZero());\n for (let i = 0; i < n; i++)\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, points[i], result[i]);\n return result;\n }\n result = [];\n for (const p of points)\n result.push(Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, p));\n return result;\n }\n /**\n * Multiply the vector by the `matrix` part of the Transform.\n * * The `origin` part of Transform is not used.\n * * If `result` is given, update it with the multiplication. Otherwise, create a new Vector3d.\n */\n public multiplyVector(vector: Vector3d, result?: Vector3d): Vector3d {\n return this._matrix.multiplyVector(vector, result);\n }\n /**\n * Multiply the vector by the `matrix` part of the Transform in place.\n * * The `origin` part of Transform is not used.\n */\n public multiplyVectorInPlace(vector: Vector3d): void {\n this._matrix.multiplyVectorInPlace(vector);\n }\n /**\n * Multiply the vector (x,y,z) by the `matrix` part of the Transform.\n * * The `origin` part of Transform is not used.\n * * If `result` is given, update it with the multiplication. Otherwise, create a new Vector3d.\n */\n public multiplyVectorXYZ(x: number, y: number, z: number, result?: Vector3d): Vector3d {\n return this._matrix.multiplyXYZ(x, y, z, result);\n }\n /**\n * Calculate `transformA * transformB` and store it into the calling instance (`this`).\n * * **Note:** If `transformA = [A a]` and `transformB = [B b]` then `transformA * transformB` is defined as\n * `[A*B Ab+a]`.\n * * @see [[multiplyTransformTransform]] documentation for math details.\n * @param transformA first operand\n * @param transformB second operand\n */\n public setMultiplyTransformTransform(transformA: Transform, transformB: Transform): void {\n Matrix3d.xyzPlusMatrixTimesXYZ(\n transformA._origin,\n transformA._matrix,\n transformB._origin,\n this._origin as Point3d,\n );\n transformA._matrix.multiplyMatrixMatrix(transformB._matrix, this._matrix);\n }\n /**\n * Multiply `this` Transform times `other` Transform.\n * * **Note:** If `this = [A a]` and `other = [B b]` then `this * other` is defined as `[A*B Ab+a]` because:\n * ```\n * equation\n * \\begin{matrix}\n * \\text{this Transform with matrix part }\\bold{A}\\text{ and origin part }\\bold{a} & \\blockTransform{A}{a}\\\\\n * \\text{other Transform with matrix part }\\bold{B}\\text{ and origin part }\\bold{b} & \\blockTransform{B}{b} \\\\\n * \\text{product}& \\blockTransform{A}{a}\\blockTransform{B}{b}=\\blockTransform{AB}{Ab + a}\n * \\end{matrix}\n * ```\n * @param other the `other` Transform to be multiplied to `this` Transform.\n * @param result optional preallocated `result` to reuse.\n */\n public multiplyTransformTransform(other: Transform, result?: Transform) {\n if (!result)\n return Transform.createRefs(\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, other._origin),\n this._matrix.multiplyMatrixMatrix(other._matrix),\n );\n result.setMultiplyTransformTransform(this, other);\n return result;\n }\n /**\n * Multiply `this` Transform times `other` Matrix3d (considered to be a Transform with 0 `origin`).\n * * **Note:** If `this = [A a]` and `other = [B 0]`, then `this * other` is defined as [A*B a] because:\n * ```\n * equation\n * \\begin{matrix}\n * \\text{this Transform with matrix part }\\bold{A}\\text{ and origin part }\\bold{a} & \\blockTransform{A}{a}\\\\\n * \\text{other matrix }\\bold{B}\\text{ promoted to block Transform} & \\blockTransform{B}{0} \\\\\n * \\text{product}& \\blockTransform{A}{a}\\blockTransform{B}{0}=\\blockTransform{AB}{a}\n * \\end{matrix}\n * ```\n * @param other the `other` Matrix3d to be multiplied to `this` Transform.\n * @param result optional preallocated `result` to reuse.\n */\n public multiplyTransformMatrix3d(other: Matrix3d, result?: Transform): Transform {\n if (!result)\n return Transform.createRefs(\n this._origin.cloneAsPoint3d(),\n this._matrix.multiplyMatrixMatrix(other),\n );\n this._matrix.multiplyMatrixMatrix(other, result._matrix);\n result._origin.setFrom(this._origin);\n return result;\n }\n /**\n * Return the range of the transformed corners.\n * * The 8 corners are transformed individually.\n * * **Note:** Suppose you have a geometry, a range box around that geometry, and your Transform is a rotation.\n * If you rotate the range box and recompute a new range box around the rotated range box, then the new range\n * box will have a larger volume than the original range box. However, if you rotate the geometry itself and\n * then recompute the range box, it will be a tighter range box around the rotated geometry. `multiplyRange`\n * function creates the larger range box because it only has access to the range box and not the geometry itself.\n */\n public multiplyRange(range: Range3d, result?: Range3d): Range3d {\n if (range.isNull)\n return range.clone(result);\n const lowX = range.low.x;\n const lowY = range.low.y;\n const lowZ = range.low.z;\n const highX = range.high.x;\n const highY = range.high.y;\n const highZ = range.high.z;\n result = Range3d.createNull(result);\n result.extendTransformedXYZ(this, lowX, lowY, lowZ);\n result.extendTransformedXYZ(this, highX, lowY, lowZ);\n result.extendTransformedXYZ(this, lowX, highY, lowZ);\n result.extendTransformedXYZ(this, highX, highY, lowZ);\n result.extendTransformedXYZ(this, lowX, lowY, highZ);\n result.extendTransformedXYZ(this, highX, lowY, highZ);\n result.extendTransformedXYZ(this, lowX, highY, highZ);\n result.extendTransformedXYZ(this, highX, highY, highZ);\n return result;\n }\n /**\n * Return a Transform which is the inverse of `this` Transform.\n * * If `transform = [M o]` then `transformInverse = [MInverse -MInverse*o]`\n * * Return `undefined` if this Transform's matrix is singular.\n */\n public inverse(result?: Transform): Transform | undefined {\n const matrixInverse = this._matrix.inverse(result ? result._matrix : undefined);\n if (!matrixInverse)\n return undefined;\n if (result) {\n // result._matrix is already defined\n matrixInverse.multiplyXYZ(-this._origin.x, -this._origin.y, -this._origin.z, result._origin as Vector3d);\n return result;\n }\n return Transform.createRefs(\n matrixInverse.multiplyXYZ(-this._origin.x, -this._origin.y, -this._origin.z),\n matrixInverse,\n );\n }\n /**\n * Initialize 2 Transforms that map between the unit box (specified by 000 and 111) and the range box specified\n * by the input points.\n * @param min the min corner of the range box\n * @param max the max corner of the range box\n * @param npcToGlobal maps NPC coordinates into range box coordinates. Specifically, maps 000 to `min` and maps\n * 111 to `max`. This Transform is the inverse of `globalToNpc`. Object created by caller, re-initialized here.\n * @param globalToNpc maps range box coordinates into NPC coordinates. Specifically, maps `min` to 000 and maps\n * `max` to 111. This Transform is the inverse of `npcToGlobal`. Object created by caller, re-initialized here.\n * * NPC stands for `Normalized Projection Coordinate`\n */\n public static initFromRange(min: Point3d, max: Point3d, npcToGlobal?: Transform, globalToNpc?: Transform): void {\n const diag = max.minus(min);\n if (diag.x === 0.0)\n diag.x = 1.0;\n if (diag.y === 0.0)\n diag.y = 1.0;\n if (diag.z === 0.0)\n diag.z = 1.0;\n const rMatrix = new Matrix3d();\n /**\n * [diag.x 0 0 min.x]\n * npcToGlobal = [ 0 diag.y 0 min.y]\n * [ 0 0 diag.y min.z]\n *\n * npcToGlobal * 0 = min\n * npcToGlobal * 1 = diag + min = max\n */\n if (npcToGlobal) {\n Matrix3d.createScale(diag.x, diag.y, diag.z, rMatrix);\n Transform.createOriginAndMatrix(min, rMatrix, npcToGlobal);\n }\n /**\n * [1/diag.x 0 0 -min.x/diag.x]\n * globalToNpc = [ 0 1/diag.y 0 -min.y/diag.y]\n * [ 0 0 1/diag.y -min.z/diag.z]\n *\n * globalToNpc * min = min/diag - min/diag = 0\n * globalToNpc * max = max/diag - min/diag = diag/diag = 1\n */\n if (globalToNpc) {\n const origin = new Point3d(-min.x / diag.x, -min.y / diag.y, -min.z / diag.z);\n Matrix3d.createScale(1.0 / diag.x, 1.0 / diag.y, 1.0 / diag.z, rMatrix);\n Transform.createOriginAndMatrix(origin, rMatrix, globalToNpc);\n }\n }\n}\n"]}
1
+ {"version":3,"file":"Transform.js","sourceRoot":"","sources":["../../../src/geometry3d/Transform.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AAEH,OAAO,EAAE,SAAS,EAAmB,QAAQ,EAAE,MAAM,aAAa,CAAC;AACnE,OAAO,EAAE,OAAO,EAAE,MAAM,uBAAuB,CAAC;AAChD,OAAO,EAAE,QAAQ,EAAE,MAAM,YAAY,CAAC;AACtC,OAAO,EAAE,OAAO,EAAE,MAAM,mBAAmB,CAAC;AAC5C,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAO,MAAM,mBAAmB,CAAC;AAC3D,OAAO,EAAE,OAAO,EAAE,MAAM,SAAS,CAAC;AAGlC;;;;;;;;;;;;;;;;GAgBG;AACH,MAAM,OAAO,SAAS;IACZ,OAAO,CAAM;IACb,OAAO,CAAW;IAC1B,0EAA0E;IAC1E,YAAoB,MAAW,EAAE,MAAgB;QAC/C,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;IACxB,CAAC;IACO,MAAM,CAAC,SAAS,CAAa;IACrC,sEAAsE;IAC/D,MAAM,KAAK,QAAQ;QACxB,IAAI,SAAS,KAAK,IAAI,CAAC,SAAS,EAAE,CAAC;YACjC,IAAI,CAAC,SAAS,GAAG,SAAS,CAAC,cAAc,EAAE,CAAC;YAC5C,IAAI,CAAC,SAAS,CAAC,MAAM,EAAE,CAAC;QAC1B,CAAC;QACD,OAAO,IAAI,CAAC,SAAS,CAAC;IACxB,CAAC;IACD,gEAAgE;IACzD,MAAM;QACX,IAAI,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC;QACtB,IAAI,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC;QACtB,OAAO,MAAM,CAAC,MAAM,CAAC,IAAI,CAAC,CAAC;IAC7B,CAAC;IACD;;;OAGG;IACI,OAAO,CAAC,KAAgB;QAC7B,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;QACpC,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;IACtC,CAAC;IACD,4CAA4C;IACrC,WAAW;QAChB,IAAI,CAAC,OAAO,CAAC,OAAO,EAAE,CAAC;QACvB,IAAI,CAAC,OAAO,CAAC,WAAW,EAAE,CAAC;IAC7B,CAAC;IACD;;;;;;;OAOG;IACI,WAAW,CAAC,IAAiC;QAClD,IAAI,IAAI,EAAE,CAAC;YACT,IAAI,IAAI,YAAY,MAAM,IAAK,IAAY,CAAC,MAAM,IAAK,IAAY,CAAC,MAAM,EAAE,CAAC;gBAC3E,IAAI,CAAC,OAAO,CAAC,WAAW,CAAE,IAAY,CAAC,MAAM,CAAC,CAAC;gBAC/C,IAAI,CAAC,OAAO,CAAC,WAAW,CAAE,IAAY,CAAC,MAAM,CAAC,CAAC;gBAC/C,OAAO;YACT,CAAC;YACD,IAAI,QAAQ,CAAC,oBAAoB,CAAC,IAAI,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC;gBAC9C,IAAI,CAAC,OAAO,CAAC,YAAY,CACvB,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAClC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAClC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CACnC,CAAC;gBACF,IAAI,CAAC,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBACrD,OAAO;YACT,CAAC;YACD,IAAI,QAAQ,CAAC,aAAa,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,CAAC;gBACrC,IAAI,CAAC,OAAO,CAAC,YAAY,CACvB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EACzB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EACzB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAC3B,CAAC;gBACF,IAAI,CAAC,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC;gBAC7C,OAAO;YACT,CAAC;QACH,CAAC;QACD,IAAI,CAAC,WAAW,EAAE,CAAC;IACrB,CAAC;IACD;;;;OAIG;IACI,aAAa,CAAC,KAA0B;QAC7C,OAAO,IAAI,KAAK,KAAK,IAAI,IAAI,CAAC,MAAM,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,CAAC,IAAI,IAAI,CAAC,MAAM,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;IAC9G,CAAC;IACD;;;;OAIG;IACI,2BAA2B,CAAC,KAAgB;QACjD,OAAO,IAAI,CAAC,OAAO,CAAC,aAAa,CAAC,KAAK,CAAC,OAAO,CAAC,IAAI,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;IAC9G,CAAC;IACD;;;OAGG;IACI,MAAM;QACX,OAAO;YACL,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;YACrF,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;YACrF,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;SACtF,CAAC;IACJ,CAAC;IACD;;;MAGE;IACK,MAAM;QACX,OAAO,IAAI,CAAC,MAAM,EAAE,CAAC;IACvB,CAAC;IACD,oEAAoE;IAC7D,MAAM,CAAC,QAAQ,CAAC,IAAqB;QAC1C,MAAM,MAAM,GAAG,SAAS,CAAC,cAAc,EAAE,CAAC;QAC1C,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC;QACzB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,mGAAmG;IAC5F,KAAK,CAAC,MAAkB;QAC7B,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACrC,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACrC,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAClB,OAAO,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,EAChC,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,CACrB,CAAC;IACJ,CAAC;IACD;;;OAGG;IACI,UAAU,CAAC,YAAuB,SAAS,CAAC,GAAG;QACpD,MAAM,cAAc,GAAG,QAAQ,CAAC,uBAAuB,CAAC,IAAI,CAAC,MAAM,EAAE,SAAS,CAAC,CAAC;QAChF,IAAI,CAAC,cAAc;YACjB,OAAO,SAAS,CAAC;QACnB,OAAO,IAAI,SAAS,CAAC,IAAI,CAAC,MAAM,CAAC,cAAc,EAAE,EAAE,cAAc,CAAC,CAAC;IACrE,CAAC;IACD,gGAAgG;IACzF,MAAM,CAAC,UAAU,CAAC,MAAuB,EAAE,MAAgB,EAAE,MAAkB;QACpF,IAAI,CAAC,MAAM;YACT,MAAM,GAAG,OAAO,CAAC,UAAU,EAAE,CAAC;QAChC,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,GAAG,MAAM,CAAC;YACxB,MAAM,CAAC,OAAO,GAAG,MAAM,CAAC;YACxB,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC;IACvC,CAAC;IACD,iHAAiH;IAC1G,MAAM,CAAC,eAAe,CAC3B,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,MAAkB;QAElB,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,CAAC;YAC/B,MAAM,CAAC,OAAO,CAAC,YAAY,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;YACzE,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAClB,OAAO,CAAC,MAAM,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,EAC1B,QAAQ,CAAC,eAAe,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CACtE,CAAC;IACJ,CAAC;IACD,wCAAwC;IACjC,MAAM,CAAC,UAAU,CAAC,MAAkB;QACzC,OAAO,SAAS,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC/E,CAAC;IACD;;;;;;;;;OASG;IACI,MAAM,CAAC,oBAAoB,CAAC,IAAY,CAAC,EAAE,IAAY,CAAC,EAAE,IAAY,CAAC,EAAE,MAAkB;QAChG,OAAO,SAAS,CAAC,UAAU,CAAC,QAAQ,CAAC,MAAM,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,QAAQ,CAAC,cAAc,EAAE,EAAE,MAAM,CAAC,CAAC;IAC3F,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,iBAAiB,CAAC,WAAgB,EAAE,MAAkB;QAClE,OAAO,SAAS,CAAC,UAAU,CAAC,WAAW,EAAE,QAAQ,CAAC,cAAc,EAAE,EAAE,MAAM,CAAC,CAAC;IAC9E,CAAC;IACD,iFAAiF;IACjF,IAAW,MAAM;QACf,OAAO,IAAI,CAAC,OAAO,CAAC;IACtB,CAAC;IACD,iFAAiF;IACjF,IAAW,MAAM;QACf,OAAO,IAAI,CAAC,OAAO,CAAC;IACtB,CAAC;IACD,6EAA6E;IACtE,SAAS;QACd,OAAO,OAAO,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;IAC1C,CAAC;IACD,8EAA8E;IACvE,cAAc;QACnB,OAAO,QAAQ,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;IAC3C,CAAC;IACD,8EAA8E;IACvE,SAAS;QACd,OAAO,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,CAAC;IAC9B,CAAC;IACD,yEAAyE;IACzE,IAAW,UAAU;QACnB,OAAO,IAAI,CAAC,OAAO,CAAC,UAAU,IAAI,IAAI,CAAC,OAAO,CAAC,YAAY,CAAC;IAC9D,CAAC;IACD,mCAAmC;IAC5B,MAAM,CAAC,cAAc,CAAC,MAAkB;QAC7C,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,OAAO,EAAE,CAAC;YACzB,MAAM,CAAC,OAAO,CAAC,WAAW,EAAE,CAAC;YAC7B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CAAC,OAAO,CAAC,UAAU,EAAE,EAAE,QAAQ,CAAC,cAAc,EAAE,CAAC,CAAC;IAC/E,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,qBAAqB,CACjC,MAAuB,EAAE,MAA4B,EAAE,MAAkB;QAEzE,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,CAAC,CAAC;YACtC,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;YAC/B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CACzB,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,cAAc,EAAE,CAAC,CAAC,CAAC,OAAO,CAAC,UAAU,EAAE,EACvD,MAAM,KAAK,SAAS,CAAC,CAAC,CAAC,QAAQ,CAAC,cAAc,EAAE,CAAC,CAAC,CAAC,MAAM,CAAC,KAAK,EAAE,EACjE,MAAM,CACP,CAAC;IACJ,CAAC;IACD,4GAA4G;IACrG,yBAAyB,CAC9B,MAAuB,EAAE,OAA6B,EAAE,OAA6B,EAAE,OAA6B;QAEpH,IAAI,MAAM,KAAK,SAAS;YACtB,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;QAC/B,IAAI,CAAC,OAAO,CAAC,UAAU,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;IACrD,CAAC;IACD,8EAA8E;IACvE,MAAM,CAAC,4BAA4B,CACxC,MAAW,EAAE,OAAiB,EAAE,OAAiB,EAAE,OAAiB,EAAE,MAAkB;QAExF,IAAI,MAAM;YACR,MAAM,CAAC,yBAAyB,CAAC,MAAM,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;;YAEpE,MAAM,GAAG,SAAS,CAAC,UAAU,CAAC,QAAQ,CAAC,UAAU,CAAC,MAAM,CAAC,EAAE,QAAQ,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,CAAC;QAChH,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,+BAA+B,CAC3C,MAAuB,EAAE,OAAiB,EAAE,OAAiB,EAAE,SAAoB,EAAE,MAAkB;QAEvG,MAAM,MAAM,GAAG,QAAQ,CAAC,sBAAsB,CAAC,OAAO,EAAE,OAAO,EAAE,SAAS,EAAE,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QACjH,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC;QACnB,IAAI,MAAM,EAAE,CAAC;YACX,iFAAiF;YACjF,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;YAC/B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD;;;;;WAKG;QACH,MAAM,GAAG,SAAS,CAAC,UAAU,CAAC,SAAS,EAAE,MAAM,CAAC,CAAC;QACjD,MAAM,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,CAAC,CAAC;QACtC,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,MAAM,CAAC,yBAAyB,CACrC,UAA8B,EAAE,MAAgB,EAAE,MAAkB;QAEpE,IAAI,UAAU,EAAE,CAAC;YACf;;;eAGG;YACH,MAAM,MAAM,GAAG,QAAQ,CAAC,sBAAsB,CAAC,UAAU,EAAE,MAAM,EAAE,UAAU,CAAC,CAAC;YAC/E,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,CAAC,KAAK,EAAE,EAAE,MAAM,CAAC,CAAC;QAC9D,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CAAC,SAAS,EAAE,MAAM,CAAC,KAAK,EAAE,CAAC,CAAC;IACzD,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,yBAAyB,CACrC,MAAgB,EAAE,CAAU,EAAE,CAAU,EAAE,MAAkB;QAE5D,mFAAmF;QACnF,MAAM,MAAM,GAAG,QAAQ,CAAC,sBAAsB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,CAAC,CAAC;QAC7D,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,CAAC,KAAK,EAAE,EAAE,MAAM,CAAC,CAAC;IAC9D,CAAC;IACD;;;;;OAKG;IACI,MAAM,CAAC,qBAAqB,CAAC,UAAmB,EAAE,KAAa,EAAE,MAAkB;QACxF,MAAM,MAAM,GAAG,QAAQ,CAAC,WAAW,CAAC,KAAK,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACzD;;;WAGG;QACH,MAAM,MAAM,GAAG,QAAQ,CAAC,sBAAsB,CAAC,UAAU,EAAE,MAAM,EAAE,UAAU,CAAC,CAAC;QAC/E,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,CAAC;IACtD,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,+BAA+B,CAAC,WAAqB,EAAE,UAAkB,EAAE,WAAqB;QAC5G,MAAM,MAAM,GAAG,QAAQ,CAAC,+BAA+B,CAAC,WAAW,EAAE,WAAW,CAAC,CAAC;QAClF,IAAI,MAAM,KAAK,SAAS;YACtB,OAAO,SAAS,CAAC;QACnB,OAAO,SAAS,CAAC,yBAAyB,CAAC,UAAU,EAAE,MAAM,CAAC,CAAC;IACjE,CAAC;IACD;;;OAGG;IACI,eAAe,CAAC,KAAY,EAAE,MAAgB;QACnD,OAAO,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC;IACjF,CAAC;IACD;;;OAGG;IACI,eAAe,CAAC,KAAa,EAAE,MAAgB;QACpD,kCAAkC;QAClC,OAAO,QAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC;IACnF,CAAC;IACD;;;OAGG;IACI,qBAAqB,CAAC,KAAa;QACxC,OAAO,QAAQ,CAAC,4BAA4B,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,CAAC,CAAC;IAClF,CAAC;IACD;;;OAGG;IACI,WAAW,CAAC,CAAS,EAAE,CAAS,EAAE,IAAY,CAAC,EAAE,MAAgB;QACtE,kCAAkC;QAClC,OAAO,QAAQ,CAAC,6BAA6B,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC7F,CAAC;IACD;;OAEG;IACI,oBAAoB,CAAC,cAAsB,EAAE,CAAS,EAAE,CAAS,EAAE,IAAY,CAAC;QACrF,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,GAAG,GAAG,CAAC,GAAG,cAAc,CAAC;QAC/B,OAAO,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,cAAc,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACzG,CAAC;IACD;;OAEG;IACI,qBAAqB,CAAC,cAAsB,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS;QAC7F,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,GAAG,GAAG,CAAC,GAAG,cAAc,CAAC;QAC/B,OAAO,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,cAAc,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IAC/G,CAAC;IACD;;;;;OAKG;IACI,YAAY,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QAC9E,OAAO,QAAQ,CAAC,qCAAqC,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACxG,CAAC;IACD;;;;;OAKG;IACI,0BAA0B,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAqB;QACjG,OAAO,QAAQ,CAAC,mDAAmD,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACtH,CAAC;IACD;;;OAGG;IACI,yBAAyB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAqB;QACrF,OAAO,QAAQ,CAAC,2CAA2C,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC3G,CAAC;IACD;;;;;;;OAOG;IACI,qBAAqB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QACvF,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,MAAM,GAAG,IAAI,CAAC,OAAO,CAAC;QAC5B,OAAO,OAAO,CAAC,MAAM,CACnB,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,EACpD,MAAM,CACP,CAAC;IACJ,CAAC;IACD,iGAAiG;IAC1F,2BAA2B,CAAC,MAAiB;QAClD,IAAI,KAAK,CAAC;QACV,KAAK,KAAK,IAAI,MAAM;YAClB,QAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;IAC7E,CAAC;IACD,oGAAoG;IAC7F,gCAAgC,CAAC,MAAmB;QACzD,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,IAAI,CAAC,2BAA2B,CAAC,KAAK,CAAC,CAAC;IAC5C,CAAC;IACD;;;;;;OAMG;IACI,sBAAsB,CAAC,KAAa,EAAE,MAAgB;QAC3D,OAAO,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAC7C,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;;;;;;OAUG;IACI,sBAAsB,CAAC,aAAsB,EAAE,MAAgB;QACpE,MAAM,CAAC,GAAG,aAAa,CAAC,CAAC,CAAC;QAC1B,OAAO,IAAI,CAAC,OAAO,CAAC,mBAAmB,CACrC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,CAAC,EACD,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;;OAMG;IACI,kBAAkB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QACzE,OAAO,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAC7C,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;OAKG;IACI,oBAAoB,CAAC,YAAqB,IAAI;QACnD,OAAO,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,SAAS,CAAC,CAAC;IACtD,CAAC;IACD;;;;;;;;OAQG;IACI,MAAM,CAAC,iBAAiB,CAAC,MAAa,EAAE,IAAW,EAAE,oBAA+B;QACzF,MAAM,SAAS,GAAG,MAAM,CAAC,MAAM,CAAC;QAChC,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC;QAC5B,IAAI,SAAS,GAAG,OAAO,EAAE,CAAC;YACxB,KAAK,IAAI,CAAC,GAAG,OAAO,EAAE,CAAC,GAAG,SAAS,EAAE,CAAC,EAAE,EAAE,CAAC;gBACzC,IAAI,CAAC,IAAI,CAAC,oBAAoB,EAAE,CAAC,CAAC;YACpC,CAAC;QACH,CAAC;aAAM,IAAI,OAAO,GAAG,SAAS,EAAE,CAAC;YAC/B,IAAI,CAAC,MAAM,GAAG,SAAS,CAAC;QAC1B,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD;;;;;;;OAOG;IACI,2BAA2B,CAAC,MAAiB,EAAE,MAAkB;QACtE,IAAI,CAAC,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,IAAI,CAAC;YAC1C,OAAO,SAAS,CAAC;QACnB,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,OAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CACV,CAAC;YACJ,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,MAAM,CAAC,IAAI,CACT,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,KAAK,CAAC,CAAC,GAAG,OAAO,EACjB,KAAK,CAAC,CAAC,GAAG,OAAO,EACjB,KAAK,CAAC,CAAC,GAAG,OAAO,CACjB,CACH,CAAC;QACJ,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;OAKG;IACI,kCAAkC,CAAC,MAAiB;QACzD,IAAI,CAAC,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,IAAI,CAAC;YAC1C,OAAO,KAAK,CAAC;QACf,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CACN,CAAC;QACJ,OAAO,IAAI,CAAC;IACd,CAAC;IACD;;;;OAIG;IACI,oBAAoB,CAAC,MAAiB,EAAE,MAAkB;QAC/D,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,OAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;YACjF,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,CAAC,IAAI,MAAM;YACpB,MAAM,CAAC,IAAI,CAAC,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;QAC3E,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,oBAAoB,CAAC,MAAiB,EAAE,MAAkB;QAC/D,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,OAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,QAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;YACnF,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,CAAC,IAAI,MAAM;YACpB,MAAM,CAAC,IAAI,CAAC,QAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;QAC7E,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,cAAc,CAAC,MAAgB,EAAE,MAAiB;QACvD,OAAO,IAAI,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC;IACrD,CAAC;IACD;;;OAGG;IACI,qBAAqB,CAAC,MAAgB;QAC3C,IAAI,CAAC,OAAO,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC;IAC7C,CAAC;IACD;;;;OAIG;IACI,iBAAiB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAiB;QACzE,OAAO,IAAI,CAAC,OAAO,CAAC,WAAW,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACnD,CAAC;IACD;;;;;;;OAOG;IACI,6BAA6B,CAAC,UAAqB,EAAE,UAAqB;QAC/E,QAAQ,CAAC,qBAAqB,CAC5B,UAAU,CAAC,OAAO,EAClB,UAAU,CAAC,OAAO,EAClB,UAAU,CAAC,OAAO,EAClB,IAAI,CAAC,OAAkB,CACxB,CAAC;QACF,UAAU,CAAC,OAAO,CAAC,oBAAoB,CAAC,UAAU,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;IAC5E,CAAC;IACD;;;;;;;;;;;;;OAaG;IACI,0BAA0B,CAAC,KAAgB,EAAE,MAAkB;QACpE,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC,UAAU,CACzB,QAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,CAAC,OAAO,CAAC,EACzE,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,CAAC,OAAO,CAAC,CACjD,CAAC;QACJ,MAAM,CAAC,6BAA6B,CAAC,IAAI,EAAE,KAAK,CAAC,CAAC;QAClD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;;;;;;OAaG;IACI,yBAAyB,CAAC,KAAe,EAAE,MAAkB;QAClE,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC,UAAU,CACzB,IAAI,CAAC,OAAO,CAAC,cAAc,EAAE,EAC7B,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,CAAC,CACzC,CAAC;QACJ,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,EAAE,MAAM,CAAC,OAAO,CAAC,CAAC;QACzD,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;QACrC,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;OAQG;IACI,aAAa,CAAC,KAAc,EAAE,MAAgB;QACnD,IAAI,KAAK,CAAC,MAAM;YACd,OAAO,KAAK,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;QAC7B,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,GAAG,OAAO,CAAC,UAAU,CAAC,MAAM,CAAC,CAAC;QACpC,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,CAAC,CAAC;QACpD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,IAAI,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,KAAK,EAAE,IAAI,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,IAAI,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACvD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,OAAO,CAAC,MAAkB;QAC/B,MAAM,aAAa,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QAChF,IAAI,CAAC,aAAa;YAChB,OAAO,SAAS,CAAC;QACnB,IAAI,MAAM,EAAE,CAAC;YACX,oCAAoC;YACpC,aAAa,CAAC,WAAW,CAAC,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,MAAM,CAAC,OAAmB,CAAC,CAAC;YACzG,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CACzB,aAAa,CAAC,WAAW,CAAC,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC,EAC5E,aAAa,CACd,CAAC;IACJ,CAAC;IACD;;;;;;;;;;OAUG;IACI,MAAM,CAAC,aAAa,CAAC,GAAY,EAAE,GAAY,EAAE,WAAuB,EAAE,WAAuB;QACtG,MAAM,IAAI,GAAG,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,CAAC;QAC5B,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,MAAM,OAAO,GAAG,IAAI,QAAQ,EAAE,CAAC;QAC/B;;;;;;;WAOG;QACH,IAAI,WAAW,EAAE,CAAC;YAChB,QAAQ,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACtD,SAAS,CAAC,qBAAqB,CAAC,GAAG,EAAE,OAAO,EAAE,WAAW,CAAC,CAAC;QAC7D,CAAC;QACD;;;;;;;WAOG;QACH,IAAI,WAAW,EAAE,CAAC;YAChB,MAAM,MAAM,GAAG,IAAI,OAAO,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YAC9E,QAAQ,CAAC,WAAW,CAAC,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxE,SAAS,CAAC,qBAAqB,CAAC,MAAM,EAAE,OAAO,EAAE,WAAW,CAAC,CAAC;QAChE,CAAC;IACH,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\n* See LICENSE.md in the project root for license terms and full copyright notice.\n*--------------------------------------------------------------------------------------------*/\n\n/** @packageDocumentation\n * @module CartesianGeometry\n */\n\nimport { AxisOrder, BeJSONFunctions, Geometry } from \"../Geometry\";\nimport { Point4d } from \"../geometry4d/Point4d\";\nimport { Matrix3d } from \"./Matrix3d\";\nimport { Point2d } from \"./Point2dVector2d\";\nimport { Point3d, Vector3d, XYZ } from \"./Point3dVector3d\";\nimport { Range3d } from \"./Range\";\nimport { TransformProps, XAndY, XYAndZ } from \"./XYZProps\";\n\n/**\n * A Transform consists of an origin and a Matrix3d. This describes a coordinate frame with this origin, with\n * the columns of the Matrix3d being the local x,y,z axis directions.\n * * The math for a Transform `T` consisting of a Matrix3d `M` and a Point3d `o` on a Vector3d `p` is: `Tp = M*p + o`.\n * In other words, `T` is a combination of two operations on `p`: the action of matrix multiplication, followed by a\n * translation. `Origin` is a traditional term for `o`, because `T` can be interpreted as a change of basis from the\n * global axes centered at the global origin, to a new set of axes specified by matrix M columns centered at `o`.\n * * Beware that for common transformations (e.g. scale about point, rotate around an axis) the `fixed point` that\n * is used when describing the transform is NOT the `origin` stored in the transform. Setup methods (e.g\n * createFixedPointAndMatrix, createScaleAboutPoint) take care of determining the appropriate origin coordinates.\n * * If `T` is a translation, no point is fixed by `T`.\n * * If `T` is the identity, all points are fixed by `T`.\n * * If `T` is a scale about a point, one point is fixed by `T`.\n * * If `T` is a rotation about an axis, a line is fixed by `T`.\n * * If `T` is a projection to the plane, a plane is fixed by `T`.\n * @public\n */\nexport class Transform implements BeJSONFunctions {\n private _origin: XYZ;\n private _matrix: Matrix3d;\n // Constructor accepts and uses pointer to content (no copy is done here).\n private constructor(origin: XYZ, matrix: Matrix3d) {\n this._origin = origin;\n this._matrix = matrix;\n }\n private static _identity?: Transform;\n /** The identity Transform. Value is frozen and cannot be modified. */\n public static get identity(): Transform {\n if (undefined === this._identity) {\n this._identity = Transform.createIdentity();\n this._identity.freeze();\n }\n return this._identity;\n }\n /** Freeze this instance (and its members) so it is read-only */\n public freeze(): Readonly<this> {\n this._origin.freeze();\n this._matrix.freeze();\n return Object.freeze(this);\n }\n /**\n * Copy contents from other Transform into this Transform\n * @param other source transform\n */\n public setFrom(other: Transform) {\n this._origin.setFrom(other._origin);\n this._matrix.setFrom(other._matrix);\n }\n /** Set this Transform to be an identity. */\n public setIdentity() {\n this._origin.setZero();\n this._matrix.setIdentity();\n }\n /**\n * Set this Transform instance from flexible inputs:\n * * Any object (such as another Transform or TransformProps) that has `origin` and `matrix` members\n * accepted by `Point3d.setFromJSON` and `Matrix3d.setFromJSON`\n * * An array of 3 number arrays, each with 4 entries which are rows in a 3x4 matrix.\n * * An array of 12 numbers, each block of 4 entries as a row 3x4 matrix.\n * * If no input is provided, the identity Transform is returned.\n */\n public setFromJSON(json?: TransformProps | Transform): void {\n if (json) {\n if (json instanceof Object && (json as any).origin && (json as any).matrix) {\n this._origin.setFromJSON((json as any).origin);\n this._matrix.setFromJSON((json as any).matrix);\n return;\n }\n if (Geometry.isArrayOfNumberArray(json, 3, 4)) {\n this._matrix.setRowValues(\n json[0][0], json[0][1], json[0][2],\n json[1][0], json[1][1], json[1][2],\n json[2][0], json[2][1], json[2][2],\n );\n this._origin.set(json[0][3], json[1][3], json[2][3]);\n return;\n }\n if (Geometry.isNumberArray(json, 12)) {\n this._matrix.setRowValues(\n json[0], json[1], json[2],\n json[4], json[5], json[6],\n json[8], json[9], json[10],\n );\n this._origin.set(json[3], json[7], json[11]);\n return;\n }\n }\n this.setIdentity();\n }\n /**\n * Test for near equality with `other` Transform. Comparison uses the `isAlmostEqual` methods on the `origin` and\n * `matrix` parts.\n * @param other Transform to compare to.\n */\n public isAlmostEqual(other: Readonly<Transform>): boolean {\n return this === other || this.origin.isAlmostEqual(other.origin) && this.matrix.isAlmostEqual(other.matrix);\n }\n /**\n * Test for near equality with `other` Transform. Comparison uses the `isAlmostEqual` methods on the `origin` part\n * and the `isAlmostEqualAllowZRotation` method on the `matrix` part.\n * @param other Transform to compare to.\n */\n public isAlmostEqualAllowZRotation(other: Transform): boolean {\n return this._origin.isAlmostEqual(other._origin) && this._matrix.isAlmostEqualAllowZRotation(other._matrix);\n }\n /**\n * Return a 3 by 4 matrix containing the rows of this Transform.\n * * The transform's origin coordinates are the last entries of the 3 json arrays\n */\n public toRows(): number[][] {\n return [\n [this._matrix.coffs[0], this._matrix.coffs[1], this._matrix.coffs[2], this._origin.x],\n [this._matrix.coffs[3], this._matrix.coffs[4], this._matrix.coffs[5], this._origin.y],\n [this._matrix.coffs[6], this._matrix.coffs[7], this._matrix.coffs[8], this._origin.z],\n ];\n }\n /**\n * Return a 3 by 4 matrix containing the rows of this Transform.\n * * The transform's origin coordinates are the last entries of the 3 json arrays\n */\n public toJSON(): TransformProps {\n return this.toRows();\n }\n /** Return a new Transform initialized by `Transform.setFromJSON` */\n public static fromJSON(json?: TransformProps): Transform {\n const result = Transform.createIdentity();\n result.setFromJSON(json);\n return result;\n }\n /** Copy the contents of `this` transform into a new Transform (or to the result, if specified). */\n public clone(result?: Transform): Transform {\n if (result) {\n result._matrix.setFrom(this._matrix);\n result._origin.setFrom(this._origin);\n return result;\n }\n return new Transform(\n Point3d.createFrom(this._origin),\n this._matrix.clone(),\n );\n }\n /**\n * Return a modified copy of `this` Transform so that its `matrix` part is rigid (`origin` part is untouched).\n * @see [[Matrix3d.axisOrderCrossProductsInPlace]] documentation for details of how the matrix is modified to rigid.\n */\n public cloneRigid(axisOrder: AxisOrder = AxisOrder.XYZ): Transform | undefined {\n const modifiedMatrix = Matrix3d.createRigidFromMatrix3d(this.matrix, axisOrder);\n if (!modifiedMatrix)\n return undefined;\n return new Transform(this.origin.cloneAsPoint3d(), modifiedMatrix);\n }\n /** Create a Transform with the given `origin` and `matrix`. Inputs are captured, not cloned. */\n public static createRefs(origin: XYZ | undefined, matrix: Matrix3d, result?: Transform): Transform {\n if (!origin)\n origin = Point3d.createZero();\n if (result) {\n result._origin = origin;\n result._matrix = matrix;\n return result;\n }\n return new Transform(origin, matrix);\n }\n /** Create a Transform with complete contents given. `q` inputs make the matrix and `a` inputs make the origin */\n public static createRowValues(\n qxx: number, qxy: number, qxz: number, ax: number,\n qyx: number, qyy: number, qyz: number, ay: number,\n qzx: number, qzy: number, qzz: number, az: number,\n result?: Transform,\n ): Transform {\n if (result) {\n result._origin.set(ax, ay, az);\n result._matrix.setRowValues(qxx, qxy, qxz, qyx, qyy, qyz, qzx, qzy, qzz);\n return result;\n }\n return new Transform(\n Point3d.create(ax, ay, az),\n Matrix3d.createRowValues(qxx, qxy, qxz, qyx, qyy, qyz, qzx, qzy, qzz),\n );\n }\n /** Create a Transform with all zeros */\n public static createZero(result?: Transform): Transform {\n return Transform.createRowValues(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, result);\n }\n /**\n * Create a Transform with translation provided by x,y,z parts.\n * * Translation Transform maps any vector `v` to `v + p` where `p = (x,y,z)`\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\n * @param x x part of translation\n * @param y y part of translation\n * @param z z part of translation\n * @param result optional pre-allocated Transform\n * @returns new or updated transform\n */\n public static createTranslationXYZ(x: number = 0, y: number = 0, z: number = 0, result?: Transform): Transform {\n return Transform.createRefs(Vector3d.create(x, y, z), Matrix3d.createIdentity(), result);\n }\n /**\n * Create a Transform with specified `translation` part.\n * * Translation Transform maps any vector `v` to `v + translation`\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\n * @param translation x,y,z parts of the translation\n * @param result optional pre-allocated Transform\n * @returns new or updated transform\n */\n public static createTranslation(translation: XYZ, result?: Transform): Transform {\n return Transform.createRefs(translation, Matrix3d.createIdentity(), result);\n }\n /** Return a reference (and NOT a copy) to the `matrix` part of the Transform. */\n public get matrix(): Matrix3d {\n return this._matrix;\n }\n /** Return a reference (and NOT a copy) to the `origin` part of the Transform. */\n public get origin(): XYZ {\n return this._origin;\n }\n /** return a (clone of) the `origin` part of the Transform, as a `Point3d` */\n public getOrigin(): Point3d {\n return Point3d.createFrom(this._origin);\n }\n /** return a (clone of) the `origin` part of the Transform, as a `Vector3d` */\n public getTranslation(): Vector3d {\n return Vector3d.createFrom(this._origin);\n }\n /** return a (clone of) the `matrix` part of the Transform, as a `Matrix3d` */\n public getMatrix(): Matrix3d {\n return this._matrix.clone();\n }\n /** test if the transform has `origin` = (0,0,0) and identity `matrix` */\n public get isIdentity(): boolean {\n return this._matrix.isIdentity && this._origin.isAlmostZero;\n }\n /** Create an identity transform */\n public static createIdentity(result?: Transform): Transform {\n if (result) {\n result._origin.setZero();\n result._matrix.setIdentity();\n return result;\n }\n return Transform.createRefs(Point3d.createZero(), Matrix3d.createIdentity());\n }\n /**\n * Create a Transform using the given `origin` and `matrix`.\n * * This is the appropriate construction when the columns of the matrix are coordinate axes of a\n * local-to-world mapping, and the given point is the axes' origin in world coordinates.\n * * This function is closely related to `createFixedPointAndMatrix` whose point input is the fixed point\n * of the world-to-world transformation.\n * * If origin is `undefined`, (0,0,0) is used. If matrix is `undefined` the identity matrix is used.\n */\n public static createOriginAndMatrix(\n origin: XYZ | undefined, matrix: Matrix3d | undefined, result?: Transform,\n ): Transform {\n if (result) {\n result._origin.setFromPoint3d(origin);\n result._matrix.setFrom(matrix);\n return result;\n }\n return Transform.createRefs(\n origin ? origin.cloneAsPoint3d() : Point3d.createZero(),\n matrix === undefined ? Matrix3d.createIdentity() : matrix.clone(),\n result,\n );\n }\n /** Create a Transform using the given `origin` and columns of the `matrix`. If `undefined` zero is used. */\n public setOriginAndMatrixColumns(\n origin: XYZ | undefined, vectorX: Vector3d | undefined, vectorY: Vector3d | undefined, vectorZ: Vector3d | undefined,\n ): void {\n if (origin !== undefined)\n this._origin.setFrom(origin);\n this._matrix.setColumns(vectorX, vectorY, vectorZ);\n }\n /** Create a Transform using the given `origin` and columns of the `matrix` */\n public static createOriginAndMatrixColumns(\n origin: XYZ, vectorX: Vector3d, vectorY: Vector3d, vectorZ: Vector3d, result?: Transform,\n ): Transform {\n if (result)\n result.setOriginAndMatrixColumns(origin, vectorX, vectorY, vectorZ);\n else\n result = Transform.createRefs(Vector3d.createFrom(origin), Matrix3d.createColumns(vectorX, vectorY, vectorZ));\n return result;\n }\n /**\n * Create a Transform such that its `matrix` part is rigid.\n * @see [[Matrix3d.createRigidFromColumns]] for details of how the matrix is created to be rigid.\n */\n public static createRigidFromOriginAndColumns(\n origin: XYZ | undefined, vectorX: Vector3d, vectorY: Vector3d, axisOrder: AxisOrder, result?: Transform,\n ): Transform | undefined {\n const matrix = Matrix3d.createRigidFromColumns(vectorX, vectorY, axisOrder, result ? result._matrix : undefined);\n if (!matrix)\n return undefined;\n if (result) {\n // result._matrix was already modified to become rigid via createRigidFromColumns\n result._origin.setFrom(origin);\n return result;\n }\n /**\n * We don't want to pass \"origin\" to createRefs because createRefs does not clone \"origin\". That means if \"origin\"\n * is changed via Transform at any point, the initial \"origin\" passed by the user is also changed. To avoid that,\n * we pass \"undefined\" to createRefs so that it allocates a new point which then we set it to the \"origin\" which\n * is passed by user in the next line.\n */\n result = Transform.createRefs(undefined, matrix);\n result._origin.setFromPoint3d(origin);\n return result;\n }\n /**\n * Create a Transform with the specified `matrix`. Compute an `origin` (different from the given `fixedPoint`)\n * so that the `fixedPoint` maps back to itself. The returned Transform, transforms a point `p` to `M*p + (f - M*f)`\n * where `f` is the fixedPoint (i.e., `Tp = M*(p-f) + f`).\n */\n public static createFixedPointAndMatrix(\n fixedPoint: XYAndZ | undefined, matrix: Matrix3d, result?: Transform,\n ): Transform {\n if (fixedPoint) {\n /**\n * if f is a fixed point, then Tf = M*f + o = f where M is the matrix and o is the origin.\n * we define the origin o = f - M*f. Therefore, Tf = Mf + o = M*f + (f - M*f) = f.\n */\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(fixedPoint, matrix, fixedPoint);\n return Transform.createRefs(origin, matrix.clone(), result);\n }\n return Transform.createRefs(undefined, matrix.clone());\n }\n /**\n * Create a transform with the specified `matrix` and points `a` and `b`. The returned Transform maps\n * point `p` to `M*(p-a) + b` (i.e., `Tp = M*(p-a) + b`), so maps `a` to `b`.\n */\n public static createMatrixPickupPutdown(\n matrix: Matrix3d, a: Point3d, b: Point3d, result?: Transform,\n ): Transform {\n // we define the origin o = b - M*a so Tp = M*p + o = M*p + (b - M*a) = M*(p-a) + b\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(b, matrix, a);\n return Transform.createRefs(origin, matrix.clone(), result);\n }\n /**\n * Create a Transform which leaves the fixedPoint unchanged and scales everything else around it by\n * a single scale factor. The returned Transform maps a point `p` to `M*p + (f - M*f)`\n * where `f` is the fixedPoint and M is the scale matrix (i.e., `Tp = M*(p-f) + f`).\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\n */\n public static createScaleAboutPoint(fixedPoint: Point3d, scale: number, result?: Transform): Transform {\n const matrix = Matrix3d.createScale(scale, scale, scale);\n /**\n * if f is a fixed point, then Tf = M*f + o = f where M is the matrix and o is the origin.\n * we define the origin o = f - M*f. Therefore, Tf = M*f + o = M*f + (f - M*f) = f.\n */\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(fixedPoint, matrix, fixedPoint);\n return Transform.createRefs(origin, matrix, result);\n }\n /**\n * Return a transformation which flattens space onto a plane, sweeping along a direction which may be different\n * from the plane normal.\n * * See [Matrix3d.createFlattenAlongVectorToPlane] for math details.\n * @param sweepVector sweep direction. If same as `planeNormal`, the resulting transformation flattens to the plane.\n * @param planePoint any point on the plane\n * @param planeNormal vector normal to the plane.\n */\n public static createFlattenAlongVectorToPlane(sweepVector: Vector3d, planePoint: XYAndZ, planeNormal: Vector3d): Transform | undefined {\n const matrix = Matrix3d.createFlattenAlongVectorToPlane(sweepVector, planeNormal);\n if (matrix === undefined)\n return undefined;\n return Transform.createFixedPointAndMatrix(planePoint, matrix);\n }\n /**\n * Transform the input 2d point (using `Tp = M*p + o`).\n * Return as a new point or in the pre-allocated result (if result is given).\n */\n public multiplyPoint2d(point: XAndY, result?: Point2d): Point2d {\n return Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, point, result);\n }\n /**\n * Transform the input 3d point (using `Tp = M*p + o`).\n * Return as a new point or in the pre-allocated result (if result is given).\n */\n public multiplyPoint3d(point: XYAndZ, result?: Point3d): Point3d {\n // Tx = Mx + o so we return Mx + o\n return Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, point, result);\n }\n /**\n * Transform the input 3d point in place (using `Tp = M*p + o`).\n * Return as a new point or in the pre-allocated result (if result is given).\n */\n public multiplyXYAndZInPlace(point: XYAndZ): void {\n return Matrix3d.xyzPlusMatrixTimesXYZInPlace(this._origin, this._matrix, point);\n }\n /**\n * Transform the input 3d point (using `Tp = M*p + o`).\n * Return as a new point or in the pre-allocated result (if result is given).\n */\n public multiplyXYZ(x: number, y: number, z: number = 0, result?: Point3d): Point3d {\n // Tx = Mx + o so we return Mx + o\n return Matrix3d.xyzPlusMatrixTimesCoordinates(this._origin, this._matrix, x, y, z, result);\n }\n /**\n * Multiply a specific row (component) of the 3x4 instance times (x,y,z,1). Return the result.\n */\n public multiplyComponentXYZ(componentIndex: number, x: number, y: number, z: number = 0): number {\n const coffs = this._matrix.coffs;\n const idx = 3 * componentIndex;\n return this.origin.at(componentIndex) + (coffs[idx] * x) + (coffs[idx + 1] * y) + (coffs[idx + 2] * z);\n }\n /**\n * Multiply a specific row (component) of the 3x4 instance times (x,y,z,w). Return the result.\n */\n public multiplyComponentXYZW(componentIndex: number, x: number, y: number, z: number, w: number): number {\n const coffs = this._matrix.coffs;\n const idx = 3 * componentIndex;\n return (this.origin.at(componentIndex) * w) + (coffs[idx] * x) + (coffs[idx + 1] * y) + (coffs[idx + 2] * z);\n }\n /**\n * Transform the homogeneous point. Return as a new `Point4d`, or in the pre-allocated result (if result is given).\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o*w` and returns the `Point4d` formed by `Tp` in the\n * first three coordinates, and `w` in the fourth.\n * * Logically, this is multiplication by the 4x4 matrix formed from the 3x4 instance augmented with fourth row 0001.\n */\n public multiplyXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\n return Matrix3d.xyzPlusMatrixTimesWeightedCoordinates(this._origin, this._matrix, x, y, z, w, result);\n }\n /**\n * Transform the homogeneous point. Return as new `Float64Array` with size 4, or in the pre-allocated `result` of sufficient size.\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o*w` and returns the `Float64Array` formed by `Tp`\n * in the first 3 numbers of the array and `w` as the fourth.\n * * Logically, this is multiplication by the 4x4 matrix formed from the 3x4 instance augmented with fourth row 0001.\n */\n public multiplyXYZWToFloat64Array(x: number, y: number, z: number, w: number, result?: Float64Array): Float64Array {\n return Matrix3d.xyzPlusMatrixTimesWeightedCoordinatesToFloat64Array(this._origin, this._matrix, x, y, z, w, result);\n }\n /**\n * * Transform the point. Return as new `Float64Array` with size 3, or in the pre-allocated `result` of sufficient size.\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o` and returns it as the first 3 elements of the array.\n */\n public multiplyXYZToFloat64Array(x: number, y: number, z: number, result?: Float64Array): Float64Array {\n return Matrix3d.xyzPlusMatrixTimesCoordinatesToFloat64Array(this._origin, this._matrix, x, y, z, result);\n }\n /**\n * Multiply the homogeneous point by the transpose of `this` Transform. Return as a new `Point4d` or in the\n * pre-allocated result (if result is given).\n * * If `p = (x,y,z)` then this method computes `M^t*p` and returns it in the first three coordinates of the `Point4d`,\n * and `o*p + w` in the fourth.\n * * Logically, this is multiplication by the transpose of the 4x4 matrix formed from the 3x4 instance augmented with\n * fourth row 0001.\n */\n public multiplyTransposeXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\n const coffs = this._matrix.coffs;\n const origin = this._origin;\n return Point4d.create(\n (x * coffs[0]) + (y * coffs[3]) + (z * coffs[6]),\n (x * coffs[1]) + (y * coffs[4]) + (z * coffs[7]),\n (x * coffs[2]) + (y * coffs[5]) + (z * coffs[8]),\n (x * origin.x) + (y * origin.y) + (z * origin.z) + w,\n result,\n );\n }\n /** For each point in the array, replace point by the transformed point (using `Tp = M*p + o`) */\n public multiplyPoint3dArrayInPlace(points: Point3d[]) {\n let point;\n for (point of points)\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, point, point);\n }\n /** For each point in the 2d array, replace point by the transformed point (using `Tp = M*p + o`) */\n public multiplyPoint3dArrayArrayInPlace(chains: Point3d[][]) {\n for (const chain of chains)\n this.multiplyPoint3dArrayInPlace(chain);\n }\n /**\n * Multiply the point by the inverse Transform.\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse`\n * Transform has matrix part `MInverse` and origin part `-MInverse*o`.\n * * Return as a new point or in the optional `result`.\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\n */\n public multiplyInversePoint3d(point: XYAndZ, result?: Point3d): Point3d | undefined {\n return this._matrix.multiplyInverseXYZAsPoint3d(\n point.x - this._origin.x,\n point.y - this._origin.y,\n point.z - this._origin.z,\n result,\n );\n }\n /**\n * Multiply the homogenous point by the inverse Transform.\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse` Transform\n * has matrix part `MInverse` and origin part `-MInverse*o`.\n * * This method computes `TInverse p = MInverse*p - w*MInverse*o` and returns the `Point4d` formed by `TInverse*p`\n * in the first three coordinates, and `w` in the fourth.\n * * Logically, this is multiplication by the inverse of the 4x4 matrix formed from the 3x4 instance augmented with\n * fourth row 0001. This is equivalent to the 4x4 matrix formed in similar fashion from the inverse of this instance.\n * * Return as a new point or in the optional `result`.\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\n */\n public multiplyInversePoint4d(weightedPoint: Point4d, result?: Point4d): Point4d | undefined {\n const w = weightedPoint.w;\n return this._matrix.multiplyInverseXYZW(\n weightedPoint.x - w * this.origin.x,\n weightedPoint.y - w * this.origin.y,\n weightedPoint.z - w * this.origin.z,\n w,\n result,\n );\n }\n /**\n * Multiply the point by the inverse Transform.\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse` Transform\n * has matrix part `MInverse` and origin part `-MInverse*o`.\n * * Return as a new point or in the optional `result`.\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\n */\n public multiplyInverseXYZ(x: number, y: number, z: number, result?: Point3d): Point3d | undefined {\n return this._matrix.multiplyInverseXYZAsPoint3d(\n x - this._origin.x,\n y - this._origin.y,\n z - this._origin.z,\n result,\n );\n }\n /**\n * * Compute (if needed) the inverse of the `matrix` part of the Transform, thereby ensuring inverse\n * operations can complete.\n * @param useCached If true, accept prior cached inverse if available.\n * @returns `true` if matrix inverse completes, `false` otherwise.\n */\n public computeCachedInverse(useCached: boolean = true): boolean {\n return this._matrix.computeCachedInverse(useCached);\n }\n /**\n * Match the length of destination array with the length of source array\n * * If destination has more elements than source, remove the extra elements.\n * * If destination has fewer elements than source, use `constructionFunction` to create new elements.\n * *\n * @param source the source array\n * @param dest the destination array\n * @param constructionFunction function to call to create new elements.\n */\n public static matchArrayLengths(source: any[], dest: any[], constructionFunction: () => any): number {\n const numSource = source.length;\n const numDest = dest.length;\n if (numSource > numDest) {\n for (let i = numDest; i < numSource; i++) {\n dest.push(constructionFunction());\n }\n } else if (numDest > numSource) {\n dest.length = numSource;\n }\n return numSource;\n }\n /**\n * Multiply each point in the array by the inverse of `this` Transform.\n * * For a transform `T = [M o]` the inverse transform `T' = [M' -M'o]` exists if and only if `M` has an inverse\n * `M'`. Indeed, for any point `p`, we have `T'Tp = T'(Mp + o) = M'(Mp + o) - M'o = M'Mp + M'o - M'o = p.`\n * * If `result` is given, resize it to match the input `points` array and update it with original points `p[]`.\n * * If `result` is not given, return a new array.\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\n */\n public multiplyInversePoint3dArray(points: Point3d[], result?: Point3d[]): Point3d[] | undefined {\n if (!this._matrix.computeCachedInverse(true))\n return undefined;\n const originX = this.origin.x;\n const originY = this.origin.y;\n const originZ = this.origin.z;\n if (result) {\n const n = Transform.matchArrayLengths(points, result, () => Point3d.createZero());\n for (let i = 0; i < n; i++)\n this._matrix.multiplyInverseXYZAsPoint3d(\n points[i].x - originX,\n points[i].y - originY,\n points[i].z - originZ,\n result[i],\n );\n return result;\n }\n result = [];\n for (const point of points)\n result.push(\n this._matrix.multiplyInverseXYZAsPoint3d(\n point.x - originX,\n point.y - originY,\n point.z - originZ,\n )!,\n );\n return result;\n }\n /**\n * Multiply each point in the array by the inverse of `this` Transform in place.\n * * For a transform `T = [M o]` the inverse transform `T' = [M' -M'o]` exists if and only if `M` has an inverse\n * `M'`. Indeed, for any point `p`, we have `T'Tp = T'(Mp + o) = M'(Mp + o) - M'o = M'Mp + M'o - M'o = p.`\n * * Returns `true` if the `matrix` part if this Transform is invertible and `false` if singular.\n */\n public multiplyInversePoint3dArrayInPlace(points: Point3d[]): boolean {\n if (!this._matrix.computeCachedInverse(true))\n return false;\n for (const point of points)\n this._matrix.multiplyInverseXYZAsPoint3d(\n point.x - this.origin.x,\n point.y - this.origin.y,\n point.z - this.origin.z,\n point,\n );\n return true;\n }\n /**\n * Transform the input 2d point array (using `Tp = M*p + o`).\n * * If `result` is given, resize it to match the input `points` array and update it with transformed points.\n * * If `result` is not given, return a new array.\n */\n public multiplyPoint2dArray(points: Point2d[], result?: Point2d[]): Point2d[] {\n if (result) {\n const n = Transform.matchArrayLengths(points, result, () => Point2d.createZero());\n for (let i = 0; i < n; i++)\n Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, points[i], result[i]);\n return result;\n }\n result = [];\n for (const p of points)\n result.push(Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, p));\n return result;\n }\n /**\n * Transform the input 3d point array (using `Tp = M*p + o`).\n * * If `result` is given, resize it to match the input `points` array and update it with transformed points.\n * * If `result` is not given, return a new array.\n */\n public multiplyPoint3dArray(points: Point3d[], result?: Point3d[]): Point3d[] {\n if (result) {\n const n = Transform.matchArrayLengths(points, result, () => Point3d.createZero());\n for (let i = 0; i < n; i++)\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, points[i], result[i]);\n return result;\n }\n result = [];\n for (const p of points)\n result.push(Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, p));\n return result;\n }\n /**\n * Multiply the vector by the `matrix` part of the Transform.\n * * The `origin` part of Transform is not used.\n * * If `result` is given, update it with the multiplication. Otherwise, create a new Vector3d.\n */\n public multiplyVector(vector: Vector3d, result?: Vector3d): Vector3d {\n return this._matrix.multiplyVector(vector, result);\n }\n /**\n * Multiply the vector by the `matrix` part of the Transform in place.\n * * The `origin` part of Transform is not used.\n */\n public multiplyVectorInPlace(vector: Vector3d): void {\n this._matrix.multiplyVectorInPlace(vector);\n }\n /**\n * Multiply the vector (x,y,z) by the `matrix` part of the Transform.\n * * The `origin` part of Transform is not used.\n * * If `result` is given, update it with the multiplication. Otherwise, create a new Vector3d.\n */\n public multiplyVectorXYZ(x: number, y: number, z: number, result?: Vector3d): Vector3d {\n return this._matrix.multiplyXYZ(x, y, z, result);\n }\n /**\n * Calculate `transformA * transformB` and store it into the calling instance (`this`).\n * * **Note:** If `transformA = [A a]` and `transformB = [B b]` then `transformA * transformB` is defined as\n * `[A*B Ab+a]`.\n * * @see [[multiplyTransformTransform]] documentation for math details.\n * @param transformA first operand\n * @param transformB second operand\n */\n public setMultiplyTransformTransform(transformA: Transform, transformB: Transform): void {\n Matrix3d.xyzPlusMatrixTimesXYZ(\n transformA._origin,\n transformA._matrix,\n transformB._origin,\n this._origin as Point3d,\n );\n transformA._matrix.multiplyMatrixMatrix(transformB._matrix, this._matrix);\n }\n /**\n * Multiply `this` Transform times `other` Transform.\n * * **Note:** If `this = [A a]` and `other = [B b]` then `this * other` is defined as `[A*B Ab+a]` because:\n * ```\n * equation\n * \\begin{matrix}\n * \\text{this Transform with matrix part }\\bold{A}\\text{ and origin part }\\bold{a} & \\blockTransform{A}{a}\\\\\n * \\text{other Transform with matrix part }\\bold{B}\\text{ and origin part }\\bold{b} & \\blockTransform{B}{b} \\\\\n * \\text{product}& \\blockTransform{A}{a}\\blockTransform{B}{b}=\\blockTransform{AB}{Ab + a}\n * \\end{matrix}\n * ```\n * @param other the `other` Transform to be multiplied to `this` Transform.\n * @param result optional preallocated `result` to reuse.\n */\n public multiplyTransformTransform(other: Transform, result?: Transform) {\n if (!result)\n return Transform.createRefs(\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, other._origin),\n this._matrix.multiplyMatrixMatrix(other._matrix),\n );\n result.setMultiplyTransformTransform(this, other);\n return result;\n }\n /**\n * Multiply `this` Transform times `other` Matrix3d (considered to be a Transform with 0 `origin`).\n * * **Note:** If `this = [A a]` and `other = [B 0]`, then `this * other` is defined as [A*B a] because:\n * ```\n * equation\n * \\begin{matrix}\n * \\text{this Transform with matrix part }\\bold{A}\\text{ and origin part }\\bold{a} & \\blockTransform{A}{a}\\\\\n * \\text{other matrix }\\bold{B}\\text{ promoted to block Transform} & \\blockTransform{B}{0} \\\\\n * \\text{product}& \\blockTransform{A}{a}\\blockTransform{B}{0}=\\blockTransform{AB}{a}\n * \\end{matrix}\n * ```\n * @param other the `other` Matrix3d to be multiplied to `this` Transform.\n * @param result optional preallocated `result` to reuse.\n */\n public multiplyTransformMatrix3d(other: Matrix3d, result?: Transform): Transform {\n if (!result)\n return Transform.createRefs(\n this._origin.cloneAsPoint3d(),\n this._matrix.multiplyMatrixMatrix(other),\n );\n this._matrix.multiplyMatrixMatrix(other, result._matrix);\n result._origin.setFrom(this._origin);\n return result;\n }\n /**\n * Return the range of the transformed corners.\n * * The 8 corners are transformed individually.\n * * **Note:** Suppose you have a geometry, a range box around that geometry, and your Transform is a rotation.\n * If you rotate the range box and recompute a new range box around the rotated range box, then the new range\n * box will have a larger volume than the original range box. However, if you rotate the geometry itself and\n * then recompute the range box, it will be a tighter range box around the rotated geometry. `multiplyRange`\n * function creates the larger range box because it only has access to the range box and not the geometry itself.\n */\n public multiplyRange(range: Range3d, result?: Range3d): Range3d {\n if (range.isNull)\n return range.clone(result);\n const lowX = range.low.x;\n const lowY = range.low.y;\n const lowZ = range.low.z;\n const highX = range.high.x;\n const highY = range.high.y;\n const highZ = range.high.z;\n result = Range3d.createNull(result);\n result.extendTransformedXYZ(this, lowX, lowY, lowZ);\n result.extendTransformedXYZ(this, highX, lowY, lowZ);\n result.extendTransformedXYZ(this, lowX, highY, lowZ);\n result.extendTransformedXYZ(this, highX, highY, lowZ);\n result.extendTransformedXYZ(this, lowX, lowY, highZ);\n result.extendTransformedXYZ(this, highX, lowY, highZ);\n result.extendTransformedXYZ(this, lowX, highY, highZ);\n result.extendTransformedXYZ(this, highX, highY, highZ);\n return result;\n }\n /**\n * Return a Transform which is the inverse of `this` Transform.\n * * If `transform = [M o]` then `transformInverse = [MInverse -MInverse*o]`\n * * Return `undefined` if this Transform's matrix is singular.\n */\n public inverse(result?: Transform): Transform | undefined {\n const matrixInverse = this._matrix.inverse(result ? result._matrix : undefined);\n if (!matrixInverse)\n return undefined;\n if (result) {\n // result._matrix is already defined\n matrixInverse.multiplyXYZ(-this._origin.x, -this._origin.y, -this._origin.z, result._origin as Vector3d);\n return result;\n }\n return Transform.createRefs(\n matrixInverse.multiplyXYZ(-this._origin.x, -this._origin.y, -this._origin.z),\n matrixInverse,\n );\n }\n /**\n * Initialize 2 Transforms that map between the unit box (specified by 000 and 111) and the range box specified\n * by the input points.\n * @param min the min corner of the range box\n * @param max the max corner of the range box\n * @param npcToGlobal maps NPC coordinates into range box coordinates. Specifically, maps 000 to `min` and maps\n * 111 to `max`. This Transform is the inverse of `globalToNpc`. Object created by caller, re-initialized here.\n * @param globalToNpc maps range box coordinates into NPC coordinates. Specifically, maps `min` to 000 and maps\n * `max` to 111. This Transform is the inverse of `npcToGlobal`. Object created by caller, re-initialized here.\n * * NPC stands for `Normalized Projection Coordinate`\n */\n public static initFromRange(min: Point3d, max: Point3d, npcToGlobal?: Transform, globalToNpc?: Transform): void {\n const diag = max.minus(min);\n if (diag.x === 0.0)\n diag.x = 1.0;\n if (diag.y === 0.0)\n diag.y = 1.0;\n if (diag.z === 0.0)\n diag.z = 1.0;\n const rMatrix = new Matrix3d();\n /**\n * [diag.x 0 0 min.x]\n * npcToGlobal = [ 0 diag.y 0 min.y]\n * [ 0 0 diag.y min.z]\n *\n * npcToGlobal * 0 = min\n * npcToGlobal * 1 = diag + min = max\n */\n if (npcToGlobal) {\n Matrix3d.createScale(diag.x, diag.y, diag.z, rMatrix);\n Transform.createOriginAndMatrix(min, rMatrix, npcToGlobal);\n }\n /**\n * [1/diag.x 0 0 -min.x/diag.x]\n * globalToNpc = [ 0 1/diag.y 0 -min.y/diag.y]\n * [ 0 0 1/diag.y -min.z/diag.z]\n *\n * globalToNpc * min = min/diag - min/diag = 0\n * globalToNpc * max = max/diag - min/diag = diag/diag = 1\n */\n if (globalToNpc) {\n const origin = new Point3d(-min.x / diag.x, -min.y / diag.y, -min.z / diag.z);\n Matrix3d.createScale(1.0 / diag.x, 1.0 / diag.y, 1.0 / diag.z, rMatrix);\n Transform.createOriginAndMatrix(origin, rMatrix, globalToNpc);\n }\n }\n}\n"]}
@@ -158,43 +158,43 @@ export declare namespace IModelJson {
158
158
  ruledSweep?: RuledSweepProps;
159
159
  }
160
160
  /**
161
- * * There are multiple ways to specify an orientation
162
- * * A "Best" among these is application specific.
163
- * * An object with AxesProps should only specify one of the variants.
164
- * * YawPitchRollAngles uses 3 angles.
165
- * * * Cases where only one of the 3 is nonzero are intuitive
166
- * * * Cases where more than one is nonzero have difficult interactions and order issues.
167
- * * xyVectors uses a vector along the x direction and a vector into positive xy plane
168
- * along any direction not parallel to x.
169
- * * * In most cases, users supply a normalized x and the actual normalized y vector.
170
- * * zxVectors uses a z vector and another vector into the positive zx plane.
171
- * * * In most cases, users supply a normalized z and the actual normalized x vector.
161
+ * Ways to specify an object's local coordinate frame.
162
+ * * Most objects that implement AxesProps specify their local coordinate frame by a right-handed
163
+ * rotation matrix (`yawPitchRollAngles`, `xyVectors`, `zxVectors`).
164
+ * * A general invertible matrix can be specified by `xyzVectors`.
165
+ * * An object that implements AxesProps typically specifies only one variant, or none for Identity.
172
166
  * @public
173
167
  */
174
168
  interface AxesProps {
175
169
  /**
176
- * See YawPitchAngles class for further information about using 3 rotations to specify orientation.
170
+ * A rotation specified by yaw, pitch, roll angles.
171
+ * * Cases where only one of these angles is nonzero are intuitive.
172
+ * * Cases where more than one is nonzero have difficult interactions and order issues.
173
+ * * See [[YawPitchRollAngles]] for further information.
177
174
  * @public
178
175
  */
179
176
  yawPitchRollAngles?: YawPitchRollProps;
180
177
  /**
181
- * Cartesian coordinate directions defined by X direction then Y direction.
182
- * * The right side contains two vectors in an array.
183
- * * The first vector gives the x axis direction
184
- * * * This is normalized to unit length.
185
- * * The second vector gives the positive y direction in the xy plane.
186
- * * * This vector is adjusted to be unit length and perpendicular to the x direction.
178
+ * A rotation specified by an array of two vectors [xAxis, yAxis].
179
+ * * The first vector gives the local x-axis direction; the second determines the local xy-plane.
180
+ * * A third implied axis is perpendicular to these.
181
+ * * The implied rotation is `Matrix3d.createRigidFromColumns(xAxis, yAxis, AxisOrder.XYZ)`.
187
182
  */
188
183
  xyVectors?: [XYZProps, XYZProps];
189
184
  /**
190
- * Cartesian coordinate directions defined by Z direction then X direction.
191
- * * The right side contains two vectors in an array.
192
- * * The first vector gives the z axis direction
193
- * * * This is normalized to unit length.
194
- * * The second vector gives the positive x direction in the zx plane.
195
- * * * This vector is adjusted to be unit length and perpendicular to the z direction.
185
+ * A rotation specified by an array of two vectors [zAxis, xAxis].
186
+ * * The first vector gives the local z-axis direction; the second determines the local zx-plane.
187
+ * * A third implied axis is perpendicular to these.
188
+ * * The implied rotation is `Matrix3d.createRigidFromColumns(zAxis, xAxis, AxisOrder.ZXY)`.
196
189
  */
197
190
  zxVectors?: [XYZProps, XYZProps];
191
+ /**
192
+ * A local coordinate system specified by an array of three vectors [xAxis, yAxis, zAxis].
193
+ * * The vectors should have positive length and be linearly independent, but otherwise they are unrestricted.
194
+ * * This allows skew coordinate systems, left-handed frames, and non-uniform scaling.
195
+ * * The implied matrix is `Matrix3d.createColumns(xAxis, yAxis, zAxis)`.
196
+ */
197
+ xyzVectors?: [XYZProps, XYZProps, XYZProps];
198
198
  }
199
199
  /**
200
200
  * Interface for Arc3d value defined by center, vectorX, vectorY and sweepStartEnd.
@@ -211,25 +211,34 @@ export declare namespace IModelJson {
211
211
  sweepStartEnd: AngleSweepProps;
212
212
  }
213
213
  /**
214
- * Interface for Cone value defined by centers, radii, and (optional) vectors for circular section planes.
215
- * * VectorX and vectorY are optional.
216
- * * If either one is missing, both vectors are constructed perpendicular to the vector from start to end.
214
+ * Interface for a [[Cone]], defined by two centers and radii.
215
+ * * A Cone typically has circular sections perpendicular to the axis line between centers.
216
+ * * The cross section xy-plane is specified by an [[IModelJson.AxesProps]]:
217
+ * * Typically this is an `xyVectors`.
218
+ * * Elliptical cross sections can be specified with `xyzVectors`, which admits skew vectors
219
+ * and/or vectors of different lengths. Elliptical cross sections are scaled by radius.
217
220
  * @public
218
221
  */
219
222
  interface ConeProps extends AxesProps {
220
- /** Point on axis at start section. */
223
+ /** Point on axis at center of start section. */
221
224
  start: XYZProps;
222
- /** Point on axis at end section */
225
+ /** Point on axis at center of end section. */
223
226
  end: XYZProps;
224
- /** radius at `start` section */
227
+ /** Radius of the section at `start` if circular, or scale factor if elliptical. */
225
228
  startRadius?: number;
226
- /** radius at `end` section */
229
+ /** Radius of the section at `end` if circular, or scale factor if elliptical. */
227
230
  endRadius?: number;
228
- /** single radius to be applied as both start and end */
231
+ /** Constant radius of all sections if circular, or scale factor if elliptical. */
229
232
  radius?: number;
230
- /** optional x vector in start section. Omit for circular sections perpendicular to axis. */
233
+ /**
234
+ * Optional section x-axis.
235
+ * @deprecated in 5.x. This property has never been written. Optional axes are specified by an AxesProps.
236
+ */
231
237
  vectorX?: XYZProps;
232
- /** optional y vector in start section. Omit for circular sections perpendicular to axis. */
238
+ /**
239
+ * Optional section y-axis.
240
+ * @deprecated in 5.x. This property has never been written. Optional axes are specified by an AxesProps.
241
+ */
233
242
  vectorY?: XYZProps;
234
243
  /** flag for circular end caps. */
235
244
  capped?: boolean;
@@ -390,8 +399,11 @@ export declare namespace IModelJson {
390
399
  capped?: boolean;
391
400
  }
392
401
  /**
393
- * Interface for Sphere (with optionally different radius to pole versus equator)
394
- * * Orientation may be given in any `AxesProp`s way (yawPitchRoll, xyVectors, zxVectors)
402
+ * Interface for a [[Sphere]].
403
+ * * Local coordinate frame is supplied by an [[IModelJson.AxesProps]]:
404
+ * * Typically this is a `zxVectors`.
405
+ * * Skew axes can be specified with `xyzVectors`, in which case any specified radii scale these axes;
406
+ * all other AxesProps specify a right-handed orthonormal triad.
395
407
  * @public
396
408
  */
397
409
  interface SphereProps extends AxesProps {
@@ -403,7 +415,7 @@ export declare namespace IModelJson {
403
415
  radiusX?: number;
404
416
  /** optional y radius */
405
417
  radiusY?: number;
406
- /** optional radius at poles. */
418
+ /** optional z radius */
407
419
  radiusZ?: number;
408
420
  /** optional sweep range for latitude. Default latitude limits are [-90,90 ] degrees. */
409
421
  latitudeStartEnd?: AngleSweepProps;
@@ -557,10 +569,11 @@ export declare namespace IModelJson {
557
569
  private static parseAxesFromVectors;
558
570
  /**
559
571
  * Look for orientation data and convert to Matrix3d.
560
- * * Search order is:
561
- * * * yawPitchRollAngles
562
- * * * xyVectors
563
- * * * zxVectors
572
+ * * Search order and interpretation:
573
+ * * * xyzVectors - general matrix, axes preserved
574
+ * * * yawPitchRollAngles - right-handed rotation via axial rotations
575
+ * * * xyVectors - right-handed rotation, xy-plane specified, axes squared and normalized
576
+ * * * zxVectors - right-handed rotation, zx-plane specified, axes squared and normalized
564
577
  * @param json [in] json source data
565
578
  * @param createDefaultIdentity [in] If true and no orientation is present, return an identity matrix. If false and no orientation is present, return undefined.
566
579
  */
@@ -1 +1 @@
1
- {"version":3,"file":"IModelJsonSchema.d.ts","sourceRoot":"","sources":["../../../src/serialization/IModelJsonSchema.ts"],"names":[],"mappings":"AAUA,OAAO,EAAE,YAAY,EAAE,MAAM,yBAAyB,CAAC;AACvD,OAAO,EAAE,aAAa,EAAE,MAAM,0BAA0B,CAAC;AACzD,OAAO,EAAE,cAAc,EAAE,MAAM,2BAA2B,CAAC;AAC3D,OAAO,EAAE,cAAc,EAAE,MAAM,yBAAyB,CAAC;AACzD,OAAO,EAAE,eAAe,EAAE,MAAM,4BAA4B,CAAC;AAE7D,OAAO,EAAE,gBAAgB,EAAE,iBAAiB,EAAyB,MAAM,2BAA2B,CAAC;AACvG,OAAO,EAAE,oBAAoB,IAAI,oBAAoB,EAAE,yBAAyB,EAAE,MAAM,iCAAiC,CAAC;AAE1H,OAAO,EAAE,KAAK,EAAE,MAAM,gBAAgB,CAAC;AACvC,OAAO,EAAE,aAAa,EAAE,MAAM,wBAAwB,CAAC;AACvD,OAAO,EAAE,WAAW,EAAE,eAAe,EAAE,MAAM,0BAA0B,CAAC;AACxE,OAAO,EAAE,gBAAgB,EAAiB,MAAM,wBAAwB,CAAC;AACzE,OAAO,EAAE,aAAa,EAAE,MAAM,wBAAwB,CAAC;AACvD,OAAO,EAAE,YAAY,EAAE,MAAM,uBAAuB,CAAC;AACrD,OAAO,EAAE,IAAI,EAAE,MAAM,eAAe,CAAC;AACrC,OAAO,EAAE,YAAY,EAAE,MAAM,uBAAuB,CAAC;AACrD,OAAO,EAAE,IAAI,EAAE,MAAM,eAAe,CAAC;AACrC,OAAO,EAAE,aAAa,EAAE,MAAM,wBAAwB,CAAC;AAGvD,OAAO,EAAE,kBAAkB,EAAE,MAAM,oCAAoC,CAAC;AACxE,OAAO,EAAE,WAAW,EAAE,MAAM,sBAAsB,CAAC;AACnD,OAAO,EAAE,UAAU,EAAE,eAAe,EAAuB,MAAM,aAAa,CAAC;AAG/E,OAAO,EAAE,eAAe,EAAE,MAAM,+BAA+B,CAAC;AAGhE,OAAO,EAAE,OAAO,EAAiB,MAAM,+BAA+B,CAAC;AAIvE,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,MAAM,wBAAwB,CAAC;AAC3D,OAAO,EAAsB,iBAAiB,EAAE,MAAM,kCAAkC,CAAC;AACzF,OAAO,EAA8B,kBAAkB,EAAE,eAAe,EAAE,MAAM,qBAAqB,CAAC;AACtG,OAAO,EAAE,eAAe,EAAE,MAAM,sBAAsB,CAAC;AACvD,OAAO,EAAE,iBAAiB,EAAE,MAAM,+BAA+B,CAAC;AAClE,OAAO,EAAE,GAAG,EAAE,MAAM,cAAc,CAAC;AACnC,OAAO,EAAE,IAAI,EAAE,MAAM,eAAe,CAAC;AACrC,OAAO,EAAE,WAAW,EAAE,MAAM,sBAAsB,CAAC;AACnD,OAAO,EAAE,eAAe,EAAE,MAAM,0BAA0B,CAAC;AAC3D,OAAO,EAAE,UAAU,EAAE,MAAM,qBAAqB,CAAC;AACjD,OAAO,EAAE,MAAM,EAAE,MAAM,iBAAiB,CAAC;AACzC,OAAO,EAAE,SAAS,EAAE,MAAM,oBAAoB,CAAC;AAG/C;;;GAGG;AACH,yBAAiB,UAAU,CAAC;IAC1B;;;OAGG;IACH,UAAiB,aAAc,SAAQ,mBAAmB,EAAE,mBAAmB,EAAE,oBAAoB;QACnG,0BAA0B;QAC1B,WAAW,CAAC,EAAE,gBAAgB,CAAC;QAC/B,oBAAoB;QACpB,KAAK,CAAC,EAAE,QAAQ,CAAC;QACjB,oBAAoB;QACpB,KAAK,CAAC,EAAE,mBAAmB,CAAC;QAC5B,0BAA0B;QAC1B,WAAW,CAAC,EAAE,QAAQ,EAAE,CAAC;KAC1B;IACD;;;;OAIG;IACH,UAAiB,mBAAmB;QAClC,0BAA0B;QAC1B,WAAW,CAAC,EAAE,CAAC,QAAQ,EAAE,QAAQ,CAAC,CAAC;QACnC,yBAAyB;QACzB,UAAU,CAAC,EAAE,QAAQ,EAAE,CAAC;QACxB,qBAAqB;QACrB,MAAM,CAAC,EAAE,WAAW,CAAC;QACrB,+BAA+B;QAC/B,gBAAgB,CAAC,EAAE,qBAAqB,CAAC;QACzC,kBAAkB;QAClB,GAAG,CAAC,EAAE,gBAAgB,GAAG,CAAC,QAAQ,EAAE,QAAQ,EAAE,QAAQ,CAAC,CAAC;QACxD,iCAAiC;QACjC,kBAAkB,CAAC,EAAE,yBAAyB,CAAC;KAChD;IAED;;;OAGG;IACH,UAAiB,UAAU;QACzB,oBAAoB;QACpB,KAAK,CAAC,EAAE,QAAQ,CAAC;KAClB;IAED;;;;OAIG;IACH,UAAiB,mBAAmB;QAClC,2EAA2E;QAC3E,MAAM,EAAE,MAAM,CAAC;QACf,2EAA2E;QAC3E,MAAM,EAAE,MAAM,CAAC;QACf,kGAAkG;QAClG,MAAM,EAAE,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QACrB,iDAAiD;QACjD,MAAM,EAAE,CAAC,MAAM,CAAC,CAAC;QACjB,iDAAiD;QACjD,MAAM,EAAE,CAAC,MAAM,CAAC,CAAC;QACjB,mEAAmE;QACnE,OAAO,CAAC,EAAE,OAAO,CAAC;QAClB,mEAAmE;QACnE,OAAO,CAAC,EAAE,OAAO,CAAC;KACnB;IAED;;;OAGG;IACH,UAAiB,oBAAqB,SAAQ,iBAAiB;QAC7D,gDAAgD;QAChD,IAAI,CAAC,EAAE,CAAC,mBAAmB,CAAC,CAAC;QAE7B;;;UAGE;QACF,WAAW,CAAC,EAAE,CAAC,oBAAoB,CAAC,CAAC;QACrC,wEAAwE;QACxE,WAAW,CAAC,EAAE,CAAC,oBAAoB,GAAG,mBAAmB,CAAC,CAAC;KAC5D;IAED;;;OAGG;IACH,UAAiB,iBAAiB;QAChC;;WAEG;QACH,IAAI,CAAC,EAAE,CAAC,mBAAmB,CAAC,CAAC;QAC7B;;;WAGG;QACH,YAAY,CAAC,EAAE,CAAC;YAAE,IAAI,EAAE,CAAC,mBAAmB,CAAC,CAAA;SAAE,CAAC,CAAC;QACjD;;WAEG;QACH,WAAW,CAAC,EAAE,CAAC,iBAAiB,CAAC,CAAC;KACnC;IACD;;;OAGG;IACH,UAAiB,mBAAmB;QAClC,uBAAuB;QACvB,QAAQ,CAAC,EAAE,aAAa,CAAC;QACzB,kBAAkB;QAClB,GAAG,CAAC,EAAE,QAAQ,CAAC;QACf,8BAA8B;QAC9B,MAAM,CAAC,EAAE,WAAW,CAAC;QACrB,4BAA4B;QAC5B,IAAI,CAAC,EAAE,SAAS,CAAC;QACjB,iCAAiC;QACjC,SAAS,CAAC,EAAE,cAAc,CAAC;QAC3B,gCAAgC;QAChC,WAAW,CAAC,EAAE,gBAAgB,CAAC;QAC/B,8BAA8B;QAC9B,eAAe,CAAC,EAAE,oBAAoB,CAAC;QACvC,yBAAyB;QACzB,UAAU,CAAC,EAAE,eAAe,CAAC;KAC9B;IACD;;;;;;;;;;;;;OAaG;IACH,UAAiB,SAAS;QACxB;;;WAGG;QACH,kBAAkB,CAAC,EAAE,iBAAiB,CAAC;QACvC;;;;;;;WAOG;QACH,SAAS,CAAC,EAAE,CAAC,QAAQ,EAAE,QAAQ,CAAC,CAAC;QACjC;;;;;;;WAOG;QACH,SAAS,CAAC,EAAE,CAAC,QAAQ,EAAE,QAAQ,CAAC,CAAC;KAClC;IAED;;;OAGG;IACH,UAAiB,gBAAgB;QAC/B,uBAAuB;QACvB,MAAM,EAAE,QAAQ,CAAC;QACjB,+EAA+E;QAC/E,OAAO,EAAE,QAAQ,CAAC;QAClB,8EAA8E;QAC9E,OAAO,EAAE,QAAQ,CAAC;QAClB,iGAAiG;QACjG,aAAa,EAAE,eAAe,CAAC;KAChC;IAED;;;;;OAKG;IACH,UAAiB,SAAU,SAAQ,SAAS;QAC1C,sCAAsC;QACtC,KAAK,EAAE,QAAQ,CAAC;QAChB,oCAAoC;QACpC,GAAG,EAAE,QAAQ,CAAC;QAEd,gCAAgC;QAChC,WAAW,CAAC,EAAE,MAAM,CAAC;QACrB,8BAA8B;QAC9B,SAAS,CAAC,EAAE,MAAM,CAAC;QACnB,wDAAwD;QACxD,MAAM,CAAC,EAAE,MAAM,CAAC;QAChB,6FAA6F;QAC7F,OAAO,CAAC,EAAE,QAAQ,CAAC;QACnB,6FAA6F;QAC7F,OAAO,CAAC,EAAE,QAAQ,CAAC;QACnB,kCAAkC;QAClC,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;OAGG;IACH,UAAiB,aAAa;QAC5B,0BAA0B;QAC1B,KAAK,EAAE,QAAQ,CAAC;QAChB,wBAAwB;QACxB,GAAG,EAAE,QAAQ,CAAC;QACd,sBAAsB;QACtB,MAAM,EAAE,MAAM,CAAC;QACf,kCAAkC;QAClC,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;OAGG;IACH,UAAiB,gBAAgB;QAC/B,uDAAuD;QACvD,OAAO,EAAE,oBAAoB,CAAC;QAC9B,wBAAwB;QACxB,MAAM,EAAE,QAAQ,CAAC;QACjB,kCAAkC;QAClC,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;OAGG;IACH,UAAiB,oBAAoB;QACnC,uDAAuD;QACvD,OAAO,EAAE,oBAAoB,CAAC;QAC9B,yCAAyC;QACzC,MAAM,EAAE,QAAQ,CAAC;QACjB,4BAA4B;QAC5B,IAAI,EAAE,QAAQ,CAAC;QACf,kBAAkB;QAClB,UAAU,EAAE,UAAU,CAAC;QACvB,kCAAkC;QAClC,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;OAGG;IACH,UAAiB,eAAe;QAC9B,2CAA2C;QAC3C,OAAO,EAAE,CAAC,oBAAoB,CAAC,CAAC;QAChC,6BAA6B;QAC7B,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;;;;;OAOG;IACH,UAAiB,qBAAsB,SAAQ,SAAS;QAEtD,uCAAuC;QACvC,MAAM,EAAE,QAAQ,CAAC;QACjB,sCAAsC;QACtC,YAAY,CAAC,EAAE,UAAU,CAAC;QAC1B,mBAAmB;QACnB,UAAU,CAAC,EAAE,UAAU,CAAC;QACxB,6CAA6C;QAC7C,WAAW,CAAC,EAAE,MAAM,CAAC;QACrB,2CAA2C;QAC3C,SAAS,CAAC,EAAE,MAAM,CAAC;QACnB;WACG;QACH,MAAM,CAAC,EAAE,MAAM,CAAC;QAChB;;;WAGG;QACH,sBAAsB,CAAC,EAAE,MAAM,EAAE,CAAC;QAClC;;WAEG;QACH,IAAI,CAAC,EAAE,MAAM,CAAC;KACf;IAED;;;OAGG;IACH,UAAiB,WAAW;QAC1B,qBAAqB;QACrB,MAAM,EAAE,CAAC,QAAQ,CAAC,CAAC;QACnB,aAAa;QACb,KAAK,EAAE,CAAC,MAAM,CAAC,CAAC;QAChB;;;;;;;;;;;;;WAaG;QACH,KAAK,EAAE,MAAM,CAAC;QACd,uCAAuC;QACvC,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;;;;;;OAQG;IACH,UAAiB,QAAS,SAAQ,SAAS;QACzC,sDAAsD;QACtD,MAAM,EAAE,QAAQ,CAAC;QACjB;;;;WAIG;QACH,UAAU,CAAC,EAAE,QAAQ,CAAC;QACtB,6BAA6B;QAC7B,KAAK,EAAE,MAAM,CAAC;QACd;;WAEG;QACH,KAAK,CAAC,EAAE,MAAM,CAAC;QACf;;;WAGG;QACH,SAAS,CAAC,EAAE,QAAQ,CAAC;QACrB;;UAEE;QACF,MAAM,CAAC,EAAE,MAAM,CAAC;QAChB;;WAEG;QACH,IAAI,CAAC,EAAE,MAAM,CAAC;QACd;;WAEG;QACH,IAAI,CAAC,EAAE,MAAM,CAAC;QACd,6BAA6B;QAC7B,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;;OAIG;IACH,UAAiB,WAAY,SAAQ,SAAS;QAC5C,6CAA6C;QAC7C,MAAM,EAAE,QAAQ,CAAC;QAEjB,qBAAqB;QACrB,MAAM,CAAC,EAAE,MAAM,CAAC;QAChB,wBAAwB;QACxB,OAAO,CAAC,EAAE,MAAM,CAAC;QACjB,wBAAwB;QACxB,OAAO,CAAC,EAAE,MAAM,CAAC;QAEjB,iCAAiC;QACjC,OAAO,CAAC,EAAE,MAAM,CAAC;QAEjB,yFAAyF;QACzF,gBAAgB,CAAC,EAAE,eAAe,CAAC;QACnC,uDAAuD;QACvD,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;;;;;;;;OAUG;IACH,UAAiB,cAAe,SAAQ,SAAS;QAC/C,sEAAsE;QACtE,MAAM,EAAE,QAAQ,CAAC;QAEjB,qCAAqC;QACrC,WAAW,EAAE,MAAM,CAAC;QACpB,kBAAkB;QAClB,WAAW,EAAE,MAAM,CAAC;QACpB;;WAEG;QACH,UAAU,CAAC,EAAE,UAAU,CAAC;QACxB,uDAAuD;QACvD,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;;OAIG;IACH,UAAiB,mBAAmB;QAClC,qCAAqC;QACrC,KAAK,EAAE,MAAM,CAAC;QACd,mJAAmJ;QACnJ,MAAM,EAAE,MAAM,EAAE,CAAC;KAClB;IACD;;;;OAIG;IACH,UAAiB,eAAe;QAC9B,+DAA+D;QAC/D,IAAI,EAAE,mBAAmB,EAAE,CAAC;QAC5B,+CAA+C;QAC/C,QAAQ,EAAE,kBAAkB,CAAC;QAC7B,6BAA6B;QAC7B,IAAI,CAAC,EAAE,MAAM,CAAC;QACd,2BAA2B;QAC3B,SAAS,CAAC,EAAE,MAAM,CAAC;KACpB;IACD;;;;MAIE;IACF,UAAiB,YAAY;QAC3B,yDAAyD;QACzD,QAAQ,EAAE,eAAe,EAAE,CAAC;QAC5B,0FAA0F;QAC1F,OAAO,EAAE,MAAM,EAAE,CAAC;KACnB;IACD;;;;OAIG;IACH,UAAiB,sBAAsB;QACrC,wDAAwD;QACxD,IAAI,EAAE,MAAM,CAAC;QACb,2BAA2B;QAC3B,IAAI,EAAE,MAAM,CAAC;QACb,wCAAwC;QACxC,OAAO,CAAC,EAAE,MAAM,EAAE,CAAC;QACnB,mCAAmC;QACnC,UAAU,CAAC,EAAE,MAAM,EAAE,CAAC;KACvB;IACD;;;;;;;;;OASG;IACH,UAAiB,gBAAgB;QAC/B,yBAAyB;QACzB,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC;QAClB,sBAAsB;QACtB,MAAM,CAAC,EAAE,CAAC,QAAQ,CAAC,CAAC;QACpB,+CAA+C;QAC/C,KAAK,CAAC,EAAE,CAAC,OAAO,CAAC,CAAC;QAClB,0BAA0B;QAC1B,KAAK,CAAC,EAAE,CAAC,MAAM,CAAC,CAAC;QAEjB,+DAA+D;QAC/D,UAAU,EAAE,CAAC,MAAM,CAAC,CAAC;QACrB,8FAA8F;QAC9F,UAAU,CAAC,EAAE,CAAC,MAAM,CAAC,CAAC;QACtB,8FAA8F;QAC9F,WAAW,CAAC,EAAE,CAAC,MAAM,CAAC,CAAC;QACvB,6FAA6F;QAC7F,UAAU,CAAC,EAAE,CAAC,MAAM,CAAC,CAAC;QAEtB;;;;WAIG;QACH,UAAU,CAAC,EAAE,MAAM,CAAC;QACpB,iGAAiG;QACjG,eAAe,CAAC,EAAE,MAAM,CAAC;QACzB,mFAAmF;QACnF,QAAQ,CAAC,EAAE,OAAO,CAAC;QACnB,2DAA2D;QAC3D,OAAO,CAAC,EAAE,YAAY,CAAC;QACvB,iFAAiF;QACjF,IAAI,CAAC,EAAE,sBAAsB,CAAC;KAC/B;IACD;;;;OAIG;IACH,MAAa,MAAM;;QAKjB,OAAO,CAAC,MAAM,CAAC,qBAAqB;QAapC,OAAO,CAAC,MAAM,CAAC,oBAAoB;QAanC,OAAO,CAAC,MAAM,CAAC,sBAAsB;QASrC,OAAO,CAAC,MAAM,CAAC,mBAAmB;QAQlC;;WAEG;eACW,uBAAuB,CAAC,IAAI,EAAE,GAAG,GAAG,iBAAiB,GAAG,SAAS;QAc/E,OAAO,CAAC,MAAM,CAAC,wBAAwB;QAevC,OAAO,CAAC,MAAM,CAAC,kBAAkB;QAOjC;;WAEG;QACH,OAAO,CAAC,MAAM,CAAC,oBAAoB;QAUnC,OAAO,CAAC,MAAM,CAAC,oBAAoB;QASnC,OAAO,CAAC,MAAM,CAAC,gBAAgB;QAkB/B,OAAO,CAAC,MAAM,CAAC,iCAAiC;QAKhD,OAAO,CAAC,MAAM,CAAC,mBAAmB;QASlC,OAAO,CAAC,MAAM,CAAC,oBAAoB;QAWnC;;;;;;;;WAQG;QACH,OAAO,CAAC,MAAM,CAAC,gBAAgB;QAa/B,OAAO,CAAC,MAAM,CAAC,qBAAqB;QAgBpC,OAAO,CAAC,MAAM,CAAC,iBAAiB;QAUhC,OAAO,CAAC,MAAM,CAAC,cAAc;QAO7B,4EAA4E;eAC9D,eAAe,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,aAAa,GAAG,SAAS;QAMpE,2EAA2E;eAC7D,qBAAqB,CAAC,IAAI,CAAC,EAAE,qBAAqB,GAAG,kBAAkB,GAAG,SAAS;QA2CjG,0EAA0E;eAC5D,WAAW,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,cAAc,GAAG,eAAe,GAAG,SAAS;QA0BnF,4EAA4E;eAC9D,uBAAuB,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,oBAAoB,GAAG,SAAS;QAMnF,2DAA2D;eAC7C,iBAAiB,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,YAAY,GAAG,SAAS;QAMrE,yDAAyD;eAC3C,UAAU,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,GAAG,EAAE,GAAG,SAAS;QAcvD,kEAAkE;eACpD,oBAAoB,CAAC,IAAI,GAAE,GAAe,EAAE,UAAU,GAAE,MAAU,GAAG,eAAe,GAAG,SAAS;QAuB9G,gEAAgE;eAClD,gBAAgB,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,eAAe,GAAG,SAAS;QAgEvE,yEAAyE;eAC3D,2BAA2B,CAAC,MAAM,EAAE,eAAe,EAAE,IAAI,CAAC,EAAE,GAAG,GAAG,eAAe,GAAG,SAAS;QAY3G,wEAAwE;eAC1D,UAAU,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,gBAAgB,GAAG,iBAAiB,GAAG,SAAS;QAgCtF,gDAAgD;eAClC,cAAc,CAAC,IAAI,CAAC,EAAE,SAAS,GAAG,IAAI,GAAG,SAAS;QA2BhE,kDAAkD;eACpC,kBAAkB,CAAC,IAAI,CAAC,EAAE,aAAa,GAAG,IAAI,GAAG,SAAS;QAcxE,oFAAoF;QACpF,OAAO,CAAC,MAAM,CAAC,qBAAqB;QAMpC,4DAA4D;eAC9C,gBAAgB,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,WAAW,GAAG,SAAS;QAanE,oEAAoE;eACtD,oBAAoB,CAAC,IAAI,CAAC,EAAE,oBAAoB,GAAG,eAAe,GAAG,SAAS;QAuB5F,2CAA2C;eAC7B,QAAQ,CAAC,IAAI,CAAC,EAAE,QAAQ,GAAG,GAAG,GAAG,SAAS;QA8BxD,gDAAgD;eAClC,WAAW,CAAC,IAAI,CAAC,EAAE,WAAW,GAAG,MAAM,GAAG,SAAS;QAwBjE,oDAAoD;eACtC,eAAe,CAAC,IAAI,CAAC,EAAE,eAAe,GAAG,UAAU,GAAG,SAAS;QAS7E,mDAAmD;eACrC,cAAc,CAAC,IAAI,CAAC,EAAE,cAAc,GAAG,SAAS,GAAG,SAAS;QAgB1E,2DAA2D;eAC7C,eAAe,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,OAAO,EAAE;QAatD,uDAAuD;eACzC,KAAK,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,gBAAgB,GAAG,GAAG,EAAE,GAAG,SAAS;KAuDtE;IAMD;;;OAGG;IACH,MAAa,MAAO,SAAQ,eAAe;QAElC,uBAAuB,CAAC,IAAI,EAAE,iBAAiB,GAAG,sBAAsB;QAQ/E,qDAAqD;QAC9C,mBAAmB,CAAC,IAAI,EAAE,aAAa,GAAG,GAAG;QAGpD,qDAAqD;QAC9C,mBAAmB,CAAC,IAAI,EAAE,aAAa,GAAG,GAAG;QAIpD,qDAAqD;QAC9C,WAAW,CAAC,IAAI,EAAE,KAAK,GAAG,GAAG;QAUpC;;;;;WAKG;QACH,OAAO,CAAC,MAAM,CAAC,2BAA2B;QAY1C,OAAO,CAAC,MAAM,CAAC,YAAY;QAI3B;;;;;WAKG;QACH,OAAO,CAAC,MAAM,CAAC,8BAA8B;QAM7C;;;;;;;WAOG;QACH,OAAO,CAAC,MAAM,CAAC,mBAAmB;QAOlC,8CAA8C;QACvC,sBAAsB,CAAC,IAAI,EAAE,kBAAkB,GAAG,GAAG;QAgE5D,qDAAqD;QAC9C,UAAU,CAAC,IAAI,EAAE,IAAI,GAAG,GAAG;QAoClC,qDAAqD;QAC9C,YAAY,CAAC,IAAI,EAAE,MAAM,GAAG,GAAG;QAkCtC,qDAAqD;QAC9C,eAAe,CAAC,IAAI,EAAE,SAAS,GAAG,GAAG;QAwB5C,qDAAqD;QAC9C,kBAAkB,CAAC,IAAI,EAAE,YAAY,GAAG,GAAG;QAQlD,qDAAqD;QAC9C,mBAAmB,CAAC,IAAI,EAAE,aAAa,GAAG,GAAG;QAQpD,qDAAqD;QACrC,UAAU,CAAC,IAAI,EAAE,IAAI,GAAG,GAAG;QAG3C,qDAAqD;QACrC,UAAU,CAAC,IAAI,EAAE,IAAI,GAAG,GAAG;QAI3C,qDAAqD;QACrC,kBAAkB,CAAC,IAAI,EAAE,YAAY,GAAG,GAAG;QAI3D,qDAAqD;QACrC,iBAAiB,CAAC,IAAI,EAAE,WAAW,GAAG,GAAG;QAIzD,qDAAqD;QACrC,iBAAiB,CAAC,IAAI,EAAE,WAAW,GAAG,GAAG;QAIzD,OAAO,CAAC,eAAe;QAYvB,qDAAqD;QAC9C,iBAAiB,CAAC,IAAI,EAAE,WAAW,GAAG,GAAG;QAkBhD,qDAAqD;QAC9C,gBAAgB,CAAC,IAAI,EAAE,UAAU,GAAG,GAAG;QAoB9C,qDAAqD;QAC9C,qBAAqB,CAAC,IAAI,EAAE,eAAe,GAAG,GAAG;QAgBxD,qDAAqD;QAC9C,SAAS,CAAC,GAAG,EAAE,GAAG,GAAG,GAAG;QAsB/B,OAAO,CAAC,qBAAqB;QAoB7B,qDAAqD;QAC9C,qBAAqB,CAAC,EAAE,EAAE,eAAe,GAAG,GAAG;QA6FtD,OAAO,CAAC,kBAAkB;QAoB1B,qDAAqD;QAC9C,oBAAoB,CAAC,KAAK,EAAE,cAAc,GAAG,GAAG;QAIvD,qDAAqD;QAC9C,0BAA0B,CAAC,KAAK,EAAE,oBAAoB,GAAG,GAAG;QAMnE,qDAAqD;QAC9C,kBAAkB,CAAC,KAAK,EAAE,YAAY,GAAG,GAAG;QAInD,qDAAqD;QAC9C,mBAAmB,CAAC,KAAK,EAAE,aAAa,GAAG,GAAG;QAcrD,qDAAqD;QAC9C,qBAAqB,CAAC,KAAK,EAAE,eAAe,GAAG,GAAG;QAIzD,qDAAqD;QAC9C,sBAAsB,CAAC,OAAO,EAAE,gBAAgB,GAAG,GAAG;QAI7D,qDAAqD;QAC9C,oBAAoB,CAAC,KAAK,EAAE,cAAc,GAAG,GAAG;QAcvD,qDAAqD;QACrD,OAAO,CAAC,oBAAoB;QA4B5B,qDAAqD;QAC9C,uBAAuB,CAAC,OAAO,EAAE,iBAAiB,GAAG,GAAG;QAI/D,8EAA8E;QACvE,SAAS,CAAC,IAAI,EAAE,MAAM,EAAE,GAAG,GAAG;QAQrC,uFAAuF;QAChF,IAAI,CAAC,IAAI,EAAE,GAAG,GAAG,GAAG;QAW3B,uEAAuE;eACzD,YAAY,CAAC,IAAI,EAAE,GAAG,GAAG,GAAG;KAI3C;CACF"}
1
+ {"version":3,"file":"IModelJsonSchema.d.ts","sourceRoot":"","sources":["../../../src/serialization/IModelJsonSchema.ts"],"names":[],"mappings":"AAUA,OAAO,EAAE,YAAY,EAAE,MAAM,yBAAyB,CAAC;AACvD,OAAO,EAAE,aAAa,EAAE,MAAM,0BAA0B,CAAC;AACzD,OAAO,EAAE,cAAc,EAAE,MAAM,2BAA2B,CAAC;AAC3D,OAAO,EAAE,cAAc,EAAE,MAAM,yBAAyB,CAAC;AACzD,OAAO,EAAE,eAAe,EAAE,MAAM,4BAA4B,CAAC;AAE7D,OAAO,EAAE,gBAAgB,EAAE,iBAAiB,EAAyB,MAAM,2BAA2B,CAAC;AACvG,OAAO,EAAE,oBAAoB,IAAI,oBAAoB,EAAE,yBAAyB,EAAE,MAAM,iCAAiC,CAAC;AAE1H,OAAO,EAAE,KAAK,EAAE,MAAM,gBAAgB,CAAC;AACvC,OAAO,EAAE,aAAa,EAAE,MAAM,wBAAwB,CAAC;AACvD,OAAO,EAAE,WAAW,EAAE,eAAe,EAAE,MAAM,0BAA0B,CAAC;AACxE,OAAO,EAAE,gBAAgB,EAAiB,MAAM,wBAAwB,CAAC;AACzE,OAAO,EAAE,aAAa,EAAE,MAAM,wBAAwB,CAAC;AACvD,OAAO,EAAE,YAAY,EAAE,MAAM,uBAAuB,CAAC;AACrD,OAAO,EAAE,IAAI,EAAE,MAAM,eAAe,CAAC;AACrC,OAAO,EAAE,YAAY,EAAE,MAAM,uBAAuB,CAAC;AACrD,OAAO,EAAE,IAAI,EAAE,MAAM,eAAe,CAAC;AACrC,OAAO,EAAE,aAAa,EAAE,MAAM,wBAAwB,CAAC;AAGvD,OAAO,EAAE,kBAAkB,EAAE,MAAM,oCAAoC,CAAC;AACxE,OAAO,EAAE,WAAW,EAAE,MAAM,sBAAsB,CAAC;AACnD,OAAO,EAAE,UAAU,EAAE,eAAe,EAAuB,MAAM,aAAa,CAAC;AAG/E,OAAO,EAAE,eAAe,EAAE,MAAM,+BAA+B,CAAC;AAGhE,OAAO,EAAE,OAAO,EAAiB,MAAM,+BAA+B,CAAC;AAIvE,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,MAAM,wBAAwB,CAAC;AAC3D,OAAO,EAAsB,iBAAiB,EAAE,MAAM,kCAAkC,CAAC;AACzF,OAAO,EAA8B,kBAAkB,EAAE,eAAe,EAAE,MAAM,qBAAqB,CAAC;AACtG,OAAO,EAAE,eAAe,EAAE,MAAM,sBAAsB,CAAC;AACvD,OAAO,EAAE,iBAAiB,EAAE,MAAM,+BAA+B,CAAC;AAClE,OAAO,EAAE,GAAG,EAAE,MAAM,cAAc,CAAC;AACnC,OAAO,EAAE,IAAI,EAAE,MAAM,eAAe,CAAC;AACrC,OAAO,EAAE,WAAW,EAAE,MAAM,sBAAsB,CAAC;AACnD,OAAO,EAAE,eAAe,EAAE,MAAM,0BAA0B,CAAC;AAC3D,OAAO,EAAE,UAAU,EAAE,MAAM,qBAAqB,CAAC;AACjD,OAAO,EAAE,MAAM,EAAE,MAAM,iBAAiB,CAAC;AACzC,OAAO,EAAE,SAAS,EAAE,MAAM,oBAAoB,CAAC;AAG/C;;;GAGG;AACH,yBAAiB,UAAU,CAAC;IAC1B;;;OAGG;IACH,UAAiB,aAAc,SAAQ,mBAAmB,EAAE,mBAAmB,EAAE,oBAAoB;QACnG,0BAA0B;QAC1B,WAAW,CAAC,EAAE,gBAAgB,CAAC;QAC/B,oBAAoB;QACpB,KAAK,CAAC,EAAE,QAAQ,CAAC;QACjB,oBAAoB;QACpB,KAAK,CAAC,EAAE,mBAAmB,CAAC;QAC5B,0BAA0B;QAC1B,WAAW,CAAC,EAAE,QAAQ,EAAE,CAAC;KAC1B;IACD;;;;OAIG;IACH,UAAiB,mBAAmB;QAClC,0BAA0B;QAC1B,WAAW,CAAC,EAAE,CAAC,QAAQ,EAAE,QAAQ,CAAC,CAAC;QACnC,yBAAyB;QACzB,UAAU,CAAC,EAAE,QAAQ,EAAE,CAAC;QACxB,qBAAqB;QACrB,MAAM,CAAC,EAAE,WAAW,CAAC;QACrB,+BAA+B;QAC/B,gBAAgB,CAAC,EAAE,qBAAqB,CAAC;QACzC,kBAAkB;QAClB,GAAG,CAAC,EAAE,gBAAgB,GAAG,CAAC,QAAQ,EAAE,QAAQ,EAAE,QAAQ,CAAC,CAAC;QACxD,iCAAiC;QACjC,kBAAkB,CAAC,EAAE,yBAAyB,CAAC;KAChD;IAED;;;OAGG;IACH,UAAiB,UAAU;QACzB,oBAAoB;QACpB,KAAK,CAAC,EAAE,QAAQ,CAAC;KAClB;IAED;;;;OAIG;IACH,UAAiB,mBAAmB;QAClC,2EAA2E;QAC3E,MAAM,EAAE,MAAM,CAAC;QACf,2EAA2E;QAC3E,MAAM,EAAE,MAAM,CAAC;QACf,kGAAkG;QAClG,MAAM,EAAE,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QACrB,iDAAiD;QACjD,MAAM,EAAE,CAAC,MAAM,CAAC,CAAC;QACjB,iDAAiD;QACjD,MAAM,EAAE,CAAC,MAAM,CAAC,CAAC;QACjB,mEAAmE;QACnE,OAAO,CAAC,EAAE,OAAO,CAAC;QAClB,mEAAmE;QACnE,OAAO,CAAC,EAAE,OAAO,CAAC;KACnB;IAED;;;OAGG;IACH,UAAiB,oBAAqB,SAAQ,iBAAiB;QAC7D,gDAAgD;QAChD,IAAI,CAAC,EAAE,CAAC,mBAAmB,CAAC,CAAC;QAE7B;;;UAGE;QACF,WAAW,CAAC,EAAE,CAAC,oBAAoB,CAAC,CAAC;QACrC,wEAAwE;QACxE,WAAW,CAAC,EAAE,CAAC,oBAAoB,GAAG,mBAAmB,CAAC,CAAC;KAC5D;IAED;;;OAGG;IACH,UAAiB,iBAAiB;QAChC;;WAEG;QACH,IAAI,CAAC,EAAE,CAAC,mBAAmB,CAAC,CAAC;QAC7B;;;WAGG;QACH,YAAY,CAAC,EAAE,CAAC;YAAE,IAAI,EAAE,CAAC,mBAAmB,CAAC,CAAA;SAAE,CAAC,CAAC;QACjD;;WAEG;QACH,WAAW,CAAC,EAAE,CAAC,iBAAiB,CAAC,CAAC;KACnC;IACD;;;OAGG;IACH,UAAiB,mBAAmB;QAClC,uBAAuB;QACvB,QAAQ,CAAC,EAAE,aAAa,CAAC;QACzB,kBAAkB;QAClB,GAAG,CAAC,EAAE,QAAQ,CAAC;QACf,8BAA8B;QAC9B,MAAM,CAAC,EAAE,WAAW,CAAC;QACrB,4BAA4B;QAC5B,IAAI,CAAC,EAAE,SAAS,CAAC;QACjB,iCAAiC;QACjC,SAAS,CAAC,EAAE,cAAc,CAAC;QAC3B,gCAAgC;QAChC,WAAW,CAAC,EAAE,gBAAgB,CAAC;QAC/B,8BAA8B;QAC9B,eAAe,CAAC,EAAE,oBAAoB,CAAC;QACvC,yBAAyB;QACzB,UAAU,CAAC,EAAE,eAAe,CAAC;KAC9B;IAED;;;;;;;OAOG;IACH,UAAiB,SAAS;QACxB;;;;;;WAMG;QACH,kBAAkB,CAAC,EAAE,iBAAiB,CAAC;QACvC;;;;;WAKG;QACH,SAAS,CAAC,EAAE,CAAC,QAAQ,EAAE,QAAQ,CAAC,CAAC;QACjC;;;;;WAKG;QACH,SAAS,CAAC,EAAE,CAAC,QAAQ,EAAE,QAAQ,CAAC,CAAC;QACjC;;;;;WAKG;QACH,UAAU,CAAC,EAAE,CAAC,QAAQ,EAAE,QAAQ,EAAE,QAAQ,CAAC,CAAC;KAC7C;IAED;;;OAGG;IACH,UAAiB,gBAAgB;QAC/B,uBAAuB;QACvB,MAAM,EAAE,QAAQ,CAAC;QACjB,+EAA+E;QAC/E,OAAO,EAAE,QAAQ,CAAC;QAClB,8EAA8E;QAC9E,OAAO,EAAE,QAAQ,CAAC;QAClB,iGAAiG;QACjG,aAAa,EAAE,eAAe,CAAC;KAChC;IAED;;;;;;;;OAQG;IACH,UAAiB,SAAU,SAAQ,SAAS;QAC1C,gDAAgD;QAChD,KAAK,EAAE,QAAQ,CAAC;QAChB,8CAA8C;QAC9C,GAAG,EAAE,QAAQ,CAAC;QAEd,mFAAmF;QACnF,WAAW,CAAC,EAAE,MAAM,CAAC;QACrB,iFAAiF;QACjF,SAAS,CAAC,EAAE,MAAM,CAAC;QACnB,kFAAkF;QAClF,MAAM,CAAC,EAAE,MAAM,CAAC;QAEhB;;;WAGG;QACH,OAAO,CAAC,EAAE,QAAQ,CAAC;QACnB;;;WAGG;QACH,OAAO,CAAC,EAAE,QAAQ,CAAC;QAEnB,kCAAkC;QAClC,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;OAGG;IACH,UAAiB,aAAa;QAC5B,0BAA0B;QAC1B,KAAK,EAAE,QAAQ,CAAC;QAChB,wBAAwB;QACxB,GAAG,EAAE,QAAQ,CAAC;QACd,sBAAsB;QACtB,MAAM,EAAE,MAAM,CAAC;QACf,kCAAkC;QAClC,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;OAGG;IACH,UAAiB,gBAAgB;QAC/B,uDAAuD;QACvD,OAAO,EAAE,oBAAoB,CAAC;QAC9B,wBAAwB;QACxB,MAAM,EAAE,QAAQ,CAAC;QACjB,kCAAkC;QAClC,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;OAGG;IACH,UAAiB,oBAAoB;QACnC,uDAAuD;QACvD,OAAO,EAAE,oBAAoB,CAAC;QAC9B,yCAAyC;QACzC,MAAM,EAAE,QAAQ,CAAC;QACjB,4BAA4B;QAC5B,IAAI,EAAE,QAAQ,CAAC;QACf,kBAAkB;QAClB,UAAU,EAAE,UAAU,CAAC;QACvB,kCAAkC;QAClC,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;OAGG;IACH,UAAiB,eAAe;QAC9B,2CAA2C;QAC3C,OAAO,EAAE,CAAC,oBAAoB,CAAC,CAAC;QAChC,6BAA6B;QAC7B,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;;;;;OAOG;IACH,UAAiB,qBAAsB,SAAQ,SAAS;QAEtD,uCAAuC;QACvC,MAAM,EAAE,QAAQ,CAAC;QACjB,sCAAsC;QACtC,YAAY,CAAC,EAAE,UAAU,CAAC;QAC1B,mBAAmB;QACnB,UAAU,CAAC,EAAE,UAAU,CAAC;QACxB,6CAA6C;QAC7C,WAAW,CAAC,EAAE,MAAM,CAAC;QACrB,2CAA2C;QAC3C,SAAS,CAAC,EAAE,MAAM,CAAC;QACnB;WACG;QACH,MAAM,CAAC,EAAE,MAAM,CAAC;QAChB;;;WAGG;QACH,sBAAsB,CAAC,EAAE,MAAM,EAAE,CAAC;QAClC;;WAEG;QACH,IAAI,CAAC,EAAE,MAAM,CAAC;KACf;IAED;;;OAGG;IACH,UAAiB,WAAW;QAC1B,qBAAqB;QACrB,MAAM,EAAE,CAAC,QAAQ,CAAC,CAAC;QACnB,aAAa;QACb,KAAK,EAAE,CAAC,MAAM,CAAC,CAAC;QAChB;;;;;;;;;;;;;WAaG;QACH,KAAK,EAAE,MAAM,CAAC;QACd,uCAAuC;QACvC,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;;;;;;OAQG;IACH,UAAiB,QAAS,SAAQ,SAAS;QACzC,sDAAsD;QACtD,MAAM,EAAE,QAAQ,CAAC;QACjB;;;;WAIG;QACH,UAAU,CAAC,EAAE,QAAQ,CAAC;QACtB,6BAA6B;QAC7B,KAAK,EAAE,MAAM,CAAC;QACd;;WAEG;QACH,KAAK,CAAC,EAAE,MAAM,CAAC;QACf;;;WAGG;QACH,SAAS,CAAC,EAAE,QAAQ,CAAC;QACrB;;UAEE;QACF,MAAM,CAAC,EAAE,MAAM,CAAC;QAChB;;WAEG;QACH,IAAI,CAAC,EAAE,MAAM,CAAC;QACd;;WAEG;QACH,IAAI,CAAC,EAAE,MAAM,CAAC;QACd,6BAA6B;QAC7B,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;;;;;OAOG;IACH,UAAiB,WAAY,SAAQ,SAAS;QAC5C,6CAA6C;QAC7C,MAAM,EAAE,QAAQ,CAAC;QAEjB,qBAAqB;QACrB,MAAM,CAAC,EAAE,MAAM,CAAC;QAChB,wBAAwB;QACxB,OAAO,CAAC,EAAE,MAAM,CAAC;QACjB,wBAAwB;QACxB,OAAO,CAAC,EAAE,MAAM,CAAC;QACjB,wBAAwB;QACxB,OAAO,CAAC,EAAE,MAAM,CAAC;QAEjB,yFAAyF;QACzF,gBAAgB,CAAC,EAAE,eAAe,CAAC;QACnC,uDAAuD;QACvD,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;;;;;;;;OAUG;IACH,UAAiB,cAAe,SAAQ,SAAS;QAC/C,sEAAsE;QACtE,MAAM,EAAE,QAAQ,CAAC;QAEjB,qCAAqC;QACrC,WAAW,EAAE,MAAM,CAAC;QACpB,kBAAkB;QAClB,WAAW,EAAE,MAAM,CAAC;QACpB;;WAEG;QACH,UAAU,CAAC,EAAE,UAAU,CAAC;QACxB,uDAAuD;QACvD,MAAM,CAAC,EAAE,OAAO,CAAC;KAClB;IAED;;;;OAIG;IACH,UAAiB,mBAAmB;QAClC,qCAAqC;QACrC,KAAK,EAAE,MAAM,CAAC;QACd,mJAAmJ;QACnJ,MAAM,EAAE,MAAM,EAAE,CAAC;KAClB;IACD;;;;OAIG;IACH,UAAiB,eAAe;QAC9B,+DAA+D;QAC/D,IAAI,EAAE,mBAAmB,EAAE,CAAC;QAC5B,+CAA+C;QAC/C,QAAQ,EAAE,kBAAkB,CAAC;QAC7B,6BAA6B;QAC7B,IAAI,CAAC,EAAE,MAAM,CAAC;QACd,2BAA2B;QAC3B,SAAS,CAAC,EAAE,MAAM,CAAC;KACpB;IACD;;;;MAIE;IACF,UAAiB,YAAY;QAC3B,yDAAyD;QACzD,QAAQ,EAAE,eAAe,EAAE,CAAC;QAC5B,0FAA0F;QAC1F,OAAO,EAAE,MAAM,EAAE,CAAC;KACnB;IACD;;;;OAIG;IACH,UAAiB,sBAAsB;QACrC,wDAAwD;QACxD,IAAI,EAAE,MAAM,CAAC;QACb,2BAA2B;QAC3B,IAAI,EAAE,MAAM,CAAC;QACb,wCAAwC;QACxC,OAAO,CAAC,EAAE,MAAM,EAAE,CAAC;QACnB,mCAAmC;QACnC,UAAU,CAAC,EAAE,MAAM,EAAE,CAAC;KACvB;IACD;;;;;;;;;OASG;IACH,UAAiB,gBAAgB;QAC/B,yBAAyB;QACzB,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC;QAClB,sBAAsB;QACtB,MAAM,CAAC,EAAE,CAAC,QAAQ,CAAC,CAAC;QACpB,+CAA+C;QAC/C,KAAK,CAAC,EAAE,CAAC,OAAO,CAAC,CAAC;QAClB,0BAA0B;QAC1B,KAAK,CAAC,EAAE,CAAC,MAAM,CAAC,CAAC;QAEjB,+DAA+D;QAC/D,UAAU,EAAE,CAAC,MAAM,CAAC,CAAC;QACrB,8FAA8F;QAC9F,UAAU,CAAC,EAAE,CAAC,MAAM,CAAC,CAAC;QACtB,8FAA8F;QAC9F,WAAW,CAAC,EAAE,CAAC,MAAM,CAAC,CAAC;QACvB,6FAA6F;QAC7F,UAAU,CAAC,EAAE,CAAC,MAAM,CAAC,CAAC;QAEtB;;;;WAIG;QACH,UAAU,CAAC,EAAE,MAAM,CAAC;QACpB,iGAAiG;QACjG,eAAe,CAAC,EAAE,MAAM,CAAC;QACzB,mFAAmF;QACnF,QAAQ,CAAC,EAAE,OAAO,CAAC;QACnB,2DAA2D;QAC3D,OAAO,CAAC,EAAE,YAAY,CAAC;QACvB,iFAAiF;QACjF,IAAI,CAAC,EAAE,sBAAsB,CAAC;KAC/B;IACD;;;;OAIG;IACH,MAAa,MAAM;;QAKjB,OAAO,CAAC,MAAM,CAAC,qBAAqB;QAapC,OAAO,CAAC,MAAM,CAAC,oBAAoB;QAanC,OAAO,CAAC,MAAM,CAAC,sBAAsB;QASrC,OAAO,CAAC,MAAM,CAAC,mBAAmB;QAQlC;;WAEG;eACW,uBAAuB,CAAC,IAAI,EAAE,GAAG,GAAG,iBAAiB,GAAG,SAAS;QAc/E,OAAO,CAAC,MAAM,CAAC,wBAAwB;QAevC,OAAO,CAAC,MAAM,CAAC,kBAAkB;QAOjC;;WAEG;QACH,OAAO,CAAC,MAAM,CAAC,oBAAoB;QAUnC,OAAO,CAAC,MAAM,CAAC,oBAAoB;QASnC,OAAO,CAAC,MAAM,CAAC,gBAAgB;QAkB/B,OAAO,CAAC,MAAM,CAAC,iCAAiC;QAKhD,OAAO,CAAC,MAAM,CAAC,mBAAmB;QASlC,OAAO,CAAC,MAAM,CAAC,oBAAoB;QAsBnC;;;;;;;;;WASG;QACH,OAAO,CAAC,MAAM,CAAC,gBAAgB;QAc/B,OAAO,CAAC,MAAM,CAAC,qBAAqB;QAgBpC,OAAO,CAAC,MAAM,CAAC,iBAAiB;QAUhC,OAAO,CAAC,MAAM,CAAC,cAAc;QAO7B,4EAA4E;eAC9D,eAAe,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,aAAa,GAAG,SAAS;QAMpE,2EAA2E;eAC7D,qBAAqB,CAAC,IAAI,CAAC,EAAE,qBAAqB,GAAG,kBAAkB,GAAG,SAAS;QA2CjG,0EAA0E;eAC5D,WAAW,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,cAAc,GAAG,eAAe,GAAG,SAAS;QA0BnF,4EAA4E;eAC9D,uBAAuB,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,oBAAoB,GAAG,SAAS;QAMnF,2DAA2D;eAC7C,iBAAiB,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,YAAY,GAAG,SAAS;QAMrE,yDAAyD;eAC3C,UAAU,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,GAAG,EAAE,GAAG,SAAS;QAcvD,kEAAkE;eACpD,oBAAoB,CAAC,IAAI,GAAE,GAAe,EAAE,UAAU,GAAE,MAAU,GAAG,eAAe,GAAG,SAAS;QAuB9G,gEAAgE;eAClD,gBAAgB,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,eAAe,GAAG,SAAS;QAgEvE,yEAAyE;eAC3D,2BAA2B,CAAC,MAAM,EAAE,eAAe,EAAE,IAAI,CAAC,EAAE,GAAG,GAAG,eAAe,GAAG,SAAS;QAY3G,wEAAwE;eAC1D,UAAU,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,gBAAgB,GAAG,iBAAiB,GAAG,SAAS;QAgCtF,gDAAgD;eAClC,cAAc,CAAC,IAAI,CAAC,EAAE,SAAS,GAAG,IAAI,GAAG,SAAS;QAsBhE,kDAAkD;eACpC,kBAAkB,CAAC,IAAI,CAAC,EAAE,aAAa,GAAG,IAAI,GAAG,SAAS;QAcxE,oFAAoF;QACpF,OAAO,CAAC,MAAM,CAAC,qBAAqB;QAMpC,4DAA4D;eAC9C,gBAAgB,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,WAAW,GAAG,SAAS;QAanE,oEAAoE;eACtD,oBAAoB,CAAC,IAAI,CAAC,EAAE,oBAAoB,GAAG,eAAe,GAAG,SAAS;QAuB5F,2CAA2C;eAC7B,QAAQ,CAAC,IAAI,CAAC,EAAE,QAAQ,GAAG,GAAG,GAAG,SAAS;QA+BxD,gDAAgD;eAClC,WAAW,CAAC,IAAI,CAAC,EAAE,WAAW,GAAG,MAAM,GAAG,SAAS;QAejE,oDAAoD;eACtC,eAAe,CAAC,IAAI,CAAC,EAAE,eAAe,GAAG,UAAU,GAAG,SAAS;QAS7E,mDAAmD;eACrC,cAAc,CAAC,IAAI,CAAC,EAAE,cAAc,GAAG,SAAS,GAAG,SAAS;QAgB1E,2DAA2D;eAC7C,eAAe,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,OAAO,EAAE;QAatD,uDAAuD;eACzC,KAAK,CAAC,IAAI,CAAC,EAAE,GAAG,GAAG,gBAAgB,GAAG,GAAG,EAAE,GAAG,SAAS;KAuDtE;IAED;;;OAGG;IACH,MAAa,MAAO,SAAQ,eAAe;QAElC,uBAAuB,CAAC,IAAI,EAAE,iBAAiB,GAAG,sBAAsB;QAQ/E,qDAAqD;QAC9C,mBAAmB,CAAC,IAAI,EAAE,aAAa,GAAG,GAAG;QAGpD,qDAAqD;QAC9C,mBAAmB,CAAC,IAAI,EAAE,aAAa,GAAG,GAAG;QAIpD,qDAAqD;QAC9C,WAAW,CAAC,IAAI,EAAE,KAAK,GAAG,GAAG;QAUpC;;;;;WAKG;QACH,OAAO,CAAC,MAAM,CAAC,2BAA2B;QAY1C,OAAO,CAAC,MAAM,CAAC,YAAY;QAI3B;;;;;WAKG;QACH,OAAO,CAAC,MAAM,CAAC,8BAA8B;QAM7C;;;;;;;WAOG;QACH,OAAO,CAAC,MAAM,CAAC,mBAAmB;QAOlC,8CAA8C;QACvC,sBAAsB,CAAC,IAAI,EAAE,kBAAkB,GAAG,GAAG;QAgE5D,qDAAqD;QAC9C,UAAU,CAAC,IAAI,EAAE,IAAI,GAAG,GAAG;QAoDlC,qDAAqD;QAC9C,YAAY,CAAC,IAAI,EAAE,MAAM,GAAG,GAAG;QA+CtC,qDAAqD;QAC9C,eAAe,CAAC,IAAI,EAAE,SAAS,GAAG,GAAG;QAwB5C,qDAAqD;QAC9C,kBAAkB,CAAC,IAAI,EAAE,YAAY,GAAG,GAAG;QAQlD,qDAAqD;QAC9C,mBAAmB,CAAC,IAAI,EAAE,aAAa,GAAG,GAAG;QAQpD,qDAAqD;QACrC,UAAU,CAAC,IAAI,EAAE,IAAI,GAAG,GAAG;QAG3C,qDAAqD;QACrC,UAAU,CAAC,IAAI,EAAE,IAAI,GAAG,GAAG;QAI3C,qDAAqD;QACrC,kBAAkB,CAAC,IAAI,EAAE,YAAY,GAAG,GAAG;QAI3D,qDAAqD;QACrC,iBAAiB,CAAC,IAAI,EAAE,WAAW,GAAG,GAAG;QAIzD,qDAAqD;QACrC,iBAAiB,CAAC,IAAI,EAAE,WAAW,GAAG,GAAG;QAIzD,OAAO,CAAC,eAAe;QAYvB,qDAAqD;QAC9C,iBAAiB,CAAC,IAAI,EAAE,WAAW,GAAG,GAAG;QAkBhD,qDAAqD;QAC9C,gBAAgB,CAAC,IAAI,EAAE,UAAU,GAAG,GAAG;QAoB9C,qDAAqD;QAC9C,qBAAqB,CAAC,IAAI,EAAE,eAAe,GAAG,GAAG;QAgBxD,qDAAqD;QAC9C,SAAS,CAAC,GAAG,EAAE,GAAG,GAAG,GAAG;QAsB/B,OAAO,CAAC,qBAAqB;QAoB7B,qDAAqD;QAC9C,qBAAqB,CAAC,EAAE,EAAE,eAAe,GAAG,GAAG;QA6FtD,OAAO,CAAC,kBAAkB;QAoB1B,qDAAqD;QAC9C,oBAAoB,CAAC,KAAK,EAAE,cAAc,GAAG,GAAG;QAIvD,qDAAqD;QAC9C,0BAA0B,CAAC,KAAK,EAAE,oBAAoB,GAAG,GAAG;QAMnE,qDAAqD;QAC9C,kBAAkB,CAAC,KAAK,EAAE,YAAY,GAAG,GAAG;QAInD,qDAAqD;QAC9C,mBAAmB,CAAC,KAAK,EAAE,aAAa,GAAG,GAAG;QAcrD,qDAAqD;QAC9C,qBAAqB,CAAC,KAAK,EAAE,eAAe,GAAG,GAAG;QAIzD,qDAAqD;QAC9C,sBAAsB,CAAC,OAAO,EAAE,gBAAgB,GAAG,GAAG;QAI7D,qDAAqD;QAC9C,oBAAoB,CAAC,KAAK,EAAE,cAAc,GAAG,GAAG;QAcvD,qDAAqD;QACrD,OAAO,CAAC,oBAAoB;QA4B5B,qDAAqD;QAC9C,uBAAuB,CAAC,OAAO,EAAE,iBAAiB,GAAG,GAAG;QAI/D,8EAA8E;QACvE,SAAS,CAAC,IAAI,EAAE,MAAM,EAAE,GAAG,GAAG;QAQrC,uFAAuF;QAChF,IAAI,CAAC,IAAI,EAAE,GAAG,GAAG,GAAG;QAW3B,uEAAuE;eACzD,YAAY,CAAC,IAAI,EAAE,GAAG,GAAG,GAAG;KAI3C;CACF"}