@itwin/core-geometry 4.9.0-dev.9 → 4.9.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (336) hide show
  1. package/CHANGELOG.md +36 -1
  2. package/lib/cjs/Geometry.d.ts +57 -46
  3. package/lib/cjs/Geometry.d.ts.map +1 -1
  4. package/lib/cjs/Geometry.js +73 -53
  5. package/lib/cjs/Geometry.js.map +1 -1
  6. package/lib/cjs/curve/Arc3d.d.ts +141 -38
  7. package/lib/cjs/curve/Arc3d.d.ts.map +1 -1
  8. package/lib/cjs/curve/Arc3d.js +219 -31
  9. package/lib/cjs/curve/Arc3d.js.map +1 -1
  10. package/lib/cjs/curve/CurveChainWithDistanceIndex.d.ts +11 -6
  11. package/lib/cjs/curve/CurveChainWithDistanceIndex.d.ts.map +1 -1
  12. package/lib/cjs/curve/CurveChainWithDistanceIndex.js +12 -10
  13. package/lib/cjs/curve/CurveChainWithDistanceIndex.js.map +1 -1
  14. package/lib/cjs/curve/CurveCollection.d.ts +2 -1
  15. package/lib/cjs/curve/CurveCollection.d.ts.map +1 -1
  16. package/lib/cjs/curve/CurveCollection.js +2 -1
  17. package/lib/cjs/curve/CurveCollection.js.map +1 -1
  18. package/lib/cjs/curve/CurveCurve.d.ts +11 -9
  19. package/lib/cjs/curve/CurveCurve.d.ts.map +1 -1
  20. package/lib/cjs/curve/CurveCurve.js +11 -9
  21. package/lib/cjs/curve/CurveCurve.js.map +1 -1
  22. package/lib/cjs/curve/CurveFactory.d.ts +4 -3
  23. package/lib/cjs/curve/CurveFactory.d.ts.map +1 -1
  24. package/lib/cjs/curve/CurveFactory.js +4 -3
  25. package/lib/cjs/curve/CurveFactory.js.map +1 -1
  26. package/lib/cjs/curve/CurveLocationDetail.d.ts +19 -1
  27. package/lib/cjs/curve/CurveLocationDetail.d.ts.map +1 -1
  28. package/lib/cjs/curve/CurveLocationDetail.js +39 -0
  29. package/lib/cjs/curve/CurveLocationDetail.js.map +1 -1
  30. package/lib/cjs/curve/CurveOps.d.ts +4 -4
  31. package/lib/cjs/curve/CurveOps.d.ts.map +1 -1
  32. package/lib/cjs/curve/CurveOps.js +6 -6
  33. package/lib/cjs/curve/CurveOps.js.map +1 -1
  34. package/lib/cjs/curve/CurvePrimitive.d.ts +1 -1
  35. package/lib/cjs/curve/CurvePrimitive.js.map +1 -1
  36. package/lib/cjs/curve/LineString3d.d.ts +7 -5
  37. package/lib/cjs/curve/LineString3d.d.ts.map +1 -1
  38. package/lib/cjs/curve/LineString3d.js +8 -6
  39. package/lib/cjs/curve/LineString3d.js.map +1 -1
  40. package/lib/cjs/curve/Loop.d.ts.map +1 -1
  41. package/lib/cjs/curve/Loop.js +6 -6
  42. package/lib/cjs/curve/Loop.js.map +1 -1
  43. package/lib/cjs/curve/OffsetOptions.d.ts +1 -1
  44. package/lib/cjs/curve/OffsetOptions.js +1 -1
  45. package/lib/cjs/curve/OffsetOptions.js.map +1 -1
  46. package/lib/cjs/curve/Path.d.ts.map +1 -1
  47. package/lib/cjs/curve/Path.js +5 -6
  48. package/lib/cjs/curve/Path.js.map +1 -1
  49. package/lib/cjs/curve/Query/ConsolidateAdjacentPrimitivesContext.d.ts.map +1 -1
  50. package/lib/cjs/curve/Query/ConsolidateAdjacentPrimitivesContext.js +3 -4
  51. package/lib/cjs/curve/Query/ConsolidateAdjacentPrimitivesContext.js.map +1 -1
  52. package/lib/cjs/curve/Query/CylindricalRange.js.map +1 -1
  53. package/lib/cjs/curve/RegionOps.d.ts +4 -3
  54. package/lib/cjs/curve/RegionOps.d.ts.map +1 -1
  55. package/lib/cjs/curve/RegionOps.js +4 -3
  56. package/lib/cjs/curve/RegionOps.js.map +1 -1
  57. package/lib/cjs/curve/internalContexts/CurveCurveCloseApproachXY.d.ts +23 -7
  58. package/lib/cjs/curve/internalContexts/CurveCurveCloseApproachXY.d.ts.map +1 -1
  59. package/lib/cjs/curve/internalContexts/CurveCurveCloseApproachXY.js +43 -35
  60. package/lib/cjs/curve/internalContexts/CurveCurveCloseApproachXY.js.map +1 -1
  61. package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.d.ts +22 -8
  62. package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.d.ts.map +1 -1
  63. package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.js +127 -52
  64. package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.js.map +1 -1
  65. package/lib/cjs/curve/internalContexts/EllipticalArcApproximationContext.d.ts +211 -0
  66. package/lib/cjs/curve/internalContexts/EllipticalArcApproximationContext.d.ts.map +1 -0
  67. package/lib/cjs/curve/internalContexts/EllipticalArcApproximationContext.js +1000 -0
  68. package/lib/cjs/curve/internalContexts/EllipticalArcApproximationContext.js.map +1 -0
  69. package/lib/cjs/curve/internalContexts/MultiChainCollector.d.ts +11 -8
  70. package/lib/cjs/curve/internalContexts/MultiChainCollector.d.ts.map +1 -1
  71. package/lib/cjs/curve/internalContexts/MultiChainCollector.js +7 -4
  72. package/lib/cjs/curve/internalContexts/MultiChainCollector.js.map +1 -1
  73. package/lib/cjs/geometry3d/Angle.d.ts +18 -5
  74. package/lib/cjs/geometry3d/Angle.d.ts.map +1 -1
  75. package/lib/cjs/geometry3d/Angle.js +23 -7
  76. package/lib/cjs/geometry3d/Angle.js.map +1 -1
  77. package/lib/cjs/geometry3d/AngleSweep.d.ts +14 -1
  78. package/lib/cjs/geometry3d/AngleSweep.d.ts.map +1 -1
  79. package/lib/cjs/geometry3d/AngleSweep.js +47 -12
  80. package/lib/cjs/geometry3d/AngleSweep.js.map +1 -1
  81. package/lib/cjs/geometry3d/FrameBuilder.d.ts +2 -1
  82. package/lib/cjs/geometry3d/FrameBuilder.d.ts.map +1 -1
  83. package/lib/cjs/geometry3d/FrameBuilder.js +12 -10
  84. package/lib/cjs/geometry3d/FrameBuilder.js.map +1 -1
  85. package/lib/cjs/geometry3d/GeometryHandler.d.ts.map +1 -1
  86. package/lib/cjs/geometry3d/GeometryHandler.js +1 -7
  87. package/lib/cjs/geometry3d/GeometryHandler.js.map +1 -1
  88. package/lib/cjs/geometry3d/Matrix3d.d.ts +6 -4
  89. package/lib/cjs/geometry3d/Matrix3d.d.ts.map +1 -1
  90. package/lib/cjs/geometry3d/Matrix3d.js +6 -4
  91. package/lib/cjs/geometry3d/Matrix3d.js.map +1 -1
  92. package/lib/cjs/geometry3d/Point3dVector3d.d.ts +5 -5
  93. package/lib/cjs/geometry3d/Point3dVector3d.d.ts.map +1 -1
  94. package/lib/cjs/geometry3d/Point3dVector3d.js +5 -5
  95. package/lib/cjs/geometry3d/Point3dVector3d.js.map +1 -1
  96. package/lib/cjs/geometry3d/PointHelpers.d.ts +6 -5
  97. package/lib/cjs/geometry3d/PointHelpers.d.ts.map +1 -1
  98. package/lib/cjs/geometry3d/PointHelpers.js +11 -10
  99. package/lib/cjs/geometry3d/PointHelpers.js.map +1 -1
  100. package/lib/cjs/geometry3d/PolygonOps.d.ts +4 -4
  101. package/lib/cjs/geometry3d/PolygonOps.d.ts.map +1 -1
  102. package/lib/cjs/geometry3d/PolygonOps.js +7 -11
  103. package/lib/cjs/geometry3d/PolygonOps.js.map +1 -1
  104. package/lib/cjs/geometry3d/PolylineCompressionByEdgeOffset.d.ts +1 -1
  105. package/lib/cjs/geometry3d/PolylineCompressionByEdgeOffset.d.ts.map +1 -1
  106. package/lib/cjs/geometry3d/PolylineCompressionByEdgeOffset.js +3 -3
  107. package/lib/cjs/geometry3d/PolylineCompressionByEdgeOffset.js.map +1 -1
  108. package/lib/cjs/geometry3d/Range.d.ts +6 -1
  109. package/lib/cjs/geometry3d/Range.d.ts.map +1 -1
  110. package/lib/cjs/geometry3d/Range.js +9 -3
  111. package/lib/cjs/geometry3d/Range.js.map +1 -1
  112. package/lib/cjs/geometry3d/Ray3d.d.ts +1 -1
  113. package/lib/cjs/geometry3d/Ray3d.d.ts.map +1 -1
  114. package/lib/cjs/geometry3d/Ray3d.js.map +1 -1
  115. package/lib/cjs/geometry3d/Transform.d.ts +1 -1
  116. package/lib/cjs/geometry3d/Transform.js +1 -1
  117. package/lib/cjs/geometry3d/Transform.js.map +1 -1
  118. package/lib/cjs/numerics/Newton.d.ts +3 -3
  119. package/lib/cjs/numerics/Newton.d.ts.map +1 -1
  120. package/lib/cjs/numerics/Newton.js +14 -16
  121. package/lib/cjs/numerics/Newton.js.map +1 -1
  122. package/lib/cjs/numerics/Polynomials.d.ts +2 -2
  123. package/lib/cjs/numerics/Polynomials.js +2 -2
  124. package/lib/cjs/numerics/Polynomials.js.map +1 -1
  125. package/lib/cjs/polyface/PolyfaceBuilder.d.ts +7 -4
  126. package/lib/cjs/polyface/PolyfaceBuilder.d.ts.map +1 -1
  127. package/lib/cjs/polyface/PolyfaceBuilder.js +11 -6
  128. package/lib/cjs/polyface/PolyfaceBuilder.js.map +1 -1
  129. package/lib/cjs/polyface/PolyfaceClip.d.ts +13 -10
  130. package/lib/cjs/polyface/PolyfaceClip.d.ts.map +1 -1
  131. package/lib/cjs/polyface/PolyfaceClip.js +17 -14
  132. package/lib/cjs/polyface/PolyfaceClip.js.map +1 -1
  133. package/lib/cjs/polyface/PolyfaceQuery.d.ts +11 -14
  134. package/lib/cjs/polyface/PolyfaceQuery.d.ts.map +1 -1
  135. package/lib/cjs/polyface/PolyfaceQuery.js +59 -52
  136. package/lib/cjs/polyface/PolyfaceQuery.js.map +1 -1
  137. package/lib/cjs/serialization/BGFBReader.js.map +1 -1
  138. package/lib/cjs/serialization/BGFBWriter.js +2 -2
  139. package/lib/cjs/serialization/BGFBWriter.js.map +1 -1
  140. package/lib/cjs/serialization/GeometrySamples.js.map +1 -1
  141. package/lib/cjs/solid/SweepContour.d.ts.map +1 -1
  142. package/lib/cjs/solid/SweepContour.js +0 -4
  143. package/lib/cjs/solid/SweepContour.js.map +1 -1
  144. package/lib/cjs/topology/Graph.d.ts +1 -1
  145. package/lib/cjs/topology/Graph.js +2 -2
  146. package/lib/cjs/topology/Graph.js.map +1 -1
  147. package/lib/cjs/topology/HalfEdgeNodeXYZUV.d.ts +1 -1
  148. package/lib/cjs/topology/HalfEdgeNodeXYZUV.js +1 -1
  149. package/lib/cjs/topology/HalfEdgeNodeXYZUV.js.map +1 -1
  150. package/lib/cjs/topology/HalfEdgePointInGraphSearch.d.ts +57 -15
  151. package/lib/cjs/topology/HalfEdgePointInGraphSearch.d.ts.map +1 -1
  152. package/lib/cjs/topology/HalfEdgePointInGraphSearch.js +168 -127
  153. package/lib/cjs/topology/HalfEdgePointInGraphSearch.js.map +1 -1
  154. package/lib/cjs/topology/HalfEdgePositionDetail.d.ts +35 -35
  155. package/lib/cjs/topology/HalfEdgePositionDetail.d.ts.map +1 -1
  156. package/lib/cjs/topology/HalfEdgePositionDetail.js +63 -41
  157. package/lib/cjs/topology/HalfEdgePositionDetail.js.map +1 -1
  158. package/lib/cjs/topology/InsertAndRetriangulateContext.d.ts +64 -12
  159. package/lib/cjs/topology/InsertAndRetriangulateContext.d.ts.map +1 -1
  160. package/lib/cjs/topology/InsertAndRetriangulateContext.js +174 -75
  161. package/lib/cjs/topology/InsertAndRetriangulateContext.js.map +1 -1
  162. package/lib/cjs/topology/Merging.d.ts +2 -2
  163. package/lib/cjs/topology/Merging.js +2 -2
  164. package/lib/cjs/topology/Merging.js.map +1 -1
  165. package/lib/cjs/topology/Triangulation.d.ts +16 -10
  166. package/lib/cjs/topology/Triangulation.d.ts.map +1 -1
  167. package/lib/cjs/topology/Triangulation.js +23 -30
  168. package/lib/cjs/topology/Triangulation.js.map +1 -1
  169. package/lib/esm/Geometry.d.ts +57 -46
  170. package/lib/esm/Geometry.d.ts.map +1 -1
  171. package/lib/esm/Geometry.js +73 -53
  172. package/lib/esm/Geometry.js.map +1 -1
  173. package/lib/esm/curve/Arc3d.d.ts +141 -38
  174. package/lib/esm/curve/Arc3d.d.ts.map +1 -1
  175. package/lib/esm/curve/Arc3d.js +217 -30
  176. package/lib/esm/curve/Arc3d.js.map +1 -1
  177. package/lib/esm/curve/CurveChainWithDistanceIndex.d.ts +11 -6
  178. package/lib/esm/curve/CurveChainWithDistanceIndex.d.ts.map +1 -1
  179. package/lib/esm/curve/CurveChainWithDistanceIndex.js +12 -10
  180. package/lib/esm/curve/CurveChainWithDistanceIndex.js.map +1 -1
  181. package/lib/esm/curve/CurveCollection.d.ts +2 -1
  182. package/lib/esm/curve/CurveCollection.d.ts.map +1 -1
  183. package/lib/esm/curve/CurveCollection.js +2 -1
  184. package/lib/esm/curve/CurveCollection.js.map +1 -1
  185. package/lib/esm/curve/CurveCurve.d.ts +11 -9
  186. package/lib/esm/curve/CurveCurve.d.ts.map +1 -1
  187. package/lib/esm/curve/CurveCurve.js +11 -9
  188. package/lib/esm/curve/CurveCurve.js.map +1 -1
  189. package/lib/esm/curve/CurveFactory.d.ts +4 -3
  190. package/lib/esm/curve/CurveFactory.d.ts.map +1 -1
  191. package/lib/esm/curve/CurveFactory.js +4 -3
  192. package/lib/esm/curve/CurveFactory.js.map +1 -1
  193. package/lib/esm/curve/CurveLocationDetail.d.ts +19 -1
  194. package/lib/esm/curve/CurveLocationDetail.d.ts.map +1 -1
  195. package/lib/esm/curve/CurveLocationDetail.js +39 -0
  196. package/lib/esm/curve/CurveLocationDetail.js.map +1 -1
  197. package/lib/esm/curve/CurveOps.d.ts +4 -4
  198. package/lib/esm/curve/CurveOps.d.ts.map +1 -1
  199. package/lib/esm/curve/CurveOps.js +6 -6
  200. package/lib/esm/curve/CurveOps.js.map +1 -1
  201. package/lib/esm/curve/CurvePrimitive.d.ts +1 -1
  202. package/lib/esm/curve/CurvePrimitive.js.map +1 -1
  203. package/lib/esm/curve/LineString3d.d.ts +7 -5
  204. package/lib/esm/curve/LineString3d.d.ts.map +1 -1
  205. package/lib/esm/curve/LineString3d.js +8 -6
  206. package/lib/esm/curve/LineString3d.js.map +1 -1
  207. package/lib/esm/curve/Loop.d.ts.map +1 -1
  208. package/lib/esm/curve/Loop.js +6 -6
  209. package/lib/esm/curve/Loop.js.map +1 -1
  210. package/lib/esm/curve/OffsetOptions.d.ts +1 -1
  211. package/lib/esm/curve/OffsetOptions.js +1 -1
  212. package/lib/esm/curve/OffsetOptions.js.map +1 -1
  213. package/lib/esm/curve/Path.d.ts.map +1 -1
  214. package/lib/esm/curve/Path.js +5 -6
  215. package/lib/esm/curve/Path.js.map +1 -1
  216. package/lib/esm/curve/Query/ConsolidateAdjacentPrimitivesContext.d.ts.map +1 -1
  217. package/lib/esm/curve/Query/ConsolidateAdjacentPrimitivesContext.js +3 -4
  218. package/lib/esm/curve/Query/ConsolidateAdjacentPrimitivesContext.js.map +1 -1
  219. package/lib/esm/curve/Query/CylindricalRange.js.map +1 -1
  220. package/lib/esm/curve/RegionOps.d.ts +4 -3
  221. package/lib/esm/curve/RegionOps.d.ts.map +1 -1
  222. package/lib/esm/curve/RegionOps.js +4 -3
  223. package/lib/esm/curve/RegionOps.js.map +1 -1
  224. package/lib/esm/curve/internalContexts/CurveCurveCloseApproachXY.d.ts +23 -7
  225. package/lib/esm/curve/internalContexts/CurveCurveCloseApproachXY.d.ts.map +1 -1
  226. package/lib/esm/curve/internalContexts/CurveCurveCloseApproachXY.js +43 -35
  227. package/lib/esm/curve/internalContexts/CurveCurveCloseApproachXY.js.map +1 -1
  228. package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.d.ts +22 -8
  229. package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.d.ts.map +1 -1
  230. package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.js +127 -52
  231. package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.js.map +1 -1
  232. package/lib/esm/curve/internalContexts/EllipticalArcApproximationContext.d.ts +211 -0
  233. package/lib/esm/curve/internalContexts/EllipticalArcApproximationContext.d.ts.map +1 -0
  234. package/lib/esm/curve/internalContexts/EllipticalArcApproximationContext.js +995 -0
  235. package/lib/esm/curve/internalContexts/EllipticalArcApproximationContext.js.map +1 -0
  236. package/lib/esm/curve/internalContexts/MultiChainCollector.d.ts +11 -8
  237. package/lib/esm/curve/internalContexts/MultiChainCollector.d.ts.map +1 -1
  238. package/lib/esm/curve/internalContexts/MultiChainCollector.js +7 -4
  239. package/lib/esm/curve/internalContexts/MultiChainCollector.js.map +1 -1
  240. package/lib/esm/geometry3d/Angle.d.ts +18 -5
  241. package/lib/esm/geometry3d/Angle.d.ts.map +1 -1
  242. package/lib/esm/geometry3d/Angle.js +23 -7
  243. package/lib/esm/geometry3d/Angle.js.map +1 -1
  244. package/lib/esm/geometry3d/AngleSweep.d.ts +14 -1
  245. package/lib/esm/geometry3d/AngleSweep.d.ts.map +1 -1
  246. package/lib/esm/geometry3d/AngleSweep.js +47 -12
  247. package/lib/esm/geometry3d/AngleSweep.js.map +1 -1
  248. package/lib/esm/geometry3d/FrameBuilder.d.ts +2 -1
  249. package/lib/esm/geometry3d/FrameBuilder.d.ts.map +1 -1
  250. package/lib/esm/geometry3d/FrameBuilder.js +12 -10
  251. package/lib/esm/geometry3d/FrameBuilder.js.map +1 -1
  252. package/lib/esm/geometry3d/GeometryHandler.d.ts.map +1 -1
  253. package/lib/esm/geometry3d/GeometryHandler.js +1 -7
  254. package/lib/esm/geometry3d/GeometryHandler.js.map +1 -1
  255. package/lib/esm/geometry3d/Matrix3d.d.ts +6 -4
  256. package/lib/esm/geometry3d/Matrix3d.d.ts.map +1 -1
  257. package/lib/esm/geometry3d/Matrix3d.js +6 -4
  258. package/lib/esm/geometry3d/Matrix3d.js.map +1 -1
  259. package/lib/esm/geometry3d/Point3dVector3d.d.ts +5 -5
  260. package/lib/esm/geometry3d/Point3dVector3d.d.ts.map +1 -1
  261. package/lib/esm/geometry3d/Point3dVector3d.js +5 -5
  262. package/lib/esm/geometry3d/Point3dVector3d.js.map +1 -1
  263. package/lib/esm/geometry3d/PointHelpers.d.ts +6 -5
  264. package/lib/esm/geometry3d/PointHelpers.d.ts.map +1 -1
  265. package/lib/esm/geometry3d/PointHelpers.js +11 -10
  266. package/lib/esm/geometry3d/PointHelpers.js.map +1 -1
  267. package/lib/esm/geometry3d/PolygonOps.d.ts +4 -4
  268. package/lib/esm/geometry3d/PolygonOps.d.ts.map +1 -1
  269. package/lib/esm/geometry3d/PolygonOps.js +7 -11
  270. package/lib/esm/geometry3d/PolygonOps.js.map +1 -1
  271. package/lib/esm/geometry3d/PolylineCompressionByEdgeOffset.d.ts +1 -1
  272. package/lib/esm/geometry3d/PolylineCompressionByEdgeOffset.d.ts.map +1 -1
  273. package/lib/esm/geometry3d/PolylineCompressionByEdgeOffset.js +3 -3
  274. package/lib/esm/geometry3d/PolylineCompressionByEdgeOffset.js.map +1 -1
  275. package/lib/esm/geometry3d/Range.d.ts +6 -1
  276. package/lib/esm/geometry3d/Range.d.ts.map +1 -1
  277. package/lib/esm/geometry3d/Range.js +9 -3
  278. package/lib/esm/geometry3d/Range.js.map +1 -1
  279. package/lib/esm/geometry3d/Ray3d.d.ts +1 -1
  280. package/lib/esm/geometry3d/Ray3d.d.ts.map +1 -1
  281. package/lib/esm/geometry3d/Ray3d.js.map +1 -1
  282. package/lib/esm/geometry3d/Transform.d.ts +1 -1
  283. package/lib/esm/geometry3d/Transform.js +1 -1
  284. package/lib/esm/geometry3d/Transform.js.map +1 -1
  285. package/lib/esm/numerics/Newton.d.ts +3 -3
  286. package/lib/esm/numerics/Newton.d.ts.map +1 -1
  287. package/lib/esm/numerics/Newton.js +14 -16
  288. package/lib/esm/numerics/Newton.js.map +1 -1
  289. package/lib/esm/numerics/Polynomials.d.ts +2 -2
  290. package/lib/esm/numerics/Polynomials.js +2 -2
  291. package/lib/esm/numerics/Polynomials.js.map +1 -1
  292. package/lib/esm/polyface/PolyfaceBuilder.d.ts +7 -4
  293. package/lib/esm/polyface/PolyfaceBuilder.d.ts.map +1 -1
  294. package/lib/esm/polyface/PolyfaceBuilder.js +11 -6
  295. package/lib/esm/polyface/PolyfaceBuilder.js.map +1 -1
  296. package/lib/esm/polyface/PolyfaceClip.d.ts +13 -10
  297. package/lib/esm/polyface/PolyfaceClip.d.ts.map +1 -1
  298. package/lib/esm/polyface/PolyfaceClip.js +17 -14
  299. package/lib/esm/polyface/PolyfaceClip.js.map +1 -1
  300. package/lib/esm/polyface/PolyfaceQuery.d.ts +11 -14
  301. package/lib/esm/polyface/PolyfaceQuery.d.ts.map +1 -1
  302. package/lib/esm/polyface/PolyfaceQuery.js +59 -52
  303. package/lib/esm/polyface/PolyfaceQuery.js.map +1 -1
  304. package/lib/esm/serialization/BGFBReader.js.map +1 -1
  305. package/lib/esm/serialization/BGFBWriter.js +2 -2
  306. package/lib/esm/serialization/BGFBWriter.js.map +1 -1
  307. package/lib/esm/serialization/GeometrySamples.js.map +1 -1
  308. package/lib/esm/solid/SweepContour.d.ts.map +1 -1
  309. package/lib/esm/solid/SweepContour.js +0 -4
  310. package/lib/esm/solid/SweepContour.js.map +1 -1
  311. package/lib/esm/topology/Graph.d.ts +1 -1
  312. package/lib/esm/topology/Graph.js +2 -2
  313. package/lib/esm/topology/Graph.js.map +1 -1
  314. package/lib/esm/topology/HalfEdgeNodeXYZUV.d.ts +1 -1
  315. package/lib/esm/topology/HalfEdgeNodeXYZUV.js +1 -1
  316. package/lib/esm/topology/HalfEdgeNodeXYZUV.js.map +1 -1
  317. package/lib/esm/topology/HalfEdgePointInGraphSearch.d.ts +57 -15
  318. package/lib/esm/topology/HalfEdgePointInGraphSearch.d.ts.map +1 -1
  319. package/lib/esm/topology/HalfEdgePointInGraphSearch.js +168 -127
  320. package/lib/esm/topology/HalfEdgePointInGraphSearch.js.map +1 -1
  321. package/lib/esm/topology/HalfEdgePositionDetail.d.ts +35 -35
  322. package/lib/esm/topology/HalfEdgePositionDetail.d.ts.map +1 -1
  323. package/lib/esm/topology/HalfEdgePositionDetail.js +63 -41
  324. package/lib/esm/topology/HalfEdgePositionDetail.js.map +1 -1
  325. package/lib/esm/topology/InsertAndRetriangulateContext.d.ts +64 -12
  326. package/lib/esm/topology/InsertAndRetriangulateContext.d.ts.map +1 -1
  327. package/lib/esm/topology/InsertAndRetriangulateContext.js +173 -74
  328. package/lib/esm/topology/InsertAndRetriangulateContext.js.map +1 -1
  329. package/lib/esm/topology/Merging.d.ts +2 -2
  330. package/lib/esm/topology/Merging.js +2 -2
  331. package/lib/esm/topology/Merging.js.map +1 -1
  332. package/lib/esm/topology/Triangulation.d.ts +16 -10
  333. package/lib/esm/topology/Triangulation.d.ts.map +1 -1
  334. package/lib/esm/topology/Triangulation.js +24 -31
  335. package/lib/esm/topology/Triangulation.js.map +1 -1
  336. package/package.json +3 -3
@@ -91,8 +91,8 @@ export class Newton1dUnbounded extends AbstractNewtonIterator {
91
91
  * Constructor for 1D newton iteration with derivatives.
92
92
  * @param func function that returns both function value and derivative.
93
93
  */
94
- constructor(func) {
95
- super();
94
+ constructor(func, maxIterations) {
95
+ super(undefined, undefined, maxIterations);
96
96
  this._func = func;
97
97
  this.setTarget(0);
98
98
  }
@@ -148,8 +148,8 @@ export class Newton1dUnboundedApproximateDerivative extends AbstractNewtonIterat
148
148
  * Constructor for 1D newton iteration with approximate derivatives.
149
149
  * @param func function that only returns function value (and not derivative).
150
150
  */
151
- constructor(func) {
152
- super();
151
+ constructor(func, maxIterations) {
152
+ super(undefined, undefined, maxIterations);
153
153
  this._func = func;
154
154
  this.derivativeH = 1.0e-8;
155
155
  }
@@ -217,8 +217,7 @@ export class Newton2dUnboundedWithDerivative extends AbstractNewtonIterator {
217
217
  * Constructor for 2D newton iteration with derivatives.
218
218
  * @param func function that returns both function value and derivative.
219
219
  */
220
- constructor(func) {
221
- const maxIterations = 100; // Was default (15). We observed 49 iters to achieve 1e-11 tol with tangent geometry.
220
+ constructor(func, maxIterations) {
222
221
  super(undefined, undefined, maxIterations);
223
222
  this._func = func;
224
223
  this._currentStep = Vector2d.createZero();
@@ -239,7 +238,6 @@ export class Newton2dUnboundedWithDerivative extends AbstractNewtonIterator {
239
238
  }
240
239
  /** Update the current uv parameter by currentStep, i.e., compute `X_{n+1} := X_n - dX = (u_n - du, v_n - dv)`. */
241
240
  applyCurrentStep() {
242
- // print approximations for debug
243
241
  // console.log("(" + (this._currentUV.x - this._currentStep.x) + "," + (this._currentUV.y - this._currentStep.y) + ")");
244
242
  return this.setUV(this._currentUV.x - this._currentStep.x, this._currentUV.y - this._currentStep.y);
245
243
  }
@@ -248,15 +246,15 @@ export class Newton2dUnboundedWithDerivative extends AbstractNewtonIterator {
248
246
  * compute `dX = (du, dv)`.
249
247
  */
250
248
  computeStep() {
251
- if (this._func.evaluate(this._currentUV.x, this._currentUV.y)) {
252
- const fA = this._func.currentF;
253
- if ( // Given X_{n+1} = X_n - dX = X_n - JInv(X_n) F(X_n), we solve J(X_n) dX = F(X_n) for dX:
254
- SmallSystem.linearSystem2d(fA.vectorU.x, fA.vectorV.x, // x_u(X_n), x_v(X_n): 1st row of J evaluated at X_n
255
- fA.vectorU.y, fA.vectorV.y, // y_u(X_n), y_v(X_n): 2nd row of J evaluated at X_n
256
- fA.origin.x, fA.origin.y, // F(X_n) := (x(X_n), y(X_n))
257
- this._currentStep))
258
- return true;
259
- }
249
+ if (!this._func.evaluate(this._currentUV.x, this._currentUV.y))
250
+ return false;
251
+ const fA = this._func.currentF;
252
+ const jCol0 = fA.vectorU;
253
+ const jCol1 = fA.vectorV;
254
+ const fX = fA.origin;
255
+ // Given X_{n+1} = X_n - dX = X_n - JInv(X_n) F(X_n), we solve J(X_n) dX = F(X_n) for dX:
256
+ if (SmallSystem.linearSystem2d(jCol0.x, jCol1.x, jCol0.y, jCol1.y, fX.x, fX.y, this._currentStep))
257
+ return true;
260
258
  return false;
261
259
  }
262
260
  /**
@@ -1 +1 @@
1
- {"version":3,"file":"Newton.js","sourceRoot":"","sources":["../../../src/numerics/Newton.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AAEH,OAAO,EAAE,QAAQ,EAAE,MAAM,aAAa,CAAC;AAEvC,OAAO,EAAE,yBAAyB,EAAE,MAAM,yCAAyC,CAAC;AACpF,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,MAAM,+BAA+B,CAAC;AAElE,OAAO,EAAE,KAAK,EAAE,MAAM,qBAAqB,CAAC;AAC5C,OAAO,EAAE,WAAW,EAAE,MAAM,eAAe,CAAC;AAE5C,+BAA+B;AAE/B;;;;GAIG;AACH,MAAM,OAAgB,sBAAsB;IAa1C;;;;;;;;;;;OAWG;IACH,YACE,oBAA4B,OAAO,EACnC,8BAAsC,CAAC,EACvC,gBAAwB,EAAE;QAM5B,sEAAsE;QAC5D,iBAAY,GAAW,CAAC,CAAC;QAOnC,uDAAuD;QAChD,kBAAa,GAAW,CAAC,CAAC;QAb/B,IAAI,CAAC,kBAAkB,GAAG,iBAAiB,CAAC;QAC5C,IAAI,CAAC,4BAA4B,GAAG,2BAA2B,CAAC;QAChE,IAAI,CAAC,cAAc,GAAG,aAAa,CAAC;IACtC,CAAC;IAWD;;;;;OAKG;IACI,eAAe,CAAC,KAAa;QAClC,IAAI,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,IAAI,CAAC,kBAAkB,EAAE,CAAC;YAC9C,IAAI,CAAC,YAAY,EAAE,CAAC;YACpB,OAAO,IAAI,CAAC,YAAY,IAAI,IAAI,CAAC,4BAA4B,CAAC;QAChE,CAAC;QACD,IAAI,CAAC,YAAY,GAAG,CAAC,CAAC;QACtB,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;;;OAMG;IACI,aAAa;QAClB,IAAI,CAAC,YAAY,GAAG,CAAC,CAAC;QACtB,IAAI,CAAC,aAAa,GAAG,CAAC,CAAC;QACvB,OAAO,IAAI,CAAC,aAAa,EAAE,GAAG,IAAI,CAAC,cAAc,IAAI,IAAI,CAAC,WAAW,EAAE,EAAE,CAAC;YACxE,IAAI,IAAI,CAAC,eAAe,CAAC,IAAI,CAAC,eAAe,EAAE,CAAC,IAAI,IAAI,CAAC,gBAAgB,CAAC,IAAI,CAAC,EAAE,CAAC;gBAChF,6FAA6F;gBAC7F,OAAO,IAAI,CAAC;YACd,CAAC;YACD,IAAI,CAAC,gBAAgB,CAAC,KAAK,CAAC,CAAC;QAC/B,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;CACF;AACD;;;;GAIG;AACH,MAAM,OAAgB,oBAAoB;CAOzC;AACD;;;;;;GAMG;AACH,MAAM,OAAO,iBAAkB,SAAQ,sBAAsB;IAQ3D;;;OAGG;IACH,YAAmB,IAA0B;QAC3C,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC;QAClB,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;IACpB,CAAC;IACD,+CAA+C;IACxC,IAAI,CAAC,CAAS;QACnB,IAAI,CAAC,SAAS,GAAG,CAAC,CAAC;QACnB,OAAO,IAAI,CAAC;IACd,CAAC;IACD,+CAA+C;IACxC,IAAI;QACT,OAAO,IAAI,CAAC,SAAS,CAAC;IACxB,CAAC;IACD,qCAAqC;IAC9B,SAAS,CAAC,CAAS;QACxB,IAAI,CAAC,OAAO,GAAG,CAAC,CAAC;IACnB,CAAC;IACD,sEAAsE;IAC/D,gBAAgB;QACrB,qFAAqF;QACrF,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC;IACvD,CAAC;IACD,6CAA6C;IACtC,WAAW;QAChB,IAAI,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,SAAS,CAAC,EAAE,CAAC;YACxC,MAAM,EAAE,GAAG,QAAQ,CAAC,yBAAyB,CAAC,IAAI,CAAC,KAAK,CAAC,QAAQ,GAAG,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,KAAK,CAAC,WAAW,CAAC,CAAC;YAC1G,IAAI,EAAE,KAAK,SAAS,EAAE,CAAC;gBACrB,IAAI,CAAC,YAAY,GAAG,EAAE,CAAC;gBACvB,OAAO,IAAI,CAAC;YACd,CAAC;QACH,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD,qFAAqF;IAC9E,eAAe;QACpB,OAAO,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,YAAY,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;IACxE,CAAC;CACF;AAED;;;GAGG;AACH,MAAM,OAAgB,mBAAmB;CAKxC;AAED;;;;;;GAMG;AACH,MAAM,OAAO,sCAAuC,SAAQ,sBAAsB;IAahF;;;OAGG;IACH,YAAmB,IAAyB;QAC1C,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC;QAClB,IAAI,CAAC,WAAW,GAAG,MAAM,CAAC;IAC5B,CAAC;IACD,+CAA+C;IACxC,IAAI,CAAC,CAAS;QACnB,IAAI,CAAC,SAAS,GAAG,CAAC,CAAC;QACnB,OAAO,IAAI,CAAC;IACd,CAAC;IACD,+CAA+C;IACxC,IAAI;QACT,OAAO,IAAI,CAAC,SAAS,CAAC;IACxB,CAAC;IACD,sEAAsE;IAC/D,gBAAgB;QACrB,qFAAqF;QACrF,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC;IACvD,CAAC;IACD,uEAAuE;IAChE,WAAW;QAChB,IAAI,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,SAAS,CAAC,EAAE,CAAC;YACxC,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,SAAS;YACzC,IAAI,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,WAAW,CAAC,EAAE,CAAC;gBAC3D,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,aAAa;gBAC7C,MAAM,EAAE,GAAG,QAAQ,CAAC,yBAAyB,CAAC,EAAE,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,IAAI,CAAC,WAAW,CAAC,CAAC;gBAChF,IAAI,EAAE,KAAK,SAAS,EAAE,CAAC;oBACrB,IAAI,CAAC,YAAY,GAAG,EAAE,CAAC;oBACvB,OAAO,IAAI,CAAC;gBACd,CAAC;YACH,CAAC;QACH,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD,qFAAqF;IAC9E,eAAe;QACpB,OAAO,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,YAAY,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;IACxE,CAAC;CACF;AAED;;;GAGG;AACH,MAAM,OAAgB,sBAAsB;IAe1C;;;OAGG;IACH;QACE,IAAI,CAAC,QAAQ,GAAG,yBAAyB,CAAC,aAAa,EAAE,CAAC;IAC5D,CAAC;CACF;AAED;;;;;;;;;;;GAWG;AACH,MAAM,OAAO,+BAAgC,SAAQ,sBAAsB;IAMzE;;;OAGG;IACH,YAAmB,IAA4B;QAC7C,MAAM,aAAa,GAAG,GAAG,CAAC,CAAE,qFAAqF;QACjH,KAAK,CAAC,SAAS,EAAE,SAAS,EAAE,aAAa,CAAC,CAAC;QAC3C,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC;QAClB,IAAI,CAAC,YAAY,GAAG,QAAQ,CAAC,UAAU,EAAE,CAAC;QAC1C,IAAI,CAAC,UAAU,GAAG,OAAO,CAAC,UAAU,EAAE,CAAC;IACzC,CAAC;IACD,+DAA+D;IACxD,KAAK,CAAC,CAAS,EAAE,CAAS;QAC/B,IAAI,CAAC,UAAU,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QAC1B,OAAO,IAAI,CAAC;IACd,CAAC;IACD,qDAAqD;IAC9C,IAAI;QACT,OAAO,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC;IAC3B,CAAC;IACD,qDAAqD;IAC9C,IAAI;QACT,OAAO,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC;IAC3B,CAAC;IACD,kHAAkH;IAC3G,gBAAgB;QACrB,iCAAiC;QACjC,wHAAwH;QACxH,OAAO,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC,CAAC,CAAC;IACtG,CAAC;IACD;;;OAGG;IACI,WAAW;QAChB,IAAI,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC,EAAE,CAAC;YAC9D,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC;YAC/B,KAAM,yFAAyF;YAC7F,WAAW,CAAC,cAAc,CACxB,EAAE,CAAC,OAAO,CAAC,CAAC,EAAE,EAAE,CAAC,OAAO,CAAC,CAAC,EAAE,oDAAoD;YAChF,EAAE,CAAC,OAAO,CAAC,CAAC,EAAE,EAAE,CAAC,OAAO,CAAC,CAAC,EAAE,oDAAoD;YAChF,EAAE,CAAC,MAAM,CAAC,CAAC,EAAE,EAAE,CAAC,MAAM,CAAC,CAAC,EAAI,6BAA6B;YACzD,IAAI,CAAC,YAAY,CAClB;gBAED,OAAO,IAAI,CAAC;QAChB,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;OAEG;IACI,eAAe;QACpB,OAAO,QAAQ,CAAC,QAAQ,CACtB,IAAI,CAAC,YAAY,CAAC,CAAC,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,EACzD,IAAI,CAAC,YAAY,CAAC,CAAC,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,CAC1D,CAAC;IACJ,CAAC;CACF;AACD;;;;GAIG;AACH,MAAM,OAAO,YAAY;IACvB;;;;;;;;OAQG;IACI,MAAM,CAAC,WAAW,CACvB,CAAS,EACT,IAAuC,EACvC,UAA6C,EAC7C,oBAA4B,QAAQ,CAAC,kBAAkB;QAEvD,IAAI,YAAY,GAAG,CAAC,CAAC;QACrB,IAAI,SAAiB,CAAC;QACtB,MAAM,MAAM,GAAG,OAAO,CAAC;QACvB,KAAK,IAAI,SAAS,GAAG,CAAC,EAAE,SAAS,GAAG,EAAE,EAAE,SAAS,EAAE,EAAE,CAAC;YACpD,MAAM,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YAClB,MAAM,EAAE,GAAG,UAAU,CAAC,CAAC,CAAC,CAAC;YACzB,IAAI,CAAC,KAAK,SAAS,IAAI,EAAE,KAAK,SAAS,EAAE,CAAC;gBACxC,MAAM,EAAE,GAAG,QAAQ,CAAC,2BAA2B,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;gBACvD,IAAI,EAAE,KAAK,SAAS;oBAClB,OAAO,SAAS,CAAC;gBACnB,CAAC,IAAI,EAAE,CAAC;gBACR,oDAAoD;gBACpD,SAAS,GAAG,iBAAiB,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,MAAM,CAAC;gBACrD,IAAI,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,SAAS,EAAE,CAAC;oBAC7B,YAAY,EAAE,CAAC;oBACf,IAAI,EAAE,KAAK,GAAG,IAAI,YAAY,GAAG,CAAC,EAAI,wCAAwC;wBAC5E,OAAO,CAAC,CAAC;gBACb,CAAC;qBAAM,CAAC;oBACN,YAAY,GAAG,CAAC,CAAC;gBACnB,CAAC;YACH,CAAC;QACH,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;CACF;AAED;;;GAGG;AACH,MAAM,OAAO,+BAAgC,SAAQ,sBAAsB;IAKzE,YAAY,MAAsB,EAAE,MAAsB;QACxD,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,KAAK,GAAG,KAAK,CAAC,UAAU,EAAE,CAAC;QAChC,IAAI,CAAC,KAAK,GAAG,KAAK,CAAC,UAAU,EAAE,CAAC;IAClC,CAAC;IACM,QAAQ,CAAC,SAAiB,EAAE,SAAiB;QAClD;;;;;;;;WAQG;QACH,IAAI,CAAC,OAAO,CAAC,4BAA4B,CAAC,SAAS,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC;QACjE,IAAI,CAAC,OAAO,CAAC,4BAA4B,CAAC,SAAS,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC;QACjE,IAAI,CAAC,QAAQ,CAAC,sBAAsB,CAClC,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,EAAE,GAAG,EACzF,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,GAAG,EACnD,CAAC,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,GAAG,CACtD,CAAC;QACF,OAAO,IAAI,CAAC;IACd,CAAC;CACF;AAED;;;GAGG;AACH,MAAM,OAAO,8BAA+B,SAAQ,oBAAoB;IAItE,YAAY,MAAsB,EAAE,MAAe;QACjD,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,yBAAyB,CAAC,aAAa,EAAE,CAAC;IAC3D,CAAC;IACM,QAAQ,CAAC,SAAiB;QAC/B;;;;;;;WAOG;QACH,IAAI,CAAC,OAAO,CAAC,8BAA8B,CAAC,SAAS,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;QACrE,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;QACpD,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;QACpD,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,IAAI,CAAC,QAAQ,GAAG,OAAO,GAAG,IAAI,GAAG,OAAO,GAAG,IAAI,CAAC;QAChD,IAAI,CAAC,WAAW,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,CAAC;QAC7F,OAAO,IAAI,CAAC;IACd,CAAC;CACF;AAED;;;GAGG;AACH,MAAM,OAAO,gCAAiC,SAAQ,sBAAsB;IAK1E,YAAY,MAAsB,EAAE,MAAsB;QACxD,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,yBAAyB,CAAC,aAAa,EAAE,CAAC;QACzD,IAAI,CAAC,OAAO,GAAG,yBAAyB,CAAC,aAAa,EAAE,CAAC;IAC3D,CAAC;IACM,QAAQ,CAAC,SAAiB,EAAE,SAAiB;QAClD;;;;;;;;;;WAUG;QACH,IAAI,CAAC,OAAO,CAAC,8BAA8B,CAAC,SAAS,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;QACrE,IAAI,CAAC,OAAO,CAAC,8BAA8B,CAAC,SAAS,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;QACrE,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC;QAC3D,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC;QAC3D,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,IAAI,CAAC,QAAQ,CAAC,sBAAsB,CAClC,OAAO,GAAG,IAAI,GAAG,OAAO,GAAG,IAAI,EAC/B,OAAO,GAAG,IAAI,GAAG,OAAO,GAAG,IAAI,EAC/B,GAAG,EACH,QAAQ,GAAG,IAAI,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,EACzE,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,EACrC,GAAG,EACH,CAAC,CAAC,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,CAAC,EACxC,QAAQ,GAAG,IAAI,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,EACzE,GAAG,CACJ,CAAC;QACF,OAAO,IAAI,CAAC;IACd,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module Numerics\r\n */\r\n\r\nimport { Geometry } from \"../Geometry\";\r\nimport { CurvePrimitive } from \"../curve/CurvePrimitive\";\r\nimport { Plane3dByOriginAndVectors } from \"../geometry3d/Plane3dByOriginAndVectors\";\r\nimport { Point2d, Vector2d } from \"../geometry3d/Point2dVector2d\";\r\nimport { Point3d } from \"../geometry3d/Point3dVector3d\";\r\nimport { Ray3d } from \"../geometry3d/Ray3d\";\r\nimport { SmallSystem } from \"./Polynomials\";\r\n\r\n// cspell:word currentdFdX XYRR\r\n\r\n/**\r\n * Base class for Newton iterations in various dimensions.\r\n * Dimension-specific classes carry all dimension-related data and answer generalized queries from this base class.\r\n * @internal\r\n */\r\nexport abstract class AbstractNewtonIterator {\r\n /** Compute a step. The current x and function values must be retained for use in later method calls. */\r\n public abstract computeStep(): boolean;\r\n /**\r\n * Return the current step size, scaled for use in tolerance tests.\r\n * * This is a single number, typically the max of various per-dimension `dx/(1+x)` for the x and dx of that dimension.\r\n */\r\n public abstract currentStepSize(): number;\r\n /**\r\n * Apply the current step (in all dimensions).\r\n * @param isFinalStep true if this is a final step.\r\n */\r\n public abstract applyCurrentStep(isFinalStep: boolean): boolean;\r\n /**\r\n * The constructor.\r\n * @param stepSizeTarget tolerance to consider a single step converged.\r\n * This number should be \"moderately\" strict. Because 2 successive convergences are required,\r\n * it is expected that a first \"accept\" for (say) 10 to 14 digit step will be followed by another\r\n * iteration. A well behaved newton would then hypothetically double the number of digits to\r\n * 20 to 28. Since the IEEE double only carries 16 digits, this second-convergence step will\r\n * typically achieve full precision.\r\n * @param successiveConvergenceTarget number of successive convergences required for acceptance.\r\n * @param maxIterations max number of iterations. A typical newton step converges in 3 to 6 iterations.\r\n * Allow 15 to 20 to catch difficult cases.\r\n */\r\n protected constructor(\r\n stepSizeTolerance: number = 1.0e-11,\r\n successiveConvergenceTarget: number = 2,\r\n maxIterations: number = 15,\r\n ) {\r\n this._stepSizeTolerance = stepSizeTolerance;\r\n this._successiveConvergenceTarget = successiveConvergenceTarget;\r\n this._maxIterations = maxIterations;\r\n }\r\n /** Number of consecutive steps which passed convergence condition. */\r\n protected _numAccepted: number = 0;\r\n /** Target number of successive convergences. */\r\n protected _successiveConvergenceTarget: number;\r\n /** Convergence target (the implementation-specific currentStepSize is compared to this). */\r\n protected _stepSizeTolerance: number;\r\n /** Max iterations allowed. */\r\n protected _maxIterations: number;\r\n /** Number of iterations (incremented at each step). */\r\n public numIterations: number = 0;\r\n /**\r\n * Test if a step is converged.\r\n * * Convergence is accepted with enough (_successiveConvergenceTarget) small steps (according to _stepSizeTolerance)\r\n * occur in succession.\r\n * @param delta step size as reported by currentStepSize.\r\n */\r\n public testConvergence(delta: number): boolean {\r\n if (Math.abs(delta) < this._stepSizeTolerance) {\r\n this._numAccepted++;\r\n return this._numAccepted >= this._successiveConvergenceTarget;\r\n }\r\n this._numAccepted = 0;\r\n return false;\r\n }\r\n /**\r\n * Run iterations, calling various methods from base and derived classes:\r\n * * computeStep -- typically evaluate derivatives and solve linear system.\r\n * * currentStepSize -- return numeric measure of the step just computed by computeStep.\r\n * * testConvergence -- test if the step from currentStepSize (along with recent steps) is converged.\r\n * * applyCurrentStep -- apply the step to the independent variables.\r\n */\r\n public runIterations(): boolean {\r\n this._numAccepted = 0;\r\n this.numIterations = 0;\r\n while (this.numIterations++ < this._maxIterations && this.computeStep()) {\r\n if (this.testConvergence(this.currentStepSize()) && this.applyCurrentStep(true)) {\r\n // console.log(\"iter: \" + this.numIterations); // print number of Newton iterations for debug\r\n return true;\r\n }\r\n this.applyCurrentStep(false);\r\n }\r\n return false;\r\n }\r\n}\r\n/**\r\n * Object to evaluate a newton function. The object must retain most-recent function and derivative\r\n * values for immediate query.\r\n * @internal\r\n */\r\nexport abstract class NewtonEvaluatorRtoRD {\r\n /** Evaluate the function and its derivative at x. */\r\n public abstract evaluate(x: number): boolean;\r\n /** Most recent function value, i.e., f(x_n). */\r\n public currentF!: number;\r\n /** Most recent evaluated derivative, i.e., f'(x_n). */\r\n public currentdFdX!: number;\r\n}\r\n/**\r\n * Newton iterator for use when both function and derivative can be evaluated.\r\n * To solve `f(x) = 0`, the Newton iteration is `x_{n+1} = x_n - dx = x_n - f(x_n)/f'(x_n)`.\r\n * To solve `f(x) = target` which is equivalent to solving `g(x) = f(x) - target = 0`, the Newton iteration is\r\n * `x_{n+1} = x_n - dx = x_n - g(x_n)/g'(x_n) = x_n - (f(x_n)-target)/f'(x_n)`.\r\n * @internal\r\n */\r\nexport class Newton1dUnbounded extends AbstractNewtonIterator {\r\n private _func: NewtonEvaluatorRtoRD;\r\n /** Current step is dx. */\r\n private _currentStep!: number;\r\n /** Current X is x_n. */\r\n private _currentX!: number;\r\n /** The target */\r\n private _target!: number;\r\n /**\r\n * Constructor for 1D newton iteration with derivatives.\r\n * @param func function that returns both function value and derivative.\r\n */\r\n public constructor(func: NewtonEvaluatorRtoRD) {\r\n super();\r\n this._func = func;\r\n this.setTarget(0);\r\n }\r\n /** Set the independent variable, i.e., x_n. */\r\n public setX(x: number): boolean {\r\n this._currentX = x;\r\n return true;\r\n }\r\n /** Get the independent variable, i.e., x_n. */\r\n public getX(): number {\r\n return this._currentX;\r\n }\r\n /** Set the target function value. */\r\n public setTarget(y: number): void {\r\n this._target = y;\r\n }\r\n /** Move the current X by the just-computed step, i.e., `x_n - dx`. */\r\n public applyCurrentStep(): boolean {\r\n // console.log(this._currentX - this._currentStep); // print approximations for debug\r\n return this.setX(this._currentX - this._currentStep);\r\n }\r\n /** Compute the univariate newton step dx. */\r\n public computeStep(): boolean {\r\n if (this._func.evaluate(this._currentX)) {\r\n const dx = Geometry.conditionalDivideFraction(this._func.currentF - this._target, this._func.currentdFdX);\r\n if (dx !== undefined) {\r\n this._currentStep = dx;\r\n return true;\r\n }\r\n }\r\n return false;\r\n }\r\n /** Return the current step size as a relative number, i.e., `|dx / (1 + |x_n|)|`. */\r\n public currentStepSize(): number {\r\n return Math.abs(this._currentStep / (1.0 + Math.abs(this._currentX)));\r\n }\r\n}\r\n\r\n/**\r\n * Object to evaluate a newton function (without derivative). The object must retain most-recent function value.\r\n * @internal\r\n */\r\nexport abstract class NewtonEvaluatorRtoR {\r\n /** Evaluate function value into member currentF */\r\n public abstract evaluate(x: number): boolean;\r\n /** Most recent function evaluation, i.e., f(x_n). */\r\n public currentF!: number;\r\n}\r\n\r\n/**\r\n * Newton iteration for a univariate function, using approximate derivatives.\r\n * To approximate the derivatives we use a small step `h`, i.e., `f'(x_n) = (f(x_n + h) - f(x_n)) / h`.\r\n * Therefore, to solve `f(x) = 0`, the iteration is\r\n * `x_{n+1} = x_n - dx = x_n - f(x_n)/f'(x_n) = x_n - f(x_n) * h / (f(x_n + h) - f(x_n))`.\r\n * @internal\r\n */\r\nexport class Newton1dUnboundedApproximateDerivative extends AbstractNewtonIterator {\r\n private _func: NewtonEvaluatorRtoR;\r\n /** Current step is dx. */\r\n private _currentStep!: number;\r\n /** Current X is x_n. */\r\n private _currentX!: number;\r\n /**\r\n * Step size for approximate derivative for the iteration.\r\n * * Initialized to 1e-8, which is appropriate for iteration in fraction space.\r\n * * Should be larger for iteration with real distance as x.\r\n */\r\n public derivativeH: number; // h\r\n\r\n /**\r\n * Constructor for 1D newton iteration with approximate derivatives.\r\n * @param func function that only returns function value (and not derivative).\r\n */\r\n public constructor(func: NewtonEvaluatorRtoR) {\r\n super();\r\n this._func = func;\r\n this.derivativeH = 1.0e-8;\r\n }\r\n /** Set the independent variable, i.e., x_n. */\r\n public setX(x: number): boolean {\r\n this._currentX = x;\r\n return true;\r\n }\r\n /** Get the independent variable, i.e., x_n. */\r\n public getX(): number {\r\n return this._currentX;\r\n }\r\n /** Move the current X by the just-computed step, i.e., `x_n - dx`. */\r\n public applyCurrentStep(): boolean {\r\n // console.log(this._currentX - this._currentStep); // print approximations for debug\r\n return this.setX(this._currentX - this._currentStep);\r\n }\r\n /** Univariate newton step dx, computed with approximate derivative. */\r\n public computeStep(): boolean {\r\n if (this._func.evaluate(this._currentX)) {\r\n const fA = this._func.currentF; // f(x_n)\r\n if (this._func.evaluate(this._currentX + this.derivativeH)) {\r\n const fB = this._func.currentF; // f(x_n + h)\r\n const dx = Geometry.conditionalDivideFraction(fA, (fB - fA) / this.derivativeH);\r\n if (dx !== undefined) {\r\n this._currentStep = dx;\r\n return true;\r\n }\r\n }\r\n }\r\n return false;\r\n }\r\n /** Return the current step size as a relative number, i.e., `|dx / (1 + |x_n|)|`. */\r\n public currentStepSize(): number {\r\n return Math.abs(this._currentStep / (1.0 + Math.abs(this._currentX)));\r\n }\r\n}\r\n\r\n/**\r\n * Object to evaluate a 2-parameter newton function with derivatives.\r\n * @internal\r\n */\r\nexport abstract class NewtonEvaluatorRRtoRRD {\r\n /**\r\n * Iteration controller calls this to ask for evaluation of the function and its two partial derivatives.\r\n * * The implementation returns true, it must set the currentF object.\r\n */\r\n public abstract evaluate(x: number, y: number): boolean;\r\n /**\r\n * Most recent function evaluation as parts of the plane.\r\n * * See doc of [[Newton2dUnboundedWithDerivative]] class for info on 2d newton method.\r\n * * For `F(u,v) := (x(u,v), y(u,v))` the returned plane stores the following evaluations at current value `X := (u,v)`:\r\n * * `origin` = F(X) = (x(X), y(X))\r\n * * `vectorU` = F_u(X) = partial deriv of F wrt u at X = (x_u(X), y_u(X)) = 1st col of Jacobian matrix evaluated at X\r\n * * `vectorV` = F_v(X) = partial deriv of F wrt v at X = (x_v(X), y_v(X)) = 2nd col of Jacobian matrix evaluated at X\r\n */\r\n public currentF!: Plane3dByOriginAndVectors;\r\n /**\r\n * Constructor.\r\n * * This creates a currentF object to (repeatedly) receive function and derivatives.\r\n */\r\n public constructor() {\r\n this.currentF = Plane3dByOriginAndVectors.createXYPlane();\r\n }\r\n}\r\n\r\n/**\r\n * Implement evaluation steps for newton iteration in 2 dimensions, using caller supplied NewtonEvaluatorRRtoRRD object.\r\n * * Suppose we want to find the roots of `F(u,v) := (x(u,v), y(u,v))`. Writing `X := (u,v)` and `F(X)` as column vectors,\r\n * the 2D Newton's iteration to find a root of `F` is given by:\r\n * `X_{n+1} = X_n - dX = X_n - JInv(X_n)F(X_n)`, where `JInv` is the inverse of the Jacobian matrix `J`, and `J` is\r\n * defined by the partial derivatives of the component functions of F:\r\n *\r\n * `[dx/du dx/dv]`\r\n *\r\n * `[dy/du dy/dv]`\r\n * @internal\r\n */\r\nexport class Newton2dUnboundedWithDerivative extends AbstractNewtonIterator {\r\n private _func: NewtonEvaluatorRRtoRRD;\r\n /** Current step, or dX = (du, dv). */\r\n private _currentStep: Vector2d;\r\n /** Current uv parameters, or X_n = (u_n, v_n). */\r\n private _currentUV: Point2d;\r\n /**\r\n * Constructor for 2D newton iteration with derivatives.\r\n * @param func function that returns both function value and derivative.\r\n */\r\n public constructor(func: NewtonEvaluatorRRtoRRD) {\r\n const maxIterations = 100; // Was default (15). We observed 49 iters to achieve 1e-11 tol with tangent geometry.\r\n super(undefined, undefined, maxIterations);\r\n this._func = func;\r\n this._currentStep = Vector2d.createZero();\r\n this._currentUV = Point2d.createZero();\r\n }\r\n /** Set the current uv parameters, i.e., `X_n = (u_n, v_n)`. */\r\n public setUV(u: number, v: number): boolean {\r\n this._currentUV.set(u, v);\r\n return true;\r\n }\r\n /** Get the current u parameter of X_n, i.e., u_n. */\r\n public getU(): number {\r\n return this._currentUV.x;\r\n }\r\n /** Get the current v parameter of X_n, i.e., v_n. */\r\n public getV(): number {\r\n return this._currentUV.y;\r\n }\r\n /** Update the current uv parameter by currentStep, i.e., compute `X_{n+1} := X_n - dX = (u_n - du, v_n - dv)`. */\r\n public applyCurrentStep(): boolean {\r\n // print approximations for debug\r\n // console.log(\"(\" + (this._currentUV.x - this._currentStep.x) + \",\" + (this._currentUV.y - this._currentStep.y) + \")\");\r\n return this.setUV(this._currentUV.x - this._currentStep.x, this._currentUV.y - this._currentStep.y);\r\n }\r\n /**\r\n * Evaluate the functions and derivatives at `X_n = (u_n, v_n)`, and solve the Jacobian matrix equation to\r\n * compute `dX = (du, dv)`.\r\n */\r\n public computeStep(): boolean {\r\n if (this._func.evaluate(this._currentUV.x, this._currentUV.y)) {\r\n const fA = this._func.currentF;\r\n if ( // Given X_{n+1} = X_n - dX = X_n - JInv(X_n) F(X_n), we solve J(X_n) dX = F(X_n) for dX:\r\n SmallSystem.linearSystem2d(\r\n fA.vectorU.x, fA.vectorV.x, // x_u(X_n), x_v(X_n): 1st row of J evaluated at X_n\r\n fA.vectorU.y, fA.vectorV.y, // y_u(X_n), y_v(X_n): 2nd row of J evaluated at X_n\r\n fA.origin.x, fA.origin.y, // F(X_n) := (x(X_n), y(X_n))\r\n this._currentStep, // dX\r\n )\r\n )\r\n return true;\r\n }\r\n return false;\r\n }\r\n /**\r\n * Return the current relative step size, i.e., the larger absolute component of `dX / (1 + |X_n|)`\r\n */\r\n public currentStepSize(): number {\r\n return Geometry.maxAbsXY(\r\n this._currentStep.x / (1.0 + Math.abs(this._currentUV.x)),\r\n this._currentStep.y / (1.0 + Math.abs(this._currentUV.y)),\r\n );\r\n }\r\n}\r\n/**\r\n * SimpleNewton has static methods for newton methods with evaluated functions presented as immediate arguments\r\n * (not function object).\r\n * @internal\r\n */\r\nexport class SimpleNewton {\r\n /**\r\n * Run a one-dimensional newton iteration with separate functions for function and derivative.\r\n * * Completion is at 2 (TWO) successive passes at `absoluteTolerance + relTol * abs(x)`, where relTol is\r\n * chosen internally.\r\n * * `absoluteTolerance` is usually aggressively tight -- should come into play only for x near zero.\r\n * * The `relTol` is fluffy (for instance around 1e-11) but in properly converging cases the extra pass after\r\n * first success normally moves to full machine precision.\r\n * * This is an open-loop newton -- it just runs, and returns undefined if anything bad happens.\r\n */\r\n public static runNewton1D(\r\n x: number,\r\n func: (x: number) => number | undefined,\r\n derivative: (x: number) => number | undefined,\r\n absoluteTolerance: number = Geometry.smallFloatingPoint,\r\n ): number | undefined {\r\n let numConverged = 0;\r\n let tolerance: number;\r\n const relTol = 1.0e-11;\r\n for (let iteration = 0; iteration < 20; iteration++) {\r\n const f = func(x);\r\n const df = derivative(x);\r\n if (f !== undefined && df !== undefined) {\r\n const dx = Geometry.conditionalDivideCoordinate(f, df);\r\n if (dx === undefined)\r\n return undefined;\r\n x -= dx;\r\n // console.log(x); // print approximations for debug\r\n tolerance = absoluteTolerance + Math.abs(x) * relTol;\r\n if (Math.abs(dx) < tolerance) {\r\n numConverged++;\r\n if (dx === 0.0 || numConverged > 1) // bypass convergence count on true 0 dx\r\n return x;\r\n } else {\r\n numConverged = 0;\r\n }\r\n }\r\n }\r\n return undefined;\r\n }\r\n}\r\n\r\n/**\r\n * Class to evaluate XY intersection between 2 curve primitives using the Newton method.\r\n * @internal\r\n */\r\nexport class CurveCurveIntersectionXYRRToRRD extends NewtonEvaluatorRRtoRRD {\r\n private _curveP: CurvePrimitive;\r\n private _curveQ: CurvePrimitive;\r\n private _rayP: Ray3d;\r\n private _rayQ: Ray3d;\r\n constructor(curveP: CurvePrimitive, curveQ: CurvePrimitive) {\r\n super();\r\n this._curveP = curveP;\r\n this._curveQ = curveQ;\r\n this._rayP = Ray3d.createZero();\r\n this._rayQ = Ray3d.createZero();\r\n }\r\n public evaluate(fractionU: number, fractionV: number): boolean {\r\n /**\r\n * To find an intersection between xy-curves P(u) = (x_p(u), y_p(u)) and Q(v) = (x_q(v), y_q(v)) we should solve\r\n * F(u,v) := P(u) - Q(v) = (0,0)\r\n * Using the Newton method we can find the fractions u and v at the intersection via\r\n * [u_{n+1}] [u_n] [x_p'(u_n) -x_q'(v_n)] [x_p(u_n) - x_q(v_n)]\r\n * = - Inv( )\r\n * [v_{n+1}] [v_n] [y_p'(u_n) -y_q'(v_n)] [y_p(u_n) - y_q(v_n)]\r\n * Note that this is xy intersection so we can ignore z.\r\n */\r\n this._curveP.fractionToPointAndDerivative(fractionU, this._rayP);\r\n this._curveQ.fractionToPointAndDerivative(fractionV, this._rayQ);\r\n this.currentF.setOriginAndVectorsXYZ(\r\n this._rayP.origin.x - this._rayQ.origin.x, this._rayP.origin.y - this._rayQ.origin.y, 0.0,\r\n this._rayP.direction.x, this._rayP.direction.y, 0.0,\r\n -this._rayQ.direction.x, -this._rayQ.direction.y, 0.0,\r\n );\r\n return true;\r\n }\r\n}\r\n\r\n/**\r\n * Class to evaluate XY close approach between a curve primitive and a point using the Newton method.\r\n * @internal\r\n */\r\nexport class CurvePointCloseApproachXYRtoRD extends NewtonEvaluatorRtoRD {\r\n private _curveP: CurvePrimitive;\r\n private _pointQ: Point3d;\r\n private _planeP: Plane3dByOriginAndVectors;\r\n constructor(curveP: CurvePrimitive, pointQ: Point3d) {\r\n super();\r\n this._curveP = curveP;\r\n this._pointQ = pointQ;\r\n this._planeP = Plane3dByOriginAndVectors.createXYPlane();\r\n }\r\n public evaluate(fractionU: number): boolean {\r\n /**\r\n * To find a close approach between xy-curve P(u) and xy-point q we should solve\r\n * F(u) := P'(u).(P(u) - q) = 0\r\n * For a solution u, the segment S(u) := P(u) - q is perpendicular to the curve tangent P'(u), which means S(u) is a close approach.\r\n * Using the Newton method we can find the fractions u at the close approach location via\r\n * u_{n+1} = u_n + F(u_n)/F'(u_n) = u_n + [ P'(u_n).S(u_n) ]/[ P''(u_n).S(u_n) + P'(u_n).P'(u_n) ]\r\n * Note that this is xy close approach so we can ignore z.\r\n */\r\n this._curveP.fractionToPointAnd2Derivatives(fractionU, this._planeP);\r\n const segX = this._planeP.origin.x - this._pointQ.x;\r\n const segY = this._planeP.origin.y - this._pointQ.y;\r\n const pDerivX = this._planeP.vectorU.x;\r\n const pDerivY = this._planeP.vectorU.y;\r\n const p2DerivX = this._planeP.vectorV.x;\r\n const p2DerivY = this._planeP.vectorV.y;\r\n this.currentF = pDerivX * segX + pDerivY * segY;\r\n this.currentdFdX = p2DerivX * segX + pDerivX * pDerivX + p2DerivY * segY + pDerivY * pDerivY;\r\n return true;\r\n }\r\n}\r\n\r\n/**\r\n * Class to evaluate XY close approach between 2 curve primitives using the Newton method.\r\n * @internal\r\n */\r\nexport class CurveCurveCloseApproachXYRRtoRRD extends NewtonEvaluatorRRtoRRD {\r\n private _curveP: CurvePrimitive;\r\n private _curveQ: CurvePrimitive;\r\n private _planeP: Plane3dByOriginAndVectors;\r\n private _planeQ: Plane3dByOriginAndVectors;\r\n constructor(curveP: CurvePrimitive, curveQ: CurvePrimitive) {\r\n super();\r\n this._curveP = curveP;\r\n this._curveQ = curveQ;\r\n this._planeP = Plane3dByOriginAndVectors.createXYPlane();\r\n this._planeQ = Plane3dByOriginAndVectors.createXYPlane();\r\n }\r\n public evaluate(fractionU: number, fractionV: number): boolean {\r\n /**\r\n * To find a close approach between xy-curves P(u) and Q(v) we should solve\r\n * F(u,v) := (P'(u).(P(u) - Q(v)), Q'(v).(P(u) - Q(v))) = (0,0)\r\n * For a solution (u,v), the segment S(u,v) := P(u) - Q(v) is perpendicular to the curve tangents P'(u) and Q'(v),\r\n * which means S(u,v) is a close approach.\r\n * Using the Newton method we can find the fractions u and v at the close approach location via\r\n * [u_{n+1}] [u_n] [P''(u_n).S(u_n,v_n) + P'(u_n).P'(u_n) -P'(u_n).Q'(v_n)] [P'(u_n).S(u_n,v_n)]\r\n * = - Inv( )\r\n * [v_{n+1}] [v_n] [Q'(v_n).P'(u_n) Q''(v_n).S(u_n,v_n) - Q'(v_n).Q'(v_n)] [Q'(v_n).S(u_n,v_n)]\r\n * Note that this is xy close approach so we can ignore z.\r\n */\r\n this._curveP.fractionToPointAnd2Derivatives(fractionU, this._planeP);\r\n this._curveQ.fractionToPointAnd2Derivatives(fractionV, this._planeQ);\r\n const segX = this._planeP.origin.x - this._planeQ.origin.x;\r\n const segY = this._planeP.origin.y - this._planeQ.origin.y;\r\n const pDerivX = this._planeP.vectorU.x;\r\n const pDerivY = this._planeP.vectorU.y;\r\n const qDerivX = this._planeQ.vectorU.x;\r\n const qDerivY = this._planeQ.vectorU.y;\r\n const p2DerivX = this._planeP.vectorV.x;\r\n const p2DerivY = this._planeP.vectorV.y;\r\n const q2DerivX = this._planeQ.vectorV.x;\r\n const q2DerivY = this._planeQ.vectorV.y;\r\n this.currentF.setOriginAndVectorsXYZ(\r\n pDerivX * segX + pDerivY * segY,\r\n qDerivX * segX + qDerivY * segY,\r\n 0.0,\r\n p2DerivX * segX + p2DerivY * segY + pDerivX * pDerivX + pDerivY * pDerivY,\r\n qDerivX * pDerivX + qDerivY * pDerivY,\r\n 0.0,\r\n -(pDerivX * qDerivX + pDerivY * qDerivY),\r\n q2DerivX * segX + q2DerivY * segY - qDerivX * qDerivX - qDerivY * qDerivY,\r\n 0.0,\r\n );\r\n return true;\r\n }\r\n}\r\n"]}
1
+ {"version":3,"file":"Newton.js","sourceRoot":"","sources":["../../../src/numerics/Newton.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AAEH,OAAO,EAAE,QAAQ,EAAE,MAAM,aAAa,CAAC;AAEvC,OAAO,EAAE,yBAAyB,EAAE,MAAM,yCAAyC,CAAC;AACpF,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,MAAM,+BAA+B,CAAC;AAElE,OAAO,EAAE,KAAK,EAAE,MAAM,qBAAqB,CAAC;AAC5C,OAAO,EAAE,WAAW,EAAE,MAAM,eAAe,CAAC;AAE5C,+BAA+B;AAE/B;;;;GAIG;AACH,MAAM,OAAgB,sBAAsB;IAa1C;;;;;;;;;;;OAWG;IACH,YACE,oBAA4B,OAAO,EACnC,8BAAsC,CAAC,EACvC,gBAAwB,EAAE;QAM5B,sEAAsE;QAC5D,iBAAY,GAAW,CAAC,CAAC;QAOnC,uDAAuD;QAChD,kBAAa,GAAW,CAAC,CAAC;QAb/B,IAAI,CAAC,kBAAkB,GAAG,iBAAiB,CAAC;QAC5C,IAAI,CAAC,4BAA4B,GAAG,2BAA2B,CAAC;QAChE,IAAI,CAAC,cAAc,GAAG,aAAa,CAAC;IACtC,CAAC;IAWD;;;;;OAKG;IACI,eAAe,CAAC,KAAa;QAClC,IAAI,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,IAAI,CAAC,kBAAkB,EAAE,CAAC;YAC9C,IAAI,CAAC,YAAY,EAAE,CAAC;YACpB,OAAO,IAAI,CAAC,YAAY,IAAI,IAAI,CAAC,4BAA4B,CAAC;QAChE,CAAC;QACD,IAAI,CAAC,YAAY,GAAG,CAAC,CAAC;QACtB,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;;;OAMG;IACI,aAAa;QAClB,IAAI,CAAC,YAAY,GAAG,CAAC,CAAC;QACtB,IAAI,CAAC,aAAa,GAAG,CAAC,CAAC;QACvB,OAAO,IAAI,CAAC,aAAa,EAAE,GAAG,IAAI,CAAC,cAAc,IAAI,IAAI,CAAC,WAAW,EAAE,EAAE,CAAC;YACxE,IAAI,IAAI,CAAC,eAAe,CAAC,IAAI,CAAC,eAAe,EAAE,CAAC,IAAI,IAAI,CAAC,gBAAgB,CAAC,IAAI,CAAC,EAAE,CAAC;gBAChF,6FAA6F;gBAC7F,OAAO,IAAI,CAAC;YACd,CAAC;YACD,IAAI,CAAC,gBAAgB,CAAC,KAAK,CAAC,CAAC;QAC/B,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;CACF;AACD;;;;GAIG;AACH,MAAM,OAAgB,oBAAoB;CAOzC;AACD;;;;;;GAMG;AACH,MAAM,OAAO,iBAAkB,SAAQ,sBAAsB;IAQ3D;;;OAGG;IACH,YAAmB,IAA0B,EAAE,aAAsB;QACnE,KAAK,CAAC,SAAS,EAAE,SAAS,EAAE,aAAa,CAAC,CAAC;QAC3C,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC;QAClB,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;IACpB,CAAC;IACD,+CAA+C;IACxC,IAAI,CAAC,CAAS;QACnB,IAAI,CAAC,SAAS,GAAG,CAAC,CAAC;QACnB,OAAO,IAAI,CAAC;IACd,CAAC;IACD,+CAA+C;IACxC,IAAI;QACT,OAAO,IAAI,CAAC,SAAS,CAAC;IACxB,CAAC;IACD,qCAAqC;IAC9B,SAAS,CAAC,CAAS;QACxB,IAAI,CAAC,OAAO,GAAG,CAAC,CAAC;IACnB,CAAC;IACD,sEAAsE;IAC/D,gBAAgB;QACrB,qFAAqF;QACrF,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC;IACvD,CAAC;IACD,6CAA6C;IACtC,WAAW;QAChB,IAAI,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,SAAS,CAAC,EAAE,CAAC;YACxC,MAAM,EAAE,GAAG,QAAQ,CAAC,yBAAyB,CAAC,IAAI,CAAC,KAAK,CAAC,QAAQ,GAAG,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,KAAK,CAAC,WAAW,CAAC,CAAC;YAC1G,IAAI,EAAE,KAAK,SAAS,EAAE,CAAC;gBACrB,IAAI,CAAC,YAAY,GAAG,EAAE,CAAC;gBACvB,OAAO,IAAI,CAAC;YACd,CAAC;QACH,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD,qFAAqF;IAC9E,eAAe;QACpB,OAAO,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,YAAY,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;IACxE,CAAC;CACF;AAED;;;GAGG;AACH,MAAM,OAAgB,mBAAmB;CAKxC;AAED;;;;;;GAMG;AACH,MAAM,OAAO,sCAAuC,SAAQ,sBAAsB;IAahF;;;OAGG;IACH,YAAmB,IAAyB,EAAE,aAAsB;QAClE,KAAK,CAAC,SAAS,EAAE,SAAS,EAAE,aAAa,CAAC,CAAC;QAC3C,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC;QAClB,IAAI,CAAC,WAAW,GAAG,MAAM,CAAC;IAC5B,CAAC;IACD,+CAA+C;IACxC,IAAI,CAAC,CAAS;QACnB,IAAI,CAAC,SAAS,GAAG,CAAC,CAAC;QACnB,OAAO,IAAI,CAAC;IACd,CAAC;IACD,+CAA+C;IACxC,IAAI;QACT,OAAO,IAAI,CAAC,SAAS,CAAC;IACxB,CAAC;IACD,sEAAsE;IAC/D,gBAAgB;QACrB,qFAAqF;QACrF,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC;IACvD,CAAC;IACD,uEAAuE;IAChE,WAAW;QAChB,IAAI,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,SAAS,CAAC,EAAE,CAAC;YACxC,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,SAAS;YACzC,IAAI,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,WAAW,CAAC,EAAE,CAAC;gBAC3D,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,aAAa;gBAC7C,MAAM,EAAE,GAAG,QAAQ,CAAC,yBAAyB,CAAC,EAAE,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,IAAI,CAAC,WAAW,CAAC,CAAC;gBAChF,IAAI,EAAE,KAAK,SAAS,EAAE,CAAC;oBACrB,IAAI,CAAC,YAAY,GAAG,EAAE,CAAC;oBACvB,OAAO,IAAI,CAAC;gBACd,CAAC;YACH,CAAC;QACH,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD,qFAAqF;IAC9E,eAAe;QACpB,OAAO,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,YAAY,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;IACxE,CAAC;CACF;AAED;;;GAGG;AACH,MAAM,OAAgB,sBAAsB;IAe1C;;;OAGG;IACH;QACE,IAAI,CAAC,QAAQ,GAAG,yBAAyB,CAAC,aAAa,EAAE,CAAC;IAC5D,CAAC;CACF;AAED;;;;;;;;;;;GAWG;AACH,MAAM,OAAO,+BAAgC,SAAQ,sBAAsB;IAMzE;;;OAGG;IACH,YAAmB,IAA4B,EAAE,aAAsB;QACrE,KAAK,CAAC,SAAS,EAAE,SAAS,EAAE,aAAa,CAAC,CAAC;QAC3C,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC;QAClB,IAAI,CAAC,YAAY,GAAG,QAAQ,CAAC,UAAU,EAAE,CAAC;QAC1C,IAAI,CAAC,UAAU,GAAG,OAAO,CAAC,UAAU,EAAE,CAAC;IACzC,CAAC;IACD,+DAA+D;IACxD,KAAK,CAAC,CAAS,EAAE,CAAS;QAC/B,IAAI,CAAC,UAAU,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QAC1B,OAAO,IAAI,CAAC;IACd,CAAC;IACD,qDAAqD;IAC9C,IAAI;QACT,OAAO,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC;IAC3B,CAAC;IACD,qDAAqD;IAC9C,IAAI;QACT,OAAO,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC;IAC3B,CAAC;IACD,kHAAkH;IAC3G,gBAAgB;QACrB,wHAAwH;QACxH,OAAO,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC,CAAC,CAAC;IACtG,CAAC;IACD;;;OAGG;IACI,WAAW;QAChB,IAAI,CAAC,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC;YAC5D,OAAO,KAAK,CAAC;QACf,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC;QAC/B,MAAM,KAAK,GAAG,EAAE,CAAC,OAAO,CAAC;QACzB,MAAM,KAAK,GAAG,EAAE,CAAC,OAAO,CAAC;QACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,CAAC;QACrB,yFAAyF;QACzF,IAAI,WAAW,CAAC,cAAc,CAAC,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,IAAI,CAAC,YAAY,CAAC;YAC/F,OAAO,IAAI,CAAC;QACd,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;OAEG;IACI,eAAe;QACpB,OAAO,QAAQ,CAAC,QAAQ,CACtB,IAAI,CAAC,YAAY,CAAC,CAAC,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,EACzD,IAAI,CAAC,YAAY,CAAC,CAAC,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,CAC1D,CAAC;IACJ,CAAC;CACF;AACD;;;;GAIG;AACH,MAAM,OAAO,YAAY;IACvB;;;;;;;;OAQG;IACI,MAAM,CAAC,WAAW,CACvB,CAAS,EACT,IAAuC,EACvC,UAA6C,EAC7C,oBAA4B,QAAQ,CAAC,kBAAkB;QAEvD,IAAI,YAAY,GAAG,CAAC,CAAC;QACrB,IAAI,SAAiB,CAAC;QACtB,MAAM,MAAM,GAAG,OAAO,CAAC;QACvB,KAAK,IAAI,SAAS,GAAG,CAAC,EAAE,SAAS,GAAG,EAAE,EAAE,SAAS,EAAE,EAAE,CAAC;YACpD,MAAM,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YAClB,MAAM,EAAE,GAAG,UAAU,CAAC,CAAC,CAAC,CAAC;YACzB,IAAI,CAAC,KAAK,SAAS,IAAI,EAAE,KAAK,SAAS,EAAE,CAAC;gBACxC,MAAM,EAAE,GAAG,QAAQ,CAAC,2BAA2B,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;gBACvD,IAAI,EAAE,KAAK,SAAS;oBAClB,OAAO,SAAS,CAAC;gBACnB,CAAC,IAAI,EAAE,CAAC;gBACR,oDAAoD;gBACpD,SAAS,GAAG,iBAAiB,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,MAAM,CAAC;gBACrD,IAAI,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,SAAS,EAAE,CAAC;oBAC7B,YAAY,EAAE,CAAC;oBACf,IAAI,EAAE,KAAK,GAAG,IAAI,YAAY,GAAG,CAAC,EAAI,wCAAwC;wBAC5E,OAAO,CAAC,CAAC;gBACb,CAAC;qBAAM,CAAC;oBACN,YAAY,GAAG,CAAC,CAAC;gBACnB,CAAC;YACH,CAAC;QACH,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;CACF;AAED;;;GAGG;AACH,MAAM,OAAO,+BAAgC,SAAQ,sBAAsB;IAKzE,YAAY,MAAsB,EAAE,MAAsB;QACxD,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,KAAK,GAAG,KAAK,CAAC,UAAU,EAAE,CAAC;QAChC,IAAI,CAAC,KAAK,GAAG,KAAK,CAAC,UAAU,EAAE,CAAC;IAClC,CAAC;IACM,QAAQ,CAAC,SAAiB,EAAE,SAAiB;QAClD;;;;;;;;WAQG;QACH,IAAI,CAAC,OAAO,CAAC,4BAA4B,CAAC,SAAS,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC;QACjE,IAAI,CAAC,OAAO,CAAC,4BAA4B,CAAC,SAAS,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC;QACjE,IAAI,CAAC,QAAQ,CAAC,sBAAsB,CAClC,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,EAAE,GAAG,EACzF,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,GAAG,EACnD,CAAC,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,GAAG,CACtD,CAAC;QACF,OAAO,IAAI,CAAC;IACd,CAAC;CACF;AAED;;;GAGG;AACH,MAAM,OAAO,8BAA+B,SAAQ,oBAAoB;IAItE,YAAY,MAAsB,EAAE,MAAe;QACjD,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,yBAAyB,CAAC,aAAa,EAAE,CAAC;IAC3D,CAAC;IACM,QAAQ,CAAC,SAAiB;QAC/B;;;;;;;WAOG;QACH,IAAI,CAAC,OAAO,CAAC,8BAA8B,CAAC,SAAS,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;QACrE,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;QACpD,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;QACpD,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,IAAI,CAAC,QAAQ,GAAG,OAAO,GAAG,IAAI,GAAG,OAAO,GAAG,IAAI,CAAC;QAChD,IAAI,CAAC,WAAW,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,CAAC;QAC7F,OAAO,IAAI,CAAC;IACd,CAAC;CACF;AAED;;;GAGG;AACH,MAAM,OAAO,gCAAiC,SAAQ,sBAAsB;IAK1E,YAAY,MAAsB,EAAE,MAAsB;QACxD,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,yBAAyB,CAAC,aAAa,EAAE,CAAC;QACzD,IAAI,CAAC,OAAO,GAAG,yBAAyB,CAAC,aAAa,EAAE,CAAC;IAC3D,CAAC;IACM,QAAQ,CAAC,SAAiB,EAAE,SAAiB;QAClD;;;;;;;;;;WAUG;QACH,IAAI,CAAC,OAAO,CAAC,8BAA8B,CAAC,SAAS,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;QACrE,IAAI,CAAC,OAAO,CAAC,8BAA8B,CAAC,SAAS,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;QACrE,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC;QAC3D,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC;QAC3D,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,IAAI,CAAC,QAAQ,CAAC,sBAAsB,CAClC,OAAO,GAAG,IAAI,GAAG,OAAO,GAAG,IAAI,EAC/B,OAAO,GAAG,IAAI,GAAG,OAAO,GAAG,IAAI,EAC/B,GAAG,EACH,QAAQ,GAAG,IAAI,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,EACzE,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,EACrC,GAAG,EACH,CAAC,CAAC,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,CAAC,EACxC,QAAQ,GAAG,IAAI,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,EACzE,GAAG,CACJ,CAAC;QACF,OAAO,IAAI,CAAC;IACd,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module Numerics\r\n */\r\n\r\nimport { Geometry } from \"../Geometry\";\r\nimport { CurvePrimitive } from \"../curve/CurvePrimitive\";\r\nimport { Plane3dByOriginAndVectors } from \"../geometry3d/Plane3dByOriginAndVectors\";\r\nimport { Point2d, Vector2d } from \"../geometry3d/Point2dVector2d\";\r\nimport { Point3d } from \"../geometry3d/Point3dVector3d\";\r\nimport { Ray3d } from \"../geometry3d/Ray3d\";\r\nimport { SmallSystem } from \"./Polynomials\";\r\n\r\n// cspell:word currentdFdX XYRR\r\n\r\n/**\r\n * Base class for Newton iterations in various dimensions.\r\n * Dimension-specific classes carry all dimension-related data and answer generalized queries from this base class.\r\n * @internal\r\n */\r\nexport abstract class AbstractNewtonIterator {\r\n /** Compute a step. The current x and function values must be retained for use in later method calls. */\r\n public abstract computeStep(): boolean;\r\n /**\r\n * Return the current step size, scaled for use in tolerance tests.\r\n * * This is a single number, typically the max of various per-dimension `dx/(1+x)` for the x and dx of that dimension.\r\n */\r\n public abstract currentStepSize(): number;\r\n /**\r\n * Apply the current step (in all dimensions).\r\n * @param isFinalStep true if this is a final step.\r\n */\r\n public abstract applyCurrentStep(isFinalStep: boolean): boolean;\r\n /**\r\n * The constructor.\r\n * @param stepSizeTarget tolerance to consider a single step converged.\r\n * This number should be \"moderately\" strict. Because 2 successive convergences are required,\r\n * it is expected that a first \"accept\" for (say) 10 to 14 digit step will be followed by another\r\n * iteration. A well behaved newton would then hypothetically double the number of digits to\r\n * 20 to 28. Since the IEEE double only carries 16 digits, this second-convergence step will\r\n * typically achieve full precision.\r\n * @param successiveConvergenceTarget number of successive convergences required for acceptance.\r\n * @param maxIterations max number of iterations. A typical newton step converges in 3 to 6 iterations.\r\n * Allow 15 to 20 to catch difficult cases.\r\n */\r\n protected constructor(\r\n stepSizeTolerance: number = 1.0e-11,\r\n successiveConvergenceTarget: number = 2,\r\n maxIterations: number = 15,\r\n ) {\r\n this._stepSizeTolerance = stepSizeTolerance;\r\n this._successiveConvergenceTarget = successiveConvergenceTarget;\r\n this._maxIterations = maxIterations;\r\n }\r\n /** Number of consecutive steps which passed convergence condition. */\r\n protected _numAccepted: number = 0;\r\n /** Target number of successive convergences. */\r\n protected _successiveConvergenceTarget: number;\r\n /** Convergence target (the implementation-specific currentStepSize is compared to this). */\r\n protected _stepSizeTolerance: number;\r\n /** Max iterations allowed. */\r\n protected _maxIterations: number;\r\n /** Number of iterations (incremented at each step). */\r\n public numIterations: number = 0;\r\n /**\r\n * Test if a step is converged.\r\n * * Convergence is accepted with enough (_successiveConvergenceTarget) small steps (according to _stepSizeTolerance)\r\n * occur in succession.\r\n * @param delta step size as reported by currentStepSize.\r\n */\r\n public testConvergence(delta: number): boolean {\r\n if (Math.abs(delta) < this._stepSizeTolerance) {\r\n this._numAccepted++;\r\n return this._numAccepted >= this._successiveConvergenceTarget;\r\n }\r\n this._numAccepted = 0;\r\n return false;\r\n }\r\n /**\r\n * Run iterations, calling various methods from base and derived classes:\r\n * * computeStep -- typically evaluate derivatives and solve linear system.\r\n * * currentStepSize -- return numeric measure of the step just computed by computeStep.\r\n * * testConvergence -- test if the step from currentStepSize (along with recent steps) is converged.\r\n * * applyCurrentStep -- apply the step to the independent variables.\r\n */\r\n public runIterations(): boolean {\r\n this._numAccepted = 0;\r\n this.numIterations = 0;\r\n while (this.numIterations++ < this._maxIterations && this.computeStep()) {\r\n if (this.testConvergence(this.currentStepSize()) && this.applyCurrentStep(true)) {\r\n // console.log(\"iter: \" + this.numIterations); // print number of Newton iterations for debug\r\n return true;\r\n }\r\n this.applyCurrentStep(false);\r\n }\r\n return false;\r\n }\r\n}\r\n/**\r\n * Object to evaluate a newton function. The object must retain most-recent function and derivative\r\n * values for immediate query.\r\n * @internal\r\n */\r\nexport abstract class NewtonEvaluatorRtoRD {\r\n /** Evaluate the function and its derivative at x. */\r\n public abstract evaluate(x: number): boolean;\r\n /** Most recent function value, i.e., f(x_n). */\r\n public currentF!: number;\r\n /** Most recent evaluated derivative, i.e., f'(x_n). */\r\n public currentdFdX!: number;\r\n}\r\n/**\r\n * Newton iterator for use when both function and derivative can be evaluated.\r\n * To solve `f(x) = 0`, the Newton iteration is `x_{n+1} = x_n - dx = x_n - f(x_n)/f'(x_n)`.\r\n * To solve `f(x) = target` which is equivalent to solving `g(x) = f(x) - target = 0`, the Newton iteration is\r\n * `x_{n+1} = x_n - dx = x_n - g(x_n)/g'(x_n) = x_n - (f(x_n)-target)/f'(x_n)`.\r\n * @internal\r\n */\r\nexport class Newton1dUnbounded extends AbstractNewtonIterator {\r\n private _func: NewtonEvaluatorRtoRD;\r\n /** Current step is dx. */\r\n private _currentStep!: number;\r\n /** Current X is x_n. */\r\n private _currentX!: number;\r\n /** The target */\r\n private _target!: number;\r\n /**\r\n * Constructor for 1D newton iteration with derivatives.\r\n * @param func function that returns both function value and derivative.\r\n */\r\n public constructor(func: NewtonEvaluatorRtoRD, maxIterations?: number) {\r\n super(undefined, undefined, maxIterations);\r\n this._func = func;\r\n this.setTarget(0);\r\n }\r\n /** Set the independent variable, i.e., x_n. */\r\n public setX(x: number): boolean {\r\n this._currentX = x;\r\n return true;\r\n }\r\n /** Get the independent variable, i.e., x_n. */\r\n public getX(): number {\r\n return this._currentX;\r\n }\r\n /** Set the target function value. */\r\n public setTarget(y: number): void {\r\n this._target = y;\r\n }\r\n /** Move the current X by the just-computed step, i.e., `x_n - dx`. */\r\n public applyCurrentStep(): boolean {\r\n // console.log(this._currentX - this._currentStep); // print approximations for debug\r\n return this.setX(this._currentX - this._currentStep);\r\n }\r\n /** Compute the univariate newton step dx. */\r\n public computeStep(): boolean {\r\n if (this._func.evaluate(this._currentX)) {\r\n const dx = Geometry.conditionalDivideFraction(this._func.currentF - this._target, this._func.currentdFdX);\r\n if (dx !== undefined) {\r\n this._currentStep = dx;\r\n return true;\r\n }\r\n }\r\n return false;\r\n }\r\n /** Return the current step size as a relative number, i.e., `|dx / (1 + |x_n|)|`. */\r\n public currentStepSize(): number {\r\n return Math.abs(this._currentStep / (1.0 + Math.abs(this._currentX)));\r\n }\r\n}\r\n\r\n/**\r\n * Object to evaluate a newton function (without derivative). The object must retain most-recent function value.\r\n * @internal\r\n */\r\nexport abstract class NewtonEvaluatorRtoR {\r\n /** Evaluate function value into member currentF */\r\n public abstract evaluate(x: number): boolean;\r\n /** Most recent function evaluation, i.e., f(x_n). */\r\n public currentF!: number;\r\n}\r\n\r\n/**\r\n * Newton iteration for a univariate function, using approximate derivatives.\r\n * To approximate the derivatives we use a small step `h`, i.e., `f'(x_n) = (f(x_n + h) - f(x_n)) / h`.\r\n * Therefore, to solve `f(x) = 0`, the iteration is\r\n * `x_{n+1} = x_n - dx = x_n - f(x_n)/f'(x_n) = x_n - f(x_n) * h / (f(x_n + h) - f(x_n))`.\r\n * @internal\r\n */\r\nexport class Newton1dUnboundedApproximateDerivative extends AbstractNewtonIterator {\r\n private _func: NewtonEvaluatorRtoR;\r\n /** Current step is dx. */\r\n private _currentStep!: number;\r\n /** Current X is x_n. */\r\n private _currentX!: number;\r\n /**\r\n * Step size for approximate derivative for the iteration.\r\n * * Initialized to 1e-8, which is appropriate for iteration in fraction space.\r\n * * Should be larger for iteration with real distance as x.\r\n */\r\n public derivativeH: number; // h\r\n\r\n /**\r\n * Constructor for 1D newton iteration with approximate derivatives.\r\n * @param func function that only returns function value (and not derivative).\r\n */\r\n public constructor(func: NewtonEvaluatorRtoR, maxIterations?: number) {\r\n super(undefined, undefined, maxIterations);\r\n this._func = func;\r\n this.derivativeH = 1.0e-8;\r\n }\r\n /** Set the independent variable, i.e., x_n. */\r\n public setX(x: number): boolean {\r\n this._currentX = x;\r\n return true;\r\n }\r\n /** Get the independent variable, i.e., x_n. */\r\n public getX(): number {\r\n return this._currentX;\r\n }\r\n /** Move the current X by the just-computed step, i.e., `x_n - dx`. */\r\n public applyCurrentStep(): boolean {\r\n // console.log(this._currentX - this._currentStep); // print approximations for debug\r\n return this.setX(this._currentX - this._currentStep);\r\n }\r\n /** Univariate newton step dx, computed with approximate derivative. */\r\n public computeStep(): boolean {\r\n if (this._func.evaluate(this._currentX)) {\r\n const fA = this._func.currentF; // f(x_n)\r\n if (this._func.evaluate(this._currentX + this.derivativeH)) {\r\n const fB = this._func.currentF; // f(x_n + h)\r\n const dx = Geometry.conditionalDivideFraction(fA, (fB - fA) / this.derivativeH);\r\n if (dx !== undefined) {\r\n this._currentStep = dx;\r\n return true;\r\n }\r\n }\r\n }\r\n return false;\r\n }\r\n /** Return the current step size as a relative number, i.e., `|dx / (1 + |x_n|)|`. */\r\n public currentStepSize(): number {\r\n return Math.abs(this._currentStep / (1.0 + Math.abs(this._currentX)));\r\n }\r\n}\r\n\r\n/**\r\n * Object to evaluate a 2-parameter newton function with derivatives.\r\n * @internal\r\n */\r\nexport abstract class NewtonEvaluatorRRtoRRD {\r\n /**\r\n * Iteration controller calls this to ask for evaluation of the function and its two partial derivatives.\r\n * * The implementation returns true, it must set the currentF object.\r\n */\r\n public abstract evaluate(x: number, y: number): boolean;\r\n /**\r\n * Most recent function evaluation as parts of the plane.\r\n * * See doc of [[Newton2dUnboundedWithDerivative]] class for info on 2d newton method.\r\n * * For `F(u,v) := (x(u,v), y(u,v))` the returned plane stores the following evaluations at current value `X := (u,v)`:\r\n * * `origin` = F(X) = (x(X), y(X))\r\n * * `vectorU` = F_u(X) = partial deriv of F wrt u at X = (x_u(X), y_u(X)) = 1st col of Jacobian matrix evaluated at X\r\n * * `vectorV` = F_v(X) = partial deriv of F wrt v at X = (x_v(X), y_v(X)) = 2nd col of Jacobian matrix evaluated at X\r\n */\r\n public currentF!: Plane3dByOriginAndVectors;\r\n /**\r\n * Constructor.\r\n * * This creates a currentF object to (repeatedly) receive function and derivatives.\r\n */\r\n public constructor() {\r\n this.currentF = Plane3dByOriginAndVectors.createXYPlane();\r\n }\r\n}\r\n\r\n/**\r\n * Implement evaluation steps for newton iteration in 2 dimensions, using caller supplied NewtonEvaluatorRRtoRRD object.\r\n * * Suppose we want to find the roots of `F(u,v) := (x(u,v), y(u,v))`. Writing `X := (u,v)` and `F(X)` as column vectors,\r\n * the 2D Newton's iteration to find a root of `F` is given by:\r\n * `X_{n+1} = X_n - dX = X_n - JInv(X_n)F(X_n)`, where `JInv` is the inverse of the Jacobian matrix `J`, and `J` is\r\n * defined by the partial derivatives of the component functions of F:\r\n *\r\n * `[dx/du dx/dv]`\r\n *\r\n * `[dy/du dy/dv]`\r\n * @internal\r\n */\r\nexport class Newton2dUnboundedWithDerivative extends AbstractNewtonIterator {\r\n private _func: NewtonEvaluatorRRtoRRD;\r\n /** Current step, or dX = (du, dv). */\r\n private _currentStep: Vector2d;\r\n /** Current uv parameters, or X_n = (u_n, v_n). */\r\n private _currentUV: Point2d;\r\n /**\r\n * Constructor for 2D newton iteration with derivatives.\r\n * @param func function that returns both function value and derivative.\r\n */\r\n public constructor(func: NewtonEvaluatorRRtoRRD, maxIterations?: number) {\r\n super(undefined, undefined, maxIterations);\r\n this._func = func;\r\n this._currentStep = Vector2d.createZero();\r\n this._currentUV = Point2d.createZero();\r\n }\r\n /** Set the current uv parameters, i.e., `X_n = (u_n, v_n)`. */\r\n public setUV(u: number, v: number): boolean {\r\n this._currentUV.set(u, v);\r\n return true;\r\n }\r\n /** Get the current u parameter of X_n, i.e., u_n. */\r\n public getU(): number {\r\n return this._currentUV.x;\r\n }\r\n /** Get the current v parameter of X_n, i.e., v_n. */\r\n public getV(): number {\r\n return this._currentUV.y;\r\n }\r\n /** Update the current uv parameter by currentStep, i.e., compute `X_{n+1} := X_n - dX = (u_n - du, v_n - dv)`. */\r\n public applyCurrentStep(): boolean {\r\n // console.log(\"(\" + (this._currentUV.x - this._currentStep.x) + \",\" + (this._currentUV.y - this._currentStep.y) + \")\");\r\n return this.setUV(this._currentUV.x - this._currentStep.x, this._currentUV.y - this._currentStep.y);\r\n }\r\n /**\r\n * Evaluate the functions and derivatives at `X_n = (u_n, v_n)`, and solve the Jacobian matrix equation to\r\n * compute `dX = (du, dv)`.\r\n */\r\n public computeStep(): boolean {\r\n if (!this._func.evaluate(this._currentUV.x, this._currentUV.y))\r\n return false;\r\n const fA = this._func.currentF;\r\n const jCol0 = fA.vectorU;\r\n const jCol1 = fA.vectorV;\r\n const fX = fA.origin;\r\n // Given X_{n+1} = X_n - dX = X_n - JInv(X_n) F(X_n), we solve J(X_n) dX = F(X_n) for dX:\r\n if (SmallSystem.linearSystem2d(jCol0.x, jCol1.x, jCol0.y, jCol1.y, fX.x, fX.y, this._currentStep))\r\n return true;\r\n return false;\r\n }\r\n /**\r\n * Return the current relative step size, i.e., the larger absolute component of `dX / (1 + |X_n|)`\r\n */\r\n public currentStepSize(): number {\r\n return Geometry.maxAbsXY(\r\n this._currentStep.x / (1.0 + Math.abs(this._currentUV.x)),\r\n this._currentStep.y / (1.0 + Math.abs(this._currentUV.y)),\r\n );\r\n }\r\n}\r\n/**\r\n * SimpleNewton has static methods for newton methods with evaluated functions presented as immediate arguments\r\n * (not function object).\r\n * @internal\r\n */\r\nexport class SimpleNewton {\r\n /**\r\n * Run a one-dimensional newton iteration with separate functions for function and derivative.\r\n * * Completion is at 2 (TWO) successive passes at `absoluteTolerance + relTol * abs(x)`, where relTol is\r\n * chosen internally.\r\n * * `absoluteTolerance` is usually aggressively tight -- should come into play only for x near zero.\r\n * * The `relTol` is fluffy (for instance around 1e-11) but in properly converging cases the extra pass after\r\n * first success normally moves to full machine precision.\r\n * * This is an open-loop newton -- it just runs, and returns undefined if anything bad happens.\r\n */\r\n public static runNewton1D(\r\n x: number,\r\n func: (x: number) => number | undefined,\r\n derivative: (x: number) => number | undefined,\r\n absoluteTolerance: number = Geometry.smallFloatingPoint,\r\n ): number | undefined {\r\n let numConverged = 0;\r\n let tolerance: number;\r\n const relTol = 1.0e-11;\r\n for (let iteration = 0; iteration < 20; iteration++) {\r\n const f = func(x);\r\n const df = derivative(x);\r\n if (f !== undefined && df !== undefined) {\r\n const dx = Geometry.conditionalDivideCoordinate(f, df);\r\n if (dx === undefined)\r\n return undefined;\r\n x -= dx;\r\n // console.log(x); // print approximations for debug\r\n tolerance = absoluteTolerance + Math.abs(x) * relTol;\r\n if (Math.abs(dx) < tolerance) {\r\n numConverged++;\r\n if (dx === 0.0 || numConverged > 1) // bypass convergence count on true 0 dx\r\n return x;\r\n } else {\r\n numConverged = 0;\r\n }\r\n }\r\n }\r\n return undefined;\r\n }\r\n}\r\n\r\n/**\r\n * Class to evaluate XY intersection between 2 curve primitives using the Newton method.\r\n * @internal\r\n */\r\nexport class CurveCurveIntersectionXYRRToRRD extends NewtonEvaluatorRRtoRRD {\r\n private _curveP: CurvePrimitive;\r\n private _curveQ: CurvePrimitive;\r\n private _rayP: Ray3d;\r\n private _rayQ: Ray3d;\r\n constructor(curveP: CurvePrimitive, curveQ: CurvePrimitive) {\r\n super();\r\n this._curveP = curveP;\r\n this._curveQ = curveQ;\r\n this._rayP = Ray3d.createZero();\r\n this._rayQ = Ray3d.createZero();\r\n }\r\n public evaluate(fractionU: number, fractionV: number): boolean {\r\n /**\r\n * To find an intersection between xy-curves P(u) = (x_p(u), y_p(u)) and Q(v) = (x_q(v), y_q(v)) we should solve\r\n * F(u,v) := P(u) - Q(v) = (0,0)\r\n * Using the Newton method we can find the fractions u and v at the intersection via\r\n * [u_{n+1}] [u_n] [x_p'(u_n) -x_q'(v_n)] [x_p(u_n) - x_q(v_n)]\r\n * = - Inv( )\r\n * [v_{n+1}] [v_n] [y_p'(u_n) -y_q'(v_n)] [y_p(u_n) - y_q(v_n)]\r\n * Note that this is xy intersection so we can ignore z.\r\n */\r\n this._curveP.fractionToPointAndDerivative(fractionU, this._rayP);\r\n this._curveQ.fractionToPointAndDerivative(fractionV, this._rayQ);\r\n this.currentF.setOriginAndVectorsXYZ(\r\n this._rayP.origin.x - this._rayQ.origin.x, this._rayP.origin.y - this._rayQ.origin.y, 0.0,\r\n this._rayP.direction.x, this._rayP.direction.y, 0.0,\r\n -this._rayQ.direction.x, -this._rayQ.direction.y, 0.0,\r\n );\r\n return true;\r\n }\r\n}\r\n\r\n/**\r\n * Class to evaluate XY close approach between a curve primitive and a point using the Newton method.\r\n * @internal\r\n */\r\nexport class CurvePointCloseApproachXYRtoRD extends NewtonEvaluatorRtoRD {\r\n private _curveP: CurvePrimitive;\r\n private _pointQ: Point3d;\r\n private _planeP: Plane3dByOriginAndVectors;\r\n constructor(curveP: CurvePrimitive, pointQ: Point3d) {\r\n super();\r\n this._curveP = curveP;\r\n this._pointQ = pointQ;\r\n this._planeP = Plane3dByOriginAndVectors.createXYPlane();\r\n }\r\n public evaluate(fractionU: number): boolean {\r\n /**\r\n * To find a close approach between xy-curve P(u) and xy-point q we should solve\r\n * F(u) := P'(u).(P(u) - q) = 0\r\n * For a solution u, the segment S(u) := P(u) - q is perpendicular to the curve tangent P'(u), which means S(u) is a close approach.\r\n * Using the Newton method we can find the fractions u at the close approach location via\r\n * u_{n+1} = u_n + F(u_n)/F'(u_n) = u_n + [ P'(u_n).S(u_n) ]/[ P''(u_n).S(u_n) + P'(u_n).P'(u_n) ]\r\n * Note that this is xy close approach so we can ignore z.\r\n */\r\n this._curveP.fractionToPointAnd2Derivatives(fractionU, this._planeP);\r\n const segX = this._planeP.origin.x - this._pointQ.x;\r\n const segY = this._planeP.origin.y - this._pointQ.y;\r\n const pDerivX = this._planeP.vectorU.x;\r\n const pDerivY = this._planeP.vectorU.y;\r\n const p2DerivX = this._planeP.vectorV.x;\r\n const p2DerivY = this._planeP.vectorV.y;\r\n this.currentF = pDerivX * segX + pDerivY * segY;\r\n this.currentdFdX = p2DerivX * segX + pDerivX * pDerivX + p2DerivY * segY + pDerivY * pDerivY;\r\n return true;\r\n }\r\n}\r\n\r\n/**\r\n * Class to evaluate XY close approach between 2 curve primitives using the Newton method.\r\n * @internal\r\n */\r\nexport class CurveCurveCloseApproachXYRRtoRRD extends NewtonEvaluatorRRtoRRD {\r\n private _curveP: CurvePrimitive;\r\n private _curveQ: CurvePrimitive;\r\n private _planeP: Plane3dByOriginAndVectors;\r\n private _planeQ: Plane3dByOriginAndVectors;\r\n constructor(curveP: CurvePrimitive, curveQ: CurvePrimitive) {\r\n super();\r\n this._curveP = curveP;\r\n this._curveQ = curveQ;\r\n this._planeP = Plane3dByOriginAndVectors.createXYPlane();\r\n this._planeQ = Plane3dByOriginAndVectors.createXYPlane();\r\n }\r\n public evaluate(fractionU: number, fractionV: number): boolean {\r\n /**\r\n * To find a close approach between xy-curves P(u) and Q(v) we should solve\r\n * F(u,v) := (P'(u).(P(u) - Q(v)), Q'(v).(P(u) - Q(v))) = (0,0)\r\n * For a solution (u,v), the segment S(u,v) := P(u) - Q(v) is perpendicular to the curve tangents P'(u) and Q'(v),\r\n * which means S(u,v) is a close approach.\r\n * Using the Newton method we can find the fractions u and v at the close approach location via\r\n * [u_{n+1}] [u_n] [P''(u_n).S(u_n,v_n) + P'(u_n).P'(u_n) -P'(u_n).Q'(v_n)] [P'(u_n).S(u_n,v_n)]\r\n * = - Inv( )\r\n * [v_{n+1}] [v_n] [Q'(v_n).P'(u_n) Q''(v_n).S(u_n,v_n) - Q'(v_n).Q'(v_n)] [Q'(v_n).S(u_n,v_n)]\r\n * Note that this is xy close approach so we can ignore z.\r\n */\r\n this._curveP.fractionToPointAnd2Derivatives(fractionU, this._planeP);\r\n this._curveQ.fractionToPointAnd2Derivatives(fractionV, this._planeQ);\r\n const segX = this._planeP.origin.x - this._planeQ.origin.x;\r\n const segY = this._planeP.origin.y - this._planeQ.origin.y;\r\n const pDerivX = this._planeP.vectorU.x;\r\n const pDerivY = this._planeP.vectorU.y;\r\n const qDerivX = this._planeQ.vectorU.x;\r\n const qDerivY = this._planeQ.vectorU.y;\r\n const p2DerivX = this._planeP.vectorV.x;\r\n const p2DerivY = this._planeP.vectorV.y;\r\n const q2DerivX = this._planeQ.vectorV.x;\r\n const q2DerivY = this._planeQ.vectorV.y;\r\n this.currentF.setOriginAndVectorsXYZ(\r\n pDerivX * segX + pDerivY * segY,\r\n qDerivX * segX + qDerivY * segY,\r\n 0.0,\r\n p2DerivX * segX + p2DerivY * segY + pDerivX * pDerivX + pDerivY * pDerivY,\r\n qDerivX * pDerivX + qDerivY * pDerivY,\r\n 0.0,\r\n -(pDerivX * qDerivX + pDerivY * qDerivY),\r\n q2DerivX * segX + q2DerivY * segY - qDerivX * qDerivX - qDerivY * qDerivY,\r\n 0.0,\r\n );\r\n return true;\r\n }\r\n}\r\n"]}
@@ -454,14 +454,14 @@ export declare class SmallSystem {
454
454
  * Return the line fraction at which the line is closest to a space point as viewed in xy only.
455
455
  * @param pointA0 start point
456
456
  * @param pointA1 end point
457
- * @param spacePoint homogeneous point in space
457
+ * @param spacePoint point in space
458
458
  */
459
459
  static lineSegment3dXYClosestPointUnbounded(pointA0: XAndY, pointA1: XAndY, spacePoint: XAndY): number | undefined;
460
460
  /**
461
461
  * Return the line fraction at which the line is closest to a space point
462
462
  * @param pointA0 start point
463
463
  * @param pointA1 end point
464
- * @param spacePoint homogeneous point in space
464
+ * @param spacePoint point in space
465
465
  */
466
466
  static lineSegment3dClosestPointUnbounded(pointA0: Point3d, pointA1: Point3d, spacePoint: Point3d): number | undefined;
467
467
  /**
@@ -1377,7 +1377,7 @@ export class SmallSystem {
1377
1377
  * Return the line fraction at which the line is closest to a space point as viewed in xy only.
1378
1378
  * @param pointA0 start point
1379
1379
  * @param pointA1 end point
1380
- * @param spacePoint homogeneous point in space
1380
+ * @param spacePoint point in space
1381
1381
  */
1382
1382
  static lineSegment3dXYClosestPointUnbounded(pointA0, pointA1, spacePoint) {
1383
1383
  // Considering only x,y parts....
@@ -1393,7 +1393,7 @@ export class SmallSystem {
1393
1393
  * Return the line fraction at which the line is closest to a space point
1394
1394
  * @param pointA0 start point
1395
1395
  * @param pointA1 end point
1396
- * @param spacePoint homogeneous point in space
1396
+ * @param spacePoint point in space
1397
1397
  */
1398
1398
  static lineSegment3dClosestPointUnbounded(pointA0, pointA1, spacePoint) {
1399
1399
  const ux = pointA1.x - pointA0.x;