@itwin/core-geometry 4.10.0-dev.2 → 4.10.0-dev.22
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +31 -1
- package/lib/cjs/Geometry.d.ts +2 -2
- package/lib/cjs/Geometry.js +2 -2
- package/lib/cjs/Geometry.js.map +1 -1
- package/lib/cjs/clipping/ClipPrimitive.d.ts +7 -7
- package/lib/cjs/clipping/ClipPrimitive.d.ts.map +1 -1
- package/lib/cjs/clipping/ClipPrimitive.js +1 -1
- package/lib/cjs/clipping/ClipPrimitive.js.map +1 -1
- package/lib/cjs/curve/Arc3d.d.ts +21 -10
- package/lib/cjs/curve/Arc3d.d.ts.map +1 -1
- package/lib/cjs/curve/Arc3d.js +64 -37
- package/lib/cjs/curve/Arc3d.js.map +1 -1
- package/lib/cjs/curve/CurveChainWithDistanceIndex.d.ts +27 -8
- package/lib/cjs/curve/CurveChainWithDistanceIndex.d.ts.map +1 -1
- package/lib/cjs/curve/CurveChainWithDistanceIndex.js +44 -25
- package/lib/cjs/curve/CurveChainWithDistanceIndex.js.map +1 -1
- package/lib/cjs/curve/CurveFactory.d.ts +10 -12
- package/lib/cjs/curve/CurveFactory.d.ts.map +1 -1
- package/lib/cjs/curve/CurveFactory.js +16 -43
- package/lib/cjs/curve/CurveFactory.js.map +1 -1
- package/lib/cjs/curve/internalContexts/CurveCurveCloseApproachXY.js +2 -2
- package/lib/cjs/curve/internalContexts/CurveCurveCloseApproachXY.js.map +1 -1
- package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.d.ts +1 -0
- package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.d.ts.map +1 -1
- package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.js +33 -59
- package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.js.map +1 -1
- package/lib/cjs/curve/internalContexts/CurveCurveIntersectXYZ.d.ts +22 -7
- package/lib/cjs/curve/internalContexts/CurveCurveIntersectXYZ.d.ts.map +1 -1
- package/lib/cjs/curve/internalContexts/CurveCurveIntersectXYZ.js +128 -68
- package/lib/cjs/curve/internalContexts/CurveCurveIntersectXYZ.js.map +1 -1
- package/lib/cjs/curve/internalContexts/EllipticalArcApproximationContext.d.ts.map +1 -1
- package/lib/cjs/curve/internalContexts/EllipticalArcApproximationContext.js +14 -11
- package/lib/cjs/curve/internalContexts/EllipticalArcApproximationContext.js.map +1 -1
- package/lib/cjs/geometry3d/Angle.d.ts +5 -5
- package/lib/cjs/geometry3d/Angle.js +5 -5
- package/lib/cjs/geometry3d/Angle.js.map +1 -1
- package/lib/cjs/geometry3d/AngleSweep.d.ts +101 -13
- package/lib/cjs/geometry3d/AngleSweep.d.ts.map +1 -1
- package/lib/cjs/geometry3d/AngleSweep.js +156 -57
- package/lib/cjs/geometry3d/AngleSweep.js.map +1 -1
- package/lib/cjs/geometry3d/Matrix3d.d.ts +9 -15
- package/lib/cjs/geometry3d/Matrix3d.d.ts.map +1 -1
- package/lib/cjs/geometry3d/Matrix3d.js +21 -15
- package/lib/cjs/geometry3d/Matrix3d.js.map +1 -1
- package/lib/cjs/geometry3d/Point3dVector3d.d.ts +6 -5
- package/lib/cjs/geometry3d/Point3dVector3d.d.ts.map +1 -1
- package/lib/cjs/geometry3d/Point3dVector3d.js +6 -5
- package/lib/cjs/geometry3d/Point3dVector3d.js.map +1 -1
- package/lib/cjs/geometry3d/PolygonOps.js +2 -2
- package/lib/cjs/geometry3d/PolygonOps.js.map +1 -1
- package/lib/cjs/geometry3d/Transform.d.ts +4 -2
- package/lib/cjs/geometry3d/Transform.d.ts.map +1 -1
- package/lib/cjs/geometry3d/Transform.js +4 -2
- package/lib/cjs/geometry3d/Transform.js.map +1 -1
- package/lib/cjs/geometry4d/Map4d.d.ts +5 -5
- package/lib/cjs/geometry4d/Map4d.js +5 -5
- package/lib/cjs/geometry4d/Map4d.js.map +1 -1
- package/lib/cjs/geometry4d/Matrix4d.d.ts +4 -7
- package/lib/cjs/geometry4d/Matrix4d.d.ts.map +1 -1
- package/lib/cjs/geometry4d/Matrix4d.js +4 -7
- package/lib/cjs/geometry4d/Matrix4d.js.map +1 -1
- package/lib/cjs/numerics/Polynomials.d.ts +37 -36
- package/lib/cjs/numerics/Polynomials.d.ts.map +1 -1
- package/lib/cjs/numerics/Polynomials.js +90 -105
- package/lib/cjs/numerics/Polynomials.js.map +1 -1
- package/lib/cjs/polyface/PolyfaceClip.d.ts +3 -3
- package/lib/cjs/polyface/PolyfaceClip.d.ts.map +1 -1
- package/lib/cjs/polyface/PolyfaceClip.js +1 -1
- package/lib/cjs/polyface/PolyfaceClip.js.map +1 -1
- package/lib/esm/Geometry.d.ts +2 -2
- package/lib/esm/Geometry.js +2 -2
- package/lib/esm/Geometry.js.map +1 -1
- package/lib/esm/clipping/ClipPrimitive.d.ts +7 -7
- package/lib/esm/clipping/ClipPrimitive.d.ts.map +1 -1
- package/lib/esm/clipping/ClipPrimitive.js +1 -1
- package/lib/esm/clipping/ClipPrimitive.js.map +1 -1
- package/lib/esm/curve/Arc3d.d.ts +21 -10
- package/lib/esm/curve/Arc3d.d.ts.map +1 -1
- package/lib/esm/curve/Arc3d.js +64 -37
- package/lib/esm/curve/Arc3d.js.map +1 -1
- package/lib/esm/curve/CurveChainWithDistanceIndex.d.ts +27 -8
- package/lib/esm/curve/CurveChainWithDistanceIndex.d.ts.map +1 -1
- package/lib/esm/curve/CurveChainWithDistanceIndex.js +44 -25
- package/lib/esm/curve/CurveChainWithDistanceIndex.js.map +1 -1
- package/lib/esm/curve/CurveFactory.d.ts +10 -12
- package/lib/esm/curve/CurveFactory.d.ts.map +1 -1
- package/lib/esm/curve/CurveFactory.js +16 -43
- package/lib/esm/curve/CurveFactory.js.map +1 -1
- package/lib/esm/curve/internalContexts/CurveCurveCloseApproachXY.js +2 -2
- package/lib/esm/curve/internalContexts/CurveCurveCloseApproachXY.js.map +1 -1
- package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.d.ts +1 -0
- package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.d.ts.map +1 -1
- package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.js +33 -59
- package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.js.map +1 -1
- package/lib/esm/curve/internalContexts/CurveCurveIntersectXYZ.d.ts +22 -7
- package/lib/esm/curve/internalContexts/CurveCurveIntersectXYZ.d.ts.map +1 -1
- package/lib/esm/curve/internalContexts/CurveCurveIntersectXYZ.js +128 -68
- package/lib/esm/curve/internalContexts/CurveCurveIntersectXYZ.js.map +1 -1
- package/lib/esm/curve/internalContexts/EllipticalArcApproximationContext.d.ts.map +1 -1
- package/lib/esm/curve/internalContexts/EllipticalArcApproximationContext.js +14 -11
- package/lib/esm/curve/internalContexts/EllipticalArcApproximationContext.js.map +1 -1
- package/lib/esm/geometry3d/Angle.d.ts +5 -5
- package/lib/esm/geometry3d/Angle.js +5 -5
- package/lib/esm/geometry3d/Angle.js.map +1 -1
- package/lib/esm/geometry3d/AngleSweep.d.ts +101 -13
- package/lib/esm/geometry3d/AngleSweep.d.ts.map +1 -1
- package/lib/esm/geometry3d/AngleSweep.js +156 -57
- package/lib/esm/geometry3d/AngleSweep.js.map +1 -1
- package/lib/esm/geometry3d/Matrix3d.d.ts +9 -15
- package/lib/esm/geometry3d/Matrix3d.d.ts.map +1 -1
- package/lib/esm/geometry3d/Matrix3d.js +21 -15
- package/lib/esm/geometry3d/Matrix3d.js.map +1 -1
- package/lib/esm/geometry3d/Point3dVector3d.d.ts +6 -5
- package/lib/esm/geometry3d/Point3dVector3d.d.ts.map +1 -1
- package/lib/esm/geometry3d/Point3dVector3d.js +6 -5
- package/lib/esm/geometry3d/Point3dVector3d.js.map +1 -1
- package/lib/esm/geometry3d/PolygonOps.js +2 -2
- package/lib/esm/geometry3d/PolygonOps.js.map +1 -1
- package/lib/esm/geometry3d/Transform.d.ts +4 -2
- package/lib/esm/geometry3d/Transform.d.ts.map +1 -1
- package/lib/esm/geometry3d/Transform.js +4 -2
- package/lib/esm/geometry3d/Transform.js.map +1 -1
- package/lib/esm/geometry4d/Map4d.d.ts +5 -5
- package/lib/esm/geometry4d/Map4d.js +5 -5
- package/lib/esm/geometry4d/Map4d.js.map +1 -1
- package/lib/esm/geometry4d/Matrix4d.d.ts +4 -7
- package/lib/esm/geometry4d/Matrix4d.d.ts.map +1 -1
- package/lib/esm/geometry4d/Matrix4d.js +4 -7
- package/lib/esm/geometry4d/Matrix4d.js.map +1 -1
- package/lib/esm/numerics/Polynomials.d.ts +37 -36
- package/lib/esm/numerics/Polynomials.d.ts.map +1 -1
- package/lib/esm/numerics/Polynomials.js +90 -105
- package/lib/esm/numerics/Polynomials.js.map +1 -1
- package/lib/esm/polyface/PolyfaceClip.d.ts +3 -3
- package/lib/esm/polyface/PolyfaceClip.d.ts.map +1 -1
- package/lib/esm/polyface/PolyfaceClip.js +1 -1
- package/lib/esm/polyface/PolyfaceClip.js.map +1 -1
- package/package.json +7 -19
|
@@ -158,8 +158,10 @@ export declare class Transform implements BeJSONFunctions {
|
|
|
158
158
|
*/
|
|
159
159
|
static createScaleAboutPoint(fixedPoint: Point3d, scale: number, result?: Transform): Transform;
|
|
160
160
|
/**
|
|
161
|
-
* Return a transformation which flattens space onto a plane, sweeping along a direction which may be different
|
|
162
|
-
*
|
|
161
|
+
* Return a transformation which flattens space onto a plane, sweeping along a direction which may be different
|
|
162
|
+
* from the plane normal.
|
|
163
|
+
* * See [Matrix3d.createFlattenAlongVectorToPlane] for math details.
|
|
164
|
+
* @param sweepVector sweep direction. If same as `planeNormal`, the resulting transformation flattens to the plane.
|
|
163
165
|
* @param planePoint any point on the plane
|
|
164
166
|
* @param planeNormal vector normal to the plane.
|
|
165
167
|
*/
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"Transform.d.ts","sourceRoot":"","sources":["../../../src/geometry3d/Transform.ts"],"names":[],"mappings":"AAKA;;GAEG;AAEH,OAAO,EAAE,SAAS,EAAE,eAAe,EAAY,MAAM,aAAa,CAAC;AACnE,OAAO,EAAE,OAAO,EAAE,MAAM,uBAAuB,CAAC;AAChD,OAAO,EAAE,QAAQ,EAAE,MAAM,YAAY,CAAC;AACtC,OAAO,EAAE,OAAO,EAAE,MAAM,mBAAmB,CAAC;AAC5C,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,GAAG,EAAE,MAAM,mBAAmB,CAAC;AAC3D,OAAO,EAAE,OAAO,EAAE,MAAM,SAAS,CAAC;AAClC,OAAO,EAAE,cAAc,EAAE,KAAK,EAAE,MAAM,EAAE,MAAM,YAAY,CAAC;AAE3D;;;;;;;;;;;;;;;;GAgBG;AACH,qBAAa,SAAU,YAAW,eAAe;IAC/C,OAAO,CAAC,OAAO,CAAM;IACrB,OAAO,CAAC,OAAO,CAAW;IAE1B,OAAO;IAIP,OAAO,CAAC,MAAM,CAAC,SAAS,CAAC,CAAY;IACrC,sEAAsE;IACtE,WAAkB,QAAQ,IAAI,SAAS,CAMtC;IACD,gEAAgE;IACzD,MAAM,IAAI,QAAQ,CAAC,IAAI,CAAC;IAK/B;;;OAGG;IACI,OAAO,CAAC,KAAK,EAAE,SAAS;IAI/B,4CAA4C;IACrC,WAAW;IAIlB;;;;;;;OAOG;IACI,WAAW,CAAC,IAAI,CAAC,EAAE,cAAc,GAAG,SAAS,GAAG,IAAI;IA4B3D;;;;OAIG;IACI,aAAa,CAAC,KAAK,EAAE,QAAQ,CAAC,SAAS,CAAC,GAAG,OAAO;IAGzD;;;;OAIG;IACI,2BAA2B,CAAC,KAAK,EAAE,SAAS,GAAG,OAAO;IAG7D;;;OAGG;IACI,MAAM,IAAI,MAAM,EAAE,EAAE;IAO3B;;;MAGE;IACK,MAAM,IAAI,cAAc;IAG/B,oEAAoE;WACtD,QAAQ,CAAC,IAAI,CAAC,EAAE,cAAc,GAAG,SAAS;IAKxD,mGAAmG;IAC5F,KAAK,CAAC,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS;IAW3C;;;OAGG;IACI,UAAU,CAAC,SAAS,GAAE,SAAyB,GAAG,SAAS,GAAG,SAAS;IAM9E,gGAAgG;WAClF,UAAU,CAAC,MAAM,EAAE,GAAG,GAAG,SAAS,EAAE,MAAM,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS;IAUlG,iHAAiH;WACnG,eAAe,CAC3B,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EACjD,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EACjD,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EACjD,MAAM,CAAC,EAAE,SAAS,GACjB,SAAS;IAWZ,wCAAwC;WAC1B,UAAU,CAAC,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS;IAGvD;;;;;;;;;OASG;WACW,oBAAoB,CAAC,CAAC,GAAE,MAAU,EAAE,CAAC,GAAE,MAAU,EAAE,CAAC,GAAE,MAAU,EAAE,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS;IAG9G;;;;;;;OAOG;WACW,iBAAiB,CAAC,WAAW,EAAE,GAAG,EAAE,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS;IAGhF,iFAAiF;IACjF,IAAW,MAAM,IAAI,QAAQ,CAE5B;IACD,iFAAiF;IACjF,IAAW,MAAM,IAAI,GAAG,CAEvB;IACD,6EAA6E;IACtE,SAAS,IAAI,OAAO;IAG3B,8EAA8E;IACvE,cAAc,IAAI,QAAQ;IAGjC,8EAA8E;IACvE,SAAS,IAAI,QAAQ;IAG5B,yEAAyE;IACzE,IAAW,UAAU,IAAI,OAAO,CAE/B;IACD,mCAAmC;WACrB,cAAc,CAAC,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS;IAQ3D;;;;;;;OAOG;WACW,qBAAqB,CACjC,MAAM,EAAE,GAAG,GAAG,SAAS,EAAE,MAAM,EAAE,QAAQ,GAAG,SAAS,EAAE,MAAM,CAAC,EAAE,SAAS,GACxE,SAAS;IAYZ,4GAA4G;IACrG,yBAAyB,CAC9B,MAAM,EAAE,GAAG,GAAG,SAAS,EAAE,OAAO,EAAE,QAAQ,GAAG,SAAS,EAAE,OAAO,EAAE,QAAQ,GAAG,SAAS,EAAE,OAAO,EAAE,QAAQ,GAAG,SAAS,GACnH,IAAI;IAKP,8EAA8E;WAChE,4BAA4B,CACxC,MAAM,EAAE,GAAG,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,SAAS,GACvF,SAAS;IAOZ;;;OAGG;WACW,+BAA+B,CAC3C,MAAM,EAAE,GAAG,GAAG,SAAS,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,SAAS,EAAE,SAAS,EAAE,MAAM,CAAC,EAAE,SAAS,GACtG,SAAS,GAAG,SAAS;IAmBxB;;;;OAIG;WACW,yBAAyB,CACrC,UAAU,EAAE,MAAM,GAAG,SAAS,EAAE,MAAM,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,SAAS,GACnE,SAAS;IAWZ;;;OAGG;WACW,yBAAyB,CACrC,MAAM,EAAE,QAAQ,EAAE,CAAC,EAAE,OAAO,EAAE,CAAC,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,SAAS,GAC3D,SAAS;IAKZ;;;;;OAKG;WACW,qBAAqB,CAAC,UAAU,EAAE,OAAO,EAAE,KAAK,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS;IAStG
|
|
1
|
+
{"version":3,"file":"Transform.d.ts","sourceRoot":"","sources":["../../../src/geometry3d/Transform.ts"],"names":[],"mappings":"AAKA;;GAEG;AAEH,OAAO,EAAE,SAAS,EAAE,eAAe,EAAY,MAAM,aAAa,CAAC;AACnE,OAAO,EAAE,OAAO,EAAE,MAAM,uBAAuB,CAAC;AAChD,OAAO,EAAE,QAAQ,EAAE,MAAM,YAAY,CAAC;AACtC,OAAO,EAAE,OAAO,EAAE,MAAM,mBAAmB,CAAC;AAC5C,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,GAAG,EAAE,MAAM,mBAAmB,CAAC;AAC3D,OAAO,EAAE,OAAO,EAAE,MAAM,SAAS,CAAC;AAClC,OAAO,EAAE,cAAc,EAAE,KAAK,EAAE,MAAM,EAAE,MAAM,YAAY,CAAC;AAE3D;;;;;;;;;;;;;;;;GAgBG;AACH,qBAAa,SAAU,YAAW,eAAe;IAC/C,OAAO,CAAC,OAAO,CAAM;IACrB,OAAO,CAAC,OAAO,CAAW;IAE1B,OAAO;IAIP,OAAO,CAAC,MAAM,CAAC,SAAS,CAAC,CAAY;IACrC,sEAAsE;IACtE,WAAkB,QAAQ,IAAI,SAAS,CAMtC;IACD,gEAAgE;IACzD,MAAM,IAAI,QAAQ,CAAC,IAAI,CAAC;IAK/B;;;OAGG;IACI,OAAO,CAAC,KAAK,EAAE,SAAS;IAI/B,4CAA4C;IACrC,WAAW;IAIlB;;;;;;;OAOG;IACI,WAAW,CAAC,IAAI,CAAC,EAAE,cAAc,GAAG,SAAS,GAAG,IAAI;IA4B3D;;;;OAIG;IACI,aAAa,CAAC,KAAK,EAAE,QAAQ,CAAC,SAAS,CAAC,GAAG,OAAO;IAGzD;;;;OAIG;IACI,2BAA2B,CAAC,KAAK,EAAE,SAAS,GAAG,OAAO;IAG7D;;;OAGG;IACI,MAAM,IAAI,MAAM,EAAE,EAAE;IAO3B;;;MAGE;IACK,MAAM,IAAI,cAAc;IAG/B,oEAAoE;WACtD,QAAQ,CAAC,IAAI,CAAC,EAAE,cAAc,GAAG,SAAS;IAKxD,mGAAmG;IAC5F,KAAK,CAAC,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS;IAW3C;;;OAGG;IACI,UAAU,CAAC,SAAS,GAAE,SAAyB,GAAG,SAAS,GAAG,SAAS;IAM9E,gGAAgG;WAClF,UAAU,CAAC,MAAM,EAAE,GAAG,GAAG,SAAS,EAAE,MAAM,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS;IAUlG,iHAAiH;WACnG,eAAe,CAC3B,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EACjD,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EACjD,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EACjD,MAAM,CAAC,EAAE,SAAS,GACjB,SAAS;IAWZ,wCAAwC;WAC1B,UAAU,CAAC,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS;IAGvD;;;;;;;;;OASG;WACW,oBAAoB,CAAC,CAAC,GAAE,MAAU,EAAE,CAAC,GAAE,MAAU,EAAE,CAAC,GAAE,MAAU,EAAE,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS;IAG9G;;;;;;;OAOG;WACW,iBAAiB,CAAC,WAAW,EAAE,GAAG,EAAE,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS;IAGhF,iFAAiF;IACjF,IAAW,MAAM,IAAI,QAAQ,CAE5B;IACD,iFAAiF;IACjF,IAAW,MAAM,IAAI,GAAG,CAEvB;IACD,6EAA6E;IACtE,SAAS,IAAI,OAAO;IAG3B,8EAA8E;IACvE,cAAc,IAAI,QAAQ;IAGjC,8EAA8E;IACvE,SAAS,IAAI,QAAQ;IAG5B,yEAAyE;IACzE,IAAW,UAAU,IAAI,OAAO,CAE/B;IACD,mCAAmC;WACrB,cAAc,CAAC,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS;IAQ3D;;;;;;;OAOG;WACW,qBAAqB,CACjC,MAAM,EAAE,GAAG,GAAG,SAAS,EAAE,MAAM,EAAE,QAAQ,GAAG,SAAS,EAAE,MAAM,CAAC,EAAE,SAAS,GACxE,SAAS;IAYZ,4GAA4G;IACrG,yBAAyB,CAC9B,MAAM,EAAE,GAAG,GAAG,SAAS,EAAE,OAAO,EAAE,QAAQ,GAAG,SAAS,EAAE,OAAO,EAAE,QAAQ,GAAG,SAAS,EAAE,OAAO,EAAE,QAAQ,GAAG,SAAS,GACnH,IAAI;IAKP,8EAA8E;WAChE,4BAA4B,CACxC,MAAM,EAAE,GAAG,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,SAAS,GACvF,SAAS;IAOZ;;;OAGG;WACW,+BAA+B,CAC3C,MAAM,EAAE,GAAG,GAAG,SAAS,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,SAAS,EAAE,SAAS,EAAE,MAAM,CAAC,EAAE,SAAS,GACtG,SAAS,GAAG,SAAS;IAmBxB;;;;OAIG;WACW,yBAAyB,CACrC,UAAU,EAAE,MAAM,GAAG,SAAS,EAAE,MAAM,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,SAAS,GACnE,SAAS;IAWZ;;;OAGG;WACW,yBAAyB,CACrC,MAAM,EAAE,QAAQ,EAAE,CAAC,EAAE,OAAO,EAAE,CAAC,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,SAAS,GAC3D,SAAS;IAKZ;;;;;OAKG;WACW,qBAAqB,CAAC,UAAU,EAAE,OAAO,EAAE,KAAK,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS;IAStG;;;;;;;OAOG;WACW,+BAA+B,CAAC,WAAW,EAAE,QAAQ,EAAE,UAAU,EAAE,MAAM,EAAE,WAAW,EAAE,QAAQ,GAAG,SAAS,GAAG,SAAS;IAMtI;;;OAGG;IACI,eAAe,CAAC,KAAK,EAAE,KAAK,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAG/D;;;OAGG;IACI,eAAe,CAAC,KAAK,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAIhE;;;OAGG;IACI,qBAAqB,CAAC,KAAK,EAAE,MAAM,GAAG,IAAI;IAGjD;;;OAGG;IACI,WAAW,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,GAAE,MAAU,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAIlF;;OAEG;IACI,oBAAoB,CAAC,cAAc,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,GAAE,MAAU,GAAG,MAAM;IAKhG;;OAEG;IACI,qBAAqB,CAAC,cAAc,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,GAAG,MAAM;IAKxG;;;;;OAKG;IACI,YAAY,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAG1F;;;;;OAKG;IACI,0BAA0B,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,YAAY,GAAG,YAAY;IAGlH;;;OAGG;IACI,yBAAyB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,YAAY,GAAG,YAAY;IAGtG;;;;;;;OAOG;IACI,qBAAqB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAWnG,iGAAiG;IAC1F,2BAA2B,CAAC,MAAM,EAAE,OAAO,EAAE;IAKpD,oGAAoG;IAC7F,gCAAgC,CAAC,MAAM,EAAE,OAAO,EAAE,EAAE;IAI3D;;;;;;OAMG;IACI,sBAAsB,CAAC,KAAK,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO,GAAG,SAAS;IAQnF;;;;;;;;;;OAUG;IACI,sBAAsB,CAAC,aAAa,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO,GAAG,SAAS;IAU5F;;;;;;OAMG;IACI,kBAAkB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO,GAAG,SAAS;IAQjG;;;;;OAKG;IACI,oBAAoB,CAAC,SAAS,GAAE,OAAc,GAAG,OAAO;IAG/D;;;;;;;;OAQG;WACW,iBAAiB,CAAC,MAAM,EAAE,GAAG,EAAE,EAAE,IAAI,EAAE,GAAG,EAAE,EAAE,oBAAoB,EAAE,MAAM,GAAG,GAAG,MAAM;IAYpG;;;;;;;OAOG;IACI,2BAA2B,CAAC,MAAM,EAAE,OAAO,EAAE,EAAE,MAAM,CAAC,EAAE,OAAO,EAAE,GAAG,OAAO,EAAE,GAAG,SAAS;IA4BhG;;;;;OAKG;IACI,kCAAkC,CAAC,MAAM,EAAE,OAAO,EAAE,GAAG,OAAO;IAYrE;;;;OAIG;IACI,oBAAoB,CAAC,MAAM,EAAE,OAAO,EAAE,EAAE,MAAM,CAAC,EAAE,OAAO,EAAE,GAAG,OAAO,EAAE;IAY7E;;;;OAIG;IACI,oBAAoB,CAAC,MAAM,EAAE,OAAO,EAAE,EAAE,MAAM,CAAC,EAAE,OAAO,EAAE,GAAG,OAAO,EAAE;IAY7E;;;;OAIG;IACI,cAAc,CAAC,MAAM,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAGpE;;;OAGG;IACI,qBAAqB,CAAC,MAAM,EAAE,QAAQ,GAAG,IAAI;IAGpD;;;;OAIG;IACI,iBAAiB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAGtF;;;;;;;OAOG;IACI,6BAA6B,CAAC,UAAU,EAAE,SAAS,EAAE,UAAU,EAAE,SAAS,GAAG,IAAI;IASxF;;;;;;;;;;;;;OAaG;IACI,0BAA0B,CAAC,KAAK,EAAE,SAAS,EAAE,MAAM,CAAC,EAAE,SAAS;IAStE;;;;;;;;;;;;;OAaG;IACI,yBAAyB,CAAC,KAAK,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS;IAUhF;;;;;;;;OAQG;IACI,aAAa,CAAC,KAAK,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAoB/D;;;;OAIG;IACI,OAAO,CAAC,MAAM,CAAC,EAAE,SAAS,GAAG,SAAS,GAAG,SAAS;IAczD;;;;;;;;;;OAUG;WACW,aAAa,CAAC,GAAG,EAAE,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,WAAW,CAAC,EAAE,SAAS,EAAE,WAAW,CAAC,EAAE,SAAS,GAAG,IAAI;CAmChH"}
|
|
@@ -326,8 +326,10 @@ class Transform {
|
|
|
326
326
|
return Transform.createRefs(origin, matrix, result);
|
|
327
327
|
}
|
|
328
328
|
/**
|
|
329
|
-
* Return a transformation which flattens space onto a plane, sweeping along a direction which may be different
|
|
330
|
-
*
|
|
329
|
+
* Return a transformation which flattens space onto a plane, sweeping along a direction which may be different
|
|
330
|
+
* from the plane normal.
|
|
331
|
+
* * See [Matrix3d.createFlattenAlongVectorToPlane] for math details.
|
|
332
|
+
* @param sweepVector sweep direction. If same as `planeNormal`, the resulting transformation flattens to the plane.
|
|
331
333
|
* @param planePoint any point on the plane
|
|
332
334
|
* @param planeNormal vector normal to the plane.
|
|
333
335
|
*/
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"Transform.js","sourceRoot":"","sources":["../../../src/geometry3d/Transform.ts"],"names":[],"mappings":";AAAA;;;+FAG+F;;;AAE/F;;GAEG;AAEH,0CAAmE;AACnE,mDAAgD;AAChD,yCAAsC;AACtC,uDAA4C;AAC5C,uDAA2D;AAC3D,mCAAkC;AAGlC;;;;;;;;;;;;;;;;GAgBG;AACH,MAAa,SAAS;IAGpB,0EAA0E;IAC1E,YAAoB,MAAW,EAAE,MAAgB;QAC/C,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;IACxB,CAAC;IAED,sEAAsE;IAC/D,MAAM,KAAK,QAAQ;QACxB,IAAI,SAAS,KAAK,IAAI,CAAC,SAAS,EAAE,CAAC;YACjC,IAAI,CAAC,SAAS,GAAG,SAAS,CAAC,cAAc,EAAE,CAAC;YAC5C,IAAI,CAAC,SAAS,CAAC,MAAM,EAAE,CAAC;QAC1B,CAAC;QACD,OAAO,IAAI,CAAC,SAAS,CAAC;IACxB,CAAC;IACD,gEAAgE;IACzD,MAAM;QACX,IAAI,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC;QACtB,IAAI,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC;QACtB,OAAO,MAAM,CAAC,MAAM,CAAC,IAAI,CAAC,CAAC;IAC7B,CAAC;IACD;;;OAGG;IACI,OAAO,CAAC,KAAgB;QAC7B,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;QACpC,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;IACtC,CAAC;IACD,4CAA4C;IACrC,WAAW;QAChB,IAAI,CAAC,OAAO,CAAC,OAAO,EAAE,CAAC;QACvB,IAAI,CAAC,OAAO,CAAC,WAAW,EAAE,CAAC;IAC7B,CAAC;IACD;;;;;;;OAOG;IACI,WAAW,CAAC,IAAiC;QAClD,IAAI,IAAI,EAAE,CAAC;YACT,IAAI,IAAI,YAAY,MAAM,IAAK,IAAY,CAAC,MAAM,IAAK,IAAY,CAAC,MAAM,EAAE,CAAC;gBAC3E,IAAI,CAAC,OAAO,CAAC,WAAW,CAAE,IAAY,CAAC,MAAM,CAAC,CAAC;gBAC/C,IAAI,CAAC,OAAO,CAAC,WAAW,CAAE,IAAY,CAAC,MAAM,CAAC,CAAC;gBAC/C,OAAO;YACT,CAAC;YACD,IAAI,mBAAQ,CAAC,oBAAoB,CAAC,IAAI,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC;gBAC9C,IAAI,CAAC,OAAO,CAAC,YAAY,CACvB,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAClC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAClC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CACnC,CAAC;gBACF,IAAI,CAAC,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBACrD,OAAO;YACT,CAAC;YACD,IAAI,mBAAQ,CAAC,aAAa,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,CAAC;gBACrC,IAAI,CAAC,OAAO,CAAC,YAAY,CACvB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EACzB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EACzB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAC3B,CAAC;gBACF,IAAI,CAAC,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC;gBAC7C,OAAO;YACT,CAAC;QACH,CAAC;QACD,IAAI,CAAC,WAAW,EAAE,CAAC;IACrB,CAAC;IACD;;;;OAIG;IACI,aAAa,CAAC,KAA0B;QAC7C,OAAO,IAAI,KAAK,KAAK,IAAI,IAAI,CAAC,MAAM,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,CAAC,IAAI,IAAI,CAAC,MAAM,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;IAC9G,CAAC;IACD;;;;OAIG;IACI,2BAA2B,CAAC,KAAgB;QACjD,OAAO,IAAI,CAAC,OAAO,CAAC,aAAa,CAAC,KAAK,CAAC,OAAO,CAAC,IAAI,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;IAC9G,CAAC;IACD;;;OAGG;IACI,MAAM;QACX,OAAO;YACL,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;YACrF,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;YACrF,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;SACtF,CAAC;IACJ,CAAC;IACD;;;MAGE;IACK,MAAM;QACX,OAAO,IAAI,CAAC,MAAM,EAAE,CAAC;IACvB,CAAC;IACD,oEAAoE;IAC7D,MAAM,CAAC,QAAQ,CAAC,IAAqB;QAC1C,MAAM,MAAM,GAAG,SAAS,CAAC,cAAc,EAAE,CAAC;QAC1C,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC;QACzB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,mGAAmG;IAC5F,KAAK,CAAC,MAAkB;QAC7B,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACrC,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACrC,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAClB,yBAAO,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,EAChC,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,CACrB,CAAC;IACJ,CAAC;IACD;;;OAGG;IACI,UAAU,CAAC,YAAuB,oBAAS,CAAC,GAAG;QACpD,MAAM,cAAc,GAAG,mBAAQ,CAAC,uBAAuB,CAAC,IAAI,CAAC,MAAM,EAAE,SAAS,CAAC,CAAC;QAChF,IAAI,CAAC,cAAc;YACjB,OAAO,SAAS,CAAC;QACnB,OAAO,IAAI,SAAS,CAAC,IAAI,CAAC,MAAM,CAAC,cAAc,EAAE,EAAE,cAAc,CAAC,CAAC;IACrE,CAAC;IACD,gGAAgG;IACzF,MAAM,CAAC,UAAU,CAAC,MAAuB,EAAE,MAAgB,EAAE,MAAkB;QACpF,IAAI,CAAC,MAAM;YACT,MAAM,GAAG,yBAAO,CAAC,UAAU,EAAE,CAAC;QAChC,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,GAAG,MAAM,CAAC;YACxB,MAAM,CAAC,OAAO,GAAG,MAAM,CAAC;YACxB,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC;IACvC,CAAC;IACD,iHAAiH;IAC1G,MAAM,CAAC,eAAe,CAC3B,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,MAAkB;QAElB,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,CAAC;YAC/B,MAAM,CAAC,OAAO,CAAC,YAAY,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;YACzE,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAClB,yBAAO,CAAC,MAAM,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,EAC1B,mBAAQ,CAAC,eAAe,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CACtE,CAAC;IACJ,CAAC;IACD,wCAAwC;IACjC,MAAM,CAAC,UAAU,CAAC,MAAkB;QACzC,OAAO,SAAS,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC/E,CAAC;IACD;;;;;;;;;OASG;IACI,MAAM,CAAC,oBAAoB,CAAC,IAAY,CAAC,EAAE,IAAY,CAAC,EAAE,IAAY,CAAC,EAAE,MAAkB;QAChG,OAAO,SAAS,CAAC,UAAU,CAAC,0BAAQ,CAAC,MAAM,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,mBAAQ,CAAC,cAAc,EAAE,EAAE,MAAM,CAAC,CAAC;IAC3F,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,iBAAiB,CAAC,WAAgB,EAAE,MAAkB;QAClE,OAAO,SAAS,CAAC,UAAU,CAAC,WAAW,EAAE,mBAAQ,CAAC,cAAc,EAAE,EAAE,MAAM,CAAC,CAAC;IAC9E,CAAC;IACD,iFAAiF;IACjF,IAAW,MAAM;QACf,OAAO,IAAI,CAAC,OAAO,CAAC;IACtB,CAAC;IACD,iFAAiF;IACjF,IAAW,MAAM;QACf,OAAO,IAAI,CAAC,OAAO,CAAC;IACtB,CAAC;IACD,6EAA6E;IACtE,SAAS;QACd,OAAO,yBAAO,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;IAC1C,CAAC;IACD,8EAA8E;IACvE,cAAc;QACnB,OAAO,0BAAQ,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;IAC3C,CAAC;IACD,8EAA8E;IACvE,SAAS;QACd,OAAO,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,CAAC;IAC9B,CAAC;IACD,yEAAyE;IACzE,IAAW,UAAU;QACnB,OAAO,IAAI,CAAC,OAAO,CAAC,UAAU,IAAI,IAAI,CAAC,OAAO,CAAC,YAAY,CAAC;IAC9D,CAAC;IACD,mCAAmC;IAC5B,MAAM,CAAC,cAAc,CAAC,MAAkB;QAC7C,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,OAAO,EAAE,CAAC;YACzB,MAAM,CAAC,OAAO,CAAC,WAAW,EAAE,CAAC;YAC7B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CAAC,yBAAO,CAAC,UAAU,EAAE,EAAE,mBAAQ,CAAC,cAAc,EAAE,CAAC,CAAC;IAC/E,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,qBAAqB,CACjC,MAAuB,EAAE,MAA4B,EAAE,MAAkB;QAEzE,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,CAAC,CAAC;YACtC,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;YAC/B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CACzB,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,cAAc,EAAE,CAAC,CAAC,CAAC,yBAAO,CAAC,UAAU,EAAE,EACvD,MAAM,KAAK,SAAS,CAAC,CAAC,CAAC,mBAAQ,CAAC,cAAc,EAAE,CAAC,CAAC,CAAC,MAAM,CAAC,KAAK,EAAE,EACjE,MAAM,CACP,CAAC;IACJ,CAAC;IACD,4GAA4G;IACrG,yBAAyB,CAC9B,MAAuB,EAAE,OAA6B,EAAE,OAA6B,EAAE,OAA6B;QAEpH,IAAI,MAAM,KAAK,SAAS;YACtB,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;QAC/B,IAAI,CAAC,OAAO,CAAC,UAAU,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;IACrD,CAAC;IACD,8EAA8E;IACvE,MAAM,CAAC,4BAA4B,CACxC,MAAW,EAAE,OAAiB,EAAE,OAAiB,EAAE,OAAiB,EAAE,MAAkB;QAExF,IAAI,MAAM;YACR,MAAM,CAAC,yBAAyB,CAAC,MAAM,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;;YAEpE,MAAM,GAAG,SAAS,CAAC,UAAU,CAAC,0BAAQ,CAAC,UAAU,CAAC,MAAM,CAAC,EAAE,mBAAQ,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,CAAC;QAChH,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,+BAA+B,CAC3C,MAAuB,EAAE,OAAiB,EAAE,OAAiB,EAAE,SAAoB,EAAE,MAAkB;QAEvG,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,OAAO,EAAE,OAAO,EAAE,SAAS,EAAE,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QACjH,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC;QACnB,IAAI,MAAM,EAAE,CAAC;YACX,iFAAiF;YACjF,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;YAC/B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD;;;;;WAKG;QACH,MAAM,GAAG,SAAS,CAAC,UAAU,CAAC,SAAS,EAAE,MAAM,CAAC,CAAC;QACjD,MAAM,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,CAAC,CAAC;QACtC,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,MAAM,CAAC,yBAAyB,CACrC,UAA8B,EAAE,MAAgB,EAAE,MAAkB;QAEpE,IAAI,UAAU,EAAE,CAAC;YACf;;;eAGG;YACH,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,UAAU,EAAE,MAAM,EAAE,UAAU,CAAC,CAAC;YAC/E,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,CAAC,KAAK,EAAE,EAAE,MAAM,CAAC,CAAC;QAC9D,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CAAC,SAAS,EAAE,MAAM,CAAC,KAAK,EAAE,CAAC,CAAC;IACzD,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,yBAAyB,CACrC,MAAgB,EAAE,CAAU,EAAE,CAAU,EAAE,MAAkB;QAE5D,mFAAmF;QACnF,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,CAAC,CAAC;QAC7D,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,CAAC,KAAK,EAAE,EAAE,MAAM,CAAC,CAAC;IAC9D,CAAC;IACD;;;;;OAKG;IACI,MAAM,CAAC,qBAAqB,CAAC,UAAmB,EAAE,KAAa,EAAE,MAAkB;QACxF,MAAM,MAAM,GAAG,mBAAQ,CAAC,WAAW,CAAC,KAAK,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACzD;;;WAGG;QACH,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,UAAU,EAAE,MAAM,EAAE,UAAU,CAAC,CAAC;QAC/E,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,CAAC;IACtD,CAAC;IACD;;;;;OAKG;IACI,MAAM,CAAC,+BAA+B,CAAC,WAAqB,EAAE,UAAkB,EAAE,WAAqB;QAC5G,MAAM,MAAM,GAAG,mBAAQ,CAAC,+BAA+B,CAAC,WAAW,EAAE,WAAW,CAAC,CAAC;QAClF,IAAI,MAAM,KAAK,SAAS;YACtB,OAAO,SAAS,CAAC;QACnB,OAAO,SAAS,CAAC,yBAAyB,CAAC,UAAU,EAAE,MAAM,CAAC,CAAC;IACjE,CAAC;IACD;;;OAGG;IACI,eAAe,CAAC,KAAY,EAAE,MAAgB;QACnD,OAAO,mBAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC;IACjF,CAAC;IACD;;;OAGG;IACI,eAAe,CAAC,KAAa,EAAE,MAAgB;QACpD,kCAAkC;QAClC,OAAO,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC;IACnF,CAAC;IACD;;;OAGG;IACI,qBAAqB,CAAC,KAAa;QACxC,OAAO,mBAAQ,CAAC,4BAA4B,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,CAAC,CAAC;IAClF,CAAC;IACD;;;OAGG;IACI,WAAW,CAAC,CAAS,EAAE,CAAS,EAAE,IAAY,CAAC,EAAE,MAAgB;QACtE,kCAAkC;QAClC,OAAO,mBAAQ,CAAC,6BAA6B,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC7F,CAAC;IACD;;OAEG;IACI,oBAAoB,CAAC,cAAsB,EAAE,CAAS,EAAE,CAAS,EAAE,IAAY,CAAC;QACrF,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,GAAG,GAAG,CAAC,GAAG,cAAc,CAAC;QAC/B,OAAO,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,cAAc,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACzG,CAAC;IACD;;OAEG;IACI,qBAAqB,CAAC,cAAsB,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS;QAC7F,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,GAAG,GAAG,CAAC,GAAG,cAAc,CAAC;QAC/B,OAAO,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,cAAc,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IAC/G,CAAC;IACD;;;;;OAKG;IACI,YAAY,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QAC9E,OAAO,mBAAQ,CAAC,qCAAqC,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACxG,CAAC;IACD;;;;;OAKG;IACI,0BAA0B,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAqB;QACjG,OAAO,mBAAQ,CAAC,mDAAmD,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACtH,CAAC;IACD;;;OAGG;IACI,yBAAyB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAqB;QACrF,OAAO,mBAAQ,CAAC,2CAA2C,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC3G,CAAC;IACD;;;;;;;OAOG;IACI,qBAAqB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QACvF,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,MAAM,GAAG,IAAI,CAAC,OAAO,CAAC;QAC5B,OAAO,iBAAO,CAAC,MAAM,CACnB,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,EACpD,MAAM,CACP,CAAC;IACJ,CAAC;IACD,iGAAiG;IAC1F,2BAA2B,CAAC,MAAiB;QAClD,IAAI,KAAK,CAAC;QACV,KAAK,KAAK,IAAI,MAAM;YAClB,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;IAC7E,CAAC;IACD,oGAAoG;IAC7F,gCAAgC,CAAC,MAAmB;QACzD,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,IAAI,CAAC,2BAA2B,CAAC,KAAK,CAAC,CAAC;IAC5C,CAAC;IACD;;;;;;OAMG;IACI,sBAAsB,CAAC,KAAa,EAAE,MAAgB;QAC3D,OAAO,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAC7C,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;;;;;;OAUG;IACI,sBAAsB,CAAC,aAAsB,EAAE,MAAgB;QACpE,MAAM,CAAC,GAAG,aAAa,CAAC,CAAC,CAAC;QAC1B,OAAO,IAAI,CAAC,OAAO,CAAC,mBAAmB,CACrC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,CAAC,EACD,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;;OAMG;IACI,kBAAkB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QACzE,OAAO,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAC7C,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;OAKG;IACI,oBAAoB,CAAC,YAAqB,IAAI;QACnD,OAAO,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,SAAS,CAAC,CAAC;IACtD,CAAC;IACD;;;;;;;;OAQG;IACI,MAAM,CAAC,iBAAiB,CAAC,MAAa,EAAE,IAAW,EAAE,oBAA+B;QACzF,MAAM,SAAS,GAAG,MAAM,CAAC,MAAM,CAAC;QAChC,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC;QAC5B,IAAI,SAAS,GAAG,OAAO,EAAE,CAAC;YACxB,KAAK,IAAI,CAAC,GAAG,OAAO,EAAE,CAAC,GAAG,SAAS,EAAE,CAAC,EAAE,EAAE,CAAC;gBACzC,IAAI,CAAC,IAAI,CAAC,oBAAoB,EAAE,CAAC,CAAC;YACpC,CAAC;QACH,CAAC;aAAM,IAAI,OAAO,GAAG,SAAS,EAAE,CAAC;YAC/B,IAAI,CAAC,MAAM,GAAG,SAAS,CAAC;QAC1B,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD;;;;;;;OAOG;IACI,2BAA2B,CAAC,MAAiB,EAAE,MAAkB;QACtE,IAAI,CAAC,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,IAAI,CAAC;YAC1C,OAAO,SAAS,CAAC;QACnB,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,yBAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CACV,CAAC;YACJ,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,MAAM,CAAC,IAAI,CACT,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,KAAK,CAAC,CAAC,GAAG,OAAO,EACjB,KAAK,CAAC,CAAC,GAAG,OAAO,EACjB,KAAK,CAAC,CAAC,GAAG,OAAO,CACjB,CACH,CAAC;QACJ,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;OAKG;IACI,kCAAkC,CAAC,MAAiB;QACzD,IAAI,CAAC,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,IAAI,CAAC;YAC1C,OAAO,KAAK,CAAC;QACf,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CACN,CAAC;QACJ,OAAO,IAAI,CAAC;IACd,CAAC;IACD;;;;OAIG;IACI,oBAAoB,CAAC,MAAiB,EAAE,MAAkB;QAC/D,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,yBAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,mBAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;YACjF,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,CAAC,IAAI,MAAM;YACpB,MAAM,CAAC,IAAI,CAAC,mBAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;QAC3E,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,oBAAoB,CAAC,MAAiB,EAAE,MAAkB;QAC/D,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,yBAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;YACnF,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,CAAC,IAAI,MAAM;YACpB,MAAM,CAAC,IAAI,CAAC,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;QAC7E,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,cAAc,CAAC,MAAgB,EAAE,MAAiB;QACvD,OAAO,IAAI,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC;IACrD,CAAC;IACD;;;OAGG;IACI,qBAAqB,CAAC,MAAgB;QAC3C,IAAI,CAAC,OAAO,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC;IAC7C,CAAC;IACD;;;;OAIG;IACI,iBAAiB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAiB;QACzE,OAAO,IAAI,CAAC,OAAO,CAAC,WAAW,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACnD,CAAC;IACD;;;;;;;OAOG;IACI,6BAA6B,CAAC,UAAqB,EAAE,UAAqB;QAC/E,mBAAQ,CAAC,qBAAqB,CAC5B,UAAU,CAAC,OAAO,EAClB,UAAU,CAAC,OAAO,EAClB,UAAU,CAAC,OAAO,EAClB,IAAI,CAAC,OAAkB,CACxB,CAAC;QACF,UAAU,CAAC,OAAO,CAAC,oBAAoB,CAAC,UAAU,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;IAC5E,CAAC;IACD;;;;;;;;;;;;;OAaG;IACI,0BAA0B,CAAC,KAAgB,EAAE,MAAkB;QACpE,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC,UAAU,CACzB,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,CAAC,OAAO,CAAC,EACzE,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,CAAC,OAAO,CAAC,CACjD,CAAC;QACJ,MAAM,CAAC,6BAA6B,CAAC,IAAI,EAAE,KAAK,CAAC,CAAC;QAClD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;;;;;;OAaG;IACI,yBAAyB,CAAC,KAAe,EAAE,MAAkB;QAClE,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC,UAAU,CACzB,IAAI,CAAC,OAAO,CAAC,cAAc,EAAE,EAC7B,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,CAAC,CACzC,CAAC;QACJ,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,EAAE,MAAM,CAAC,OAAO,CAAC,CAAC;QACzD,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;QACrC,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;OAQG;IACI,aAAa,CAAC,KAAc,EAAE,MAAgB;QACnD,IAAI,KAAK,CAAC,MAAM;YACd,OAAO,KAAK,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;QAC7B,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,GAAG,eAAO,CAAC,UAAU,CAAC,MAAM,CAAC,CAAC;QACpC,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,CAAC,CAAC;QACpD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,IAAI,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,KAAK,EAAE,IAAI,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,IAAI,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACvD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,OAAO,CAAC,MAAkB;QAC/B,MAAM,aAAa,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QAChF,IAAI,CAAC,aAAa;YAChB,OAAO,SAAS,CAAC;QACnB,IAAI,MAAM,EAAE,CAAC;YACX,oCAAoC;YACpC,aAAa,CAAC,WAAW,CAAC,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,MAAM,CAAC,OAAmB,CAAC,CAAC;YACzG,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CACzB,aAAa,CAAC,WAAW,CAAC,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC,EAC5E,aAAa,CACd,CAAC;IACJ,CAAC;IACD;;;;;;;;;;OAUG;IACI,MAAM,CAAC,aAAa,CAAC,GAAY,EAAE,GAAY,EAAE,WAAuB,EAAE,WAAuB;QACtG,MAAM,IAAI,GAAG,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,CAAC;QAC5B,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,MAAM,OAAO,GAAG,IAAI,mBAAQ,EAAE,CAAC;QAC/B;;;;;;;WAOG;QACH,IAAI,WAAW,EAAE,CAAC;YAChB,mBAAQ,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACtD,SAAS,CAAC,qBAAqB,CAAC,GAAG,EAAE,OAAO,EAAE,WAAW,CAAC,CAAC;QAC7D,CAAC;QACD;;;;;;;WAOG;QACH,IAAI,WAAW,EAAE,CAAC;YAChB,MAAM,MAAM,GAAG,IAAI,yBAAO,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YAC9E,mBAAQ,CAAC,WAAW,CAAC,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxE,SAAS,CAAC,qBAAqB,CAAC,MAAM,EAAE,OAAO,EAAE,WAAW,CAAC,CAAC;QAChE,CAAC;IACH,CAAC;CACF;AA3xBD,8BA2xBC","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module CartesianGeometry\r\n */\r\n\r\nimport { AxisOrder, BeJSONFunctions, Geometry } from \"../Geometry\";\r\nimport { Point4d } from \"../geometry4d/Point4d\";\r\nimport { Matrix3d } from \"./Matrix3d\";\r\nimport { Point2d } from \"./Point2dVector2d\";\r\nimport { Point3d, Vector3d, XYZ } from \"./Point3dVector3d\";\r\nimport { Range3d } from \"./Range\";\r\nimport { TransformProps, XAndY, XYAndZ } from \"./XYZProps\";\r\n\r\n/**\r\n * A Transform consists of an origin and a Matrix3d. This describes a coordinate frame with this origin, with\r\n * the columns of the Matrix3d being the local x,y,z axis directions.\r\n * * The math for a Transform `T` consisting of a Matrix3d `M` and a Point3d `o` on a Vector3d `p` is: `Tp = M*p + o`.\r\n * In other words, `T` is a combination of two operations on `p`: the action of matrix multiplication, followed by a\r\n * translation. `Origin` is a traditional term for `o`, because `T` can be interpreted as a change of basis from the\r\n * global axes centered at the global origin, to a new set of axes specified by matrix M columns centered at `o`.\r\n * * Beware that for common transformations (e.g. scale about point, rotate around an axis) the `fixed point` that\r\n * is used when describing the transform is NOT the `origin` stored in the transform. Setup methods (e.g\r\n * createFixedPointAndMatrix, createScaleAboutPoint) take care of determining the appropriate origin coordinates.\r\n * * If `T` is a translation, no point is fixed by `T`.\r\n * * If `T` is the identity, all points are fixed by `T`.\r\n * * If `T` is a scale about a point, one point is fixed by `T`.\r\n * * If `T` is a rotation about an axis, a line is fixed by `T`.\r\n * * If `T` is a projection to the plane, a plane is fixed by `T`.\r\n * @public\r\n */\r\nexport class Transform implements BeJSONFunctions {\r\n private _origin: XYZ;\r\n private _matrix: Matrix3d;\r\n // Constructor accepts and uses pointer to content (no copy is done here).\r\n private constructor(origin: XYZ, matrix: Matrix3d) {\r\n this._origin = origin;\r\n this._matrix = matrix;\r\n }\r\n private static _identity?: Transform;\r\n /** The identity Transform. Value is frozen and cannot be modified. */\r\n public static get identity(): Transform {\r\n if (undefined === this._identity) {\r\n this._identity = Transform.createIdentity();\r\n this._identity.freeze();\r\n }\r\n return this._identity;\r\n }\r\n /** Freeze this instance (and its members) so it is read-only */\r\n public freeze(): Readonly<this> {\r\n this._origin.freeze();\r\n this._matrix.freeze();\r\n return Object.freeze(this);\r\n }\r\n /**\r\n * Copy contents from other Transform into this Transform\r\n * @param other source transform\r\n */\r\n public setFrom(other: Transform) {\r\n this._origin.setFrom(other._origin);\r\n this._matrix.setFrom(other._matrix);\r\n }\r\n /** Set this Transform to be an identity. */\r\n public setIdentity() {\r\n this._origin.setZero();\r\n this._matrix.setIdentity();\r\n }\r\n /**\r\n * Set this Transform instance from flexible inputs:\r\n * * Any object (such as another Transform or TransformProps) that has `origin` and `matrix` members\r\n * accepted by `Point3d.setFromJSON` and `Matrix3d.setFromJSON`\r\n * * An array of 3 number arrays, each with 4 entries which are rows in a 3x4 matrix.\r\n * * An array of 12 numbers, each block of 4 entries as a row 3x4 matrix.\r\n * * If no input is provided, the identity Transform is returned.\r\n */\r\n public setFromJSON(json?: TransformProps | Transform): void {\r\n if (json) {\r\n if (json instanceof Object && (json as any).origin && (json as any).matrix) {\r\n this._origin.setFromJSON((json as any).origin);\r\n this._matrix.setFromJSON((json as any).matrix);\r\n return;\r\n }\r\n if (Geometry.isArrayOfNumberArray(json, 3, 4)) {\r\n this._matrix.setRowValues(\r\n json[0][0], json[0][1], json[0][2],\r\n json[1][0], json[1][1], json[1][2],\r\n json[2][0], json[2][1], json[2][2],\r\n );\r\n this._origin.set(json[0][3], json[1][3], json[2][3]);\r\n return;\r\n }\r\n if (Geometry.isNumberArray(json, 12)) {\r\n this._matrix.setRowValues(\r\n json[0], json[1], json[2],\r\n json[4], json[5], json[6],\r\n json[8], json[9], json[10],\r\n );\r\n this._origin.set(json[3], json[7], json[11]);\r\n return;\r\n }\r\n }\r\n this.setIdentity();\r\n }\r\n /**\r\n * Test for near equality with `other` Transform. Comparison uses the `isAlmostEqual` methods on the `origin` and\r\n * `matrix` parts.\r\n * @param other Transform to compare to.\r\n */\r\n public isAlmostEqual(other: Readonly<Transform>): boolean {\r\n return this === other || this.origin.isAlmostEqual(other.origin) && this.matrix.isAlmostEqual(other.matrix);\r\n }\r\n /**\r\n * Test for near equality with `other` Transform. Comparison uses the `isAlmostEqual` methods on the `origin` part\r\n * and the `isAlmostEqualAllowZRotation` method on the `matrix` part.\r\n * @param other Transform to compare to.\r\n */\r\n public isAlmostEqualAllowZRotation(other: Transform): boolean {\r\n return this._origin.isAlmostEqual(other._origin) && this._matrix.isAlmostEqualAllowZRotation(other._matrix);\r\n }\r\n /**\r\n * Return a 3 by 4 matrix containing the rows of this Transform.\r\n * * The transform's origin coordinates are the last entries of the 3 json arrays\r\n */\r\n public toRows(): number[][] {\r\n return [\r\n [this._matrix.coffs[0], this._matrix.coffs[1], this._matrix.coffs[2], this._origin.x],\r\n [this._matrix.coffs[3], this._matrix.coffs[4], this._matrix.coffs[5], this._origin.y],\r\n [this._matrix.coffs[6], this._matrix.coffs[7], this._matrix.coffs[8], this._origin.z],\r\n ];\r\n }\r\n /**\r\n * Return a 3 by 4 matrix containing the rows of this Transform.\r\n * * The transform's origin coordinates are the last entries of the 3 json arrays\r\n */\r\n public toJSON(): TransformProps {\r\n return this.toRows();\r\n }\r\n /** Return a new Transform initialized by `Transform.setFromJSON` */\r\n public static fromJSON(json?: TransformProps): Transform {\r\n const result = Transform.createIdentity();\r\n result.setFromJSON(json);\r\n return result;\r\n }\r\n /** Copy the contents of `this` transform into a new Transform (or to the result, if specified). */\r\n public clone(result?: Transform): Transform {\r\n if (result) {\r\n result._matrix.setFrom(this._matrix);\r\n result._origin.setFrom(this._origin);\r\n return result;\r\n }\r\n return new Transform(\r\n Point3d.createFrom(this._origin),\r\n this._matrix.clone(),\r\n );\r\n }\r\n /**\r\n * Return a modified copy of `this` Transform so that its `matrix` part is rigid (`origin` part is untouched).\r\n * * @see [[Matrix3d.axisOrderCrossProductsInPlace]] documentation for details of how the matrix is modified to rigid.\r\n */\r\n public cloneRigid(axisOrder: AxisOrder = AxisOrder.XYZ): Transform | undefined {\r\n const modifiedMatrix = Matrix3d.createRigidFromMatrix3d(this.matrix, axisOrder);\r\n if (!modifiedMatrix)\r\n return undefined;\r\n return new Transform(this.origin.cloneAsPoint3d(), modifiedMatrix);\r\n }\r\n /** Create a Transform with the given `origin` and `matrix`. Inputs are captured, not cloned. */\r\n public static createRefs(origin: XYZ | undefined, matrix: Matrix3d, result?: Transform): Transform {\r\n if (!origin)\r\n origin = Point3d.createZero();\r\n if (result) {\r\n result._origin = origin;\r\n result._matrix = matrix;\r\n return result;\r\n }\r\n return new Transform(origin, matrix);\r\n }\r\n /** Create a Transform with complete contents given. `q` inputs make the matrix and `a` inputs make the origin */\r\n public static createRowValues(\r\n qxx: number, qxy: number, qxz: number, ax: number,\r\n qyx: number, qyy: number, qyz: number, ay: number,\r\n qzx: number, qzy: number, qzz: number, az: number,\r\n result?: Transform,\r\n ): Transform {\r\n if (result) {\r\n result._origin.set(ax, ay, az);\r\n result._matrix.setRowValues(qxx, qxy, qxz, qyx, qyy, qyz, qzx, qzy, qzz);\r\n return result;\r\n }\r\n return new Transform(\r\n Point3d.create(ax, ay, az),\r\n Matrix3d.createRowValues(qxx, qxy, qxz, qyx, qyy, qyz, qzx, qzy, qzz),\r\n );\r\n }\r\n /** Create a Transform with all zeros */\r\n public static createZero(result?: Transform): Transform {\r\n return Transform.createRowValues(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, result);\r\n }\r\n /**\r\n * Create a Transform with translation provided by x,y,z parts.\r\n * * Translation Transform maps any vector `v` to `v + p` where `p = (x,y,z)`\r\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\r\n * @param x x part of translation\r\n * @param y y part of translation\r\n * @param z z part of translation\r\n * @param result optional pre-allocated Transform\r\n * @returns new or updated transform\r\n */\r\n public static createTranslationXYZ(x: number = 0, y: number = 0, z: number = 0, result?: Transform): Transform {\r\n return Transform.createRefs(Vector3d.create(x, y, z), Matrix3d.createIdentity(), result);\r\n }\r\n /**\r\n * Create a Transform with specified `translation` part.\r\n * * Translation Transform maps any vector `v` to `v + translation`\r\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\r\n * @param translation x,y,z parts of the translation\r\n * @param result optional pre-allocated Transform\r\n * @returns new or updated transform\r\n */\r\n public static createTranslation(translation: XYZ, result?: Transform): Transform {\r\n return Transform.createRefs(translation, Matrix3d.createIdentity(), result);\r\n }\r\n /** Return a reference (and NOT a copy) to the `matrix` part of the Transform. */\r\n public get matrix(): Matrix3d {\r\n return this._matrix;\r\n }\r\n /** Return a reference (and NOT a copy) to the `origin` part of the Transform. */\r\n public get origin(): XYZ {\r\n return this._origin;\r\n }\r\n /** return a (clone of) the `origin` part of the Transform, as a `Point3d` */\r\n public getOrigin(): Point3d {\r\n return Point3d.createFrom(this._origin);\r\n }\r\n /** return a (clone of) the `origin` part of the Transform, as a `Vector3d` */\r\n public getTranslation(): Vector3d {\r\n return Vector3d.createFrom(this._origin);\r\n }\r\n /** return a (clone of) the `matrix` part of the Transform, as a `Matrix3d` */\r\n public getMatrix(): Matrix3d {\r\n return this._matrix.clone();\r\n }\r\n /** test if the transform has `origin` = (0,0,0) and identity `matrix` */\r\n public get isIdentity(): boolean {\r\n return this._matrix.isIdentity && this._origin.isAlmostZero;\r\n }\r\n /** Create an identity transform */\r\n public static createIdentity(result?: Transform): Transform {\r\n if (result) {\r\n result._origin.setZero();\r\n result._matrix.setIdentity();\r\n return result;\r\n }\r\n return Transform.createRefs(Point3d.createZero(), Matrix3d.createIdentity());\r\n }\r\n /**\r\n * Create a Transform using the given `origin` and `matrix`.\r\n * * This is the appropriate construction when the columns of the matrix are coordinate axes of a\r\n * local-to-world mapping, and the given point is the axes' origin in world coordinates.\r\n * * This function is closely related to `createFixedPointAndMatrix` whose point input is the fixed point\r\n * of the world-to-world transformation.\r\n * * If origin is `undefined`, (0,0,0) is used. If matrix is `undefined` the identity matrix is used.\r\n */\r\n public static createOriginAndMatrix(\r\n origin: XYZ | undefined, matrix: Matrix3d | undefined, result?: Transform,\r\n ): Transform {\r\n if (result) {\r\n result._origin.setFromPoint3d(origin);\r\n result._matrix.setFrom(matrix);\r\n return result;\r\n }\r\n return Transform.createRefs(\r\n origin ? origin.cloneAsPoint3d() : Point3d.createZero(),\r\n matrix === undefined ? Matrix3d.createIdentity() : matrix.clone(),\r\n result,\r\n );\r\n }\r\n /** Create a Transform using the given `origin` and columns of the `matrix`. If `undefined` zero is used. */\r\n public setOriginAndMatrixColumns(\r\n origin: XYZ | undefined, vectorX: Vector3d | undefined, vectorY: Vector3d | undefined, vectorZ: Vector3d | undefined,\r\n ): void {\r\n if (origin !== undefined)\r\n this._origin.setFrom(origin);\r\n this._matrix.setColumns(vectorX, vectorY, vectorZ);\r\n }\r\n /** Create a Transform using the given `origin` and columns of the `matrix` */\r\n public static createOriginAndMatrixColumns(\r\n origin: XYZ, vectorX: Vector3d, vectorY: Vector3d, vectorZ: Vector3d, result?: Transform,\r\n ): Transform {\r\n if (result)\r\n result.setOriginAndMatrixColumns(origin, vectorX, vectorY, vectorZ);\r\n else\r\n result = Transform.createRefs(Vector3d.createFrom(origin), Matrix3d.createColumns(vectorX, vectorY, vectorZ));\r\n return result;\r\n }\r\n /**\r\n * Create a Transform such that its `matrix` part is rigid.\r\n * @see [[Matrix3d.createRigidFromColumns]] for details of how the matrix is created to be rigid.\r\n */\r\n public static createRigidFromOriginAndColumns(\r\n origin: XYZ | undefined, vectorX: Vector3d, vectorY: Vector3d, axisOrder: AxisOrder, result?: Transform,\r\n ): Transform | undefined {\r\n const matrix = Matrix3d.createRigidFromColumns(vectorX, vectorY, axisOrder, result ? result._matrix : undefined);\r\n if (!matrix)\r\n return undefined;\r\n if (result) {\r\n // result._matrix was already modified to become rigid via createRigidFromColumns\r\n result._origin.setFrom(origin);\r\n return result;\r\n }\r\n /**\r\n * We don't want to pass \"origin\" to createRefs because createRefs does not clone \"origin\". That means if \"origin\"\r\n * is changed via Transform at any point, the initial \"origin\" passed by the user is also changed. To avoid that,\r\n * we pass \"undefined\" to createRefs so that it allocates a new point which then we set it to the \"origin\" which\r\n * is passed by user in the next line.\r\n */\r\n result = Transform.createRefs(undefined, matrix);\r\n result._origin.setFromPoint3d(origin);\r\n return result;\r\n }\r\n /**\r\n * Create a Transform with the specified `matrix`. Compute an `origin` (different from the given `fixedPoint`)\r\n * so that the `fixedPoint` maps back to itself. The returned Transform, transforms a point `p` to `M*p + (f - M*f)`\r\n * where `f` is the fixedPoint (i.e., `Tp = M*(p-f) + f`).\r\n */\r\n public static createFixedPointAndMatrix(\r\n fixedPoint: XYAndZ | undefined, matrix: Matrix3d, result?: Transform,\r\n ): Transform {\r\n if (fixedPoint) {\r\n /**\r\n * if f is a fixed point, then Tf = M*f + o = f where M is the matrix and o is the origin.\r\n * we define the origin o = f - M*f. Therefore, Tf = Mf + o = M*f + (f - M*f) = f.\r\n */\r\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(fixedPoint, matrix, fixedPoint);\r\n return Transform.createRefs(origin, matrix.clone(), result);\r\n }\r\n return Transform.createRefs(undefined, matrix.clone());\r\n }\r\n /**\r\n * Create a transform with the specified `matrix` and points `a` and `b`. The returned Transform maps\r\n * point `p` to `M*(p-a) + b` (i.e., `Tp = M*(p-a) + b`), so maps `a` to `b`.\r\n */\r\n public static createMatrixPickupPutdown(\r\n matrix: Matrix3d, a: Point3d, b: Point3d, result?: Transform,\r\n ): Transform {\r\n // we define the origin o = b - M*a so Tp = M*p + o = M*p + (b - M*a) = M*(p-a) + b\r\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(b, matrix, a);\r\n return Transform.createRefs(origin, matrix.clone(), result);\r\n }\r\n /**\r\n * Create a Transform which leaves the fixedPoint unchanged and scales everything else around it by\r\n * a single scale factor. The returned Transform maps a point `p` to `M*p + (f - M*f)`\r\n * where `f` is the fixedPoint and M is the scale matrix (i.e., `Tp = M*(p-f) + f`).\r\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\r\n */\r\n public static createScaleAboutPoint(fixedPoint: Point3d, scale: number, result?: Transform): Transform {\r\n const matrix = Matrix3d.createScale(scale, scale, scale);\r\n /**\r\n * if f is a fixed point, then Tf = M*f + o = f where M is the matrix and o is the origin.\r\n * we define the origin o = f - M*f. Therefore, Tf = M*f + o = M*f + (f - M*f) = f.\r\n */\r\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(fixedPoint, matrix, fixedPoint);\r\n return Transform.createRefs(origin, matrix, result);\r\n }\r\n /**\r\n * Return a transformation which flattens space onto a plane, sweeping along a direction which may be different from the plane normal.\r\n * @param sweepVector vector for the sweep direction\r\n * @param planePoint any point on the plane\r\n * @param planeNormal vector normal to the plane.\r\n */\r\n public static createFlattenAlongVectorToPlane(sweepVector: Vector3d, planePoint: XYAndZ, planeNormal: Vector3d): Transform | undefined {\r\n const matrix = Matrix3d.createFlattenAlongVectorToPlane(sweepVector, planeNormal);\r\n if (matrix === undefined)\r\n return undefined;\r\n return Transform.createFixedPointAndMatrix(planePoint, matrix);\r\n }\r\n /**\r\n * Transform the input 2d point (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyPoint2d(point: XAndY, result?: Point2d): Point2d {\r\n return Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, point, result);\r\n }\r\n /**\r\n * Transform the input 3d point (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyPoint3d(point: XYAndZ, result?: Point3d): Point3d {\r\n // Tx = Mx + o so we return Mx + o\r\n return Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, point, result);\r\n }\r\n /**\r\n * Transform the input 3d point in place (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyXYAndZInPlace(point: XYAndZ): void {\r\n return Matrix3d.xyzPlusMatrixTimesXYZInPlace(this._origin, this._matrix, point);\r\n }\r\n /**\r\n * Transform the input 3d point (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyXYZ(x: number, y: number, z: number = 0, result?: Point3d): Point3d {\r\n // Tx = Mx + o so we return Mx + o\r\n return Matrix3d.xyzPlusMatrixTimesCoordinates(this._origin, this._matrix, x, y, z, result);\r\n }\r\n /**\r\n * Multiply a specific row (component) of the 3x4 instance times (x,y,z,1). Return the result.\r\n */\r\n public multiplyComponentXYZ(componentIndex: number, x: number, y: number, z: number = 0): number {\r\n const coffs = this._matrix.coffs;\r\n const idx = 3 * componentIndex;\r\n return this.origin.at(componentIndex) + (coffs[idx] * x) + (coffs[idx + 1] * y) + (coffs[idx + 2] * z);\r\n }\r\n /**\r\n * Multiply a specific row (component) of the 3x4 instance times (x,y,z,w). Return the result.\r\n */\r\n public multiplyComponentXYZW(componentIndex: number, x: number, y: number, z: number, w: number): number {\r\n const coffs = this._matrix.coffs;\r\n const idx = 3 * componentIndex;\r\n return (this.origin.at(componentIndex) * w) + (coffs[idx] * x) + (coffs[idx + 1] * y) + (coffs[idx + 2] * z);\r\n }\r\n /**\r\n * Transform the homogeneous point. Return as a new `Point4d`, or in the pre-allocated result (if result is given).\r\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o*w` and returns the `Point4d` formed by `Tp` in the\r\n * first three coordinates, and `w` in the fourth.\r\n * * Logically, this is multiplication by the 4x4 matrix formed from the 3x4 instance augmented with fourth row 0001.\r\n */\r\n public multiplyXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\r\n return Matrix3d.xyzPlusMatrixTimesWeightedCoordinates(this._origin, this._matrix, x, y, z, w, result);\r\n }\r\n /**\r\n * Transform the homogeneous point. Return as new `Float64Array` with size 4, or in the pre-allocated `result` of sufficient size.\r\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o*w` and returns the `Float64Array` formed by `Tp`\r\n * in the first 3 numbers of the array and `w` as the fourth.\r\n * * Logically, this is multiplication by the 4x4 matrix formed from the 3x4 instance augmented with fourth row 0001.\r\n */\r\n public multiplyXYZWToFloat64Array(x: number, y: number, z: number, w: number, result?: Float64Array): Float64Array {\r\n return Matrix3d.xyzPlusMatrixTimesWeightedCoordinatesToFloat64Array(this._origin, this._matrix, x, y, z, w, result);\r\n }\r\n /**\r\n * * Transform the point. Return as new `Float64Array` with size 3, or in the pre-allocated `result` of sufficient size.\r\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o` and returns it as the first 3 elements of the array.\r\n */\r\n public multiplyXYZToFloat64Array(x: number, y: number, z: number, result?: Float64Array): Float64Array {\r\n return Matrix3d.xyzPlusMatrixTimesCoordinatesToFloat64Array(this._origin, this._matrix, x, y, z, result);\r\n }\r\n /**\r\n * Multiply the homogeneous point by the transpose of `this` Transform. Return as a new `Point4d` or in the\r\n * pre-allocated result (if result is given).\r\n * * If `p = (x,y,z)` then this method computes `M^t*p` and returns it in the first three coordinates of the `Point4d`,\r\n * and `o*p + w` in the fourth.\r\n * * Logically, this is multiplication by the transpose of the 4x4 matrix formed from the 3x4 instance augmented with\r\n * fourth row 0001.\r\n */\r\n public multiplyTransposeXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\r\n const coffs = this._matrix.coffs;\r\n const origin = this._origin;\r\n return Point4d.create(\r\n (x * coffs[0]) + (y * coffs[3]) + (z * coffs[6]),\r\n (x * coffs[1]) + (y * coffs[4]) + (z * coffs[7]),\r\n (x * coffs[2]) + (y * coffs[5]) + (z * coffs[8]),\r\n (x * origin.x) + (y * origin.y) + (z * origin.z) + w,\r\n result,\r\n );\r\n }\r\n /** For each point in the array, replace point by the transformed point (using `Tp = M*p + o`) */\r\n public multiplyPoint3dArrayInPlace(points: Point3d[]) {\r\n let point;\r\n for (point of points)\r\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, point, point);\r\n }\r\n /** For each point in the 2d array, replace point by the transformed point (using `Tp = M*p + o`) */\r\n public multiplyPoint3dArrayArrayInPlace(chains: Point3d[][]) {\r\n for (const chain of chains)\r\n this.multiplyPoint3dArrayInPlace(chain);\r\n }\r\n /**\r\n * Multiply the point by the inverse Transform.\r\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse`\r\n * Transform has matrix part `MInverse` and origin part `-MInverse*o`.\r\n * * Return as a new point or in the optional `result`.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInversePoint3d(point: XYAndZ, result?: Point3d): Point3d | undefined {\r\n return this._matrix.multiplyInverseXYZAsPoint3d(\r\n point.x - this._origin.x,\r\n point.y - this._origin.y,\r\n point.z - this._origin.z,\r\n result,\r\n );\r\n }\r\n /**\r\n * Multiply the homogenous point by the inverse Transform.\r\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse` Transform\r\n * has matrix part `MInverse` and origin part `-MInverse*o`.\r\n * * This method computes `TInverse p = MInverse*p - w*MInverse*o` and returns the `Point4d` formed by `TInverse*p`\r\n * in the first three coordinates, and `w` in the fourth.\r\n * * Logically, this is multiplication by the inverse of the 4x4 matrix formed from the 3x4 instance augmented with\r\n * fourth row 0001. This is equivalent to the 4x4 matrix formed in similar fashion from the inverse of this instance.\r\n * * Return as a new point or in the optional `result`.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInversePoint4d(weightedPoint: Point4d, result?: Point4d): Point4d | undefined {\r\n const w = weightedPoint.w;\r\n return this._matrix.multiplyInverseXYZW(\r\n weightedPoint.x - w * this.origin.x,\r\n weightedPoint.y - w * this.origin.y,\r\n weightedPoint.z - w * this.origin.z,\r\n w,\r\n result,\r\n );\r\n }\r\n /**\r\n * Multiply the point by the inverse Transform.\r\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse` Transform\r\n * has matrix part `MInverse` and origin part `-MInverse*o`.\r\n * * Return as a new point or in the optional `result`.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInverseXYZ(x: number, y: number, z: number, result?: Point3d): Point3d | undefined {\r\n return this._matrix.multiplyInverseXYZAsPoint3d(\r\n x - this._origin.x,\r\n y - this._origin.y,\r\n z - this._origin.z,\r\n result,\r\n );\r\n }\r\n /**\r\n * * Compute (if needed) the inverse of the `matrix` part of the Transform, thereby ensuring inverse\r\n * operations can complete.\r\n * @param useCached If true, accept prior cached inverse if available.\r\n * @returns `true` if matrix inverse completes, `false` otherwise.\r\n */\r\n public computeCachedInverse(useCached: boolean = true): boolean {\r\n return this._matrix.computeCachedInverse(useCached);\r\n }\r\n /**\r\n * Match the length of destination array with the length of source array\r\n * * If destination has more elements than source, remove the extra elements.\r\n * * If destination has fewer elements than source, use `constructionFunction` to create new elements.\r\n * *\r\n * @param source the source array\r\n * @param dest the destination array\r\n * @param constructionFunction function to call to create new elements.\r\n */\r\n public static matchArrayLengths(source: any[], dest: any[], constructionFunction: () => any): number {\r\n const numSource = source.length;\r\n const numDest = dest.length;\r\n if (numSource > numDest) {\r\n for (let i = numDest; i < numSource; i++) {\r\n dest.push(constructionFunction());\r\n }\r\n } else if (numDest > numSource) {\r\n dest.length = numSource;\r\n }\r\n return numSource;\r\n }\r\n /**\r\n * Multiply each point in the array by the inverse of `this` Transform.\r\n * * For a transform `T = [M o]` the inverse transform `T' = [M' -M'o]` exists if and only if `M` has an inverse\r\n * `M'`. Indeed, for any point `p`, we have `T'Tp = T'(Mp + o) = M'(Mp + o) - M'o = M'Mp + M'o - M'o = p.`\r\n * * If `result` is given, resize it to match the input `points` array and update it with original points `p[]`.\r\n * * If `result` is not given, return a new array.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInversePoint3dArray(points: Point3d[], result?: Point3d[]): Point3d[] | undefined {\r\n if (!this._matrix.computeCachedInverse(true))\r\n return undefined;\r\n const originX = this.origin.x;\r\n const originY = this.origin.y;\r\n const originZ = this.origin.z;\r\n if (result) {\r\n const n = Transform.matchArrayLengths(points, result, () => Point3d.createZero());\r\n for (let i = 0; i < n; i++)\r\n this._matrix.multiplyInverseXYZAsPoint3d(\r\n points[i].x - originX,\r\n points[i].y - originY,\r\n points[i].z - originZ,\r\n result[i],\r\n );\r\n return result;\r\n }\r\n result = [];\r\n for (const point of points)\r\n result.push(\r\n this._matrix.multiplyInverseXYZAsPoint3d(\r\n point.x - originX,\r\n point.y - originY,\r\n point.z - originZ,\r\n )!,\r\n );\r\n return result;\r\n }\r\n /**\r\n * Multiply each point in the array by the inverse of `this` Transform in place.\r\n * * For a transform `T = [M o]` the inverse transform `T' = [M' -M'o]` exists if and only if `M` has an inverse\r\n * `M'`. Indeed, for any point `p`, we have `T'Tp = T'(Mp + o) = M'(Mp + o) - M'o = M'Mp + M'o - M'o = p.`\r\n * * Returns `true` if the `matrix` part if this Transform is invertible and `false` if singular.\r\n */\r\n public multiplyInversePoint3dArrayInPlace(points: Point3d[]): boolean {\r\n if (!this._matrix.computeCachedInverse(true))\r\n return false;\r\n for (const point of points)\r\n this._matrix.multiplyInverseXYZAsPoint3d(\r\n point.x - this.origin.x,\r\n point.y - this.origin.y,\r\n point.z - this.origin.z,\r\n point,\r\n );\r\n return true;\r\n }\r\n /**\r\n * Transform the input 2d point array (using `Tp = M*p + o`).\r\n * * If `result` is given, resize it to match the input `points` array and update it with transformed points.\r\n * * If `result` is not given, return a new array.\r\n */\r\n public multiplyPoint2dArray(points: Point2d[], result?: Point2d[]): Point2d[] {\r\n if (result) {\r\n const n = Transform.matchArrayLengths(points, result, () => Point2d.createZero());\r\n for (let i = 0; i < n; i++)\r\n Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, points[i], result[i]);\r\n return result;\r\n }\r\n result = [];\r\n for (const p of points)\r\n result.push(Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, p));\r\n return result;\r\n }\r\n /**\r\n * Transform the input 3d point array (using `Tp = M*p + o`).\r\n * * If `result` is given, resize it to match the input `points` array and update it with transformed points.\r\n * * If `result` is not given, return a new array.\r\n */\r\n public multiplyPoint3dArray(points: Point3d[], result?: Point3d[]): Point3d[] {\r\n if (result) {\r\n const n = Transform.matchArrayLengths(points, result, () => Point3d.createZero());\r\n for (let i = 0; i < n; i++)\r\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, points[i], result[i]);\r\n return result;\r\n }\r\n result = [];\r\n for (const p of points)\r\n result.push(Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, p));\r\n return result;\r\n }\r\n /**\r\n * Multiply the vector by the `matrix` part of the Transform.\r\n * * The `origin` part of Transform is not used.\r\n * * If `result` is given, update it with the multiplication. Otherwise, create a new Vector3d.\r\n */\r\n public multiplyVector(vector: Vector3d, result?: Vector3d): Vector3d {\r\n return this._matrix.multiplyVector(vector, result);\r\n }\r\n /**\r\n * Multiply the vector by the `matrix` part of the Transform in place.\r\n * * The `origin` part of Transform is not used.\r\n */\r\n public multiplyVectorInPlace(vector: Vector3d): void {\r\n this._matrix.multiplyVectorInPlace(vector);\r\n }\r\n /**\r\n * Multiply the vector (x,y,z) by the `matrix` part of the Transform.\r\n * * The `origin` part of Transform is not used.\r\n * * If `result` is given, update it with the multiplication. Otherwise, create a new Vector3d.\r\n */\r\n public multiplyVectorXYZ(x: number, y: number, z: number, result?: Vector3d): Vector3d {\r\n return this._matrix.multiplyXYZ(x, y, z, result);\r\n }\r\n /**\r\n * Calculate `transformA * transformB` and store it into the calling instance (`this`).\r\n * * **Note:** If `transformA = [A a]` and `transformB = [B b]` then `transformA * transformB` is defined as\r\n * `[A*B Ab+a]`.\r\n * * @see [[multiplyTransformTransform]] documentation for math details.\r\n * @param transformA first operand\r\n * @param transformB second operand\r\n */\r\n public setMultiplyTransformTransform(transformA: Transform, transformB: Transform): void {\r\n Matrix3d.xyzPlusMatrixTimesXYZ(\r\n transformA._origin,\r\n transformA._matrix,\r\n transformB._origin,\r\n this._origin as Point3d,\r\n );\r\n transformA._matrix.multiplyMatrixMatrix(transformB._matrix, this._matrix);\r\n }\r\n /**\r\n * Multiply `this` Transform times `other` Transform.\r\n * * **Note:** If `this = [A a]` and `other = [B b]` then `this * other` is defined as `[A*B Ab+a]` because:\r\n * ```\r\n * equation\r\n * \\begin{matrix}\r\n * \\text{this Transform with matrix part }\\bold{A}\\text{ and origin part }\\bold{a} & \\blockTransform{A}{a}\\\\\r\n * \\text{other Transform with matrix part }\\bold{B}\\text{ and origin part }\\bold{b} & \\blockTransform{B}{b} \\\\\r\n * \\text{product}& \\blockTransform{A}{a}\\blockTransform{B}{b}=\\blockTransform{AB}{Ab + a}\r\n * \\end{matrix}\r\n * ```\r\n * @param other the `other` Transform to be multiplied to `this` Transform.\r\n * @param result optional preallocated `result` to reuse.\r\n */\r\n public multiplyTransformTransform(other: Transform, result?: Transform) {\r\n if (!result)\r\n return Transform.createRefs(\r\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, other._origin),\r\n this._matrix.multiplyMatrixMatrix(other._matrix),\r\n );\r\n result.setMultiplyTransformTransform(this, other);\r\n return result;\r\n }\r\n /**\r\n * Multiply `this` Transform times `other` Matrix3d (considered to be a Transform with 0 `origin`).\r\n * * **Note:** If `this = [A a]` and `other = [B 0]`, then `this * other` is defined as [A*B a] because:\r\n * ```\r\n * equation\r\n * \\begin{matrix}\r\n * \\text{this Transform with matrix part }\\bold{A}\\text{ and origin part }\\bold{a} & \\blockTransform{A}{a}\\\\\r\n * \\text{other matrix }\\bold{B}\\text{ promoted to block Transform} & \\blockTransform{B}{0} \\\\\r\n * \\text{product}& \\blockTransform{A}{a}\\blockTransform{B}{0}=\\blockTransform{AB}{a}\r\n * \\end{matrix}\r\n * ```\r\n * @param other the `other` Matrix3d to be multiplied to `this` Transform.\r\n * @param result optional preallocated `result` to reuse.\r\n */\r\n public multiplyTransformMatrix3d(other: Matrix3d, result?: Transform): Transform {\r\n if (!result)\r\n return Transform.createRefs(\r\n this._origin.cloneAsPoint3d(),\r\n this._matrix.multiplyMatrixMatrix(other),\r\n );\r\n this._matrix.multiplyMatrixMatrix(other, result._matrix);\r\n result._origin.setFrom(this._origin);\r\n return result;\r\n }\r\n /**\r\n * Return the range of the transformed corners.\r\n * * The 8 corners are transformed individually.\r\n * * **Note:** Suppose you have a geometry, a range box around that geometry, and your Transform is a rotation.\r\n * If you rotate the range box and recompute a new range box around the rotated range box, then the new range\r\n * box will have a larger volume than the original range box. However, if you rotate the geometry itself and\r\n * then recompute the range box, it will be a tighter range box around the rotated geometry. `multiplyRange`\r\n * function creates the larger range box because it only has access to the range box and not the geometry itself.\r\n */\r\n public multiplyRange(range: Range3d, result?: Range3d): Range3d {\r\n if (range.isNull)\r\n return range.clone(result);\r\n const lowX = range.low.x;\r\n const lowY = range.low.y;\r\n const lowZ = range.low.z;\r\n const highX = range.high.x;\r\n const highY = range.high.y;\r\n const highZ = range.high.z;\r\n result = Range3d.createNull(result);\r\n result.extendTransformedXYZ(this, lowX, lowY, lowZ);\r\n result.extendTransformedXYZ(this, highX, lowY, lowZ);\r\n result.extendTransformedXYZ(this, lowX, highY, lowZ);\r\n result.extendTransformedXYZ(this, highX, highY, lowZ);\r\n result.extendTransformedXYZ(this, lowX, lowY, highZ);\r\n result.extendTransformedXYZ(this, highX, lowY, highZ);\r\n result.extendTransformedXYZ(this, lowX, highY, highZ);\r\n result.extendTransformedXYZ(this, highX, highY, highZ);\r\n return result;\r\n }\r\n /**\r\n * Return a Transform which is the inverse of `this` Transform.\r\n * * If `transform = [M o]` then `transformInverse = [MInverse -MInverse*o]`\r\n * * Return `undefined` if this Transform's matrix is singular.\r\n */\r\n public inverse(result?: Transform): Transform | undefined {\r\n const matrixInverse = this._matrix.inverse(result ? result._matrix : undefined);\r\n if (!matrixInverse)\r\n return undefined;\r\n if (result) {\r\n // result._matrix is already defined\r\n matrixInverse.multiplyXYZ(-this._origin.x, -this._origin.y, -this._origin.z, result._origin as Vector3d);\r\n return result;\r\n }\r\n return Transform.createRefs(\r\n matrixInverse.multiplyXYZ(-this._origin.x, -this._origin.y, -this._origin.z),\r\n matrixInverse,\r\n );\r\n }\r\n /**\r\n * Initialize 2 Transforms that map between the unit box (specified by 000 and 111) and the range box specified\r\n * by the input points.\r\n * @param min the min corner of the range box\r\n * @param max the max corner of the range box\r\n * @param npcToGlobal maps NPC coordinates into range box coordinates. Specifically, maps 000 to `min` and maps\r\n * 111 to `max`. This Transform is the inverse of `globalToNpc`. Object created by caller, re-initialized here.\r\n * @param globalToNpc maps range box coordinates into NPC coordinates. Specifically, maps `min` to 000 and maps\r\n * `max` to 111. This Transform is the inverse of `npcToGlobal`. Object created by caller, re-initialized here.\r\n * * NPC stands for `Normalized Projection Coordinate`\r\n */\r\n public static initFromRange(min: Point3d, max: Point3d, npcToGlobal?: Transform, globalToNpc?: Transform): void {\r\n const diag = max.minus(min);\r\n if (diag.x === 0.0)\r\n diag.x = 1.0;\r\n if (diag.y === 0.0)\r\n diag.y = 1.0;\r\n if (diag.z === 0.0)\r\n diag.z = 1.0;\r\n const rMatrix = new Matrix3d();\r\n /**\r\n * [diag.x 0 0 min.x]\r\n * npcToGlobal = [ 0 diag.y 0 min.y]\r\n * [ 0 0 diag.y min.z]\r\n *\r\n * npcToGlobal * 0 = min\r\n * npcToGlobal * 1 = diag + min = max\r\n */\r\n if (npcToGlobal) {\r\n Matrix3d.createScale(diag.x, diag.y, diag.z, rMatrix);\r\n Transform.createOriginAndMatrix(min, rMatrix, npcToGlobal);\r\n }\r\n /**\r\n * [1/diag.x 0 0 -min.x/diag.x]\r\n * globalToNpc = [ 0 1/diag.y 0 -min.y/diag.y]\r\n * [ 0 0 1/diag.y -min.z/diag.z]\r\n *\r\n * globalToNpc * min = min/diag - min/diag = 0\r\n * globalToNpc * max = max/diag - min/diag = diag/diag = 1\r\n */\r\n if (globalToNpc) {\r\n const origin = new Point3d(-min.x / diag.x, -min.y / diag.y, -min.z / diag.z);\r\n Matrix3d.createScale(1.0 / diag.x, 1.0 / diag.y, 1.0 / diag.z, rMatrix);\r\n Transform.createOriginAndMatrix(origin, rMatrix, globalToNpc);\r\n }\r\n }\r\n}\r\n"]}
|
|
1
|
+
{"version":3,"file":"Transform.js","sourceRoot":"","sources":["../../../src/geometry3d/Transform.ts"],"names":[],"mappings":";AAAA;;;+FAG+F;;;AAE/F;;GAEG;AAEH,0CAAmE;AACnE,mDAAgD;AAChD,yCAAsC;AACtC,uDAA4C;AAC5C,uDAA2D;AAC3D,mCAAkC;AAGlC;;;;;;;;;;;;;;;;GAgBG;AACH,MAAa,SAAS;IAGpB,0EAA0E;IAC1E,YAAoB,MAAW,EAAE,MAAgB;QAC/C,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;IACxB,CAAC;IAED,sEAAsE;IAC/D,MAAM,KAAK,QAAQ;QACxB,IAAI,SAAS,KAAK,IAAI,CAAC,SAAS,EAAE,CAAC;YACjC,IAAI,CAAC,SAAS,GAAG,SAAS,CAAC,cAAc,EAAE,CAAC;YAC5C,IAAI,CAAC,SAAS,CAAC,MAAM,EAAE,CAAC;QAC1B,CAAC;QACD,OAAO,IAAI,CAAC,SAAS,CAAC;IACxB,CAAC;IACD,gEAAgE;IACzD,MAAM;QACX,IAAI,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC;QACtB,IAAI,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC;QACtB,OAAO,MAAM,CAAC,MAAM,CAAC,IAAI,CAAC,CAAC;IAC7B,CAAC;IACD;;;OAGG;IACI,OAAO,CAAC,KAAgB;QAC7B,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;QACpC,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;IACtC,CAAC;IACD,4CAA4C;IACrC,WAAW;QAChB,IAAI,CAAC,OAAO,CAAC,OAAO,EAAE,CAAC;QACvB,IAAI,CAAC,OAAO,CAAC,WAAW,EAAE,CAAC;IAC7B,CAAC;IACD;;;;;;;OAOG;IACI,WAAW,CAAC,IAAiC;QAClD,IAAI,IAAI,EAAE,CAAC;YACT,IAAI,IAAI,YAAY,MAAM,IAAK,IAAY,CAAC,MAAM,IAAK,IAAY,CAAC,MAAM,EAAE,CAAC;gBAC3E,IAAI,CAAC,OAAO,CAAC,WAAW,CAAE,IAAY,CAAC,MAAM,CAAC,CAAC;gBAC/C,IAAI,CAAC,OAAO,CAAC,WAAW,CAAE,IAAY,CAAC,MAAM,CAAC,CAAC;gBAC/C,OAAO;YACT,CAAC;YACD,IAAI,mBAAQ,CAAC,oBAAoB,CAAC,IAAI,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC;gBAC9C,IAAI,CAAC,OAAO,CAAC,YAAY,CACvB,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAClC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAClC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CACnC,CAAC;gBACF,IAAI,CAAC,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBACrD,OAAO;YACT,CAAC;YACD,IAAI,mBAAQ,CAAC,aAAa,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,CAAC;gBACrC,IAAI,CAAC,OAAO,CAAC,YAAY,CACvB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EACzB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EACzB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAC3B,CAAC;gBACF,IAAI,CAAC,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC;gBAC7C,OAAO;YACT,CAAC;QACH,CAAC;QACD,IAAI,CAAC,WAAW,EAAE,CAAC;IACrB,CAAC;IACD;;;;OAIG;IACI,aAAa,CAAC,KAA0B;QAC7C,OAAO,IAAI,KAAK,KAAK,IAAI,IAAI,CAAC,MAAM,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,CAAC,IAAI,IAAI,CAAC,MAAM,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;IAC9G,CAAC;IACD;;;;OAIG;IACI,2BAA2B,CAAC,KAAgB;QACjD,OAAO,IAAI,CAAC,OAAO,CAAC,aAAa,CAAC,KAAK,CAAC,OAAO,CAAC,IAAI,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;IAC9G,CAAC;IACD;;;OAGG;IACI,MAAM;QACX,OAAO;YACL,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;YACrF,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;YACrF,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;SACtF,CAAC;IACJ,CAAC;IACD;;;MAGE;IACK,MAAM;QACX,OAAO,IAAI,CAAC,MAAM,EAAE,CAAC;IACvB,CAAC;IACD,oEAAoE;IAC7D,MAAM,CAAC,QAAQ,CAAC,IAAqB;QAC1C,MAAM,MAAM,GAAG,SAAS,CAAC,cAAc,EAAE,CAAC;QAC1C,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC;QACzB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,mGAAmG;IAC5F,KAAK,CAAC,MAAkB;QAC7B,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACrC,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACrC,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAClB,yBAAO,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,EAChC,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,CACrB,CAAC;IACJ,CAAC;IACD;;;OAGG;IACI,UAAU,CAAC,YAAuB,oBAAS,CAAC,GAAG;QACpD,MAAM,cAAc,GAAG,mBAAQ,CAAC,uBAAuB,CAAC,IAAI,CAAC,MAAM,EAAE,SAAS,CAAC,CAAC;QAChF,IAAI,CAAC,cAAc;YACjB,OAAO,SAAS,CAAC;QACnB,OAAO,IAAI,SAAS,CAAC,IAAI,CAAC,MAAM,CAAC,cAAc,EAAE,EAAE,cAAc,CAAC,CAAC;IACrE,CAAC;IACD,gGAAgG;IACzF,MAAM,CAAC,UAAU,CAAC,MAAuB,EAAE,MAAgB,EAAE,MAAkB;QACpF,IAAI,CAAC,MAAM;YACT,MAAM,GAAG,yBAAO,CAAC,UAAU,EAAE,CAAC;QAChC,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,GAAG,MAAM,CAAC;YACxB,MAAM,CAAC,OAAO,GAAG,MAAM,CAAC;YACxB,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC;IACvC,CAAC;IACD,iHAAiH;IAC1G,MAAM,CAAC,eAAe,CAC3B,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,MAAkB;QAElB,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,CAAC;YAC/B,MAAM,CAAC,OAAO,CAAC,YAAY,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;YACzE,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAClB,yBAAO,CAAC,MAAM,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,EAC1B,mBAAQ,CAAC,eAAe,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CACtE,CAAC;IACJ,CAAC;IACD,wCAAwC;IACjC,MAAM,CAAC,UAAU,CAAC,MAAkB;QACzC,OAAO,SAAS,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC/E,CAAC;IACD;;;;;;;;;OASG;IACI,MAAM,CAAC,oBAAoB,CAAC,IAAY,CAAC,EAAE,IAAY,CAAC,EAAE,IAAY,CAAC,EAAE,MAAkB;QAChG,OAAO,SAAS,CAAC,UAAU,CAAC,0BAAQ,CAAC,MAAM,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,mBAAQ,CAAC,cAAc,EAAE,EAAE,MAAM,CAAC,CAAC;IAC3F,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,iBAAiB,CAAC,WAAgB,EAAE,MAAkB;QAClE,OAAO,SAAS,CAAC,UAAU,CAAC,WAAW,EAAE,mBAAQ,CAAC,cAAc,EAAE,EAAE,MAAM,CAAC,CAAC;IAC9E,CAAC;IACD,iFAAiF;IACjF,IAAW,MAAM;QACf,OAAO,IAAI,CAAC,OAAO,CAAC;IACtB,CAAC;IACD,iFAAiF;IACjF,IAAW,MAAM;QACf,OAAO,IAAI,CAAC,OAAO,CAAC;IACtB,CAAC;IACD,6EAA6E;IACtE,SAAS;QACd,OAAO,yBAAO,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;IAC1C,CAAC;IACD,8EAA8E;IACvE,cAAc;QACnB,OAAO,0BAAQ,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;IAC3C,CAAC;IACD,8EAA8E;IACvE,SAAS;QACd,OAAO,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,CAAC;IAC9B,CAAC;IACD,yEAAyE;IACzE,IAAW,UAAU;QACnB,OAAO,IAAI,CAAC,OAAO,CAAC,UAAU,IAAI,IAAI,CAAC,OAAO,CAAC,YAAY,CAAC;IAC9D,CAAC;IACD,mCAAmC;IAC5B,MAAM,CAAC,cAAc,CAAC,MAAkB;QAC7C,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,OAAO,EAAE,CAAC;YACzB,MAAM,CAAC,OAAO,CAAC,WAAW,EAAE,CAAC;YAC7B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CAAC,yBAAO,CAAC,UAAU,EAAE,EAAE,mBAAQ,CAAC,cAAc,EAAE,CAAC,CAAC;IAC/E,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,qBAAqB,CACjC,MAAuB,EAAE,MAA4B,EAAE,MAAkB;QAEzE,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,CAAC,CAAC;YACtC,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;YAC/B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CACzB,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,cAAc,EAAE,CAAC,CAAC,CAAC,yBAAO,CAAC,UAAU,EAAE,EACvD,MAAM,KAAK,SAAS,CAAC,CAAC,CAAC,mBAAQ,CAAC,cAAc,EAAE,CAAC,CAAC,CAAC,MAAM,CAAC,KAAK,EAAE,EACjE,MAAM,CACP,CAAC;IACJ,CAAC;IACD,4GAA4G;IACrG,yBAAyB,CAC9B,MAAuB,EAAE,OAA6B,EAAE,OAA6B,EAAE,OAA6B;QAEpH,IAAI,MAAM,KAAK,SAAS;YACtB,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;QAC/B,IAAI,CAAC,OAAO,CAAC,UAAU,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;IACrD,CAAC;IACD,8EAA8E;IACvE,MAAM,CAAC,4BAA4B,CACxC,MAAW,EAAE,OAAiB,EAAE,OAAiB,EAAE,OAAiB,EAAE,MAAkB;QAExF,IAAI,MAAM;YACR,MAAM,CAAC,yBAAyB,CAAC,MAAM,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;;YAEpE,MAAM,GAAG,SAAS,CAAC,UAAU,CAAC,0BAAQ,CAAC,UAAU,CAAC,MAAM,CAAC,EAAE,mBAAQ,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,CAAC;QAChH,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,+BAA+B,CAC3C,MAAuB,EAAE,OAAiB,EAAE,OAAiB,EAAE,SAAoB,EAAE,MAAkB;QAEvG,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,OAAO,EAAE,OAAO,EAAE,SAAS,EAAE,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QACjH,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC;QACnB,IAAI,MAAM,EAAE,CAAC;YACX,iFAAiF;YACjF,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;YAC/B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD;;;;;WAKG;QACH,MAAM,GAAG,SAAS,CAAC,UAAU,CAAC,SAAS,EAAE,MAAM,CAAC,CAAC;QACjD,MAAM,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,CAAC,CAAC;QACtC,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,MAAM,CAAC,yBAAyB,CACrC,UAA8B,EAAE,MAAgB,EAAE,MAAkB;QAEpE,IAAI,UAAU,EAAE,CAAC;YACf;;;eAGG;YACH,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,UAAU,EAAE,MAAM,EAAE,UAAU,CAAC,CAAC;YAC/E,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,CAAC,KAAK,EAAE,EAAE,MAAM,CAAC,CAAC;QAC9D,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CAAC,SAAS,EAAE,MAAM,CAAC,KAAK,EAAE,CAAC,CAAC;IACzD,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,yBAAyB,CACrC,MAAgB,EAAE,CAAU,EAAE,CAAU,EAAE,MAAkB;QAE5D,mFAAmF;QACnF,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,CAAC,CAAC;QAC7D,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,CAAC,KAAK,EAAE,EAAE,MAAM,CAAC,CAAC;IAC9D,CAAC;IACD;;;;;OAKG;IACI,MAAM,CAAC,qBAAqB,CAAC,UAAmB,EAAE,KAAa,EAAE,MAAkB;QACxF,MAAM,MAAM,GAAG,mBAAQ,CAAC,WAAW,CAAC,KAAK,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACzD;;;WAGG;QACH,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,UAAU,EAAE,MAAM,EAAE,UAAU,CAAC,CAAC;QAC/E,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,CAAC;IACtD,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,+BAA+B,CAAC,WAAqB,EAAE,UAAkB,EAAE,WAAqB;QAC5G,MAAM,MAAM,GAAG,mBAAQ,CAAC,+BAA+B,CAAC,WAAW,EAAE,WAAW,CAAC,CAAC;QAClF,IAAI,MAAM,KAAK,SAAS;YACtB,OAAO,SAAS,CAAC;QACnB,OAAO,SAAS,CAAC,yBAAyB,CAAC,UAAU,EAAE,MAAM,CAAC,CAAC;IACjE,CAAC;IACD;;;OAGG;IACI,eAAe,CAAC,KAAY,EAAE,MAAgB;QACnD,OAAO,mBAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC;IACjF,CAAC;IACD;;;OAGG;IACI,eAAe,CAAC,KAAa,EAAE,MAAgB;QACpD,kCAAkC;QAClC,OAAO,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC;IACnF,CAAC;IACD;;;OAGG;IACI,qBAAqB,CAAC,KAAa;QACxC,OAAO,mBAAQ,CAAC,4BAA4B,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,CAAC,CAAC;IAClF,CAAC;IACD;;;OAGG;IACI,WAAW,CAAC,CAAS,EAAE,CAAS,EAAE,IAAY,CAAC,EAAE,MAAgB;QACtE,kCAAkC;QAClC,OAAO,mBAAQ,CAAC,6BAA6B,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC7F,CAAC;IACD;;OAEG;IACI,oBAAoB,CAAC,cAAsB,EAAE,CAAS,EAAE,CAAS,EAAE,IAAY,CAAC;QACrF,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,GAAG,GAAG,CAAC,GAAG,cAAc,CAAC;QAC/B,OAAO,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,cAAc,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACzG,CAAC;IACD;;OAEG;IACI,qBAAqB,CAAC,cAAsB,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS;QAC7F,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,GAAG,GAAG,CAAC,GAAG,cAAc,CAAC;QAC/B,OAAO,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,cAAc,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IAC/G,CAAC;IACD;;;;;OAKG;IACI,YAAY,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QAC9E,OAAO,mBAAQ,CAAC,qCAAqC,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACxG,CAAC;IACD;;;;;OAKG;IACI,0BAA0B,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAqB;QACjG,OAAO,mBAAQ,CAAC,mDAAmD,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACtH,CAAC;IACD;;;OAGG;IACI,yBAAyB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAqB;QACrF,OAAO,mBAAQ,CAAC,2CAA2C,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC3G,CAAC;IACD;;;;;;;OAOG;IACI,qBAAqB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QACvF,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,MAAM,GAAG,IAAI,CAAC,OAAO,CAAC;QAC5B,OAAO,iBAAO,CAAC,MAAM,CACnB,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,EACpD,MAAM,CACP,CAAC;IACJ,CAAC;IACD,iGAAiG;IAC1F,2BAA2B,CAAC,MAAiB;QAClD,IAAI,KAAK,CAAC;QACV,KAAK,KAAK,IAAI,MAAM;YAClB,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;IAC7E,CAAC;IACD,oGAAoG;IAC7F,gCAAgC,CAAC,MAAmB;QACzD,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,IAAI,CAAC,2BAA2B,CAAC,KAAK,CAAC,CAAC;IAC5C,CAAC;IACD;;;;;;OAMG;IACI,sBAAsB,CAAC,KAAa,EAAE,MAAgB;QAC3D,OAAO,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAC7C,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;;;;;;OAUG;IACI,sBAAsB,CAAC,aAAsB,EAAE,MAAgB;QACpE,MAAM,CAAC,GAAG,aAAa,CAAC,CAAC,CAAC;QAC1B,OAAO,IAAI,CAAC,OAAO,CAAC,mBAAmB,CACrC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,CAAC,EACD,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;;OAMG;IACI,kBAAkB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QACzE,OAAO,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAC7C,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;OAKG;IACI,oBAAoB,CAAC,YAAqB,IAAI;QACnD,OAAO,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,SAAS,CAAC,CAAC;IACtD,CAAC;IACD;;;;;;;;OAQG;IACI,MAAM,CAAC,iBAAiB,CAAC,MAAa,EAAE,IAAW,EAAE,oBAA+B;QACzF,MAAM,SAAS,GAAG,MAAM,CAAC,MAAM,CAAC;QAChC,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC;QAC5B,IAAI,SAAS,GAAG,OAAO,EAAE,CAAC;YACxB,KAAK,IAAI,CAAC,GAAG,OAAO,EAAE,CAAC,GAAG,SAAS,EAAE,CAAC,EAAE,EAAE,CAAC;gBACzC,IAAI,CAAC,IAAI,CAAC,oBAAoB,EAAE,CAAC,CAAC;YACpC,CAAC;QACH,CAAC;aAAM,IAAI,OAAO,GAAG,SAAS,EAAE,CAAC;YAC/B,IAAI,CAAC,MAAM,GAAG,SAAS,CAAC;QAC1B,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD;;;;;;;OAOG;IACI,2BAA2B,CAAC,MAAiB,EAAE,MAAkB;QACtE,IAAI,CAAC,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,IAAI,CAAC;YAC1C,OAAO,SAAS,CAAC;QACnB,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,yBAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CACV,CAAC;YACJ,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,MAAM,CAAC,IAAI,CACT,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,KAAK,CAAC,CAAC,GAAG,OAAO,EACjB,KAAK,CAAC,CAAC,GAAG,OAAO,EACjB,KAAK,CAAC,CAAC,GAAG,OAAO,CACjB,CACH,CAAC;QACJ,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;OAKG;IACI,kCAAkC,CAAC,MAAiB;QACzD,IAAI,CAAC,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,IAAI,CAAC;YAC1C,OAAO,KAAK,CAAC;QACf,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CACN,CAAC;QACJ,OAAO,IAAI,CAAC;IACd,CAAC;IACD;;;;OAIG;IACI,oBAAoB,CAAC,MAAiB,EAAE,MAAkB;QAC/D,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,yBAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,mBAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;YACjF,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,CAAC,IAAI,MAAM;YACpB,MAAM,CAAC,IAAI,CAAC,mBAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;QAC3E,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,oBAAoB,CAAC,MAAiB,EAAE,MAAkB;QAC/D,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,yBAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;YACnF,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,CAAC,IAAI,MAAM;YACpB,MAAM,CAAC,IAAI,CAAC,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;QAC7E,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,cAAc,CAAC,MAAgB,EAAE,MAAiB;QACvD,OAAO,IAAI,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC;IACrD,CAAC;IACD;;;OAGG;IACI,qBAAqB,CAAC,MAAgB;QAC3C,IAAI,CAAC,OAAO,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC;IAC7C,CAAC;IACD;;;;OAIG;IACI,iBAAiB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAiB;QACzE,OAAO,IAAI,CAAC,OAAO,CAAC,WAAW,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACnD,CAAC;IACD;;;;;;;OAOG;IACI,6BAA6B,CAAC,UAAqB,EAAE,UAAqB;QAC/E,mBAAQ,CAAC,qBAAqB,CAC5B,UAAU,CAAC,OAAO,EAClB,UAAU,CAAC,OAAO,EAClB,UAAU,CAAC,OAAO,EAClB,IAAI,CAAC,OAAkB,CACxB,CAAC;QACF,UAAU,CAAC,OAAO,CAAC,oBAAoB,CAAC,UAAU,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;IAC5E,CAAC;IACD;;;;;;;;;;;;;OAaG;IACI,0BAA0B,CAAC,KAAgB,EAAE,MAAkB;QACpE,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC,UAAU,CACzB,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,CAAC,OAAO,CAAC,EACzE,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,CAAC,OAAO,CAAC,CACjD,CAAC;QACJ,MAAM,CAAC,6BAA6B,CAAC,IAAI,EAAE,KAAK,CAAC,CAAC;QAClD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;;;;;;OAaG;IACI,yBAAyB,CAAC,KAAe,EAAE,MAAkB;QAClE,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC,UAAU,CACzB,IAAI,CAAC,OAAO,CAAC,cAAc,EAAE,EAC7B,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,CAAC,CACzC,CAAC;QACJ,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,EAAE,MAAM,CAAC,OAAO,CAAC,CAAC;QACzD,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;QACrC,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;OAQG;IACI,aAAa,CAAC,KAAc,EAAE,MAAgB;QACnD,IAAI,KAAK,CAAC,MAAM;YACd,OAAO,KAAK,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;QAC7B,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,GAAG,eAAO,CAAC,UAAU,CAAC,MAAM,CAAC,CAAC;QACpC,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,CAAC,CAAC;QACpD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,IAAI,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,KAAK,EAAE,IAAI,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,IAAI,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACvD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,OAAO,CAAC,MAAkB;QAC/B,MAAM,aAAa,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QAChF,IAAI,CAAC,aAAa;YAChB,OAAO,SAAS,CAAC;QACnB,IAAI,MAAM,EAAE,CAAC;YACX,oCAAoC;YACpC,aAAa,CAAC,WAAW,CAAC,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,MAAM,CAAC,OAAmB,CAAC,CAAC;YACzG,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CACzB,aAAa,CAAC,WAAW,CAAC,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC,EAC5E,aAAa,CACd,CAAC;IACJ,CAAC;IACD;;;;;;;;;;OAUG;IACI,MAAM,CAAC,aAAa,CAAC,GAAY,EAAE,GAAY,EAAE,WAAuB,EAAE,WAAuB;QACtG,MAAM,IAAI,GAAG,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,CAAC;QAC5B,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,MAAM,OAAO,GAAG,IAAI,mBAAQ,EAAE,CAAC;QAC/B;;;;;;;WAOG;QACH,IAAI,WAAW,EAAE,CAAC;YAChB,mBAAQ,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACtD,SAAS,CAAC,qBAAqB,CAAC,GAAG,EAAE,OAAO,EAAE,WAAW,CAAC,CAAC;QAC7D,CAAC;QACD;;;;;;;WAOG;QACH,IAAI,WAAW,EAAE,CAAC;YAChB,MAAM,MAAM,GAAG,IAAI,yBAAO,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YAC9E,mBAAQ,CAAC,WAAW,CAAC,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxE,SAAS,CAAC,qBAAqB,CAAC,MAAM,EAAE,OAAO,EAAE,WAAW,CAAC,CAAC;QAChE,CAAC;IACH,CAAC;CACF;AA7xBD,8BA6xBC","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module CartesianGeometry\r\n */\r\n\r\nimport { AxisOrder, BeJSONFunctions, Geometry } from \"../Geometry\";\r\nimport { Point4d } from \"../geometry4d/Point4d\";\r\nimport { Matrix3d } from \"./Matrix3d\";\r\nimport { Point2d } from \"./Point2dVector2d\";\r\nimport { Point3d, Vector3d, XYZ } from \"./Point3dVector3d\";\r\nimport { Range3d } from \"./Range\";\r\nimport { TransformProps, XAndY, XYAndZ } from \"./XYZProps\";\r\n\r\n/**\r\n * A Transform consists of an origin and a Matrix3d. This describes a coordinate frame with this origin, with\r\n * the columns of the Matrix3d being the local x,y,z axis directions.\r\n * * The math for a Transform `T` consisting of a Matrix3d `M` and a Point3d `o` on a Vector3d `p` is: `Tp = M*p + o`.\r\n * In other words, `T` is a combination of two operations on `p`: the action of matrix multiplication, followed by a\r\n * translation. `Origin` is a traditional term for `o`, because `T` can be interpreted as a change of basis from the\r\n * global axes centered at the global origin, to a new set of axes specified by matrix M columns centered at `o`.\r\n * * Beware that for common transformations (e.g. scale about point, rotate around an axis) the `fixed point` that\r\n * is used when describing the transform is NOT the `origin` stored in the transform. Setup methods (e.g\r\n * createFixedPointAndMatrix, createScaleAboutPoint) take care of determining the appropriate origin coordinates.\r\n * * If `T` is a translation, no point is fixed by `T`.\r\n * * If `T` is the identity, all points are fixed by `T`.\r\n * * If `T` is a scale about a point, one point is fixed by `T`.\r\n * * If `T` is a rotation about an axis, a line is fixed by `T`.\r\n * * If `T` is a projection to the plane, a plane is fixed by `T`.\r\n * @public\r\n */\r\nexport class Transform implements BeJSONFunctions {\r\n private _origin: XYZ;\r\n private _matrix: Matrix3d;\r\n // Constructor accepts and uses pointer to content (no copy is done here).\r\n private constructor(origin: XYZ, matrix: Matrix3d) {\r\n this._origin = origin;\r\n this._matrix = matrix;\r\n }\r\n private static _identity?: Transform;\r\n /** The identity Transform. Value is frozen and cannot be modified. */\r\n public static get identity(): Transform {\r\n if (undefined === this._identity) {\r\n this._identity = Transform.createIdentity();\r\n this._identity.freeze();\r\n }\r\n return this._identity;\r\n }\r\n /** Freeze this instance (and its members) so it is read-only */\r\n public freeze(): Readonly<this> {\r\n this._origin.freeze();\r\n this._matrix.freeze();\r\n return Object.freeze(this);\r\n }\r\n /**\r\n * Copy contents from other Transform into this Transform\r\n * @param other source transform\r\n */\r\n public setFrom(other: Transform) {\r\n this._origin.setFrom(other._origin);\r\n this._matrix.setFrom(other._matrix);\r\n }\r\n /** Set this Transform to be an identity. */\r\n public setIdentity() {\r\n this._origin.setZero();\r\n this._matrix.setIdentity();\r\n }\r\n /**\r\n * Set this Transform instance from flexible inputs:\r\n * * Any object (such as another Transform or TransformProps) that has `origin` and `matrix` members\r\n * accepted by `Point3d.setFromJSON` and `Matrix3d.setFromJSON`\r\n * * An array of 3 number arrays, each with 4 entries which are rows in a 3x4 matrix.\r\n * * An array of 12 numbers, each block of 4 entries as a row 3x4 matrix.\r\n * * If no input is provided, the identity Transform is returned.\r\n */\r\n public setFromJSON(json?: TransformProps | Transform): void {\r\n if (json) {\r\n if (json instanceof Object && (json as any).origin && (json as any).matrix) {\r\n this._origin.setFromJSON((json as any).origin);\r\n this._matrix.setFromJSON((json as any).matrix);\r\n return;\r\n }\r\n if (Geometry.isArrayOfNumberArray(json, 3, 4)) {\r\n this._matrix.setRowValues(\r\n json[0][0], json[0][1], json[0][2],\r\n json[1][0], json[1][1], json[1][2],\r\n json[2][0], json[2][1], json[2][2],\r\n );\r\n this._origin.set(json[0][3], json[1][3], json[2][3]);\r\n return;\r\n }\r\n if (Geometry.isNumberArray(json, 12)) {\r\n this._matrix.setRowValues(\r\n json[0], json[1], json[2],\r\n json[4], json[5], json[6],\r\n json[8], json[9], json[10],\r\n );\r\n this._origin.set(json[3], json[7], json[11]);\r\n return;\r\n }\r\n }\r\n this.setIdentity();\r\n }\r\n /**\r\n * Test for near equality with `other` Transform. Comparison uses the `isAlmostEqual` methods on the `origin` and\r\n * `matrix` parts.\r\n * @param other Transform to compare to.\r\n */\r\n public isAlmostEqual(other: Readonly<Transform>): boolean {\r\n return this === other || this.origin.isAlmostEqual(other.origin) && this.matrix.isAlmostEqual(other.matrix);\r\n }\r\n /**\r\n * Test for near equality with `other` Transform. Comparison uses the `isAlmostEqual` methods on the `origin` part\r\n * and the `isAlmostEqualAllowZRotation` method on the `matrix` part.\r\n * @param other Transform to compare to.\r\n */\r\n public isAlmostEqualAllowZRotation(other: Transform): boolean {\r\n return this._origin.isAlmostEqual(other._origin) && this._matrix.isAlmostEqualAllowZRotation(other._matrix);\r\n }\r\n /**\r\n * Return a 3 by 4 matrix containing the rows of this Transform.\r\n * * The transform's origin coordinates are the last entries of the 3 json arrays\r\n */\r\n public toRows(): number[][] {\r\n return [\r\n [this._matrix.coffs[0], this._matrix.coffs[1], this._matrix.coffs[2], this._origin.x],\r\n [this._matrix.coffs[3], this._matrix.coffs[4], this._matrix.coffs[5], this._origin.y],\r\n [this._matrix.coffs[6], this._matrix.coffs[7], this._matrix.coffs[8], this._origin.z],\r\n ];\r\n }\r\n /**\r\n * Return a 3 by 4 matrix containing the rows of this Transform.\r\n * * The transform's origin coordinates are the last entries of the 3 json arrays\r\n */\r\n public toJSON(): TransformProps {\r\n return this.toRows();\r\n }\r\n /** Return a new Transform initialized by `Transform.setFromJSON` */\r\n public static fromJSON(json?: TransformProps): Transform {\r\n const result = Transform.createIdentity();\r\n result.setFromJSON(json);\r\n return result;\r\n }\r\n /** Copy the contents of `this` transform into a new Transform (or to the result, if specified). */\r\n public clone(result?: Transform): Transform {\r\n if (result) {\r\n result._matrix.setFrom(this._matrix);\r\n result._origin.setFrom(this._origin);\r\n return result;\r\n }\r\n return new Transform(\r\n Point3d.createFrom(this._origin),\r\n this._matrix.clone(),\r\n );\r\n }\r\n /**\r\n * Return a modified copy of `this` Transform so that its `matrix` part is rigid (`origin` part is untouched).\r\n * * @see [[Matrix3d.axisOrderCrossProductsInPlace]] documentation for details of how the matrix is modified to rigid.\r\n */\r\n public cloneRigid(axisOrder: AxisOrder = AxisOrder.XYZ): Transform | undefined {\r\n const modifiedMatrix = Matrix3d.createRigidFromMatrix3d(this.matrix, axisOrder);\r\n if (!modifiedMatrix)\r\n return undefined;\r\n return new Transform(this.origin.cloneAsPoint3d(), modifiedMatrix);\r\n }\r\n /** Create a Transform with the given `origin` and `matrix`. Inputs are captured, not cloned. */\r\n public static createRefs(origin: XYZ | undefined, matrix: Matrix3d, result?: Transform): Transform {\r\n if (!origin)\r\n origin = Point3d.createZero();\r\n if (result) {\r\n result._origin = origin;\r\n result._matrix = matrix;\r\n return result;\r\n }\r\n return new Transform(origin, matrix);\r\n }\r\n /** Create a Transform with complete contents given. `q` inputs make the matrix and `a` inputs make the origin */\r\n public static createRowValues(\r\n qxx: number, qxy: number, qxz: number, ax: number,\r\n qyx: number, qyy: number, qyz: number, ay: number,\r\n qzx: number, qzy: number, qzz: number, az: number,\r\n result?: Transform,\r\n ): Transform {\r\n if (result) {\r\n result._origin.set(ax, ay, az);\r\n result._matrix.setRowValues(qxx, qxy, qxz, qyx, qyy, qyz, qzx, qzy, qzz);\r\n return result;\r\n }\r\n return new Transform(\r\n Point3d.create(ax, ay, az),\r\n Matrix3d.createRowValues(qxx, qxy, qxz, qyx, qyy, qyz, qzx, qzy, qzz),\r\n );\r\n }\r\n /** Create a Transform with all zeros */\r\n public static createZero(result?: Transform): Transform {\r\n return Transform.createRowValues(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, result);\r\n }\r\n /**\r\n * Create a Transform with translation provided by x,y,z parts.\r\n * * Translation Transform maps any vector `v` to `v + p` where `p = (x,y,z)`\r\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\r\n * @param x x part of translation\r\n * @param y y part of translation\r\n * @param z z part of translation\r\n * @param result optional pre-allocated Transform\r\n * @returns new or updated transform\r\n */\r\n public static createTranslationXYZ(x: number = 0, y: number = 0, z: number = 0, result?: Transform): Transform {\r\n return Transform.createRefs(Vector3d.create(x, y, z), Matrix3d.createIdentity(), result);\r\n }\r\n /**\r\n * Create a Transform with specified `translation` part.\r\n * * Translation Transform maps any vector `v` to `v + translation`\r\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\r\n * @param translation x,y,z parts of the translation\r\n * @param result optional pre-allocated Transform\r\n * @returns new or updated transform\r\n */\r\n public static createTranslation(translation: XYZ, result?: Transform): Transform {\r\n return Transform.createRefs(translation, Matrix3d.createIdentity(), result);\r\n }\r\n /** Return a reference (and NOT a copy) to the `matrix` part of the Transform. */\r\n public get matrix(): Matrix3d {\r\n return this._matrix;\r\n }\r\n /** Return a reference (and NOT a copy) to the `origin` part of the Transform. */\r\n public get origin(): XYZ {\r\n return this._origin;\r\n }\r\n /** return a (clone of) the `origin` part of the Transform, as a `Point3d` */\r\n public getOrigin(): Point3d {\r\n return Point3d.createFrom(this._origin);\r\n }\r\n /** return a (clone of) the `origin` part of the Transform, as a `Vector3d` */\r\n public getTranslation(): Vector3d {\r\n return Vector3d.createFrom(this._origin);\r\n }\r\n /** return a (clone of) the `matrix` part of the Transform, as a `Matrix3d` */\r\n public getMatrix(): Matrix3d {\r\n return this._matrix.clone();\r\n }\r\n /** test if the transform has `origin` = (0,0,0) and identity `matrix` */\r\n public get isIdentity(): boolean {\r\n return this._matrix.isIdentity && this._origin.isAlmostZero;\r\n }\r\n /** Create an identity transform */\r\n public static createIdentity(result?: Transform): Transform {\r\n if (result) {\r\n result._origin.setZero();\r\n result._matrix.setIdentity();\r\n return result;\r\n }\r\n return Transform.createRefs(Point3d.createZero(), Matrix3d.createIdentity());\r\n }\r\n /**\r\n * Create a Transform using the given `origin` and `matrix`.\r\n * * This is the appropriate construction when the columns of the matrix are coordinate axes of a\r\n * local-to-world mapping, and the given point is the axes' origin in world coordinates.\r\n * * This function is closely related to `createFixedPointAndMatrix` whose point input is the fixed point\r\n * of the world-to-world transformation.\r\n * * If origin is `undefined`, (0,0,0) is used. If matrix is `undefined` the identity matrix is used.\r\n */\r\n public static createOriginAndMatrix(\r\n origin: XYZ | undefined, matrix: Matrix3d | undefined, result?: Transform,\r\n ): Transform {\r\n if (result) {\r\n result._origin.setFromPoint3d(origin);\r\n result._matrix.setFrom(matrix);\r\n return result;\r\n }\r\n return Transform.createRefs(\r\n origin ? origin.cloneAsPoint3d() : Point3d.createZero(),\r\n matrix === undefined ? Matrix3d.createIdentity() : matrix.clone(),\r\n result,\r\n );\r\n }\r\n /** Create a Transform using the given `origin` and columns of the `matrix`. If `undefined` zero is used. */\r\n public setOriginAndMatrixColumns(\r\n origin: XYZ | undefined, vectorX: Vector3d | undefined, vectorY: Vector3d | undefined, vectorZ: Vector3d | undefined,\r\n ): void {\r\n if (origin !== undefined)\r\n this._origin.setFrom(origin);\r\n this._matrix.setColumns(vectorX, vectorY, vectorZ);\r\n }\r\n /** Create a Transform using the given `origin` and columns of the `matrix` */\r\n public static createOriginAndMatrixColumns(\r\n origin: XYZ, vectorX: Vector3d, vectorY: Vector3d, vectorZ: Vector3d, result?: Transform,\r\n ): Transform {\r\n if (result)\r\n result.setOriginAndMatrixColumns(origin, vectorX, vectorY, vectorZ);\r\n else\r\n result = Transform.createRefs(Vector3d.createFrom(origin), Matrix3d.createColumns(vectorX, vectorY, vectorZ));\r\n return result;\r\n }\r\n /**\r\n * Create a Transform such that its `matrix` part is rigid.\r\n * @see [[Matrix3d.createRigidFromColumns]] for details of how the matrix is created to be rigid.\r\n */\r\n public static createRigidFromOriginAndColumns(\r\n origin: XYZ | undefined, vectorX: Vector3d, vectorY: Vector3d, axisOrder: AxisOrder, result?: Transform,\r\n ): Transform | undefined {\r\n const matrix = Matrix3d.createRigidFromColumns(vectorX, vectorY, axisOrder, result ? result._matrix : undefined);\r\n if (!matrix)\r\n return undefined;\r\n if (result) {\r\n // result._matrix was already modified to become rigid via createRigidFromColumns\r\n result._origin.setFrom(origin);\r\n return result;\r\n }\r\n /**\r\n * We don't want to pass \"origin\" to createRefs because createRefs does not clone \"origin\". That means if \"origin\"\r\n * is changed via Transform at any point, the initial \"origin\" passed by the user is also changed. To avoid that,\r\n * we pass \"undefined\" to createRefs so that it allocates a new point which then we set it to the \"origin\" which\r\n * is passed by user in the next line.\r\n */\r\n result = Transform.createRefs(undefined, matrix);\r\n result._origin.setFromPoint3d(origin);\r\n return result;\r\n }\r\n /**\r\n * Create a Transform with the specified `matrix`. Compute an `origin` (different from the given `fixedPoint`)\r\n * so that the `fixedPoint` maps back to itself. The returned Transform, transforms a point `p` to `M*p + (f - M*f)`\r\n * where `f` is the fixedPoint (i.e., `Tp = M*(p-f) + f`).\r\n */\r\n public static createFixedPointAndMatrix(\r\n fixedPoint: XYAndZ | undefined, matrix: Matrix3d, result?: Transform,\r\n ): Transform {\r\n if (fixedPoint) {\r\n /**\r\n * if f is a fixed point, then Tf = M*f + o = f where M is the matrix and o is the origin.\r\n * we define the origin o = f - M*f. Therefore, Tf = Mf + o = M*f + (f - M*f) = f.\r\n */\r\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(fixedPoint, matrix, fixedPoint);\r\n return Transform.createRefs(origin, matrix.clone(), result);\r\n }\r\n return Transform.createRefs(undefined, matrix.clone());\r\n }\r\n /**\r\n * Create a transform with the specified `matrix` and points `a` and `b`. The returned Transform maps\r\n * point `p` to `M*(p-a) + b` (i.e., `Tp = M*(p-a) + b`), so maps `a` to `b`.\r\n */\r\n public static createMatrixPickupPutdown(\r\n matrix: Matrix3d, a: Point3d, b: Point3d, result?: Transform,\r\n ): Transform {\r\n // we define the origin o = b - M*a so Tp = M*p + o = M*p + (b - M*a) = M*(p-a) + b\r\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(b, matrix, a);\r\n return Transform.createRefs(origin, matrix.clone(), result);\r\n }\r\n /**\r\n * Create a Transform which leaves the fixedPoint unchanged and scales everything else around it by\r\n * a single scale factor. The returned Transform maps a point `p` to `M*p + (f - M*f)`\r\n * where `f` is the fixedPoint and M is the scale matrix (i.e., `Tp = M*(p-f) + f`).\r\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\r\n */\r\n public static createScaleAboutPoint(fixedPoint: Point3d, scale: number, result?: Transform): Transform {\r\n const matrix = Matrix3d.createScale(scale, scale, scale);\r\n /**\r\n * if f is a fixed point, then Tf = M*f + o = f where M is the matrix and o is the origin.\r\n * we define the origin o = f - M*f. Therefore, Tf = M*f + o = M*f + (f - M*f) = f.\r\n */\r\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(fixedPoint, matrix, fixedPoint);\r\n return Transform.createRefs(origin, matrix, result);\r\n }\r\n /**\r\n * Return a transformation which flattens space onto a plane, sweeping along a direction which may be different\r\n * from the plane normal.\r\n * * See [Matrix3d.createFlattenAlongVectorToPlane] for math details.\r\n * @param sweepVector sweep direction. If same as `planeNormal`, the resulting transformation flattens to the plane.\r\n * @param planePoint any point on the plane\r\n * @param planeNormal vector normal to the plane.\r\n */\r\n public static createFlattenAlongVectorToPlane(sweepVector: Vector3d, planePoint: XYAndZ, planeNormal: Vector3d): Transform | undefined {\r\n const matrix = Matrix3d.createFlattenAlongVectorToPlane(sweepVector, planeNormal);\r\n if (matrix === undefined)\r\n return undefined;\r\n return Transform.createFixedPointAndMatrix(planePoint, matrix);\r\n }\r\n /**\r\n * Transform the input 2d point (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyPoint2d(point: XAndY, result?: Point2d): Point2d {\r\n return Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, point, result);\r\n }\r\n /**\r\n * Transform the input 3d point (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyPoint3d(point: XYAndZ, result?: Point3d): Point3d {\r\n // Tx = Mx + o so we return Mx + o\r\n return Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, point, result);\r\n }\r\n /**\r\n * Transform the input 3d point in place (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyXYAndZInPlace(point: XYAndZ): void {\r\n return Matrix3d.xyzPlusMatrixTimesXYZInPlace(this._origin, this._matrix, point);\r\n }\r\n /**\r\n * Transform the input 3d point (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyXYZ(x: number, y: number, z: number = 0, result?: Point3d): Point3d {\r\n // Tx = Mx + o so we return Mx + o\r\n return Matrix3d.xyzPlusMatrixTimesCoordinates(this._origin, this._matrix, x, y, z, result);\r\n }\r\n /**\r\n * Multiply a specific row (component) of the 3x4 instance times (x,y,z,1). Return the result.\r\n */\r\n public multiplyComponentXYZ(componentIndex: number, x: number, y: number, z: number = 0): number {\r\n const coffs = this._matrix.coffs;\r\n const idx = 3 * componentIndex;\r\n return this.origin.at(componentIndex) + (coffs[idx] * x) + (coffs[idx + 1] * y) + (coffs[idx + 2] * z);\r\n }\r\n /**\r\n * Multiply a specific row (component) of the 3x4 instance times (x,y,z,w). Return the result.\r\n */\r\n public multiplyComponentXYZW(componentIndex: number, x: number, y: number, z: number, w: number): number {\r\n const coffs = this._matrix.coffs;\r\n const idx = 3 * componentIndex;\r\n return (this.origin.at(componentIndex) * w) + (coffs[idx] * x) + (coffs[idx + 1] * y) + (coffs[idx + 2] * z);\r\n }\r\n /**\r\n * Transform the homogeneous point. Return as a new `Point4d`, or in the pre-allocated result (if result is given).\r\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o*w` and returns the `Point4d` formed by `Tp` in the\r\n * first three coordinates, and `w` in the fourth.\r\n * * Logically, this is multiplication by the 4x4 matrix formed from the 3x4 instance augmented with fourth row 0001.\r\n */\r\n public multiplyXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\r\n return Matrix3d.xyzPlusMatrixTimesWeightedCoordinates(this._origin, this._matrix, x, y, z, w, result);\r\n }\r\n /**\r\n * Transform the homogeneous point. Return as new `Float64Array` with size 4, or in the pre-allocated `result` of sufficient size.\r\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o*w` and returns the `Float64Array` formed by `Tp`\r\n * in the first 3 numbers of the array and `w` as the fourth.\r\n * * Logically, this is multiplication by the 4x4 matrix formed from the 3x4 instance augmented with fourth row 0001.\r\n */\r\n public multiplyXYZWToFloat64Array(x: number, y: number, z: number, w: number, result?: Float64Array): Float64Array {\r\n return Matrix3d.xyzPlusMatrixTimesWeightedCoordinatesToFloat64Array(this._origin, this._matrix, x, y, z, w, result);\r\n }\r\n /**\r\n * * Transform the point. Return as new `Float64Array` with size 3, or in the pre-allocated `result` of sufficient size.\r\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o` and returns it as the first 3 elements of the array.\r\n */\r\n public multiplyXYZToFloat64Array(x: number, y: number, z: number, result?: Float64Array): Float64Array {\r\n return Matrix3d.xyzPlusMatrixTimesCoordinatesToFloat64Array(this._origin, this._matrix, x, y, z, result);\r\n }\r\n /**\r\n * Multiply the homogeneous point by the transpose of `this` Transform. Return as a new `Point4d` or in the\r\n * pre-allocated result (if result is given).\r\n * * If `p = (x,y,z)` then this method computes `M^t*p` and returns it in the first three coordinates of the `Point4d`,\r\n * and `o*p + w` in the fourth.\r\n * * Logically, this is multiplication by the transpose of the 4x4 matrix formed from the 3x4 instance augmented with\r\n * fourth row 0001.\r\n */\r\n public multiplyTransposeXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\r\n const coffs = this._matrix.coffs;\r\n const origin = this._origin;\r\n return Point4d.create(\r\n (x * coffs[0]) + (y * coffs[3]) + (z * coffs[6]),\r\n (x * coffs[1]) + (y * coffs[4]) + (z * coffs[7]),\r\n (x * coffs[2]) + (y * coffs[5]) + (z * coffs[8]),\r\n (x * origin.x) + (y * origin.y) + (z * origin.z) + w,\r\n result,\r\n );\r\n }\r\n /** For each point in the array, replace point by the transformed point (using `Tp = M*p + o`) */\r\n public multiplyPoint3dArrayInPlace(points: Point3d[]) {\r\n let point;\r\n for (point of points)\r\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, point, point);\r\n }\r\n /** For each point in the 2d array, replace point by the transformed point (using `Tp = M*p + o`) */\r\n public multiplyPoint3dArrayArrayInPlace(chains: Point3d[][]) {\r\n for (const chain of chains)\r\n this.multiplyPoint3dArrayInPlace(chain);\r\n }\r\n /**\r\n * Multiply the point by the inverse Transform.\r\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse`\r\n * Transform has matrix part `MInverse` and origin part `-MInverse*o`.\r\n * * Return as a new point or in the optional `result`.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInversePoint3d(point: XYAndZ, result?: Point3d): Point3d | undefined {\r\n return this._matrix.multiplyInverseXYZAsPoint3d(\r\n point.x - this._origin.x,\r\n point.y - this._origin.y,\r\n point.z - this._origin.z,\r\n result,\r\n );\r\n }\r\n /**\r\n * Multiply the homogenous point by the inverse Transform.\r\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse` Transform\r\n * has matrix part `MInverse` and origin part `-MInverse*o`.\r\n * * This method computes `TInverse p = MInverse*p - w*MInverse*o` and returns the `Point4d` formed by `TInverse*p`\r\n * in the first three coordinates, and `w` in the fourth.\r\n * * Logically, this is multiplication by the inverse of the 4x4 matrix formed from the 3x4 instance augmented with\r\n * fourth row 0001. This is equivalent to the 4x4 matrix formed in similar fashion from the inverse of this instance.\r\n * * Return as a new point or in the optional `result`.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInversePoint4d(weightedPoint: Point4d, result?: Point4d): Point4d | undefined {\r\n const w = weightedPoint.w;\r\n return this._matrix.multiplyInverseXYZW(\r\n weightedPoint.x - w * this.origin.x,\r\n weightedPoint.y - w * this.origin.y,\r\n weightedPoint.z - w * this.origin.z,\r\n w,\r\n result,\r\n );\r\n }\r\n /**\r\n * Multiply the point by the inverse Transform.\r\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse` Transform\r\n * has matrix part `MInverse` and origin part `-MInverse*o`.\r\n * * Return as a new point or in the optional `result`.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInverseXYZ(x: number, y: number, z: number, result?: Point3d): Point3d | undefined {\r\n return this._matrix.multiplyInverseXYZAsPoint3d(\r\n x - this._origin.x,\r\n y - this._origin.y,\r\n z - this._origin.z,\r\n result,\r\n );\r\n }\r\n /**\r\n * * Compute (if needed) the inverse of the `matrix` part of the Transform, thereby ensuring inverse\r\n * operations can complete.\r\n * @param useCached If true, accept prior cached inverse if available.\r\n * @returns `true` if matrix inverse completes, `false` otherwise.\r\n */\r\n public computeCachedInverse(useCached: boolean = true): boolean {\r\n return this._matrix.computeCachedInverse(useCached);\r\n }\r\n /**\r\n * Match the length of destination array with the length of source array\r\n * * If destination has more elements than source, remove the extra elements.\r\n * * If destination has fewer elements than source, use `constructionFunction` to create new elements.\r\n * *\r\n * @param source the source array\r\n * @param dest the destination array\r\n * @param constructionFunction function to call to create new elements.\r\n */\r\n public static matchArrayLengths(source: any[], dest: any[], constructionFunction: () => any): number {\r\n const numSource = source.length;\r\n const numDest = dest.length;\r\n if (numSource > numDest) {\r\n for (let i = numDest; i < numSource; i++) {\r\n dest.push(constructionFunction());\r\n }\r\n } else if (numDest > numSource) {\r\n dest.length = numSource;\r\n }\r\n return numSource;\r\n }\r\n /**\r\n * Multiply each point in the array by the inverse of `this` Transform.\r\n * * For a transform `T = [M o]` the inverse transform `T' = [M' -M'o]` exists if and only if `M` has an inverse\r\n * `M'`. Indeed, for any point `p`, we have `T'Tp = T'(Mp + o) = M'(Mp + o) - M'o = M'Mp + M'o - M'o = p.`\r\n * * If `result` is given, resize it to match the input `points` array and update it with original points `p[]`.\r\n * * If `result` is not given, return a new array.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInversePoint3dArray(points: Point3d[], result?: Point3d[]): Point3d[] | undefined {\r\n if (!this._matrix.computeCachedInverse(true))\r\n return undefined;\r\n const originX = this.origin.x;\r\n const originY = this.origin.y;\r\n const originZ = this.origin.z;\r\n if (result) {\r\n const n = Transform.matchArrayLengths(points, result, () => Point3d.createZero());\r\n for (let i = 0; i < n; i++)\r\n this._matrix.multiplyInverseXYZAsPoint3d(\r\n points[i].x - originX,\r\n points[i].y - originY,\r\n points[i].z - originZ,\r\n result[i],\r\n );\r\n return result;\r\n }\r\n result = [];\r\n for (const point of points)\r\n result.push(\r\n this._matrix.multiplyInverseXYZAsPoint3d(\r\n point.x - originX,\r\n point.y - originY,\r\n point.z - originZ,\r\n )!,\r\n );\r\n return result;\r\n }\r\n /**\r\n * Multiply each point in the array by the inverse of `this` Transform in place.\r\n * * For a transform `T = [M o]` the inverse transform `T' = [M' -M'o]` exists if and only if `M` has an inverse\r\n * `M'`. Indeed, for any point `p`, we have `T'Tp = T'(Mp + o) = M'(Mp + o) - M'o = M'Mp + M'o - M'o = p.`\r\n * * Returns `true` if the `matrix` part if this Transform is invertible and `false` if singular.\r\n */\r\n public multiplyInversePoint3dArrayInPlace(points: Point3d[]): boolean {\r\n if (!this._matrix.computeCachedInverse(true))\r\n return false;\r\n for (const point of points)\r\n this._matrix.multiplyInverseXYZAsPoint3d(\r\n point.x - this.origin.x,\r\n point.y - this.origin.y,\r\n point.z - this.origin.z,\r\n point,\r\n );\r\n return true;\r\n }\r\n /**\r\n * Transform the input 2d point array (using `Tp = M*p + o`).\r\n * * If `result` is given, resize it to match the input `points` array and update it with transformed points.\r\n * * If `result` is not given, return a new array.\r\n */\r\n public multiplyPoint2dArray(points: Point2d[], result?: Point2d[]): Point2d[] {\r\n if (result) {\r\n const n = Transform.matchArrayLengths(points, result, () => Point2d.createZero());\r\n for (let i = 0; i < n; i++)\r\n Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, points[i], result[i]);\r\n return result;\r\n }\r\n result = [];\r\n for (const p of points)\r\n result.push(Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, p));\r\n return result;\r\n }\r\n /**\r\n * Transform the input 3d point array (using `Tp = M*p + o`).\r\n * * If `result` is given, resize it to match the input `points` array and update it with transformed points.\r\n * * If `result` is not given, return a new array.\r\n */\r\n public multiplyPoint3dArray(points: Point3d[], result?: Point3d[]): Point3d[] {\r\n if (result) {\r\n const n = Transform.matchArrayLengths(points, result, () => Point3d.createZero());\r\n for (let i = 0; i < n; i++)\r\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, points[i], result[i]);\r\n return result;\r\n }\r\n result = [];\r\n for (const p of points)\r\n result.push(Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, p));\r\n return result;\r\n }\r\n /**\r\n * Multiply the vector by the `matrix` part of the Transform.\r\n * * The `origin` part of Transform is not used.\r\n * * If `result` is given, update it with the multiplication. Otherwise, create a new Vector3d.\r\n */\r\n public multiplyVector(vector: Vector3d, result?: Vector3d): Vector3d {\r\n return this._matrix.multiplyVector(vector, result);\r\n }\r\n /**\r\n * Multiply the vector by the `matrix` part of the Transform in place.\r\n * * The `origin` part of Transform is not used.\r\n */\r\n public multiplyVectorInPlace(vector: Vector3d): void {\r\n this._matrix.multiplyVectorInPlace(vector);\r\n }\r\n /**\r\n * Multiply the vector (x,y,z) by the `matrix` part of the Transform.\r\n * * The `origin` part of Transform is not used.\r\n * * If `result` is given, update it with the multiplication. Otherwise, create a new Vector3d.\r\n */\r\n public multiplyVectorXYZ(x: number, y: number, z: number, result?: Vector3d): Vector3d {\r\n return this._matrix.multiplyXYZ(x, y, z, result);\r\n }\r\n /**\r\n * Calculate `transformA * transformB` and store it into the calling instance (`this`).\r\n * * **Note:** If `transformA = [A a]` and `transformB = [B b]` then `transformA * transformB` is defined as\r\n * `[A*B Ab+a]`.\r\n * * @see [[multiplyTransformTransform]] documentation for math details.\r\n * @param transformA first operand\r\n * @param transformB second operand\r\n */\r\n public setMultiplyTransformTransform(transformA: Transform, transformB: Transform): void {\r\n Matrix3d.xyzPlusMatrixTimesXYZ(\r\n transformA._origin,\r\n transformA._matrix,\r\n transformB._origin,\r\n this._origin as Point3d,\r\n );\r\n transformA._matrix.multiplyMatrixMatrix(transformB._matrix, this._matrix);\r\n }\r\n /**\r\n * Multiply `this` Transform times `other` Transform.\r\n * * **Note:** If `this = [A a]` and `other = [B b]` then `this * other` is defined as `[A*B Ab+a]` because:\r\n * ```\r\n * equation\r\n * \\begin{matrix}\r\n * \\text{this Transform with matrix part }\\bold{A}\\text{ and origin part }\\bold{a} & \\blockTransform{A}{a}\\\\\r\n * \\text{other Transform with matrix part }\\bold{B}\\text{ and origin part }\\bold{b} & \\blockTransform{B}{b} \\\\\r\n * \\text{product}& \\blockTransform{A}{a}\\blockTransform{B}{b}=\\blockTransform{AB}{Ab + a}\r\n * \\end{matrix}\r\n * ```\r\n * @param other the `other` Transform to be multiplied to `this` Transform.\r\n * @param result optional preallocated `result` to reuse.\r\n */\r\n public multiplyTransformTransform(other: Transform, result?: Transform) {\r\n if (!result)\r\n return Transform.createRefs(\r\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, other._origin),\r\n this._matrix.multiplyMatrixMatrix(other._matrix),\r\n );\r\n result.setMultiplyTransformTransform(this, other);\r\n return result;\r\n }\r\n /**\r\n * Multiply `this` Transform times `other` Matrix3d (considered to be a Transform with 0 `origin`).\r\n * * **Note:** If `this = [A a]` and `other = [B 0]`, then `this * other` is defined as [A*B a] because:\r\n * ```\r\n * equation\r\n * \\begin{matrix}\r\n * \\text{this Transform with matrix part }\\bold{A}\\text{ and origin part }\\bold{a} & \\blockTransform{A}{a}\\\\\r\n * \\text{other matrix }\\bold{B}\\text{ promoted to block Transform} & \\blockTransform{B}{0} \\\\\r\n * \\text{product}& \\blockTransform{A}{a}\\blockTransform{B}{0}=\\blockTransform{AB}{a}\r\n * \\end{matrix}\r\n * ```\r\n * @param other the `other` Matrix3d to be multiplied to `this` Transform.\r\n * @param result optional preallocated `result` to reuse.\r\n */\r\n public multiplyTransformMatrix3d(other: Matrix3d, result?: Transform): Transform {\r\n if (!result)\r\n return Transform.createRefs(\r\n this._origin.cloneAsPoint3d(),\r\n this._matrix.multiplyMatrixMatrix(other),\r\n );\r\n this._matrix.multiplyMatrixMatrix(other, result._matrix);\r\n result._origin.setFrom(this._origin);\r\n return result;\r\n }\r\n /**\r\n * Return the range of the transformed corners.\r\n * * The 8 corners are transformed individually.\r\n * * **Note:** Suppose you have a geometry, a range box around that geometry, and your Transform is a rotation.\r\n * If you rotate the range box and recompute a new range box around the rotated range box, then the new range\r\n * box will have a larger volume than the original range box. However, if you rotate the geometry itself and\r\n * then recompute the range box, it will be a tighter range box around the rotated geometry. `multiplyRange`\r\n * function creates the larger range box because it only has access to the range box and not the geometry itself.\r\n */\r\n public multiplyRange(range: Range3d, result?: Range3d): Range3d {\r\n if (range.isNull)\r\n return range.clone(result);\r\n const lowX = range.low.x;\r\n const lowY = range.low.y;\r\n const lowZ = range.low.z;\r\n const highX = range.high.x;\r\n const highY = range.high.y;\r\n const highZ = range.high.z;\r\n result = Range3d.createNull(result);\r\n result.extendTransformedXYZ(this, lowX, lowY, lowZ);\r\n result.extendTransformedXYZ(this, highX, lowY, lowZ);\r\n result.extendTransformedXYZ(this, lowX, highY, lowZ);\r\n result.extendTransformedXYZ(this, highX, highY, lowZ);\r\n result.extendTransformedXYZ(this, lowX, lowY, highZ);\r\n result.extendTransformedXYZ(this, highX, lowY, highZ);\r\n result.extendTransformedXYZ(this, lowX, highY, highZ);\r\n result.extendTransformedXYZ(this, highX, highY, highZ);\r\n return result;\r\n }\r\n /**\r\n * Return a Transform which is the inverse of `this` Transform.\r\n * * If `transform = [M o]` then `transformInverse = [MInverse -MInverse*o]`\r\n * * Return `undefined` if this Transform's matrix is singular.\r\n */\r\n public inverse(result?: Transform): Transform | undefined {\r\n const matrixInverse = this._matrix.inverse(result ? result._matrix : undefined);\r\n if (!matrixInverse)\r\n return undefined;\r\n if (result) {\r\n // result._matrix is already defined\r\n matrixInverse.multiplyXYZ(-this._origin.x, -this._origin.y, -this._origin.z, result._origin as Vector3d);\r\n return result;\r\n }\r\n return Transform.createRefs(\r\n matrixInverse.multiplyXYZ(-this._origin.x, -this._origin.y, -this._origin.z),\r\n matrixInverse,\r\n );\r\n }\r\n /**\r\n * Initialize 2 Transforms that map between the unit box (specified by 000 and 111) and the range box specified\r\n * by the input points.\r\n * @param min the min corner of the range box\r\n * @param max the max corner of the range box\r\n * @param npcToGlobal maps NPC coordinates into range box coordinates. Specifically, maps 000 to `min` and maps\r\n * 111 to `max`. This Transform is the inverse of `globalToNpc`. Object created by caller, re-initialized here.\r\n * @param globalToNpc maps range box coordinates into NPC coordinates. Specifically, maps `min` to 000 and maps\r\n * `max` to 111. This Transform is the inverse of `npcToGlobal`. Object created by caller, re-initialized here.\r\n * * NPC stands for `Normalized Projection Coordinate`\r\n */\r\n public static initFromRange(min: Point3d, max: Point3d, npcToGlobal?: Transform, globalToNpc?: Transform): void {\r\n const diag = max.minus(min);\r\n if (diag.x === 0.0)\r\n diag.x = 1.0;\r\n if (diag.y === 0.0)\r\n diag.y = 1.0;\r\n if (diag.z === 0.0)\r\n diag.z = 1.0;\r\n const rMatrix = new Matrix3d();\r\n /**\r\n * [diag.x 0 0 min.x]\r\n * npcToGlobal = [ 0 diag.y 0 min.y]\r\n * [ 0 0 diag.y min.z]\r\n *\r\n * npcToGlobal * 0 = min\r\n * npcToGlobal * 1 = diag + min = max\r\n */\r\n if (npcToGlobal) {\r\n Matrix3d.createScale(diag.x, diag.y, diag.z, rMatrix);\r\n Transform.createOriginAndMatrix(min, rMatrix, npcToGlobal);\r\n }\r\n /**\r\n * [1/diag.x 0 0 -min.x/diag.x]\r\n * globalToNpc = [ 0 1/diag.y 0 -min.y/diag.y]\r\n * [ 0 0 1/diag.y -min.z/diag.z]\r\n *\r\n * globalToNpc * min = min/diag - min/diag = 0\r\n * globalToNpc * max = max/diag - min/diag = diag/diag = 1\r\n */\r\n if (globalToNpc) {\r\n const origin = new Point3d(-min.x / diag.x, -min.y / diag.y, -min.z / diag.z);\r\n Matrix3d.createScale(1.0 / diag.x, 1.0 / diag.y, 1.0 / diag.z, rMatrix);\r\n Transform.createOriginAndMatrix(origin, rMatrix, globalToNpc);\r\n }\r\n }\r\n}\r\n"]}
|
|
@@ -49,11 +49,11 @@ export declare class Map4d implements BeJSONFunctions {
|
|
|
49
49
|
/** Test if both matrices are almost equal to those */
|
|
50
50
|
isAlmostEqual(other: Map4d): boolean;
|
|
51
51
|
/**
|
|
52
|
-
* Create a map between
|
|
53
|
-
* @param origin lower left of frustum
|
|
54
|
-
* @param uVector Vector from
|
|
55
|
-
* @param vVector Vector from
|
|
56
|
-
* @param wVector Vector from
|
|
52
|
+
* Create a world to NPC map that maps between world coordinates and the given frustum.
|
|
53
|
+
* @param origin lower left rear of frustum
|
|
54
|
+
* @param uVector Vector from origin to lower right rear.
|
|
55
|
+
* @param vVector Vector from origin to upper left rear.
|
|
56
|
+
* @param wVector Vector from origin to lower left front, i.e. origin towards eye.
|
|
57
57
|
* @param fraction front size divided by rear size.
|
|
58
58
|
*/
|
|
59
59
|
static createVectorFrustum(origin: Point3d, uVector: Vector3d, vVector: Vector3d, wVector: Vector3d, fraction: number): Map4d | undefined;
|
|
@@ -108,11 +108,11 @@ class Map4d {
|
|
|
108
108
|
return this._matrix0.isAlmostEqual(other._matrix0) && this._matrix1.isAlmostEqual(other._matrix1);
|
|
109
109
|
}
|
|
110
110
|
/**
|
|
111
|
-
* Create a map between
|
|
112
|
-
* @param origin lower left of frustum
|
|
113
|
-
* @param uVector Vector from
|
|
114
|
-
* @param vVector Vector from
|
|
115
|
-
* @param wVector Vector from
|
|
111
|
+
* Create a world to NPC map that maps between world coordinates and the given frustum.
|
|
112
|
+
* @param origin lower left rear of frustum
|
|
113
|
+
* @param uVector Vector from origin to lower right rear.
|
|
114
|
+
* @param vVector Vector from origin to upper left rear.
|
|
115
|
+
* @param wVector Vector from origin to lower left front, i.e. origin towards eye.
|
|
116
116
|
* @param fraction front size divided by rear size.
|
|
117
117
|
*/
|
|
118
118
|
static createVectorFrustum(origin, uVector, vVector, wVector, fraction) {
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"Map4d.js","sourceRoot":"","sources":["../../../src/geometry4d/Map4d.ts"],"names":[],"mappings":";AAAA;;;+FAG+F;AAC/F;;GAEG;;;AAGH,qDAAkD;AAElD,uDAAoD;AACpD,yCAAsC;AAEtC;;;GAGG;AACH,MAAa,KAAK;IAGhB,YAAoB,OAAiB,EAAE,OAAiB;QACtD,IAAI,CAAC,QAAQ,GAAG,OAAO,CAAC;QACxB,IAAI,CAAC,QAAQ,GAAG,OAAO,CAAC;IAC1B,CAAC;IACD,iEAAiE;IACjE,IAAW,UAAU;QACnB,OAAO,IAAI,CAAC,QAAQ,CAAC;IACvB,CAAC;IACD,iEAAiE;IACjE,IAAW,UAAU;QACnB,OAAO,IAAI,CAAC,QAAQ,CAAC;IACvB,CAAC;IACD,oEAAoE;IAC7D,MAAM,CAAC,UAAU,CAAC,OAAiB,EAAE,OAAiB;QAC3D,OAAO,IAAI,KAAK,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;IACrC,CAAC;IACD,8BAA8B;IACvB,MAAM,CAAC,cAAc;QAC1B,OAAO,IAAI,KAAK,CAAC,mBAAQ,CAAC,cAAc,EAAE,EAAE,mBAAQ,CAAC,cAAc,EAAE,CAAC,CAAC;IACzE,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,eAAe,CAAC,UAAqB,EAAE,UAAsB;QACzE,IAAI,UAAU,KAAK,SAAS,EAAE,CAAC;YAC7B,UAAU,GAAG,UAAU,CAAC,OAAO,EAAE,CAAC;YAClC,IAAI,UAAU,KAAK,SAAS;gBAC1B,OAAO,SAAS,CAAC;QACrB,CAAC;aAAM,CAAC;YACN,MAAM,OAAO,GAAG,UAAU,CAAC,0BAA0B,CAAC,UAAU,CAAC,CAAC;YAClE,IAAI,CAAC,OAAO,CAAC,UAAU;gBACrB,OAAO,SAAS,CAAC;QACrB,CAAC;QACD,OAAO,IAAI,KAAK,CAAC,mBAAQ,CAAC,eAAe,CAAC,UAAU,CAAC,EAAE,mBAAQ,CAAC,eAAe,CAAC,UAAU,CAAC,CAAC,CAAC;IAC/F,CAAC;IACD;;;;;;OAMG;IACI,MAAM,CAAC,YAAY,CACxB,IAAa,EAAE,KAAc,EAAE,IAAa,EAAE,KAAc,EAAE,MAAc;QAE5E,MAAM,EAAE,GAAG,mBAAQ,CAAC,cAAc,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,UAAU,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QACrG,MAAM,EAAE,GAAG,mBAAQ,CAAC,cAAc,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,UAAU,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QACrG,IAAI,EAAE,IAAI,EAAE,EAAE,CAAC;YACb,IAAI,MAAM;gBACR,OAAO,MAAM,CAAC;YAChB,OAAO,IAAI,KAAK,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;QAC3B,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,uCAAuC;IAChC,OAAO,CAAC,KAAY;QACzB,IAAI,CAAC,QAAQ,CAAC,OAAO,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC;QACtC,IAAI,CAAC,QAAQ,CAAC,OAAO,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC;IACxC,CAAC;IACD,mCAAmC;IAC5B,KAAK;QACV,OAAO,IAAI,KAAK,CAAC,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,EAAE,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,CAAC,CAAC;IACjE,CAAC;IACD,8CAA8C;IACvC,WAAW;QAChB,IAAI,CAAC,QAAQ,CAAC,WAAW,EAAE,CAAC;QAC5B,IAAI,CAAC,QAAQ,CAAC,WAAW,EAAE,CAAC;IAC9B,CAAC;IACD,6GAA6G;IACtG,WAAW,CAAC,IAAS;QAC1B,IAAI,IAAI,CAAC,OAAO,IAAI,IAAI,CAAC,OAAO,EAAE,CAAC;YACjC,IAAI,CAAC,QAAQ,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACxC,IAAI,CAAC,QAAQ,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;QAC1C,CAAC;;YACC,IAAI,CAAC,WAAW,EAAE,CAAC;IACvB,CAAC;IACD,6GAA6G;IACtG,MAAM,CAAC,QAAQ,CAAC,IAAU;QAC/B,MAAM,MAAM,GAAG,IAAI,KAAK,CAAC,mBAAQ,CAAC,cAAc,EAAE,EAAE,mBAAQ,CAAC,cAAc,EAAE,CAAC,CAAC;QAC/E,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC;QACzB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,gEAAgE;IACzD,MAAM;QACX,OAAO,EAAE,OAAO,EAAE,IAAI,CAAC,QAAQ,CAAC,MAAM,EAAE,EAAE,OAAO,EAAE,IAAI,CAAC,QAAQ,CAAC,MAAM,EAAE,EAAE,CAAC;IAC9E,CAAC;IACD,sDAAsD;IAC/C,aAAa,CAAC,KAAY;QAC/B,OAAO,IAAI,CAAC,QAAQ,CAAC,aAAa,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,IAAI,CAAC,QAAQ,CAAC,aAAa,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC;IACpG,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,mBAAmB,CAC/B,MAAe,EAAE,OAAiB,EAAE,OAAiB,EAAE,OAAiB,EAAE,QAAgB;QAE1F,QAAQ,GAAG,IAAI,CAAC,GAAG,CAAC,QAAQ,EAAE,MAAM,CAAC,CAAC;QACtC,MAAM,WAAW,GAAG,qBAAS,CAAC,qBAAqB,CAAC,MAAM,EAAE,mBAAQ,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,CAAC;QAC/G,MAAM,WAAW,GAAG,WAAW,CAAC,OAAO,EAAE,CAAC;QAC1C,IAAI,CAAC,WAAW;YACd,OAAO,SAAS,CAAC;QACnB,MAAM,cAAc,GAAG,IAAI,KAAK,CAAC,mBAAQ,CAAC,eAAe,CAAC,WAAW,CAAC,EAAE,mBAAQ,CAAC,eAAe,CAAC,WAAW,CAAC,CAAC,CAAC;QAC/G,MAAM,YAAY,GAAG,IAAI,KAAK,CAC5B,mBAAQ,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,GAAG,GAAG,EAAE,CAAC,CAAC,EAC5F,mBAAQ,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,GAAG,GAAG,QAAQ,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,GAAG,GAAG,QAAQ,CAAC,GAAG,QAAQ,EAAE,CAAC,CAAC,CAChH,CAAC;QACF,MAAM,MAAM,GAAG,YAAY,CAAC,cAAc,CAAC,cAAc,CAAC,CAAC;QAC3D;;;;;;;;;;;;;YAaI;QACJ,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,cAAc,CAAC,KAAY;QAChC,OAAO,IAAI,KAAK,CACd,IAAI,CAAC,QAAQ,CAAC,oBAAoB,CAAC,KAAK,CAAC,QAAQ,CAAC,EAClD,KAAK,CAAC,QAAQ,CAAC,oBAAoB,CAAC,IAAI,CAAC,QAAQ,CAAC,CACnD,CAAC;IACJ,CAAC;IACD,4CAA4C;IACrC,cAAc;QACnB,MAAM,IAAI,GAAG,IAAI,CAAC,QAAQ,CAAC;QAC3B,IAAI,CAAC,QAAQ,GAAG,IAAI,CAAC,QAAQ,CAAC;QAC9B,IAAI,CAAC,QAAQ,GAAG,IAAI,CAAC;IACvB,CAAC;IACD;;;OAGG;IACI,cAAc,CAAC,KAAY;QAChC,OAAO,IAAI,KAAK,CACd,KAAK,CAAC,QAAQ,CAAC,oBAAoB,CAAC,IAAI,CAAC,QAAQ,CAAC,oBAAoB,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,EACvF,KAAK,CAAC,QAAQ,CAAC,oBAAoB,CAAC,IAAI,CAAC,QAAQ,CAAC,oBAAoB,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,CACxF,CAAC;IACJ,CAAC;IACD;;;OAGG;IACI,cAAc,CAAC,KAAY;QAChC,OAAO,IAAI,KAAK,CACd,KAAK,CAAC,QAAQ,CAAC,oBAAoB,CAAC,IAAI,CAAC,QAAQ,CAAC,oBAAoB,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,EACvF,KAAK,CAAC,QAAQ,CAAC,oBAAoB,CAAC,IAAI,CAAC,QAAQ,CAAC,oBAAoB,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,CACxF,CAAC;IACJ,CAAC;CACF;AAzKD,sBAyKC","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n/** @packageDocumentation\r\n * @module Numerics\r\n */\r\n\r\nimport { BeJSONFunctions } from \"../Geometry\";\r\nimport { Matrix3d } from \"../geometry3d/Matrix3d\";\r\nimport { Point3d, Vector3d } from \"../geometry3d/Point3dVector3d\";\r\nimport { Transform } from \"../geometry3d/Transform\";\r\nimport { Matrix4d } from \"./Matrix4d\";\r\n\r\n/**\r\n * Map4 carries two Matrix4d which are inverses of each other.\r\n * @public\r\n */\r\nexport class Map4d implements BeJSONFunctions {\r\n private _matrix0: Matrix4d;\r\n private _matrix1: Matrix4d;\r\n private constructor(matrix0: Matrix4d, matrix1: Matrix4d) {\r\n this._matrix0 = matrix0;\r\n this._matrix1 = matrix1;\r\n }\r\n /** Return a reference to (not copy of) the \"forward\" Matrix4d */\r\n public get transform0(): Matrix4d {\r\n return this._matrix0;\r\n }\r\n /** Return a reference to (not copy of) the \"reverse\" Matrix4d */\r\n public get transform1(): Matrix4d {\r\n return this._matrix1;\r\n }\r\n /** Create a Map4d, capturing the references to the two matrices. */\r\n public static createRefs(matrix0: Matrix4d, matrix1: Matrix4d) {\r\n return new Map4d(matrix0, matrix1);\r\n }\r\n /** Create an identity map. */\r\n public static createIdentity(): Map4d {\r\n return new Map4d(Matrix4d.createIdentity(), Matrix4d.createIdentity());\r\n }\r\n /**\r\n * Create a Map4d with given transform pair.\r\n * @returns undefined if the transforms are not inverses of each other.\r\n */\r\n public static createTransform(transform0: Transform, transform1?: Transform): Map4d | undefined {\r\n if (transform1 === undefined) {\r\n transform1 = transform0.inverse();\r\n if (transform1 === undefined)\r\n return undefined;\r\n } else {\r\n const product = transform0.multiplyTransformTransform(transform1);\r\n if (!product.isIdentity)\r\n return undefined;\r\n }\r\n return new Map4d(Matrix4d.createTransform(transform0), Matrix4d.createTransform(transform1));\r\n }\r\n /**\r\n * Create a mapping the scales and translates (no rotation) between boxes.\r\n * @param lowA low point of box A\r\n * @param highA high point of box A\r\n * @param lowB low point of box B\r\n * @param highB high point of box B\r\n */\r\n public static createBoxMap(\r\n lowA: Point3d, highA: Point3d, lowB: Point3d, highB: Point3d, result?: Map4d,\r\n ): Map4d | undefined {\r\n const t0 = Matrix4d.createBoxToBox(lowA, highA, lowB, highB, result ? result.transform0 : undefined);\r\n const t1 = Matrix4d.createBoxToBox(lowB, highB, lowA, highA, result ? result.transform1 : undefined);\r\n if (t0 && t1) {\r\n if (result)\r\n return result;\r\n return new Map4d(t0, t1);\r\n }\r\n return undefined;\r\n }\r\n /** Copy contents from another Map4d */\r\n public setFrom(other: Map4d) {\r\n this._matrix0.setFrom(other._matrix0);\r\n this._matrix1.setFrom(other._matrix1);\r\n }\r\n /** Return a clone of this Map4d */\r\n public clone(): Map4d {\r\n return new Map4d(this._matrix0.clone(), this._matrix1.clone());\r\n }\r\n /** Reinitialize this Map4d as an identity. */\r\n public setIdentity() {\r\n this._matrix0.setIdentity();\r\n this._matrix1.setIdentity();\r\n }\r\n /** Set this map4d from a json object that the two Matrix4d values as properties named matrix0 and matrix1 */\r\n public setFromJSON(json: any): void {\r\n if (json.matrix0 && json.matrix1) {\r\n this._matrix0.setFromJSON(json.matrix0);\r\n this._matrix1.setFromJSON(json.matrix1);\r\n } else\r\n this.setIdentity();\r\n }\r\n /** Create a map4d from a json object that the two Matrix4d values as properties named matrix0 and matrix1 */\r\n public static fromJSON(json?: any): Map4d {\r\n const result = new Map4d(Matrix4d.createIdentity(), Matrix4d.createIdentity());\r\n result.setFromJSON(json);\r\n return result;\r\n }\r\n /** Return a json object `{matrix0: value0, matrix1: value1}` */\r\n public toJSON(): any {\r\n return { matrix0: this._matrix0.toJSON(), matrix1: this._matrix1.toJSON() };\r\n }\r\n /** Test if both matrices are almost equal to those */\r\n public isAlmostEqual(other: Map4d) {\r\n return this._matrix0.isAlmostEqual(other._matrix0) && this._matrix1.isAlmostEqual(other._matrix1);\r\n }\r\n /**\r\n * Create a map between a frustum and world coordinates.\r\n * @param origin lower left of frustum\r\n * @param uVector Vector from lower left rear to lower right rear.\r\n * @param vVector Vector from lower left rear to upper left rear.\r\n * @param wVector Vector from lower left rear to lower left front, i.e. lower left rear towards eye.\r\n * @param fraction front size divided by rear size.\r\n */\r\n public static createVectorFrustum(\r\n origin: Point3d, uVector: Vector3d, vVector: Vector3d, wVector: Vector3d, fraction: number,\r\n ): Map4d | undefined {\r\n fraction = Math.max(fraction, 1.0e-8);\r\n const slabToWorld = Transform.createOriginAndMatrix(origin, Matrix3d.createColumns(uVector, vVector, wVector));\r\n const worldToSlab = slabToWorld.inverse();\r\n if (!worldToSlab)\r\n return undefined;\r\n const worldToSlabMap = new Map4d(Matrix4d.createTransform(worldToSlab), Matrix4d.createTransform(slabToWorld));\r\n const slabToNPCMap = new Map4d(\r\n Matrix4d.createRowValues(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, fraction, 0, 0, 0, fraction - 1.0, 1),\r\n Matrix4d.createRowValues(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1.0 / fraction, 0, 0, 0, (1.0 - fraction) / fraction, 1),\r\n );\r\n const result = slabToNPCMap.multiplyMapMap(worldToSlabMap);\r\n /*\r\n let numIdentity = 0;\r\n const productA = worldToSlabMap.matrix0.multiplyMatrixMatrix(worldToSlabMap.matrix1);\r\n if (productA.isIdentity())\r\n numIdentity++;\r\n const productB = slabToNPCMap.matrix0.multiplyMatrixMatrix(slabToNPCMap.matrix1);\r\n if (productB.isIdentity())\r\n numIdentity++;\r\n const product = result.matrix0.multiplyMatrixMatrix(result.matrix1);\r\n if (product.isIdentity())\r\n numIdentity++;\r\n if (numIdentity === 3)\r\n return result;\r\n */\r\n return result;\r\n }\r\n /**\r\n * Multiply this*other. The output matrices are\r\n * * output matrix0 = `this.matrix0 * other.matrix0`\r\n * * output matrix1 = 'other.matrix1 * this.matrix1`\r\n */\r\n public multiplyMapMap(other: Map4d): Map4d {\r\n return new Map4d(\r\n this._matrix0.multiplyMatrixMatrix(other._matrix0),\r\n other._matrix1.multiplyMatrixMatrix(this._matrix1),\r\n );\r\n }\r\n /** Exchange the two matrices of the map. */\r\n public reverseInPlace() {\r\n const temp = this._matrix0;\r\n this._matrix0 = this._matrix1;\r\n this._matrix1 = temp;\r\n }\r\n /**\r\n * Return a Map4d whose transform0 is\r\n * other.transform0 * this.transform0 * other.transform1\r\n */\r\n public sandwich0This1(other: Map4d): Map4d {\r\n return new Map4d(\r\n other._matrix0.multiplyMatrixMatrix(this._matrix0.multiplyMatrixMatrix(other._matrix1)),\r\n other._matrix0.multiplyMatrixMatrix(this._matrix1.multiplyMatrixMatrix(other._matrix1)),\r\n );\r\n }\r\n /**\r\n * Return a Map4d whose transform0 is\r\n * other.transform1 * this.transform0 * other.transform0\r\n */\r\n public sandwich1This0(other: Map4d): Map4d {\r\n return new Map4d(\r\n other._matrix1.multiplyMatrixMatrix(this._matrix0.multiplyMatrixMatrix(other._matrix0)),\r\n other._matrix1.multiplyMatrixMatrix(this._matrix1.multiplyMatrixMatrix(other._matrix0)),\r\n );\r\n }\r\n}\r\n"]}
|
|
1
|
+
{"version":3,"file":"Map4d.js","sourceRoot":"","sources":["../../../src/geometry4d/Map4d.ts"],"names":[],"mappings":";AAAA;;;+FAG+F;AAC/F;;GAEG;;;AAGH,qDAAkD;AAElD,uDAAoD;AACpD,yCAAsC;AAEtC;;;GAGG;AACH,MAAa,KAAK;IAGhB,YAAoB,OAAiB,EAAE,OAAiB;QACtD,IAAI,CAAC,QAAQ,GAAG,OAAO,CAAC;QACxB,IAAI,CAAC,QAAQ,GAAG,OAAO,CAAC;IAC1B,CAAC;IACD,iEAAiE;IACjE,IAAW,UAAU;QACnB,OAAO,IAAI,CAAC,QAAQ,CAAC;IACvB,CAAC;IACD,iEAAiE;IACjE,IAAW,UAAU;QACnB,OAAO,IAAI,CAAC,QAAQ,CAAC;IACvB,CAAC;IACD,oEAAoE;IAC7D,MAAM,CAAC,UAAU,CAAC,OAAiB,EAAE,OAAiB;QAC3D,OAAO,IAAI,KAAK,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;IACrC,CAAC;IACD,8BAA8B;IACvB,MAAM,CAAC,cAAc;QAC1B,OAAO,IAAI,KAAK,CAAC,mBAAQ,CAAC,cAAc,EAAE,EAAE,mBAAQ,CAAC,cAAc,EAAE,CAAC,CAAC;IACzE,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,eAAe,CAAC,UAAqB,EAAE,UAAsB;QACzE,IAAI,UAAU,KAAK,SAAS,EAAE,CAAC;YAC7B,UAAU,GAAG,UAAU,CAAC,OAAO,EAAE,CAAC;YAClC,IAAI,UAAU,KAAK,SAAS;gBAC1B,OAAO,SAAS,CAAC;QACrB,CAAC;aAAM,CAAC;YACN,MAAM,OAAO,GAAG,UAAU,CAAC,0BAA0B,CAAC,UAAU,CAAC,CAAC;YAClE,IAAI,CAAC,OAAO,CAAC,UAAU;gBACrB,OAAO,SAAS,CAAC;QACrB,CAAC;QACD,OAAO,IAAI,KAAK,CAAC,mBAAQ,CAAC,eAAe,CAAC,UAAU,CAAC,EAAE,mBAAQ,CAAC,eAAe,CAAC,UAAU,CAAC,CAAC,CAAC;IAC/F,CAAC;IACD;;;;;;OAMG;IACI,MAAM,CAAC,YAAY,CACxB,IAAa,EAAE,KAAc,EAAE,IAAa,EAAE,KAAc,EAAE,MAAc;QAE5E,MAAM,EAAE,GAAG,mBAAQ,CAAC,cAAc,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,UAAU,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QACrG,MAAM,EAAE,GAAG,mBAAQ,CAAC,cAAc,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,UAAU,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QACrG,IAAI,EAAE,IAAI,EAAE,EAAE,CAAC;YACb,IAAI,MAAM;gBACR,OAAO,MAAM,CAAC;YAChB,OAAO,IAAI,KAAK,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;QAC3B,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,uCAAuC;IAChC,OAAO,CAAC,KAAY;QACzB,IAAI,CAAC,QAAQ,CAAC,OAAO,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC;QACtC,IAAI,CAAC,QAAQ,CAAC,OAAO,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC;IACxC,CAAC;IACD,mCAAmC;IAC5B,KAAK;QACV,OAAO,IAAI,KAAK,CAAC,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,EAAE,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,CAAC,CAAC;IACjE,CAAC;IACD,8CAA8C;IACvC,WAAW;QAChB,IAAI,CAAC,QAAQ,CAAC,WAAW,EAAE,CAAC;QAC5B,IAAI,CAAC,QAAQ,CAAC,WAAW,EAAE,CAAC;IAC9B,CAAC;IACD,6GAA6G;IACtG,WAAW,CAAC,IAAS;QAC1B,IAAI,IAAI,CAAC,OAAO,IAAI,IAAI,CAAC,OAAO,EAAE,CAAC;YACjC,IAAI,CAAC,QAAQ,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACxC,IAAI,CAAC,QAAQ,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;QAC1C,CAAC;;YACC,IAAI,CAAC,WAAW,EAAE,CAAC;IACvB,CAAC;IACD,6GAA6G;IACtG,MAAM,CAAC,QAAQ,CAAC,IAAU;QAC/B,MAAM,MAAM,GAAG,IAAI,KAAK,CAAC,mBAAQ,CAAC,cAAc,EAAE,EAAE,mBAAQ,CAAC,cAAc,EAAE,CAAC,CAAC;QAC/E,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC;QACzB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,gEAAgE;IACzD,MAAM;QACX,OAAO,EAAE,OAAO,EAAE,IAAI,CAAC,QAAQ,CAAC,MAAM,EAAE,EAAE,OAAO,EAAE,IAAI,CAAC,QAAQ,CAAC,MAAM,EAAE,EAAE,CAAC;IAC9E,CAAC;IACD,sDAAsD;IAC/C,aAAa,CAAC,KAAY;QAC/B,OAAO,IAAI,CAAC,QAAQ,CAAC,aAAa,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,IAAI,CAAC,QAAQ,CAAC,aAAa,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC;IACpG,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,mBAAmB,CAC/B,MAAe,EAAE,OAAiB,EAAE,OAAiB,EAAE,OAAiB,EAAE,QAAgB;QAE1F,QAAQ,GAAG,IAAI,CAAC,GAAG,CAAC,QAAQ,EAAE,MAAM,CAAC,CAAC;QACtC,MAAM,WAAW,GAAG,qBAAS,CAAC,qBAAqB,CAAC,MAAM,EAAE,mBAAQ,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,CAAC;QAC/G,MAAM,WAAW,GAAG,WAAW,CAAC,OAAO,EAAE,CAAC;QAC1C,IAAI,CAAC,WAAW;YACd,OAAO,SAAS,CAAC;QACnB,MAAM,cAAc,GAAG,IAAI,KAAK,CAAC,mBAAQ,CAAC,eAAe,CAAC,WAAW,CAAC,EAAE,mBAAQ,CAAC,eAAe,CAAC,WAAW,CAAC,CAAC,CAAC;QAC/G,MAAM,YAAY,GAAG,IAAI,KAAK,CAC5B,mBAAQ,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,GAAG,GAAG,EAAE,CAAC,CAAC,EAC5F,mBAAQ,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,GAAG,GAAG,QAAQ,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,GAAG,GAAG,QAAQ,CAAC,GAAG,QAAQ,EAAE,CAAC,CAAC,CAChH,CAAC;QACF,MAAM,MAAM,GAAG,YAAY,CAAC,cAAc,CAAC,cAAc,CAAC,CAAC;QAC3D;;;;;;;;;;;;;YAaI;QACJ,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,cAAc,CAAC,KAAY;QAChC,OAAO,IAAI,KAAK,CACd,IAAI,CAAC,QAAQ,CAAC,oBAAoB,CAAC,KAAK,CAAC,QAAQ,CAAC,EAClD,KAAK,CAAC,QAAQ,CAAC,oBAAoB,CAAC,IAAI,CAAC,QAAQ,CAAC,CACnD,CAAC;IACJ,CAAC;IACD,4CAA4C;IACrC,cAAc;QACnB,MAAM,IAAI,GAAG,IAAI,CAAC,QAAQ,CAAC;QAC3B,IAAI,CAAC,QAAQ,GAAG,IAAI,CAAC,QAAQ,CAAC;QAC9B,IAAI,CAAC,QAAQ,GAAG,IAAI,CAAC;IACvB,CAAC;IACD;;;OAGG;IACI,cAAc,CAAC,KAAY;QAChC,OAAO,IAAI,KAAK,CACd,KAAK,CAAC,QAAQ,CAAC,oBAAoB,CAAC,IAAI,CAAC,QAAQ,CAAC,oBAAoB,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,EACvF,KAAK,CAAC,QAAQ,CAAC,oBAAoB,CAAC,IAAI,CAAC,QAAQ,CAAC,oBAAoB,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,CACxF,CAAC;IACJ,CAAC;IACD;;;OAGG;IACI,cAAc,CAAC,KAAY;QAChC,OAAO,IAAI,KAAK,CACd,KAAK,CAAC,QAAQ,CAAC,oBAAoB,CAAC,IAAI,CAAC,QAAQ,CAAC,oBAAoB,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,EACvF,KAAK,CAAC,QAAQ,CAAC,oBAAoB,CAAC,IAAI,CAAC,QAAQ,CAAC,oBAAoB,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,CACxF,CAAC;IACJ,CAAC;CACF;AAzKD,sBAyKC","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n/** @packageDocumentation\r\n * @module Numerics\r\n */\r\n\r\nimport { BeJSONFunctions } from \"../Geometry\";\r\nimport { Matrix3d } from \"../geometry3d/Matrix3d\";\r\nimport { Point3d, Vector3d } from \"../geometry3d/Point3dVector3d\";\r\nimport { Transform } from \"../geometry3d/Transform\";\r\nimport { Matrix4d } from \"./Matrix4d\";\r\n\r\n/**\r\n * Map4 carries two Matrix4d which are inverses of each other.\r\n * @public\r\n */\r\nexport class Map4d implements BeJSONFunctions {\r\n private _matrix0: Matrix4d;\r\n private _matrix1: Matrix4d;\r\n private constructor(matrix0: Matrix4d, matrix1: Matrix4d) {\r\n this._matrix0 = matrix0;\r\n this._matrix1 = matrix1;\r\n }\r\n /** Return a reference to (not copy of) the \"forward\" Matrix4d */\r\n public get transform0(): Matrix4d {\r\n return this._matrix0;\r\n }\r\n /** Return a reference to (not copy of) the \"reverse\" Matrix4d */\r\n public get transform1(): Matrix4d {\r\n return this._matrix1;\r\n }\r\n /** Create a Map4d, capturing the references to the two matrices. */\r\n public static createRefs(matrix0: Matrix4d, matrix1: Matrix4d) {\r\n return new Map4d(matrix0, matrix1);\r\n }\r\n /** Create an identity map. */\r\n public static createIdentity(): Map4d {\r\n return new Map4d(Matrix4d.createIdentity(), Matrix4d.createIdentity());\r\n }\r\n /**\r\n * Create a Map4d with given transform pair.\r\n * @returns undefined if the transforms are not inverses of each other.\r\n */\r\n public static createTransform(transform0: Transform, transform1?: Transform): Map4d | undefined {\r\n if (transform1 === undefined) {\r\n transform1 = transform0.inverse();\r\n if (transform1 === undefined)\r\n return undefined;\r\n } else {\r\n const product = transform0.multiplyTransformTransform(transform1);\r\n if (!product.isIdentity)\r\n return undefined;\r\n }\r\n return new Map4d(Matrix4d.createTransform(transform0), Matrix4d.createTransform(transform1));\r\n }\r\n /**\r\n * Create a mapping the scales and translates (no rotation) between boxes.\r\n * @param lowA low point of box A\r\n * @param highA high point of box A\r\n * @param lowB low point of box B\r\n * @param highB high point of box B\r\n */\r\n public static createBoxMap(\r\n lowA: Point3d, highA: Point3d, lowB: Point3d, highB: Point3d, result?: Map4d,\r\n ): Map4d | undefined {\r\n const t0 = Matrix4d.createBoxToBox(lowA, highA, lowB, highB, result ? result.transform0 : undefined);\r\n const t1 = Matrix4d.createBoxToBox(lowB, highB, lowA, highA, result ? result.transform1 : undefined);\r\n if (t0 && t1) {\r\n if (result)\r\n return result;\r\n return new Map4d(t0, t1);\r\n }\r\n return undefined;\r\n }\r\n /** Copy contents from another Map4d */\r\n public setFrom(other: Map4d) {\r\n this._matrix0.setFrom(other._matrix0);\r\n this._matrix1.setFrom(other._matrix1);\r\n }\r\n /** Return a clone of this Map4d */\r\n public clone(): Map4d {\r\n return new Map4d(this._matrix0.clone(), this._matrix1.clone());\r\n }\r\n /** Reinitialize this Map4d as an identity. */\r\n public setIdentity() {\r\n this._matrix0.setIdentity();\r\n this._matrix1.setIdentity();\r\n }\r\n /** Set this map4d from a json object that the two Matrix4d values as properties named matrix0 and matrix1 */\r\n public setFromJSON(json: any): void {\r\n if (json.matrix0 && json.matrix1) {\r\n this._matrix0.setFromJSON(json.matrix0);\r\n this._matrix1.setFromJSON(json.matrix1);\r\n } else\r\n this.setIdentity();\r\n }\r\n /** Create a map4d from a json object that the two Matrix4d values as properties named matrix0 and matrix1 */\r\n public static fromJSON(json?: any): Map4d {\r\n const result = new Map4d(Matrix4d.createIdentity(), Matrix4d.createIdentity());\r\n result.setFromJSON(json);\r\n return result;\r\n }\r\n /** Return a json object `{matrix0: value0, matrix1: value1}` */\r\n public toJSON(): any {\r\n return { matrix0: this._matrix0.toJSON(), matrix1: this._matrix1.toJSON() };\r\n }\r\n /** Test if both matrices are almost equal to those */\r\n public isAlmostEqual(other: Map4d) {\r\n return this._matrix0.isAlmostEqual(other._matrix0) && this._matrix1.isAlmostEqual(other._matrix1);\r\n }\r\n /**\r\n * Create a world to NPC map that maps between world coordinates and the given frustum.\r\n * @param origin lower left rear of frustum\r\n * @param uVector Vector from origin to lower right rear.\r\n * @param vVector Vector from origin to upper left rear.\r\n * @param wVector Vector from origin to lower left front, i.e. origin towards eye.\r\n * @param fraction front size divided by rear size.\r\n */\r\n public static createVectorFrustum(\r\n origin: Point3d, uVector: Vector3d, vVector: Vector3d, wVector: Vector3d, fraction: number,\r\n ): Map4d | undefined {\r\n fraction = Math.max(fraction, 1.0e-8);\r\n const slabToWorld = Transform.createOriginAndMatrix(origin, Matrix3d.createColumns(uVector, vVector, wVector));\r\n const worldToSlab = slabToWorld.inverse();\r\n if (!worldToSlab)\r\n return undefined;\r\n const worldToSlabMap = new Map4d(Matrix4d.createTransform(worldToSlab), Matrix4d.createTransform(slabToWorld));\r\n const slabToNPCMap = new Map4d(\r\n Matrix4d.createRowValues(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, fraction, 0, 0, 0, fraction - 1.0, 1),\r\n Matrix4d.createRowValues(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1.0 / fraction, 0, 0, 0, (1.0 - fraction) / fraction, 1),\r\n );\r\n const result = slabToNPCMap.multiplyMapMap(worldToSlabMap);\r\n /*\r\n let numIdentity = 0;\r\n const productA = worldToSlabMap.matrix0.multiplyMatrixMatrix(worldToSlabMap.matrix1);\r\n if (productA.isIdentity())\r\n numIdentity++;\r\n const productB = slabToNPCMap.matrix0.multiplyMatrixMatrix(slabToNPCMap.matrix1);\r\n if (productB.isIdentity())\r\n numIdentity++;\r\n const product = result.matrix0.multiplyMatrixMatrix(result.matrix1);\r\n if (product.isIdentity())\r\n numIdentity++;\r\n if (numIdentity === 3)\r\n return result;\r\n */\r\n return result;\r\n }\r\n /**\r\n * Multiply this*other. The output matrices are\r\n * * output matrix0 = `this.matrix0 * other.matrix0`\r\n * * output matrix1 = 'other.matrix1 * this.matrix1`\r\n */\r\n public multiplyMapMap(other: Map4d): Map4d {\r\n return new Map4d(\r\n this._matrix0.multiplyMatrixMatrix(other._matrix0),\r\n other._matrix1.multiplyMatrixMatrix(this._matrix1),\r\n );\r\n }\r\n /** Exchange the two matrices of the map. */\r\n public reverseInPlace() {\r\n const temp = this._matrix0;\r\n this._matrix0 = this._matrix1;\r\n this._matrix1 = temp;\r\n }\r\n /**\r\n * Return a Map4d whose transform0 is\r\n * other.transform0 * this.transform0 * other.transform1\r\n */\r\n public sandwich0This1(other: Map4d): Map4d {\r\n return new Map4d(\r\n other._matrix0.multiplyMatrixMatrix(this._matrix0.multiplyMatrixMatrix(other._matrix1)),\r\n other._matrix0.multiplyMatrixMatrix(this._matrix1.multiplyMatrixMatrix(other._matrix1)),\r\n );\r\n }\r\n /**\r\n * Return a Map4d whose transform0 is\r\n * other.transform1 * this.transform0 * other.transform0\r\n */\r\n public sandwich1This0(other: Map4d): Map4d {\r\n return new Map4d(\r\n other._matrix1.multiplyMatrixMatrix(this._matrix0.multiplyMatrixMatrix(other._matrix0)),\r\n other._matrix1.multiplyMatrixMatrix(this._matrix1.multiplyMatrixMatrix(other._matrix0)),\r\n );\r\n }\r\n}\r\n"]}
|
|
@@ -23,7 +23,7 @@ export type Matrix4dProps = Point4dProps[];
|
|
|
23
23
|
* * indices 8,9,10,11 are the "z row" They may be called the zx,zy,zz,zw entries
|
|
24
24
|
* * indices 12,13,14,15 are the "w row". They may be called the wx,wy,wz,ww entries
|
|
25
25
|
* * If "w row" contains numeric values 0,0,0,1, the Matrix4d is equivalent to a Transform with
|
|
26
|
-
* * The upper
|
|
26
|
+
* * The upper left 3x3 matrix (entries 0,1,2,4,5,6,8,9,10) are the 3x3 matrix part of the transform
|
|
27
27
|
* * The far right column entries xw,yw,zw are the "origin" (sometimes called "translation") part of the transform.
|
|
28
28
|
* @public
|
|
29
29
|
*/
|
|
@@ -73,7 +73,7 @@ export declare class Matrix4d implements BeJSONFunctions {
|
|
|
73
73
|
*/
|
|
74
74
|
static createTranslationAndScaleXYZ(tx: number, ty: number, tz: number, scaleX: number, scaleY: number, scaleZ: number, result?: Matrix4d): Matrix4d;
|
|
75
75
|
/**
|
|
76
|
-
* Create a mapping
|
|
76
|
+
* Create a mapping that scales and translates (no rotation) from box A to box B
|
|
77
77
|
* @param lowA low point of box A
|
|
78
78
|
* @param highA high point of box A
|
|
79
79
|
* @param lowB low point of box B
|
|
@@ -205,7 +205,7 @@ export declare class Matrix4d implements BeJSONFunctions {
|
|
|
205
205
|
multiplyPoint3dQuietNormalize(point: XYAndZ, result?: Point3d): Point3d;
|
|
206
206
|
/** multiply each matrix * points[i]. This produces a weighted xyzw.
|
|
207
207
|
* Immediately renormalize back to xyz and replace the original point.
|
|
208
|
-
* If zero weight appears in the result (i.e. input is on eyeplane)leave the mapped xyz untouched.
|
|
208
|
+
* If zero weight appears in the result (i.e. input is on eyeplane) leave the mapped xyz untouched.
|
|
209
209
|
*/
|
|
210
210
|
multiplyPoint3dArrayQuietNormalize(points: Point3d[]): void;
|
|
211
211
|
/**
|
|
@@ -255,7 +255,7 @@ export declare class Matrix4d implements BeJSONFunctions {
|
|
|
255
255
|
*/
|
|
256
256
|
addScaledOuterProductInPlace(vectorU: Point4d, vectorV: Point4d, scale: number): void;
|
|
257
257
|
/**
|
|
258
|
-
*
|
|
258
|
+
* Add (in place) scale*A*B*AT where
|
|
259
259
|
* * A is a pure translation with final column [x,y,z,1]
|
|
260
260
|
* * B is the given `matrixB`
|
|
261
261
|
* * AT is the transpose of A.
|
|
@@ -272,12 +272,9 @@ export declare class Matrix4d implements BeJSONFunctions {
|
|
|
272
272
|
* * A is a pure translation with final column [x,y,z,1]
|
|
273
273
|
* * this is this matrix.
|
|
274
274
|
* * AT is the transpose of A.
|
|
275
|
-
* * scale is a multiplier.
|
|
276
|
-
* @param matrixB the middle matrix.
|
|
277
275
|
* @param ax x part of translation
|
|
278
276
|
* @param ay y part of translation
|
|
279
277
|
* @param az z part of translation
|
|
280
|
-
* @param scale scale factor for entire product
|
|
281
278
|
*/
|
|
282
279
|
multiplyTranslationSandwichInPlace(ax: number, ay: number, az: number): void;
|
|
283
280
|
}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"Matrix4d.d.ts","sourceRoot":"","sources":["../../../src/geometry4d/Matrix4d.ts"],"names":[],"mappings":"AAIA;;GAEG;AAEH,OAAO,EAAE,eAAe,EAAY,MAAM,aAAa,CAAC;AACxD,OAAO,EAAE,QAAQ,EAAE,MAAM,wBAAwB,CAAC;AAClD,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,GAAG,EAAE,MAAM,+BAA+B,CAAC;AACvE,OAAO,EAAE,SAAS,EAAE,MAAM,yBAAyB,CAAC;AACpD,OAAO,EAAE,MAAM,EAAE,MAAM,wBAAwB,CAAC;AAChD,OAAO,EAAE,OAAO,EAAE,YAAY,EAAE,MAAM,WAAW,CAAC;AAElD;;;GAGG;AACH,MAAM,MAAM,aAAa,GAAG,YAAY,EAAE,CAAC;AAE3C;;;;;;;;;;;;;;GAcG;AACH,qBAAa,QAAS,YAAW,eAAe;IAC9C,OAAO,CAAC,MAAM,CAAe;IAC7B,OAAO;IACP,uCAAuC;IAChC,OAAO,CAAC,KAAK,EAAE,QAAQ,GAAG,IAAI;IAIrC,2BAA2B;IACpB,KAAK,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IASzC,mCAAmC;IAC5B,OAAO,IAAI,IAAI;IAItB,uBAAuB;IAChB,WAAW,IAAI,IAAI;IAK1B,OAAO,CAAC,MAAM,CAAC,MAAM;IAMrB,uBAAuB;IAChB,UAAU,CAAC,GAAG,GAAE,MAAgB,GAAG,OAAO;IAMjD,2CAA2C;WAC7B,UAAU,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAOrD,+DAA+D;WACjD,eAAe,CAAC,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAoB1Q,8EAA8E;WAChE,UAAU,CAAC,IAAI,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAOjH;;;;OAIG;IACI,mBAAmB,CAAC,MAAM,EAAE,GAAG,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ;IAkB/F,oEAAoE;WACtD,eAAe,CAAC,MAAM,EAAE,SAAS,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAK7E,iCAAiC;WACnB,cAAc,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAQzD,kFAAkF;WACpE,oBAAoB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAYhG,mDAAmD;IAC5C,UAAU,CAAC,OAAO,EAAE,QAAQ,EAAE,KAAK,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAWhF;;;;;;;;;OASG;WACW,4BAA4B,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAG3J;;;;;;OAMG;WACW,cAAc,CAAC,IAAI,EAAE,OAAO,EAAE,KAAK,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,KAAK,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ,GAAG,SAAS;IAenI,kFAAkF;IAC3E,WAAW,CAAC,IAAI,CAAC,EAAE,aAAa;IAUvC;;;OAGG;IACI,OAAO,CAAC,KAAK,EAAE,QAAQ,GAAG,MAAM;IAMvC;;OAEG;IACI,MAAM,IAAI,MAAM;IAMvB,0CAA0C;IACnC,aAAa,CAAC,KAAK,EAAE,QAAQ,GAAG,OAAO;IAG9C,oDAAoD;IAC7C,YAAY,CAAC,KAAK,EAAE,QAAQ,GAAG,OAAO;IAC7C;;OAEG;IACI,MAAM,IAAI,aAAa;IAQ9B,qFAAqF;WACvE,QAAQ,CAAC,IAAI,CAAC,EAAE,aAAa;IAK3C;;;;;;;;;;;OAWG;IACI,eAAe,CAAC,EAAE,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAG3E,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB;;OAEG;IACH,IAAW,cAAc,IAAI,OAAO,CAKnC;IACD;;OAEG;IACI,QAAQ,IAAI,OAAO;IAC1B,iDAAiD;IAC1C,MAAM,IAAI,MAAM;IACvB,wDAAwD;IACjD,UAAU,IAAI,QAAQ;IAG7B;;;OAGG;IACH,IAAW,WAAW,IAAI,SAAS,GAAG,SAAS,CAI9C;IACD,6BAA6B;IACtB,oBAAoB,CAAC,KAAK,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAYzE,wCAAwC;IACjC,6BAA6B,CAAC,KAAK,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAalF,yCAAyC;IAClC,6BAA6B,CAAC,KAAK,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAalF,kCAAkC;IAC3B,eAAe,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAGnD,8HAA8H;IACvH,YAAY,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAI1F;;OAEG;IACI,kCAAkC,CAAC,IAAI,EAAE,YAAY;IAc5D,wHAAwH;IACjH,eAAe,CAAC,EAAE,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAGxE,wIAAwI;IACjI,oBAAoB,CAAC,GAAG,EAAE,MAAM,EAAE,EAAE,OAAO,EAAE,OAAO,EAAE,EAAE,CAAC,GAAE,MAAY,GAAG,IAAI;IAGrF,uHAAuH;IAChH,qBAAqB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAInG;OACG;IACI,YAAY,CAAC,QAAQ,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,WAAW,EAAE,MAAM,GAAG,MAAM;IAQnF;OACG;IACI,UAAU,CAAC,QAAQ,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,GAAG,MAAM;IAQvF;OACG;IACI,SAAS,CAAC,YAAY,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,aAAa,EAAE,MAAM,GAAG,MAAM;IAQtF;OACG;IACI,eAAe,CAAC,eAAe,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,gBAAgB,EAAE,MAAM,GAAG,MAAM;IAQlG;OACG;IACI,YAAY,CAAC,eAAe,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,aAAa,EAAE,MAAM,GAAG,MAAM;IAQ5F;OACG;IACI,IAAI,CAAC,QAAQ,EAAE,MAAM,EAAE,WAAW,EAAE,MAAM,GAAG,MAAM;IAI1D;OACG;IACI,OAAO,CAAC,QAAQ,EAAE,MAAM,EAAE,WAAW,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM;IAGnE;;OAEG;IACI,4BAA4B,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAc1G,uGAAuG;IAChG,oCAAoC,CAAC,GAAG,EAAE,OAAO,EAAE,EAAE,OAAO,EAAE,OAAO,EAAE,GAAG,IAAI;IAGrF,sEAAsE;IAC/D,eAAe,CAAC,KAAK,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAGjE,sEAAsE;IAC/D,wBAAwB,CAAC,KAAK,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAG1E;;;OAGG;IACI,6BAA6B,CAAC,KAAK,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAG9E;;;OAGG;IACI,kCAAkC,CAAC,MAAM,EAAE,OAAO,EAAE;IAG3D;;;;;;OAMG;IACI,iBAAiB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM;IAkBnE,oDAAoD;IAC7C,gBAAgB,CAAC,KAAK,EAAE,QAAQ,EAAE,KAAK,GAAE,MAAY;IAI5D;;;;;;OAMG;IACI,YAAY,CAAC,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,gBAAgB,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM;IAQjG,4CAA4C;IACrC,WAAW,IAAI,MAAM;IAQ5B;;;;;OAKG;IACI,aAAa,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ,GAAG,SAAS;IAqD7D;;OAEG;IACI,SAAS,CAAC,CAAC,CAAC,EAAE,CAAC,KAAK,EAAE,MAAM,KAAK,GAAG,GAAG,GAAG;IAcjD;;;;;;OAMG;IACI,gBAAgB,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM;IAUtE;;;;;OAKG;IACI,4BAA4B,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,KAAK,EAAE,MAAM;IAyBrF;;;;;;;;;;;OAWG;IACI,6BAA6B,CAAC,OAAO,EAAE,QAAQ,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM;IAiCzG
|
|
1
|
+
{"version":3,"file":"Matrix4d.d.ts","sourceRoot":"","sources":["../../../src/geometry4d/Matrix4d.ts"],"names":[],"mappings":"AAIA;;GAEG;AAEH,OAAO,EAAE,eAAe,EAAY,MAAM,aAAa,CAAC;AACxD,OAAO,EAAE,QAAQ,EAAE,MAAM,wBAAwB,CAAC;AAClD,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,GAAG,EAAE,MAAM,+BAA+B,CAAC;AACvE,OAAO,EAAE,SAAS,EAAE,MAAM,yBAAyB,CAAC;AACpD,OAAO,EAAE,MAAM,EAAE,MAAM,wBAAwB,CAAC;AAChD,OAAO,EAAE,OAAO,EAAE,YAAY,EAAE,MAAM,WAAW,CAAC;AAElD;;;GAGG;AACH,MAAM,MAAM,aAAa,GAAG,YAAY,EAAE,CAAC;AAE3C;;;;;;;;;;;;;;GAcG;AACH,qBAAa,QAAS,YAAW,eAAe;IAC9C,OAAO,CAAC,MAAM,CAAe;IAC7B,OAAO;IACP,uCAAuC;IAChC,OAAO,CAAC,KAAK,EAAE,QAAQ,GAAG,IAAI;IAIrC,2BAA2B;IACpB,KAAK,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IASzC,mCAAmC;IAC5B,OAAO,IAAI,IAAI;IAItB,uBAAuB;IAChB,WAAW,IAAI,IAAI;IAK1B,OAAO,CAAC,MAAM,CAAC,MAAM;IAMrB,uBAAuB;IAChB,UAAU,CAAC,GAAG,GAAE,MAAgB,GAAG,OAAO;IAMjD,2CAA2C;WAC7B,UAAU,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAOrD,+DAA+D;WACjD,eAAe,CAAC,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAoB1Q,8EAA8E;WAChE,UAAU,CAAC,IAAI,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAOjH;;;;OAIG;IACI,mBAAmB,CAAC,MAAM,EAAE,GAAG,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ;IAkB/F,oEAAoE;WACtD,eAAe,CAAC,MAAM,EAAE,SAAS,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAK7E,iCAAiC;WACnB,cAAc,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAQzD,kFAAkF;WACpE,oBAAoB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAYhG,mDAAmD;IAC5C,UAAU,CAAC,OAAO,EAAE,QAAQ,EAAE,KAAK,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAWhF;;;;;;;;;OASG;WACW,4BAA4B,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAG3J;;;;;;OAMG;WACW,cAAc,CAAC,IAAI,EAAE,OAAO,EAAE,KAAK,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,KAAK,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ,GAAG,SAAS;IAenI,kFAAkF;IAC3E,WAAW,CAAC,IAAI,CAAC,EAAE,aAAa;IAUvC;;;OAGG;IACI,OAAO,CAAC,KAAK,EAAE,QAAQ,GAAG,MAAM;IAMvC;;OAEG;IACI,MAAM,IAAI,MAAM;IAMvB,0CAA0C;IACnC,aAAa,CAAC,KAAK,EAAE,QAAQ,GAAG,OAAO;IAG9C,oDAAoD;IAC7C,YAAY,CAAC,KAAK,EAAE,QAAQ,GAAG,OAAO;IAC7C;;OAEG;IACI,MAAM,IAAI,aAAa;IAQ9B,qFAAqF;WACvE,QAAQ,CAAC,IAAI,CAAC,EAAE,aAAa;IAK3C;;;;;;;;;;;OAWG;IACI,eAAe,CAAC,EAAE,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAG3E,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB;;OAEG;IACH,IAAW,cAAc,IAAI,OAAO,CAKnC;IACD;;OAEG;IACI,QAAQ,IAAI,OAAO;IAC1B,iDAAiD;IAC1C,MAAM,IAAI,MAAM;IACvB,wDAAwD;IACjD,UAAU,IAAI,QAAQ;IAG7B;;;OAGG;IACH,IAAW,WAAW,IAAI,SAAS,GAAG,SAAS,CAI9C;IACD,6BAA6B;IACtB,oBAAoB,CAAC,KAAK,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAYzE,wCAAwC;IACjC,6BAA6B,CAAC,KAAK,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAalF,yCAAyC;IAClC,6BAA6B,CAAC,KAAK,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAalF,kCAAkC;IAC3B,eAAe,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAGnD,8HAA8H;IACvH,YAAY,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAI1F;;OAEG;IACI,kCAAkC,CAAC,IAAI,EAAE,YAAY;IAc5D,wHAAwH;IACjH,eAAe,CAAC,EAAE,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAGxE,wIAAwI;IACjI,oBAAoB,CAAC,GAAG,EAAE,MAAM,EAAE,EAAE,OAAO,EAAE,OAAO,EAAE,EAAE,CAAC,GAAE,MAAY,GAAG,IAAI;IAGrF,uHAAuH;IAChH,qBAAqB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAInG;OACG;IACI,YAAY,CAAC,QAAQ,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,WAAW,EAAE,MAAM,GAAG,MAAM;IAQnF;OACG;IACI,UAAU,CAAC,QAAQ,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,GAAG,MAAM;IAQvF;OACG;IACI,SAAS,CAAC,YAAY,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,aAAa,EAAE,MAAM,GAAG,MAAM;IAQtF;OACG;IACI,eAAe,CAAC,eAAe,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,gBAAgB,EAAE,MAAM,GAAG,MAAM;IAQlG;OACG;IACI,YAAY,CAAC,eAAe,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,aAAa,EAAE,MAAM,GAAG,MAAM;IAQ5F;OACG;IACI,IAAI,CAAC,QAAQ,EAAE,MAAM,EAAE,WAAW,EAAE,MAAM,GAAG,MAAM;IAI1D;OACG;IACI,OAAO,CAAC,QAAQ,EAAE,MAAM,EAAE,WAAW,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM;IAGnE;;OAEG;IACI,4BAA4B,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAc1G,uGAAuG;IAChG,oCAAoC,CAAC,GAAG,EAAE,OAAO,EAAE,EAAE,OAAO,EAAE,OAAO,EAAE,GAAG,IAAI;IAGrF,sEAAsE;IAC/D,eAAe,CAAC,KAAK,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAGjE,sEAAsE;IAC/D,wBAAwB,CAAC,KAAK,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAG1E;;;OAGG;IACI,6BAA6B,CAAC,KAAK,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAG9E;;;OAGG;IACI,kCAAkC,CAAC,MAAM,EAAE,OAAO,EAAE;IAG3D;;;;;;OAMG;IACI,iBAAiB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM;IAkBnE,oDAAoD;IAC7C,gBAAgB,CAAC,KAAK,EAAE,QAAQ,EAAE,KAAK,GAAE,MAAY;IAI5D;;;;;;OAMG;IACI,YAAY,CAAC,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,gBAAgB,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM;IAQjG,4CAA4C;IACrC,WAAW,IAAI,MAAM;IAQ5B;;;;;OAKG;IACI,aAAa,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ,GAAG,SAAS;IAqD7D;;OAEG;IACI,SAAS,CAAC,CAAC,CAAC,EAAE,CAAC,KAAK,EAAE,MAAM,KAAK,GAAG,GAAG,GAAG;IAcjD;;;;;;OAMG;IACI,gBAAgB,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM;IAUtE;;;;;OAKG;IACI,4BAA4B,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,KAAK,EAAE,MAAM;IAyBrF;;;;;;;;;;;OAWG;IACI,6BAA6B,CAAC,OAAO,EAAE,QAAQ,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM;IAiCzG;;;;;;;;OAQG;IACI,kCAAkC,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM;CAiC7E"}
|
|
@@ -24,7 +24,7 @@ const Point4d_1 = require("./Point4d");
|
|
|
24
24
|
* * indices 8,9,10,11 are the "z row" They may be called the zx,zy,zz,zw entries
|
|
25
25
|
* * indices 12,13,14,15 are the "w row". They may be called the wx,wy,wz,ww entries
|
|
26
26
|
* * If "w row" contains numeric values 0,0,0,1, the Matrix4d is equivalent to a Transform with
|
|
27
|
-
* * The upper
|
|
27
|
+
* * The upper left 3x3 matrix (entries 0,1,2,4,5,6,8,9,10) are the 3x3 matrix part of the transform
|
|
28
28
|
* * The far right column entries xw,yw,zw are the "origin" (sometimes called "translation") part of the transform.
|
|
29
29
|
* @public
|
|
30
30
|
*/
|
|
@@ -177,7 +177,7 @@ class Matrix4d {
|
|
|
177
177
|
return Matrix4d.createRowValues(scaleX, 0, 0, tx, 0, scaleY, 0, ty, 0, 0, scaleZ, tz, 0, 0, 0, 1, result);
|
|
178
178
|
}
|
|
179
179
|
/**
|
|
180
|
-
* Create a mapping
|
|
180
|
+
* Create a mapping that scales and translates (no rotation) from box A to box B
|
|
181
181
|
* @param lowA low point of box A
|
|
182
182
|
* @param highA high point of box A
|
|
183
183
|
* @param lowB low point of box B
|
|
@@ -488,7 +488,7 @@ class Matrix4d {
|
|
|
488
488
|
}
|
|
489
489
|
/** multiply each matrix * points[i]. This produces a weighted xyzw.
|
|
490
490
|
* Immediately renormalize back to xyz and replace the original point.
|
|
491
|
-
* If zero weight appears in the result (i.e. input is on eyeplane)leave the mapped xyz untouched.
|
|
491
|
+
* If zero weight appears in the result (i.e. input is on eyeplane) leave the mapped xyz untouched.
|
|
492
492
|
*/
|
|
493
493
|
multiplyPoint3dArrayQuietNormalize(points) {
|
|
494
494
|
points.forEach((point) => this.multiplyXYZWQuietRenormalize(point.x, point.y, point.z, 1.0, point));
|
|
@@ -672,7 +672,7 @@ class Matrix4d {
|
|
|
672
672
|
this._coffs[15] += a * vectorV.w;
|
|
673
673
|
}
|
|
674
674
|
/**
|
|
675
|
-
*
|
|
675
|
+
* Add (in place) scale*A*B*AT where
|
|
676
676
|
* * A is a pure translation with final column [x,y,z,1]
|
|
677
677
|
* * B is the given `matrixB`
|
|
678
678
|
* * AT is the transpose of A.
|
|
@@ -717,12 +717,9 @@ class Matrix4d {
|
|
|
717
717
|
* * A is a pure translation with final column [x,y,z,1]
|
|
718
718
|
* * this is this matrix.
|
|
719
719
|
* * AT is the transpose of A.
|
|
720
|
-
* * scale is a multiplier.
|
|
721
|
-
* @param matrixB the middle matrix.
|
|
722
720
|
* @param ax x part of translation
|
|
723
721
|
* @param ay y part of translation
|
|
724
722
|
* @param az z part of translation
|
|
725
|
-
* @param scale scale factor for entire product
|
|
726
723
|
*/
|
|
727
724
|
multiplyTranslationSandwichInPlace(ax, ay, az) {
|
|
728
725
|
const bx = this._coffs[3];
|