@img/sharp-libvips-dev 1.2.1 → 1.2.2-rc.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/include/aom/aom_decoder.h +1 -1
- package/include/aom/aom_encoder.h +2 -0
- package/include/aom/aomcx.h +106 -25
- package/include/ffi.h +3 -3
- package/include/freetype2/freetype/config/ftconfig.h +1 -1
- package/include/freetype2/freetype/config/ftheader.h +1 -1
- package/include/freetype2/freetype/config/ftoption.h +37 -12
- package/include/freetype2/freetype/config/ftstdlib.h +1 -1
- package/include/freetype2/freetype/config/integer-types.h +29 -2
- package/include/freetype2/freetype/config/mac-support.h +1 -1
- package/include/freetype2/freetype/config/public-macros.h +3 -3
- package/include/freetype2/freetype/freetype.h +51 -47
- package/include/freetype2/freetype/ftadvanc.h +1 -1
- package/include/freetype2/freetype/ftbbox.h +1 -1
- package/include/freetype2/freetype/ftbdf.h +1 -1
- package/include/freetype2/freetype/ftbitmap.h +1 -1
- package/include/freetype2/freetype/ftbzip2.h +1 -1
- package/include/freetype2/freetype/ftcache.h +1 -1
- package/include/freetype2/freetype/ftcid.h +1 -1
- package/include/freetype2/freetype/ftcolor.h +13 -4
- package/include/freetype2/freetype/ftdriver.h +3 -3
- package/include/freetype2/freetype/fterrdef.h +1 -1
- package/include/freetype2/freetype/fterrors.h +1 -1
- package/include/freetype2/freetype/ftfntfmt.h +1 -1
- package/include/freetype2/freetype/ftgasp.h +1 -1
- package/include/freetype2/freetype/ftglyph.h +1 -1
- package/include/freetype2/freetype/ftgxval.h +1 -1
- package/include/freetype2/freetype/ftgzip.h +1 -1
- package/include/freetype2/freetype/ftimage.h +6 -2
- package/include/freetype2/freetype/ftincrem.h +1 -1
- package/include/freetype2/freetype/ftlcdfil.h +1 -1
- package/include/freetype2/freetype/ftlist.h +1 -1
- package/include/freetype2/freetype/ftlogging.h +184 -0
- package/include/freetype2/freetype/ftlzw.h +1 -1
- package/include/freetype2/freetype/ftmac.h +1 -1
- package/include/freetype2/freetype/ftmm.h +159 -103
- package/include/freetype2/freetype/ftmodapi.h +1 -1
- package/include/freetype2/freetype/ftmoderr.h +1 -1
- package/include/freetype2/freetype/ftotval.h +1 -1
- package/include/freetype2/freetype/ftoutln.h +1 -1
- package/include/freetype2/freetype/ftparams.h +1 -1
- package/include/freetype2/freetype/ftpfr.h +1 -1
- package/include/freetype2/freetype/ftrender.h +1 -1
- package/include/freetype2/freetype/ftsizes.h +1 -1
- package/include/freetype2/freetype/ftsnames.h +1 -1
- package/include/freetype2/freetype/ftstroke.h +1 -1
- package/include/freetype2/freetype/ftsynth.h +1 -1
- package/include/freetype2/freetype/ftsystem.h +1 -1
- package/include/freetype2/freetype/fttrigon.h +1 -1
- package/include/freetype2/freetype/fttypes.h +1 -1
- package/include/freetype2/freetype/ftwinfnt.h +2 -3
- package/include/freetype2/freetype/otsvg.h +1 -1
- package/include/freetype2/freetype/t1tables.h +1 -1
- package/include/freetype2/freetype/ttnameid.h +129 -129
- package/include/freetype2/freetype/tttables.h +8 -5
- package/include/freetype2/freetype/tttags.h +1 -1
- package/include/freetype2/ft2build.h +1 -1
- package/include/glib-2.0/gio/gdbuserror.h +9 -8
- package/include/glib-2.0/gio/ginetaddress.h +12 -0
- package/include/glib-2.0/gio/gioenums.h +9 -2
- package/include/glib-2.0/glib/gstring.h +2 -2
- package/include/glib-2.0/glib/gunicode.h +1 -1
- package/include/glib-2.0/gobject/glib-types.h +1 -1
- package/include/glib-2.0/gobject/gparam.h +1 -1
- package/include/glib-2.0/gobject/gvalue.h +78 -35
- package/include/harfbuzz/hb-script-list.h +12 -0
- package/include/harfbuzz/hb-version.h +3 -3
- package/include/hwy/abort.h +2 -19
- package/include/hwy/aligned_allocator.h +11 -7
- package/include/hwy/auto_tune.h +504 -0
- package/include/hwy/base.h +425 -104
- package/include/hwy/cache_control.h +16 -0
- package/include/hwy/detect_compiler_arch.h +32 -1
- package/include/hwy/detect_targets.h +251 -67
- package/include/hwy/foreach_target.h +35 -0
- package/include/hwy/highway.h +185 -76
- package/include/hwy/nanobenchmark.h +1 -19
- package/include/hwy/ops/arm_neon-inl.h +969 -458
- package/include/hwy/ops/arm_sve-inl.h +1137 -359
- package/include/hwy/ops/emu128-inl.h +97 -11
- package/include/hwy/ops/generic_ops-inl.h +1222 -34
- package/include/hwy/ops/loongarch_lasx-inl.h +4664 -0
- package/include/hwy/ops/loongarch_lsx-inl.h +5933 -0
- package/include/hwy/ops/ppc_vsx-inl.h +306 -126
- package/include/hwy/ops/rvv-inl.h +546 -51
- package/include/hwy/ops/scalar-inl.h +77 -22
- package/include/hwy/ops/set_macros-inl.h +138 -17
- package/include/hwy/ops/shared-inl.h +50 -10
- package/include/hwy/ops/wasm_128-inl.h +137 -92
- package/include/hwy/ops/x86_128-inl.h +773 -214
- package/include/hwy/ops/x86_256-inl.h +712 -255
- package/include/hwy/ops/x86_512-inl.h +429 -753
- package/include/hwy/ops/x86_avx3-inl.h +501 -0
- package/include/hwy/per_target.h +2 -1
- package/include/hwy/profiler.h +622 -486
- package/include/hwy/targets.h +62 -20
- package/include/hwy/timer-inl.h +8 -160
- package/include/hwy/timer.h +170 -3
- package/include/hwy/x86_cpuid.h +81 -0
- package/include/libheif/heif_cxx.h +25 -5
- package/include/libheif/heif_regions.h +5 -5
- package/include/libheif/heif_version.h +2 -2
- package/include/librsvg-2.0/librsvg/rsvg-version.h +3 -3
- package/include/libxml2/libxml/valid.h +0 -3
- package/include/libxml2/libxml/xmlerror.h +1 -1
- package/include/libxml2/libxml/xmlversion.h +4 -4
- package/include/pango-1.0/pango/pango-enum-types.h +3 -0
- package/include/pango-1.0/pango/pango-features.h +3 -3
- package/include/pango-1.0/pango/pango-font.h +30 -0
- package/include/pango-1.0/pango/pango-version-macros.h +26 -0
- package/include/vips/connection.h +4 -4
- package/include/vips/version.h +4 -4
- package/include/zlib.h +3 -3
- package/package.json +1 -1
- package/versions.json +13 -13
|
@@ -0,0 +1,504 @@
|
|
|
1
|
+
// Copyright 2025 Google LLC
|
|
2
|
+
// SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
//
|
|
4
|
+
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
// you may not use this file except in compliance with the License.
|
|
6
|
+
// You may obtain a copy of the License at
|
|
7
|
+
//
|
|
8
|
+
// http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
//
|
|
10
|
+
// Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
// See the License for the specific language governing permissions and
|
|
14
|
+
// limitations under the License.
|
|
15
|
+
|
|
16
|
+
#ifndef HIGHWAY_HWY_AUTO_TUNE_H_
|
|
17
|
+
#define HIGHWAY_HWY_AUTO_TUNE_H_
|
|
18
|
+
|
|
19
|
+
#include <stddef.h>
|
|
20
|
+
#include <stdint.h>
|
|
21
|
+
#include <string.h> // memmove
|
|
22
|
+
|
|
23
|
+
#include <cmath>
|
|
24
|
+
#include <vector>
|
|
25
|
+
|
|
26
|
+
#include "hwy/aligned_allocator.h" // Span
|
|
27
|
+
#include "hwy/base.h" // HWY_MIN
|
|
28
|
+
#include "hwy/contrib/sort/vqsort.h"
|
|
29
|
+
|
|
30
|
+
// Infrastructure for auto-tuning (choosing optimal parameters at runtime).
|
|
31
|
+
|
|
32
|
+
namespace hwy {
|
|
33
|
+
|
|
34
|
+
// O(1) storage to estimate the central tendency of hundreds of independent
|
|
35
|
+
// distributions (one per configuration). The number of samples per distribution
|
|
36
|
+
// (`kMinSamples`) varies from few to dozens. We support both by first storing
|
|
37
|
+
// values in a buffer, and when full, switching to online variance estimation.
|
|
38
|
+
// Modified from `hwy/stats.h`.
|
|
39
|
+
class CostDistribution {
|
|
40
|
+
public:
|
|
41
|
+
static constexpr size_t kMaxValues = 14; // for total size of 128 bytes
|
|
42
|
+
|
|
43
|
+
void Notify(const double x) {
|
|
44
|
+
if (HWY_UNLIKELY(x < 0.0)) {
|
|
45
|
+
HWY_WARN("Ignoring negative cost %f.", x);
|
|
46
|
+
return;
|
|
47
|
+
}
|
|
48
|
+
|
|
49
|
+
// Online phase after filling and warm-up.
|
|
50
|
+
if (HWY_LIKELY(IsOnline())) return OnlineNotify(x);
|
|
51
|
+
|
|
52
|
+
// Fill phase: store up to `kMaxValues` values.
|
|
53
|
+
values_[num_values_++] = x;
|
|
54
|
+
HWY_DASSERT(num_values_ <= kMaxValues);
|
|
55
|
+
if (HWY_UNLIKELY(num_values_ == kMaxValues)) {
|
|
56
|
+
WarmUpOnline();
|
|
57
|
+
HWY_DASSERT(IsOnline());
|
|
58
|
+
}
|
|
59
|
+
}
|
|
60
|
+
|
|
61
|
+
// Returns an estimate of the true cost, mitigating the impact of noise.
|
|
62
|
+
//
|
|
63
|
+
// Background and observations from time measurements in `thread_pool.h`:
|
|
64
|
+
// - We aim for O(1) storage because there may be hundreds of instances.
|
|
65
|
+
// - The mean is biased upwards by mostly additive noise: particularly
|
|
66
|
+
// interruptions such as context switches, but also contention.
|
|
67
|
+
// - The minimum is not a robust estimator because there are also "lucky
|
|
68
|
+
// shots" (1.2-1.6x lower values) where interruptions or contention happen
|
|
69
|
+
// to be low.
|
|
70
|
+
// - We want to preserve information about contention and a configuration's
|
|
71
|
+
// sensitivity to it. Otherwise, we are optimizing for the best-case, not
|
|
72
|
+
// the common case.
|
|
73
|
+
// - It is still important to minimize the influence of outliers, such as page
|
|
74
|
+
// faults, which can cause multiple times larger measurements.
|
|
75
|
+
// - Detecting outliers based only on the initial variance is too brittle. If
|
|
76
|
+
// the sample is narrow, measurements will fluctuate across runs because
|
|
77
|
+
// too many measurements are considered outliers. This would cause the
|
|
78
|
+
// 'best' configuration to vary.
|
|
79
|
+
//
|
|
80
|
+
// Approach:
|
|
81
|
+
// - Use Winsorization to reduce the impact of outliers, while preserving
|
|
82
|
+
// information on the central tendency.
|
|
83
|
+
// - Continually update the thresholds based on the online variance, with
|
|
84
|
+
// exponential smoothing for stability.
|
|
85
|
+
// - Trim the initial sample via MAD or skewness for a robust estimate of the
|
|
86
|
+
// variance.
|
|
87
|
+
double EstimateCost() {
|
|
88
|
+
if (!IsOnline()) {
|
|
89
|
+
WarmUpOnline();
|
|
90
|
+
HWY_DASSERT(IsOnline());
|
|
91
|
+
}
|
|
92
|
+
return Mean();
|
|
93
|
+
}
|
|
94
|
+
|
|
95
|
+
// Multiplex online state into values_ to allow higher `kMaxValues`.
|
|
96
|
+
// Public for inspection in tests. Do not use directly.
|
|
97
|
+
double& M1() { return values_[0]; } // Moments for variance.
|
|
98
|
+
double& M2() { return values_[1]; }
|
|
99
|
+
double& Mean() { return values_[2]; } // Exponential smoothing.
|
|
100
|
+
double& Stddev() { return values_[3]; }
|
|
101
|
+
double& Lower() { return values_[4]; }
|
|
102
|
+
double& Upper() { return values_[5]; }
|
|
103
|
+
|
|
104
|
+
private:
|
|
105
|
+
static double Median(double* to_sort, size_t n) {
|
|
106
|
+
HWY_DASSERT(n >= 2);
|
|
107
|
+
// F64 is supported everywhere except Armv7.
|
|
108
|
+
#if !HWY_ARCH_ARM_V7
|
|
109
|
+
VQSort(to_sort, n, SortAscending());
|
|
110
|
+
#else
|
|
111
|
+
// Values are known to be finite and non-negative, hence sorting as U64 is
|
|
112
|
+
// equivalent.
|
|
113
|
+
VQSort(reinterpret_cast<uint64_t*>(to_sort), n, SortAscending());
|
|
114
|
+
#endif
|
|
115
|
+
if (n & 1) return to_sort[n / 2];
|
|
116
|
+
// Even length: average of two middle elements.
|
|
117
|
+
return (to_sort[n / 2] + to_sort[n / 2 - 1]) * 0.5;
|
|
118
|
+
}
|
|
119
|
+
|
|
120
|
+
static double MAD(const double* values, size_t n, const double median) {
|
|
121
|
+
double abs_dev[kMaxValues];
|
|
122
|
+
for (size_t i = 0; i < n; ++i) {
|
|
123
|
+
abs_dev[i] = ScalarAbs(values[i] - median);
|
|
124
|
+
}
|
|
125
|
+
return Median(abs_dev, n);
|
|
126
|
+
}
|
|
127
|
+
|
|
128
|
+
// If `num_values_` is large enough, sorts and discards outliers: either via
|
|
129
|
+
// MAD, or if too many values are equal, by trimming according to skewness.
|
|
130
|
+
void RemoveOutliers() {
|
|
131
|
+
if (num_values_ < 3) return; // Not enough to discard two.
|
|
132
|
+
HWY_DASSERT(num_values_ <= kMaxValues);
|
|
133
|
+
|
|
134
|
+
// Given the noise level in `auto_tune_test`, it can happen that 1/4 of the
|
|
135
|
+
// sample is an outlier *in either direction*. Use median absolute
|
|
136
|
+
// deviation, which is robust to almost half of the sample being outliers.
|
|
137
|
+
const double median = Median(values_, num_values_); // sorts in-place.
|
|
138
|
+
const double mad = MAD(values_, num_values_, median);
|
|
139
|
+
// At least half the sample is equal.
|
|
140
|
+
if (mad == 0.0) {
|
|
141
|
+
// Estimate skewness to decide which side to trim more.
|
|
142
|
+
const double skewness =
|
|
143
|
+
(values_[num_values_ - 1] - median) - (median - values_[0]);
|
|
144
|
+
|
|
145
|
+
const size_t trim = HWY_MAX(num_values_ / 2, size_t{2});
|
|
146
|
+
const size_t left =
|
|
147
|
+
HWY_MAX(skewness < 0.0 ? trim * 3 / 4 : trim / 4, size_t{1});
|
|
148
|
+
num_values_ -= trim;
|
|
149
|
+
HWY_DASSERT(num_values_ >= 1);
|
|
150
|
+
memmove(values_, values_ + left, num_values_ * sizeof(values_[0]));
|
|
151
|
+
return;
|
|
152
|
+
}
|
|
153
|
+
|
|
154
|
+
const double upper = median + 5.0 * mad;
|
|
155
|
+
const double lower = median - 5.0 * mad;
|
|
156
|
+
size_t right = num_values_ - 1;
|
|
157
|
+
while (values_[right] > upper) --right;
|
|
158
|
+
// Nonzero MAD implies no more than half are equal, so we did not advance
|
|
159
|
+
// beyond the median.
|
|
160
|
+
HWY_DASSERT(right >= num_values_ / 2);
|
|
161
|
+
|
|
162
|
+
size_t left = 0;
|
|
163
|
+
while (left < right && values_[left] < lower) ++left;
|
|
164
|
+
HWY_DASSERT(left <= num_values_ / 2);
|
|
165
|
+
num_values_ = right - left + 1;
|
|
166
|
+
memmove(values_, values_ + left, num_values_ * sizeof(values_[0]));
|
|
167
|
+
}
|
|
168
|
+
|
|
169
|
+
double SampleMean() const {
|
|
170
|
+
// Only called in non-online phase, but buffer might not be full.
|
|
171
|
+
HWY_DASSERT(!IsOnline() && 0 != num_values_ && num_values_ <= kMaxValues);
|
|
172
|
+
double sum = 0.0;
|
|
173
|
+
for (size_t i = 0; i < num_values_; ++i) {
|
|
174
|
+
sum += values_[i];
|
|
175
|
+
}
|
|
176
|
+
return sum / static_cast<double>(num_values_);
|
|
177
|
+
}
|
|
178
|
+
|
|
179
|
+
// Unbiased estimator for population variance even for small `num_values_`.
|
|
180
|
+
double SampleVariance(double sample_mean) const {
|
|
181
|
+
HWY_DASSERT(sample_mean >= 0.0); // we checked costs are non-negative.
|
|
182
|
+
// Only called in non-online phase, but buffer might not be full.
|
|
183
|
+
HWY_DASSERT(!IsOnline() && 0 != num_values_ && num_values_ <= kMaxValues);
|
|
184
|
+
if (HWY_UNLIKELY(num_values_ == 1)) return 0.0; // prevent divide-by-zero.
|
|
185
|
+
double sum2 = 0.0;
|
|
186
|
+
for (size_t i = 0; i < num_values_; ++i) {
|
|
187
|
+
const double d = values_[i] - sample_mean;
|
|
188
|
+
sum2 += d * d;
|
|
189
|
+
}
|
|
190
|
+
return sum2 / static_cast<double>(num_values_ - 1);
|
|
191
|
+
}
|
|
192
|
+
|
|
193
|
+
bool IsOnline() const { return online_n_ > 0.0; }
|
|
194
|
+
|
|
195
|
+
void OnlineNotify(double x) {
|
|
196
|
+
// Winsorize.
|
|
197
|
+
x = HWY_MIN(HWY_MAX(Lower(), x), Upper());
|
|
198
|
+
|
|
199
|
+
// Welford's online variance estimator.
|
|
200
|
+
// https://media.thinkbrg.com/wp-content/uploads/2020/06/19094655/720_720_McCrary_ImplementingAlgorithms_Whitepaper_20151119_WEB.pdf#page=7.09
|
|
201
|
+
const double n_minus_1 = online_n_;
|
|
202
|
+
online_n_ += 1.0;
|
|
203
|
+
const double d = x - M1();
|
|
204
|
+
const double d_div_n = d / online_n_;
|
|
205
|
+
M1() += d_div_n;
|
|
206
|
+
HWY_DASSERT(M1() >= Lower());
|
|
207
|
+
M2() += d * n_minus_1 * d_div_n; // d^2 * (N-1)/N
|
|
208
|
+
// HWY_MAX avoids divide-by-zero.
|
|
209
|
+
const double stddev = std::sqrt(M2() / HWY_MAX(1.0, n_minus_1));
|
|
210
|
+
|
|
211
|
+
// Exponential smoothing.
|
|
212
|
+
constexpr double kNew = 0.2; // relatively fast update
|
|
213
|
+
constexpr double kOld = 1.0 - kNew;
|
|
214
|
+
Mean() = M1() * kNew + Mean() * kOld;
|
|
215
|
+
Stddev() = stddev * kNew + Stddev() * kOld;
|
|
216
|
+
|
|
217
|
+
// Update thresholds from smoothed mean and stddev to enable recovering from
|
|
218
|
+
// a too narrow initial range due to excessive trimming.
|
|
219
|
+
Lower() = Mean() - 3.5 * Stddev();
|
|
220
|
+
Upper() = Mean() + 3.5 * Stddev();
|
|
221
|
+
}
|
|
222
|
+
|
|
223
|
+
void WarmUpOnline() {
|
|
224
|
+
RemoveOutliers();
|
|
225
|
+
|
|
226
|
+
// Compute and copy before writing to `M1`, which overwrites `values_`!
|
|
227
|
+
const double sample_mean = SampleMean();
|
|
228
|
+
const double sample_variance = SampleVariance(sample_mean);
|
|
229
|
+
double copy[kMaxValues];
|
|
230
|
+
hwy::CopyBytes(values_, copy, num_values_ * sizeof(values_[0]));
|
|
231
|
+
|
|
232
|
+
M1() = M2() = 0.0;
|
|
233
|
+
Mean() = sample_mean;
|
|
234
|
+
Stddev() = std::sqrt(sample_variance);
|
|
235
|
+
// For single-value or all-equal sample, widen the range, else we will only
|
|
236
|
+
// accept the same value.
|
|
237
|
+
if (Stddev() == 0.0) Stddev() = Mean() / 2;
|
|
238
|
+
|
|
239
|
+
// High tolerance because the distribution is not actually Gaussian, and
|
|
240
|
+
// we trimmed up to *half*, and do not want to reject too many values in
|
|
241
|
+
// the online phase.
|
|
242
|
+
Lower() = Mean() - 4.0 * Stddev();
|
|
243
|
+
Upper() = Mean() + 4.0 * Stddev();
|
|
244
|
+
// Feed copied values into online estimator.
|
|
245
|
+
for (size_t i = 0; i < num_values_; ++i) {
|
|
246
|
+
OnlineNotify(copy[i]);
|
|
247
|
+
}
|
|
248
|
+
HWY_DASSERT(IsOnline());
|
|
249
|
+
|
|
250
|
+
#if SIZE_MAX == 0xFFFFFFFFu
|
|
251
|
+
(void)padding_;
|
|
252
|
+
#endif
|
|
253
|
+
}
|
|
254
|
+
|
|
255
|
+
size_t num_values_ = 0; // size of `values_` <= `kMaxValues`
|
|
256
|
+
#if SIZE_MAX == 0xFFFFFFFFu
|
|
257
|
+
uint32_t padding_ = 0;
|
|
258
|
+
#endif
|
|
259
|
+
|
|
260
|
+
double online_n_ = 0.0; // number of calls to `OnlineNotify`.
|
|
261
|
+
|
|
262
|
+
double values_[kMaxValues];
|
|
263
|
+
};
|
|
264
|
+
static_assert(sizeof(CostDistribution) == 128, "");
|
|
265
|
+
|
|
266
|
+
// Implements a counter with wrap-around, plus the ability to skip values.
|
|
267
|
+
// O(1) time, O(N) space via doubly-linked list of indices.
|
|
268
|
+
class NextWithSkip {
|
|
269
|
+
public:
|
|
270
|
+
NextWithSkip() {}
|
|
271
|
+
explicit NextWithSkip(size_t num) {
|
|
272
|
+
links_.reserve(num);
|
|
273
|
+
for (size_t i = 0; i < num; ++i) {
|
|
274
|
+
links_.emplace_back(i, num);
|
|
275
|
+
}
|
|
276
|
+
}
|
|
277
|
+
|
|
278
|
+
size_t Next(size_t pos) {
|
|
279
|
+
HWY_DASSERT(pos < links_.size());
|
|
280
|
+
HWY_DASSERT(!links_[pos].IsRemoved());
|
|
281
|
+
return links_[pos].Next();
|
|
282
|
+
}
|
|
283
|
+
|
|
284
|
+
// Must not be called for an already skipped position. Ignores an attempt to
|
|
285
|
+
// skip the last remaining position.
|
|
286
|
+
void Skip(size_t pos) {
|
|
287
|
+
HWY_DASSERT(!links_[pos].IsRemoved()); // not already skipped.
|
|
288
|
+
const size_t prev = links_[pos].Prev();
|
|
289
|
+
const size_t next = links_[pos].Next();
|
|
290
|
+
if (prev == pos || next == pos) return; // last remaining position.
|
|
291
|
+
links_[next].SetPrev(prev);
|
|
292
|
+
links_[prev].SetNext(next);
|
|
293
|
+
links_[pos].Remove();
|
|
294
|
+
}
|
|
295
|
+
|
|
296
|
+
private:
|
|
297
|
+
// Combine prev/next into one array to improve locality/reduce allocations.
|
|
298
|
+
class Link {
|
|
299
|
+
// Bit-shifts avoid potentially expensive 16-bit loads. Store `next` at the
|
|
300
|
+
// top and `prev` at the bottom for extraction with a single shift/AND.
|
|
301
|
+
// There may be hundreds of configurations, so 8 bits are not enough.
|
|
302
|
+
static constexpr size_t kBits = 14;
|
|
303
|
+
static constexpr size_t kShift = 32 - kBits;
|
|
304
|
+
static constexpr uint32_t kMaxNum = 1u << kBits;
|
|
305
|
+
|
|
306
|
+
public:
|
|
307
|
+
Link(size_t pos, size_t num) {
|
|
308
|
+
HWY_DASSERT(num < kMaxNum);
|
|
309
|
+
const size_t prev = pos == 0 ? num - 1 : pos - 1;
|
|
310
|
+
const size_t next = pos == num - 1 ? 0 : pos + 1;
|
|
311
|
+
bits_ =
|
|
312
|
+
(static_cast<uint32_t>(next) << kShift) | static_cast<uint32_t>(prev);
|
|
313
|
+
HWY_DASSERT(Next() == next && Prev() == prev);
|
|
314
|
+
HWY_DASSERT(!IsRemoved());
|
|
315
|
+
}
|
|
316
|
+
|
|
317
|
+
bool IsRemoved() const { return (bits_ & kMaxNum) != 0; }
|
|
318
|
+
void Remove() { bits_ |= kMaxNum; }
|
|
319
|
+
|
|
320
|
+
size_t Next() const { return bits_ >> kShift; }
|
|
321
|
+
size_t Prev() const { return bits_ & (kMaxNum - 1); }
|
|
322
|
+
|
|
323
|
+
void SetNext(size_t next) {
|
|
324
|
+
HWY_DASSERT(next < kMaxNum);
|
|
325
|
+
bits_ &= (~0u >> kBits); // clear old next
|
|
326
|
+
bits_ |= static_cast<uint32_t>(next) << kShift;
|
|
327
|
+
HWY_DASSERT(Next() == next);
|
|
328
|
+
HWY_DASSERT(!IsRemoved());
|
|
329
|
+
}
|
|
330
|
+
void SetPrev(size_t prev) {
|
|
331
|
+
HWY_DASSERT(prev < kMaxNum);
|
|
332
|
+
bits_ &= ~(kMaxNum - 1); // clear old prev
|
|
333
|
+
bits_ |= static_cast<uint32_t>(prev);
|
|
334
|
+
HWY_DASSERT(Prev() == prev);
|
|
335
|
+
HWY_DASSERT(!IsRemoved());
|
|
336
|
+
}
|
|
337
|
+
|
|
338
|
+
private:
|
|
339
|
+
uint32_t bits_;
|
|
340
|
+
};
|
|
341
|
+
std::vector<Link> links_;
|
|
342
|
+
};
|
|
343
|
+
|
|
344
|
+
// State machine for choosing at runtime the lowest-cost `Config`, which is
|
|
345
|
+
// typically a struct containing multiple parameters. For an introduction, see
|
|
346
|
+
// "Auto-Tuning and Performance Portability on Heterogeneous Hardware".
|
|
347
|
+
//
|
|
348
|
+
// **Which parameters**
|
|
349
|
+
// Note that simple parameters such as the L2 cache size can be directly queried
|
|
350
|
+
// via `hwy/contrib/thread_pool/topology.h`. Difficult to predict parameters
|
|
351
|
+
// such as task granularity are more appropriate for auto-tuning. We also
|
|
352
|
+
// suggest that at least some parameters should also be 'algorithm variants'
|
|
353
|
+
// such as parallel vs. serial, or 2D tiling vs. 1D striping.
|
|
354
|
+
//
|
|
355
|
+
// **Search strategy**
|
|
356
|
+
// To guarantee the optimal result, we use exhaustive search, which is suitable
|
|
357
|
+
// for around 10 parameters and a few hundred combinations of 'candidate'
|
|
358
|
+
// configurations.
|
|
359
|
+
//
|
|
360
|
+
// **How to generate candidates**
|
|
361
|
+
// To keep this framework simple and generic, applications enumerate the search
|
|
362
|
+
// space and pass the list of all feasible candidates to `SetCandidates` before
|
|
363
|
+
// the first call to `NextConfig`. Applications should prune the space as much
|
|
364
|
+
// as possible, e.g. by upper-bounding parameters based on the known cache
|
|
365
|
+
// sizes, and applying constraints such as one being a multiple of another.
|
|
366
|
+
//
|
|
367
|
+
// **Usage**
|
|
368
|
+
// Applications typically conditionally branch to the code implementing the
|
|
369
|
+
// configuration returned by `NextConfig`. They measure the cost of running it
|
|
370
|
+
// and pass that to `NotifyCost`. Branching avoids the complexity and
|
|
371
|
+
// opaqueness of a JIT. The number of branches can be reduced (at the cost of
|
|
372
|
+
// code size) by inlining low-level decisions into larger code regions, e.g. by
|
|
373
|
+
// hoisting them outside hot loops.
|
|
374
|
+
//
|
|
375
|
+
// **What is cost**
|
|
376
|
+
// Cost is an arbitrary `uint64_t`, with lower values being better. Most
|
|
377
|
+
// applications will use the elapsed time. If the tasks being tuned are short,
|
|
378
|
+
// it is important to use a high-resolution timer such as `hwy/timer.h`. Energy
|
|
379
|
+
// may also be useful [https://www.osti.gov/servlets/purl/1361296].
|
|
380
|
+
//
|
|
381
|
+
// **Online vs. offline**
|
|
382
|
+
// Although applications can auto-tune once, offline, it may be difficult to
|
|
383
|
+
// ensure the stored configuration still applies to the current circumstances.
|
|
384
|
+
// Thus we recommend online auto-tuning, re-discovering the configuration on
|
|
385
|
+
// each run. We assume the overhead of bookkeeping and measuring cost is
|
|
386
|
+
// negligible relative to the actual work. The cost of auto-tuning is then that
|
|
387
|
+
// of running sub-optimal configurations. Assuming the best configuration is
|
|
388
|
+
// better than baseline, and the work is performed many thousands of times, the
|
|
389
|
+
// cost is outweighed by the benefits.
|
|
390
|
+
//
|
|
391
|
+
// **kMinSamples**
|
|
392
|
+
// To further reduce overhead, after `kMinSamples` rounds (= measurements of
|
|
393
|
+
// each configuration) we start excluding configurations from further
|
|
394
|
+
// measurements if they are sufficiently worse than the current best.
|
|
395
|
+
// `kMinSamples` can be several dozen when the tasks being tuned take a few
|
|
396
|
+
// microseconds. Even for longer tasks, it should be at least 2 for some noise
|
|
397
|
+
// tolerance. After this, there are another `kMinSamples / 2 + 1` rounds before
|
|
398
|
+
// declaring the winner.
|
|
399
|
+
template <typename Config, size_t kMinSamples = 2>
|
|
400
|
+
class AutoTune {
|
|
401
|
+
public:
|
|
402
|
+
// Returns non-null best configuration if auto-tuning has already finished.
|
|
403
|
+
// Otherwise, callers continue calling `NextConfig` and `NotifyCost`.
|
|
404
|
+
// Points into `Candidates()`.
|
|
405
|
+
const Config* Best() const { return best_; }
|
|
406
|
+
|
|
407
|
+
// If false, caller must call `SetCandidates` before `NextConfig`.
|
|
408
|
+
bool HasCandidates() const {
|
|
409
|
+
HWY_DASSERT(!Best());
|
|
410
|
+
return !candidates_.empty();
|
|
411
|
+
}
|
|
412
|
+
// WARNING: invalidates `Best()`, do not call if that is non-null.
|
|
413
|
+
void SetCandidates(std::vector<Config> candidates) {
|
|
414
|
+
HWY_DASSERT(!Best() && !HasCandidates());
|
|
415
|
+
candidates_.swap(candidates);
|
|
416
|
+
HWY_DASSERT(HasCandidates());
|
|
417
|
+
costs_.resize(candidates_.size());
|
|
418
|
+
list_ = NextWithSkip(candidates_.size());
|
|
419
|
+
}
|
|
420
|
+
|
|
421
|
+
// Typically called after Best() is non-null to compare all candidates' costs.
|
|
422
|
+
Span<const Config> Candidates() const {
|
|
423
|
+
HWY_DASSERT(HasCandidates());
|
|
424
|
+
return Span<const Config>(candidates_.data(), candidates_.size());
|
|
425
|
+
}
|
|
426
|
+
Span<CostDistribution> Costs() {
|
|
427
|
+
return Span<CostDistribution>(costs_.data(), costs_.size());
|
|
428
|
+
}
|
|
429
|
+
|
|
430
|
+
// Returns the current `Config` to measure.
|
|
431
|
+
const Config& NextConfig() const {
|
|
432
|
+
HWY_DASSERT(!Best() && HasCandidates());
|
|
433
|
+
return candidates_[config_idx_];
|
|
434
|
+
}
|
|
435
|
+
|
|
436
|
+
// O(1) except at the end of each round, which is O(N).
|
|
437
|
+
void NotifyCost(uint64_t cost) {
|
|
438
|
+
HWY_DASSERT(!Best() && HasCandidates());
|
|
439
|
+
|
|
440
|
+
costs_[config_idx_].Notify(static_cast<double>(cost));
|
|
441
|
+
// Save now before we update `config_idx_`.
|
|
442
|
+
const size_t my_idx = config_idx_;
|
|
443
|
+
// Only retrieve once we have enough samples, otherwise, we switch to
|
|
444
|
+
// online variance before the buffer is populated.
|
|
445
|
+
const double my_cost = rounds_complete_ >= kMinSamples
|
|
446
|
+
? costs_[config_idx_].EstimateCost()
|
|
447
|
+
: 0.0;
|
|
448
|
+
|
|
449
|
+
// Advance to next non-skipped config with wrap-around. This decorrelates
|
|
450
|
+
// measurements by not immediately re-measuring the same config.
|
|
451
|
+
config_idx_ = list_.Next(config_idx_);
|
|
452
|
+
// Might still equal `my_idx` if this is the only non-skipped config.
|
|
453
|
+
|
|
454
|
+
// Disqualify from future `NextConfig` if cost was too far beyond the
|
|
455
|
+
// current best. This reduces the number of measurements, while tolerating
|
|
456
|
+
// noise in the first few measurements. Must happen after advancing.
|
|
457
|
+
if (my_cost > skip_if_above_) {
|
|
458
|
+
list_.Skip(my_idx);
|
|
459
|
+
}
|
|
460
|
+
|
|
461
|
+
// Wrap-around indicates the round is complete.
|
|
462
|
+
if (HWY_UNLIKELY(config_idx_ <= my_idx)) {
|
|
463
|
+
++rounds_complete_;
|
|
464
|
+
|
|
465
|
+
// Enough samples for stable estimates: update the thresholds.
|
|
466
|
+
if (rounds_complete_ >= kMinSamples) {
|
|
467
|
+
double best_cost = HighestValue<double>();
|
|
468
|
+
size_t idx_min = 0;
|
|
469
|
+
for (size_t i = 0; i < candidates_.size(); ++i) {
|
|
470
|
+
const double estimate = costs_[i].EstimateCost();
|
|
471
|
+
if (estimate < best_cost) {
|
|
472
|
+
best_cost = estimate;
|
|
473
|
+
idx_min = i;
|
|
474
|
+
}
|
|
475
|
+
}
|
|
476
|
+
skip_if_above_ = best_cost * 1.25;
|
|
477
|
+
|
|
478
|
+
// After sufficient rounds, declare the winner.
|
|
479
|
+
if (HWY_UNLIKELY(rounds_complete_ == 3 * kMinSamples / 2 + 1)) {
|
|
480
|
+
best_ = &candidates_[idx_min];
|
|
481
|
+
HWY_DASSERT(Best());
|
|
482
|
+
}
|
|
483
|
+
}
|
|
484
|
+
}
|
|
485
|
+
}
|
|
486
|
+
|
|
487
|
+
// Avoid printing during the first few rounds, because those might be noisy
|
|
488
|
+
// and not yet skipped.
|
|
489
|
+
bool ShouldPrint() { return rounds_complete_ > kMinSamples; }
|
|
490
|
+
|
|
491
|
+
private:
|
|
492
|
+
const Config* best_ = nullptr;
|
|
493
|
+
std::vector<Config> candidates_;
|
|
494
|
+
std::vector<CostDistribution> costs_; // one per candidate
|
|
495
|
+
size_t config_idx_ = 0; // [0, candidates_.size())
|
|
496
|
+
NextWithSkip list_;
|
|
497
|
+
size_t rounds_complete_ = 0;
|
|
498
|
+
|
|
499
|
+
double skip_if_above_ = 0.0;
|
|
500
|
+
};
|
|
501
|
+
|
|
502
|
+
} // namespace hwy
|
|
503
|
+
|
|
504
|
+
#endif // HIGHWAY_HWY_AUTO_TUNE_H_
|