@huggingface/tasks 0.7.1 → 0.9.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.js CHANGED
@@ -50,12 +50,20 @@ var LIBRARY_TASK_MAPPING = {
50
50
  "fill-mask",
51
51
  "image-classification",
52
52
  "image-segmentation",
53
- "image-to-text",
54
53
  "image-to-image",
54
+ "image-to-text",
55
55
  "object-detection",
56
56
  "question-answering",
57
- "text-generation",
57
+ "summarization",
58
+ "table-question-answering",
58
59
  "text2text-generation",
60
+ "text-classification",
61
+ "text-generation",
62
+ "text-to-audio",
63
+ "text-to-speech",
64
+ "token-classification",
65
+ "translation",
66
+ "video-classification",
59
67
  "visual-question-answering",
60
68
  "zero-shot-classification",
61
69
  "zero-shot-image-classification"
@@ -1681,7 +1689,7 @@ var taskData5 = {
1681
1689
  }
1682
1690
  ],
1683
1691
  spaces: [],
1684
- summary: "Feature extraction refers to the process of transforming raw data into numerical features that can be processed while preserving the information in the original dataset.",
1692
+ summary: "Feature extraction is the task of extracting features learnt in a model.",
1685
1693
  widgetModels: ["facebook/bart-base"]
1686
1694
  };
1687
1695
  var data_default5 = taskData5;
@@ -1847,8 +1855,57 @@ var taskData7 = {
1847
1855
  };
1848
1856
  var data_default7 = taskData7;
1849
1857
 
1850
- // src/tasks/image-to-image/data.ts
1858
+ // src/tasks/image-feature-extraction/data.ts
1851
1859
  var taskData8 = {
1860
+ datasets: [
1861
+ {
1862
+ description: "ImageNet-1K is a image classification dataset in which images are used to train image-feature-extraction models.",
1863
+ id: "imagenet-1k"
1864
+ }
1865
+ ],
1866
+ demo: {
1867
+ inputs: [
1868
+ {
1869
+ filename: "mask-generation-input.png",
1870
+ type: "img"
1871
+ }
1872
+ ],
1873
+ outputs: [
1874
+ {
1875
+ table: [
1876
+ ["Dimension 1", "Dimension 2", "Dimension 3"],
1877
+ ["0.21236686408519745", "1.0919708013534546", "0.8512550592422485"],
1878
+ ["0.809657871723175", "-0.18544459342956543", "-0.7851548194885254"],
1879
+ ["1.3103108406066895", "-0.2479034662246704", "-0.9107287526130676"],
1880
+ ["1.8536205291748047", "-0.36419737339019775", "0.09717650711536407"]
1881
+ ],
1882
+ type: "tabular"
1883
+ }
1884
+ ]
1885
+ },
1886
+ metrics: [],
1887
+ models: [
1888
+ {
1889
+ description: "A powerful image feature extraction model.",
1890
+ id: "timm/vit_large_patch14_dinov2.lvd142m"
1891
+ },
1892
+ {
1893
+ description: "A strong image feature extraction model.",
1894
+ id: "google/vit-base-patch16-224-in21k"
1895
+ },
1896
+ {
1897
+ description: "A robust image feature extraction models.",
1898
+ id: "facebook/dino-vitb16"
1899
+ }
1900
+ ],
1901
+ spaces: [],
1902
+ summary: "Image feature extraction is the task of extracting features learnt in a computer vision model.",
1903
+ widgetModels: []
1904
+ };
1905
+ var data_default8 = taskData8;
1906
+
1907
+ // src/tasks/image-to-image/data.ts
1908
+ var taskData9 = {
1852
1909
  datasets: [
1853
1910
  {
1854
1911
  description: "Synthetic dataset, for image relighting",
@@ -1940,10 +1997,10 @@ var taskData8 = {
1940
1997
  widgetModels: ["lllyasviel/sd-controlnet-canny"],
1941
1998
  youtubeId: ""
1942
1999
  };
1943
- var data_default8 = taskData8;
2000
+ var data_default9 = taskData9;
1944
2001
 
1945
2002
  // src/tasks/image-to-text/data.ts
1946
- var taskData9 = {
2003
+ var taskData10 = {
1947
2004
  datasets: [
1948
2005
  {
1949
2006
  // TODO write proper description
@@ -2020,10 +2077,10 @@ var taskData9 = {
2020
2077
  widgetModels: ["Salesforce/blip-image-captioning-base"],
2021
2078
  youtubeId: ""
2022
2079
  };
2023
- var data_default9 = taskData9;
2080
+ var data_default10 = taskData10;
2024
2081
 
2025
2082
  // src/tasks/image-segmentation/data.ts
2026
- var taskData10 = {
2083
+ var taskData11 = {
2027
2084
  datasets: [
2028
2085
  {
2029
2086
  description: "Scene segmentation dataset.",
@@ -2115,10 +2172,10 @@ var taskData10 = {
2115
2172
  widgetModels: ["facebook/detr-resnet-50-panoptic"],
2116
2173
  youtubeId: "dKE8SIt9C-w"
2117
2174
  };
2118
- var data_default10 = taskData10;
2175
+ var data_default11 = taskData11;
2119
2176
 
2120
2177
  // src/tasks/mask-generation/data.ts
2121
- var taskData11 = {
2178
+ var taskData12 = {
2122
2179
  datasets: [],
2123
2180
  demo: {
2124
2181
  inputs: [
@@ -2167,10 +2224,10 @@ var taskData11 = {
2167
2224
  widgetModels: [],
2168
2225
  youtubeId: ""
2169
2226
  };
2170
- var data_default11 = taskData11;
2227
+ var data_default12 = taskData12;
2171
2228
 
2172
2229
  // src/tasks/object-detection/data.ts
2173
- var taskData12 = {
2230
+ var taskData13 = {
2174
2231
  datasets: [
2175
2232
  {
2176
2233
  // TODO write proper description
@@ -2242,10 +2299,10 @@ var taskData12 = {
2242
2299
  widgetModels: ["facebook/detr-resnet-50"],
2243
2300
  youtubeId: "WdAeKSOpxhw"
2244
2301
  };
2245
- var data_default12 = taskData12;
2302
+ var data_default13 = taskData13;
2246
2303
 
2247
2304
  // src/tasks/depth-estimation/data.ts
2248
- var taskData13 = {
2305
+ var taskData14 = {
2249
2306
  datasets: [
2250
2307
  {
2251
2308
  description: "NYU Depth V2 Dataset: Video dataset containing both RGB and depth sensor data",
@@ -2299,10 +2356,10 @@ var taskData13 = {
2299
2356
  widgetModels: [""],
2300
2357
  youtubeId: ""
2301
2358
  };
2302
- var data_default13 = taskData13;
2359
+ var data_default14 = taskData14;
2303
2360
 
2304
2361
  // src/tasks/placeholder/data.ts
2305
- var taskData14 = {
2362
+ var taskData15 = {
2306
2363
  datasets: [],
2307
2364
  demo: {
2308
2365
  inputs: [],
@@ -2319,10 +2376,10 @@ var taskData14 = {
2319
2376
  /// (eg, text2text-generation is the canonical ID of translation)
2320
2377
  canonicalId: void 0
2321
2378
  };
2322
- var data_default14 = taskData14;
2379
+ var data_default15 = taskData15;
2323
2380
 
2324
2381
  // src/tasks/reinforcement-learning/data.ts
2325
- var taskData15 = {
2382
+ var taskData16 = {
2326
2383
  datasets: [
2327
2384
  {
2328
2385
  description: "A curation of widely used datasets for Data Driven Deep Reinforcement Learning (D4RL)",
@@ -2388,10 +2445,10 @@ var taskData15 = {
2388
2445
  widgetModels: [],
2389
2446
  youtubeId: "q0BiUn5LiBc"
2390
2447
  };
2391
- var data_default15 = taskData15;
2448
+ var data_default16 = taskData16;
2392
2449
 
2393
2450
  // src/tasks/question-answering/data.ts
2394
- var taskData16 = {
2451
+ var taskData17 = {
2395
2452
  datasets: [
2396
2453
  {
2397
2454
  // TODO write proper description
@@ -2455,10 +2512,10 @@ var taskData16 = {
2455
2512
  widgetModels: ["deepset/roberta-base-squad2"],
2456
2513
  youtubeId: "ajPx5LwJD-I"
2457
2514
  };
2458
- var data_default16 = taskData16;
2515
+ var data_default17 = taskData17;
2459
2516
 
2460
2517
  // src/tasks/sentence-similarity/data.ts
2461
- var taskData17 = {
2518
+ var taskData18 = {
2462
2519
  datasets: [
2463
2520
  {
2464
2521
  description: "Bing queries with relevant passages from various web sources.",
@@ -2550,10 +2607,10 @@ var taskData17 = {
2550
2607
  widgetModels: ["sentence-transformers/all-MiniLM-L6-v2"],
2551
2608
  youtubeId: "VCZq5AkbNEU"
2552
2609
  };
2553
- var data_default17 = taskData17;
2610
+ var data_default18 = taskData18;
2554
2611
 
2555
2612
  // src/tasks/summarization/data.ts
2556
- var taskData18 = {
2613
+ var taskData19 = {
2557
2614
  canonicalId: "text2text-generation",
2558
2615
  datasets: [
2559
2616
  {
@@ -2619,10 +2676,10 @@ var taskData18 = {
2619
2676
  widgetModels: ["sshleifer/distilbart-cnn-12-6"],
2620
2677
  youtubeId: "yHnr5Dk2zCI"
2621
2678
  };
2622
- var data_default18 = taskData18;
2679
+ var data_default19 = taskData19;
2623
2680
 
2624
2681
  // src/tasks/table-question-answering/data.ts
2625
- var taskData19 = {
2682
+ var taskData20 = {
2626
2683
  datasets: [
2627
2684
  {
2628
2685
  description: "The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.",
@@ -2673,10 +2730,10 @@ var taskData19 = {
2673
2730
  summary: "Table Question Answering (Table QA) is the answering a question about an information on a given table.",
2674
2731
  widgetModels: ["google/tapas-base-finetuned-wtq"]
2675
2732
  };
2676
- var data_default19 = taskData19;
2733
+ var data_default20 = taskData20;
2677
2734
 
2678
2735
  // src/tasks/tabular-classification/data.ts
2679
- var taskData20 = {
2736
+ var taskData21 = {
2680
2737
  datasets: [
2681
2738
  {
2682
2739
  description: "A comprehensive curation of datasets covering all benchmarks.",
@@ -2740,10 +2797,10 @@ var taskData20 = {
2740
2797
  widgetModels: ["scikit-learn/tabular-playground"],
2741
2798
  youtubeId: ""
2742
2799
  };
2743
- var data_default20 = taskData20;
2800
+ var data_default21 = taskData21;
2744
2801
 
2745
2802
  // src/tasks/tabular-regression/data.ts
2746
- var taskData21 = {
2803
+ var taskData22 = {
2747
2804
  datasets: [
2748
2805
  {
2749
2806
  description: "A comprehensive curation of datasets covering all benchmarks.",
@@ -2795,10 +2852,10 @@ var taskData21 = {
2795
2852
  widgetModels: ["scikit-learn/Fish-Weight"],
2796
2853
  youtubeId: ""
2797
2854
  };
2798
- var data_default21 = taskData21;
2855
+ var data_default22 = taskData22;
2799
2856
 
2800
2857
  // src/tasks/text-to-image/data.ts
2801
- var taskData22 = {
2858
+ var taskData23 = {
2802
2859
  datasets: [
2803
2860
  {
2804
2861
  description: "RedCaps is a large-scale dataset of 12M image-text pairs collected from Reddit.",
@@ -2890,10 +2947,10 @@ var taskData22 = {
2890
2947
  widgetModels: ["CompVis/stable-diffusion-v1-4"],
2891
2948
  youtubeId: ""
2892
2949
  };
2893
- var data_default22 = taskData22;
2950
+ var data_default23 = taskData23;
2894
2951
 
2895
2952
  // src/tasks/text-to-speech/data.ts
2896
- var taskData23 = {
2953
+ var taskData24 = {
2897
2954
  canonicalId: "text-to-audio",
2898
2955
  datasets: [
2899
2956
  {
@@ -2958,10 +3015,10 @@ var taskData23 = {
2958
3015
  widgetModels: ["suno/bark"],
2959
3016
  youtubeId: "NW62DpzJ274"
2960
3017
  };
2961
- var data_default23 = taskData23;
3018
+ var data_default24 = taskData24;
2962
3019
 
2963
3020
  // src/tasks/token-classification/data.ts
2964
- var taskData24 = {
3021
+ var taskData25 = {
2965
3022
  datasets: [
2966
3023
  {
2967
3024
  description: "A widely used dataset useful to benchmark named entity recognition models.",
@@ -3037,10 +3094,10 @@ var taskData24 = {
3037
3094
  widgetModels: ["dslim/bert-base-NER"],
3038
3095
  youtubeId: "wVHdVlPScxA"
3039
3096
  };
3040
- var data_default24 = taskData24;
3097
+ var data_default25 = taskData25;
3041
3098
 
3042
3099
  // src/tasks/translation/data.ts
3043
- var taskData25 = {
3100
+ var taskData26 = {
3044
3101
  canonicalId: "text2text-generation",
3045
3102
  datasets: [
3046
3103
  {
@@ -3102,10 +3159,10 @@ var taskData25 = {
3102
3159
  widgetModels: ["t5-small"],
3103
3160
  youtubeId: "1JvfrvZgi6c"
3104
3161
  };
3105
- var data_default25 = taskData25;
3162
+ var data_default26 = taskData26;
3106
3163
 
3107
3164
  // src/tasks/text-classification/data.ts
3108
- var taskData26 = {
3165
+ var taskData27 = {
3109
3166
  datasets: [
3110
3167
  {
3111
3168
  description: "A widely used dataset used to benchmark multiple variants of text classification.",
@@ -3190,10 +3247,10 @@ var taskData26 = {
3190
3247
  widgetModels: ["distilbert-base-uncased-finetuned-sst-2-english"],
3191
3248
  youtubeId: "leNG9fN9FQU"
3192
3249
  };
3193
- var data_default26 = taskData26;
3250
+ var data_default27 = taskData27;
3194
3251
 
3195
3252
  // src/tasks/text-generation/data.ts
3196
- var taskData27 = {
3253
+ var taskData28 = {
3197
3254
  datasets: [
3198
3255
  {
3199
3256
  description: "A large multilingual dataset of text crawled from the web.",
@@ -3294,10 +3351,10 @@ var taskData27 = {
3294
3351
  widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
3295
3352
  youtubeId: "Vpjb1lu0MDk"
3296
3353
  };
3297
- var data_default27 = taskData27;
3354
+ var data_default28 = taskData28;
3298
3355
 
3299
3356
  // src/tasks/text-to-video/data.ts
3300
- var taskData28 = {
3357
+ var taskData29 = {
3301
3358
  datasets: [
3302
3359
  {
3303
3360
  description: "Microsoft Research Video to Text is a large-scale dataset for open domain video captioning",
@@ -3389,10 +3446,10 @@ var taskData28 = {
3389
3446
  widgetModels: [],
3390
3447
  youtubeId: void 0
3391
3448
  };
3392
- var data_default28 = taskData28;
3449
+ var data_default29 = taskData29;
3393
3450
 
3394
3451
  // src/tasks/unconditional-image-generation/data.ts
3395
- var taskData29 = {
3452
+ var taskData30 = {
3396
3453
  datasets: [
3397
3454
  {
3398
3455
  description: "The CIFAR-100 dataset consists of 60000 32x32 colour images in 100 classes, with 600 images per class.",
@@ -3454,10 +3511,10 @@ var taskData29 = {
3454
3511
  // TODO: Add related video
3455
3512
  youtubeId: ""
3456
3513
  };
3457
- var data_default29 = taskData29;
3514
+ var data_default30 = taskData30;
3458
3515
 
3459
3516
  // src/tasks/video-classification/data.ts
3460
- var taskData30 = {
3517
+ var taskData31 = {
3461
3518
  datasets: [
3462
3519
  {
3463
3520
  // TODO write proper description
@@ -3536,10 +3593,10 @@ var taskData30 = {
3536
3593
  widgetModels: [],
3537
3594
  youtubeId: ""
3538
3595
  };
3539
- var data_default30 = taskData30;
3596
+ var data_default31 = taskData31;
3540
3597
 
3541
3598
  // src/tasks/visual-question-answering/data.ts
3542
- var taskData31 = {
3599
+ var taskData32 = {
3543
3600
  datasets: [
3544
3601
  {
3545
3602
  description: "A widely used dataset containing questions (with answers) about images.",
@@ -3629,10 +3686,10 @@ var taskData31 = {
3629
3686
  widgetModels: ["dandelin/vilt-b32-finetuned-vqa"],
3630
3687
  youtubeId: ""
3631
3688
  };
3632
- var data_default31 = taskData31;
3689
+ var data_default32 = taskData32;
3633
3690
 
3634
3691
  // src/tasks/zero-shot-classification/data.ts
3635
- var taskData32 = {
3692
+ var taskData33 = {
3636
3693
  datasets: [
3637
3694
  {
3638
3695
  description: "A widely used dataset used to benchmark multiple variants of text classification.",
@@ -3691,10 +3748,10 @@ var taskData32 = {
3691
3748
  summary: "Zero-shot text classification is a task in natural language processing where a model is trained on a set of labeled examples but is then able to classify new examples from previously unseen classes.",
3692
3749
  widgetModels: ["facebook/bart-large-mnli"]
3693
3750
  };
3694
- var data_default32 = taskData32;
3751
+ var data_default33 = taskData33;
3695
3752
 
3696
3753
  // src/tasks/zero-shot-image-classification/data.ts
3697
- var taskData33 = {
3754
+ var taskData34 = {
3698
3755
  datasets: [
3699
3756
  {
3700
3757
  // TODO write proper description
@@ -3768,10 +3825,10 @@ var taskData33 = {
3768
3825
  widgetModels: ["openai/clip-vit-large-patch14-336"],
3769
3826
  youtubeId: ""
3770
3827
  };
3771
- var data_default33 = taskData33;
3828
+ var data_default34 = taskData34;
3772
3829
 
3773
3830
  // src/tasks/zero-shot-object-detection/data.ts
3774
- var taskData34 = {
3831
+ var taskData35 = {
3775
3832
  datasets: [],
3776
3833
  demo: {
3777
3834
  inputs: [
@@ -3826,7 +3883,7 @@ var taskData34 = {
3826
3883
  widgetModels: [],
3827
3884
  youtubeId: ""
3828
3885
  };
3829
- var data_default34 = taskData34;
3886
+ var data_default35 = taskData35;
3830
3887
 
3831
3888
  // src/tasks/index.ts
3832
3889
  var TASKS_MODEL_LIBRARIES = {
@@ -3888,7 +3945,7 @@ var TASKS_MODEL_LIBRARIES = {
3888
3945
  "text-to-3d": [],
3889
3946
  "image-to-3d": []
3890
3947
  };
3891
- function getData(type, partialTaskData = data_default14) {
3948
+ function getData(type, partialTaskData = data_default15) {
3892
3949
  return {
3893
3950
  ...partialTaskData,
3894
3951
  id: type,
@@ -3900,52 +3957,52 @@ var TASKS_DATA = {
3900
3957
  "audio-classification": getData("audio-classification", data_default),
3901
3958
  "audio-to-audio": getData("audio-to-audio", data_default2),
3902
3959
  "automatic-speech-recognition": getData("automatic-speech-recognition", data_default3),
3903
- "depth-estimation": getData("depth-estimation", data_default13),
3960
+ "depth-estimation": getData("depth-estimation", data_default14),
3904
3961
  "document-question-answering": getData("document-question-answering", data_default4),
3905
3962
  "feature-extraction": getData("feature-extraction", data_default5),
3906
3963
  "fill-mask": getData("fill-mask", data_default6),
3907
3964
  "graph-ml": void 0,
3908
3965
  "image-classification": getData("image-classification", data_default7),
3909
- "image-segmentation": getData("image-segmentation", data_default10),
3966
+ "image-feature-extraction": getData("image-feature-extraction", data_default8),
3967
+ "image-segmentation": getData("image-segmentation", data_default11),
3910
3968
  "image-text-to-text": void 0,
3911
- "image-to-image": getData("image-to-image", data_default8),
3912
- "image-to-text": getData("image-to-text", data_default9),
3969
+ "image-to-image": getData("image-to-image", data_default9),
3970
+ "image-to-text": getData("image-to-text", data_default10),
3913
3971
  "image-to-video": void 0,
3914
- "mask-generation": getData("mask-generation", data_default11),
3972
+ "mask-generation": getData("mask-generation", data_default12),
3915
3973
  "multiple-choice": void 0,
3916
- "object-detection": getData("object-detection", data_default12),
3917
- "video-classification": getData("video-classification", data_default30),
3974
+ "object-detection": getData("object-detection", data_default13),
3975
+ "video-classification": getData("video-classification", data_default31),
3918
3976
  other: void 0,
3919
- "question-answering": getData("question-answering", data_default16),
3920
- "reinforcement-learning": getData("reinforcement-learning", data_default15),
3977
+ "question-answering": getData("question-answering", data_default17),
3978
+ "reinforcement-learning": getData("reinforcement-learning", data_default16),
3921
3979
  robotics: void 0,
3922
- "sentence-similarity": getData("sentence-similarity", data_default17),
3923
- summarization: getData("summarization", data_default18),
3924
- "table-question-answering": getData("table-question-answering", data_default19),
3980
+ "sentence-similarity": getData("sentence-similarity", data_default18),
3981
+ summarization: getData("summarization", data_default19),
3982
+ "table-question-answering": getData("table-question-answering", data_default20),
3925
3983
  "table-to-text": void 0,
3926
- "tabular-classification": getData("tabular-classification", data_default20),
3927
- "tabular-regression": getData("tabular-regression", data_default21),
3984
+ "tabular-classification": getData("tabular-classification", data_default21),
3985
+ "tabular-regression": getData("tabular-regression", data_default22),
3928
3986
  "tabular-to-text": void 0,
3929
- "text-classification": getData("text-classification", data_default26),
3930
- "text-generation": getData("text-generation", data_default27),
3987
+ "text-classification": getData("text-classification", data_default27),
3988
+ "text-generation": getData("text-generation", data_default28),
3931
3989
  "text-retrieval": void 0,
3932
- "text-to-image": getData("text-to-image", data_default22),
3933
- "text-to-speech": getData("text-to-speech", data_default23),
3990
+ "text-to-image": getData("text-to-image", data_default23),
3991
+ "text-to-speech": getData("text-to-speech", data_default24),
3934
3992
  "text-to-audio": void 0,
3935
- "text-to-video": getData("text-to-video", data_default28),
3993
+ "text-to-video": getData("text-to-video", data_default29),
3936
3994
  "text2text-generation": void 0,
3937
3995
  "time-series-forecasting": void 0,
3938
- "token-classification": getData("token-classification", data_default24),
3939
- translation: getData("translation", data_default25),
3940
- "unconditional-image-generation": getData("unconditional-image-generation", data_default29),
3941
- "visual-question-answering": getData("visual-question-answering", data_default31),
3996
+ "token-classification": getData("token-classification", data_default25),
3997
+ translation: getData("translation", data_default26),
3998
+ "unconditional-image-generation": getData("unconditional-image-generation", data_default30),
3999
+ "visual-question-answering": getData("visual-question-answering", data_default32),
3942
4000
  "voice-activity-detection": void 0,
3943
- "zero-shot-classification": getData("zero-shot-classification", data_default32),
3944
- "zero-shot-image-classification": getData("zero-shot-image-classification", data_default33),
3945
- "zero-shot-object-detection": getData("zero-shot-object-detection", data_default34),
3946
- "text-to-3d": getData("text-to-3d", data_default14),
3947
- "image-to-3d": getData("image-to-3d", data_default14),
3948
- "image-feature-extraction": getData("image-feature-extraction", data_default14)
4001
+ "zero-shot-classification": getData("zero-shot-classification", data_default33),
4002
+ "zero-shot-image-classification": getData("zero-shot-image-classification", data_default34),
4003
+ "zero-shot-object-detection": getData("zero-shot-object-detection", data_default35),
4004
+ "text-to-3d": getData("text-to-3d", data_default15),
4005
+ "image-to-3d": getData("image-to-3d", data_default15)
3949
4006
  };
3950
4007
 
3951
4008
  // src/model-libraries-snippets.ts
@@ -4078,6 +4135,13 @@ var keras = (model) => [
4078
4135
  model = from_pretrained_keras("${model.id}")
4079
4136
  `
4080
4137
  ];
4138
+ var keras_nlp = (model) => [
4139
+ `import keras_nlp
4140
+
4141
+ tokenizer = keras_nlp.models.Tokenizer.from_preset("hf://${model.id}")
4142
+ backbone = keras_nlp.models.Backbone.from_preset("hf://${model.id}")
4143
+ `
4144
+ ];
4081
4145
  var open_clip = (model) => [
4082
4146
  `import open_clip
4083
4147
 
@@ -4412,6 +4476,11 @@ IWorker engine = WorkerFactory.CreateWorker(BackendType.GPUCompute, model);
4412
4476
  // Please see provided C# file for more details
4413
4477
  `
4414
4478
  ];
4479
+ var voicecraft = (model) => [
4480
+ `from voicecraft import VoiceCraft
4481
+
4482
+ model = VoiceCraft.from_pretrained("${model.id}")`
4483
+ ];
4415
4484
  var mlx = (model) => [
4416
4485
  `pip install huggingface_hub hf_transfer
4417
4486
 
@@ -4600,6 +4669,13 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
4600
4669
  filter: true,
4601
4670
  countDownloads: { term: { path: "saved_model.pb" } }
4602
4671
  },
4672
+ "keras-nlp": {
4673
+ prettyLabel: "KerasNLP",
4674
+ repoName: "KerasNLP",
4675
+ repoUrl: "https://keras.io/keras_nlp/",
4676
+ docsUrl: "https://github.com/keras-team/keras-nlp",
4677
+ snippets: keras_nlp
4678
+ },
4603
4679
  k2: {
4604
4680
  prettyLabel: "K2",
4605
4681
  repoName: "k2",
@@ -4816,6 +4892,13 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
4816
4892
  wildcard: { path: "*.sentis" }
4817
4893
  }
4818
4894
  },
4895
+ voicecraft: {
4896
+ prettyLabel: "VoiceCraft",
4897
+ repoName: "VoiceCraft",
4898
+ repoUrl: "https://github.com/jasonppy/VoiceCraft",
4899
+ docsUrl: "https://github.com/jasonppy/VoiceCraft",
4900
+ snippets: voicecraft
4901
+ },
4819
4902
  whisperkit: {
4820
4903
  prettyLabel: "WhisperKit",
4821
4904
  repoName: "WhisperKit",
package/package.json CHANGED
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "name": "@huggingface/tasks",
3
3
  "packageManager": "pnpm@8.10.5",
4
- "version": "0.7.1",
4
+ "version": "0.9.0",
5
5
  "description": "List of ML tasks for huggingface.co/tasks",
6
6
  "repository": "https://github.com/huggingface/huggingface.js.git",
7
7
  "publishConfig": {
@@ -6,7 +6,7 @@ import type { PipelineType } from "./pipelines";
6
6
  * Inference API (serverless) should be disabled for all other (library, task) pairs beyond this mapping.
7
7
  * This mapping is partially generated automatically by "python-api-export-tasks" action in
8
8
  * huggingface/api-inference-community repo upon merge. For transformers, the mapping is manually
9
- * based on api-inference.
9
+ * based on api-inference (hf_types.rs).
10
10
  */
11
11
  export const LIBRARY_TASK_MAPPING: Partial<Record<ModelLibraryKey, PipelineType[]>> = {
12
12
  "adapter-transformers": ["question-answering", "text-classification", "token-classification"],
@@ -53,12 +53,20 @@ export const LIBRARY_TASK_MAPPING: Partial<Record<ModelLibraryKey, PipelineType[
53
53
  "fill-mask",
54
54
  "image-classification",
55
55
  "image-segmentation",
56
- "image-to-text",
57
56
  "image-to-image",
57
+ "image-to-text",
58
58
  "object-detection",
59
59
  "question-answering",
60
- "text-generation",
60
+ "summarization",
61
+ "table-question-answering",
61
62
  "text2text-generation",
63
+ "text-classification",
64
+ "text-generation",
65
+ "text-to-audio",
66
+ "text-to-speech",
67
+ "token-classification",
68
+ "translation",
69
+ "video-classification",
62
70
  "visual-question-answering",
63
71
  "zero-shot-classification",
64
72
  "zero-shot-image-classification",
@@ -153,6 +153,14 @@ model = from_pretrained_keras("${model.id}")
153
153
  `,
154
154
  ];
155
155
 
156
+ export const keras_nlp = (model: ModelData): string[] => [
157
+ `import keras_nlp
158
+
159
+ tokenizer = keras_nlp.models.Tokenizer.from_preset("hf://${model.id}")
160
+ backbone = keras_nlp.models.Backbone.from_preset("hf://${model.id}")
161
+ `,
162
+ ];
163
+
156
164
  export const open_clip = (model: ModelData): string[] => [
157
165
  `import open_clip
158
166
 
@@ -531,6 +539,12 @@ IWorker engine = WorkerFactory.CreateWorker(BackendType.GPUCompute, model);
531
539
  `,
532
540
  ];
533
541
 
542
+ export const voicecraft = (model: ModelData): string[] => [
543
+ `from voicecraft import VoiceCraft
544
+
545
+ model = VoiceCraft.from_pretrained("${model.id}")`,
546
+ ];
547
+
534
548
  export const mlx = (model: ModelData): string[] => [
535
549
  `pip install huggingface_hub hf_transfer
536
550
 
@@ -185,6 +185,13 @@ export const MODEL_LIBRARIES_UI_ELEMENTS = {
185
185
  filter: true,
186
186
  countDownloads: { term: { path: "saved_model.pb" } },
187
187
  },
188
+ "keras-nlp": {
189
+ prettyLabel: "KerasNLP",
190
+ repoName: "KerasNLP",
191
+ repoUrl: "https://keras.io/keras_nlp/",
192
+ docsUrl: "https://github.com/keras-team/keras-nlp",
193
+ snippets: snippets.keras_nlp,
194
+ },
188
195
  k2: {
189
196
  prettyLabel: "K2",
190
197
  repoName: "k2",
@@ -401,6 +408,13 @@ export const MODEL_LIBRARIES_UI_ELEMENTS = {
401
408
  wildcard: { path: "*.sentis" },
402
409
  },
403
410
  },
411
+ voicecraft: {
412
+ prettyLabel: "VoiceCraft",
413
+ repoName: "VoiceCraft",
414
+ repoUrl: "https://github.com/jasonppy/VoiceCraft",
415
+ docsUrl: "https://github.com/jasonppy/VoiceCraft",
416
+ snippets: snippets.voicecraft,
417
+ },
404
418
  whisperkit: {
405
419
  prettyLabel: "WhisperKit",
406
420
  repoName: "WhisperKit",