@huggingface/tasks 0.7.1 → 0.9.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/index.cjs +170 -87
- package/dist/index.d.ts +17 -3
- package/dist/index.js +170 -87
- package/package.json +1 -1
- package/src/library-to-tasks.ts +11 -3
- package/src/model-libraries-snippets.ts +14 -0
- package/src/model-libraries.ts +14 -0
- package/src/tasks/feature-extraction/about.md +2 -9
- package/src/tasks/feature-extraction/data.ts +1 -2
- package/src/tasks/image-feature-extraction/about.md +23 -0
- package/src/tasks/image-feature-extraction/data.ts +51 -0
- package/src/tasks/index.ts +2 -1
package/dist/index.cjs
CHANGED
|
@@ -85,12 +85,20 @@ var LIBRARY_TASK_MAPPING = {
|
|
|
85
85
|
"fill-mask",
|
|
86
86
|
"image-classification",
|
|
87
87
|
"image-segmentation",
|
|
88
|
-
"image-to-text",
|
|
89
88
|
"image-to-image",
|
|
89
|
+
"image-to-text",
|
|
90
90
|
"object-detection",
|
|
91
91
|
"question-answering",
|
|
92
|
-
"
|
|
92
|
+
"summarization",
|
|
93
|
+
"table-question-answering",
|
|
93
94
|
"text2text-generation",
|
|
95
|
+
"text-classification",
|
|
96
|
+
"text-generation",
|
|
97
|
+
"text-to-audio",
|
|
98
|
+
"text-to-speech",
|
|
99
|
+
"token-classification",
|
|
100
|
+
"translation",
|
|
101
|
+
"video-classification",
|
|
94
102
|
"visual-question-answering",
|
|
95
103
|
"zero-shot-classification",
|
|
96
104
|
"zero-shot-image-classification"
|
|
@@ -1716,7 +1724,7 @@ var taskData5 = {
|
|
|
1716
1724
|
}
|
|
1717
1725
|
],
|
|
1718
1726
|
spaces: [],
|
|
1719
|
-
summary: "Feature extraction
|
|
1727
|
+
summary: "Feature extraction is the task of extracting features learnt in a model.",
|
|
1720
1728
|
widgetModels: ["facebook/bart-base"]
|
|
1721
1729
|
};
|
|
1722
1730
|
var data_default5 = taskData5;
|
|
@@ -1882,8 +1890,57 @@ var taskData7 = {
|
|
|
1882
1890
|
};
|
|
1883
1891
|
var data_default7 = taskData7;
|
|
1884
1892
|
|
|
1885
|
-
// src/tasks/image-
|
|
1893
|
+
// src/tasks/image-feature-extraction/data.ts
|
|
1886
1894
|
var taskData8 = {
|
|
1895
|
+
datasets: [
|
|
1896
|
+
{
|
|
1897
|
+
description: "ImageNet-1K is a image classification dataset in which images are used to train image-feature-extraction models.",
|
|
1898
|
+
id: "imagenet-1k"
|
|
1899
|
+
}
|
|
1900
|
+
],
|
|
1901
|
+
demo: {
|
|
1902
|
+
inputs: [
|
|
1903
|
+
{
|
|
1904
|
+
filename: "mask-generation-input.png",
|
|
1905
|
+
type: "img"
|
|
1906
|
+
}
|
|
1907
|
+
],
|
|
1908
|
+
outputs: [
|
|
1909
|
+
{
|
|
1910
|
+
table: [
|
|
1911
|
+
["Dimension 1", "Dimension 2", "Dimension 3"],
|
|
1912
|
+
["0.21236686408519745", "1.0919708013534546", "0.8512550592422485"],
|
|
1913
|
+
["0.809657871723175", "-0.18544459342956543", "-0.7851548194885254"],
|
|
1914
|
+
["1.3103108406066895", "-0.2479034662246704", "-0.9107287526130676"],
|
|
1915
|
+
["1.8536205291748047", "-0.36419737339019775", "0.09717650711536407"]
|
|
1916
|
+
],
|
|
1917
|
+
type: "tabular"
|
|
1918
|
+
}
|
|
1919
|
+
]
|
|
1920
|
+
},
|
|
1921
|
+
metrics: [],
|
|
1922
|
+
models: [
|
|
1923
|
+
{
|
|
1924
|
+
description: "A powerful image feature extraction model.",
|
|
1925
|
+
id: "timm/vit_large_patch14_dinov2.lvd142m"
|
|
1926
|
+
},
|
|
1927
|
+
{
|
|
1928
|
+
description: "A strong image feature extraction model.",
|
|
1929
|
+
id: "google/vit-base-patch16-224-in21k"
|
|
1930
|
+
},
|
|
1931
|
+
{
|
|
1932
|
+
description: "A robust image feature extraction models.",
|
|
1933
|
+
id: "facebook/dino-vitb16"
|
|
1934
|
+
}
|
|
1935
|
+
],
|
|
1936
|
+
spaces: [],
|
|
1937
|
+
summary: "Image feature extraction is the task of extracting features learnt in a computer vision model.",
|
|
1938
|
+
widgetModels: []
|
|
1939
|
+
};
|
|
1940
|
+
var data_default8 = taskData8;
|
|
1941
|
+
|
|
1942
|
+
// src/tasks/image-to-image/data.ts
|
|
1943
|
+
var taskData9 = {
|
|
1887
1944
|
datasets: [
|
|
1888
1945
|
{
|
|
1889
1946
|
description: "Synthetic dataset, for image relighting",
|
|
@@ -1975,10 +2032,10 @@ var taskData8 = {
|
|
|
1975
2032
|
widgetModels: ["lllyasviel/sd-controlnet-canny"],
|
|
1976
2033
|
youtubeId: ""
|
|
1977
2034
|
};
|
|
1978
|
-
var
|
|
2035
|
+
var data_default9 = taskData9;
|
|
1979
2036
|
|
|
1980
2037
|
// src/tasks/image-to-text/data.ts
|
|
1981
|
-
var
|
|
2038
|
+
var taskData10 = {
|
|
1982
2039
|
datasets: [
|
|
1983
2040
|
{
|
|
1984
2041
|
// TODO write proper description
|
|
@@ -2055,10 +2112,10 @@ var taskData9 = {
|
|
|
2055
2112
|
widgetModels: ["Salesforce/blip-image-captioning-base"],
|
|
2056
2113
|
youtubeId: ""
|
|
2057
2114
|
};
|
|
2058
|
-
var
|
|
2115
|
+
var data_default10 = taskData10;
|
|
2059
2116
|
|
|
2060
2117
|
// src/tasks/image-segmentation/data.ts
|
|
2061
|
-
var
|
|
2118
|
+
var taskData11 = {
|
|
2062
2119
|
datasets: [
|
|
2063
2120
|
{
|
|
2064
2121
|
description: "Scene segmentation dataset.",
|
|
@@ -2150,10 +2207,10 @@ var taskData10 = {
|
|
|
2150
2207
|
widgetModels: ["facebook/detr-resnet-50-panoptic"],
|
|
2151
2208
|
youtubeId: "dKE8SIt9C-w"
|
|
2152
2209
|
};
|
|
2153
|
-
var
|
|
2210
|
+
var data_default11 = taskData11;
|
|
2154
2211
|
|
|
2155
2212
|
// src/tasks/mask-generation/data.ts
|
|
2156
|
-
var
|
|
2213
|
+
var taskData12 = {
|
|
2157
2214
|
datasets: [],
|
|
2158
2215
|
demo: {
|
|
2159
2216
|
inputs: [
|
|
@@ -2202,10 +2259,10 @@ var taskData11 = {
|
|
|
2202
2259
|
widgetModels: [],
|
|
2203
2260
|
youtubeId: ""
|
|
2204
2261
|
};
|
|
2205
|
-
var
|
|
2262
|
+
var data_default12 = taskData12;
|
|
2206
2263
|
|
|
2207
2264
|
// src/tasks/object-detection/data.ts
|
|
2208
|
-
var
|
|
2265
|
+
var taskData13 = {
|
|
2209
2266
|
datasets: [
|
|
2210
2267
|
{
|
|
2211
2268
|
// TODO write proper description
|
|
@@ -2277,10 +2334,10 @@ var taskData12 = {
|
|
|
2277
2334
|
widgetModels: ["facebook/detr-resnet-50"],
|
|
2278
2335
|
youtubeId: "WdAeKSOpxhw"
|
|
2279
2336
|
};
|
|
2280
|
-
var
|
|
2337
|
+
var data_default13 = taskData13;
|
|
2281
2338
|
|
|
2282
2339
|
// src/tasks/depth-estimation/data.ts
|
|
2283
|
-
var
|
|
2340
|
+
var taskData14 = {
|
|
2284
2341
|
datasets: [
|
|
2285
2342
|
{
|
|
2286
2343
|
description: "NYU Depth V2 Dataset: Video dataset containing both RGB and depth sensor data",
|
|
@@ -2334,10 +2391,10 @@ var taskData13 = {
|
|
|
2334
2391
|
widgetModels: [""],
|
|
2335
2392
|
youtubeId: ""
|
|
2336
2393
|
};
|
|
2337
|
-
var
|
|
2394
|
+
var data_default14 = taskData14;
|
|
2338
2395
|
|
|
2339
2396
|
// src/tasks/placeholder/data.ts
|
|
2340
|
-
var
|
|
2397
|
+
var taskData15 = {
|
|
2341
2398
|
datasets: [],
|
|
2342
2399
|
demo: {
|
|
2343
2400
|
inputs: [],
|
|
@@ -2354,10 +2411,10 @@ var taskData14 = {
|
|
|
2354
2411
|
/// (eg, text2text-generation is the canonical ID of translation)
|
|
2355
2412
|
canonicalId: void 0
|
|
2356
2413
|
};
|
|
2357
|
-
var
|
|
2414
|
+
var data_default15 = taskData15;
|
|
2358
2415
|
|
|
2359
2416
|
// src/tasks/reinforcement-learning/data.ts
|
|
2360
|
-
var
|
|
2417
|
+
var taskData16 = {
|
|
2361
2418
|
datasets: [
|
|
2362
2419
|
{
|
|
2363
2420
|
description: "A curation of widely used datasets for Data Driven Deep Reinforcement Learning (D4RL)",
|
|
@@ -2423,10 +2480,10 @@ var taskData15 = {
|
|
|
2423
2480
|
widgetModels: [],
|
|
2424
2481
|
youtubeId: "q0BiUn5LiBc"
|
|
2425
2482
|
};
|
|
2426
|
-
var
|
|
2483
|
+
var data_default16 = taskData16;
|
|
2427
2484
|
|
|
2428
2485
|
// src/tasks/question-answering/data.ts
|
|
2429
|
-
var
|
|
2486
|
+
var taskData17 = {
|
|
2430
2487
|
datasets: [
|
|
2431
2488
|
{
|
|
2432
2489
|
// TODO write proper description
|
|
@@ -2490,10 +2547,10 @@ var taskData16 = {
|
|
|
2490
2547
|
widgetModels: ["deepset/roberta-base-squad2"],
|
|
2491
2548
|
youtubeId: "ajPx5LwJD-I"
|
|
2492
2549
|
};
|
|
2493
|
-
var
|
|
2550
|
+
var data_default17 = taskData17;
|
|
2494
2551
|
|
|
2495
2552
|
// src/tasks/sentence-similarity/data.ts
|
|
2496
|
-
var
|
|
2553
|
+
var taskData18 = {
|
|
2497
2554
|
datasets: [
|
|
2498
2555
|
{
|
|
2499
2556
|
description: "Bing queries with relevant passages from various web sources.",
|
|
@@ -2585,10 +2642,10 @@ var taskData17 = {
|
|
|
2585
2642
|
widgetModels: ["sentence-transformers/all-MiniLM-L6-v2"],
|
|
2586
2643
|
youtubeId: "VCZq5AkbNEU"
|
|
2587
2644
|
};
|
|
2588
|
-
var
|
|
2645
|
+
var data_default18 = taskData18;
|
|
2589
2646
|
|
|
2590
2647
|
// src/tasks/summarization/data.ts
|
|
2591
|
-
var
|
|
2648
|
+
var taskData19 = {
|
|
2592
2649
|
canonicalId: "text2text-generation",
|
|
2593
2650
|
datasets: [
|
|
2594
2651
|
{
|
|
@@ -2654,10 +2711,10 @@ var taskData18 = {
|
|
|
2654
2711
|
widgetModels: ["sshleifer/distilbart-cnn-12-6"],
|
|
2655
2712
|
youtubeId: "yHnr5Dk2zCI"
|
|
2656
2713
|
};
|
|
2657
|
-
var
|
|
2714
|
+
var data_default19 = taskData19;
|
|
2658
2715
|
|
|
2659
2716
|
// src/tasks/table-question-answering/data.ts
|
|
2660
|
-
var
|
|
2717
|
+
var taskData20 = {
|
|
2661
2718
|
datasets: [
|
|
2662
2719
|
{
|
|
2663
2720
|
description: "The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.",
|
|
@@ -2708,10 +2765,10 @@ var taskData19 = {
|
|
|
2708
2765
|
summary: "Table Question Answering (Table QA) is the answering a question about an information on a given table.",
|
|
2709
2766
|
widgetModels: ["google/tapas-base-finetuned-wtq"]
|
|
2710
2767
|
};
|
|
2711
|
-
var
|
|
2768
|
+
var data_default20 = taskData20;
|
|
2712
2769
|
|
|
2713
2770
|
// src/tasks/tabular-classification/data.ts
|
|
2714
|
-
var
|
|
2771
|
+
var taskData21 = {
|
|
2715
2772
|
datasets: [
|
|
2716
2773
|
{
|
|
2717
2774
|
description: "A comprehensive curation of datasets covering all benchmarks.",
|
|
@@ -2775,10 +2832,10 @@ var taskData20 = {
|
|
|
2775
2832
|
widgetModels: ["scikit-learn/tabular-playground"],
|
|
2776
2833
|
youtubeId: ""
|
|
2777
2834
|
};
|
|
2778
|
-
var
|
|
2835
|
+
var data_default21 = taskData21;
|
|
2779
2836
|
|
|
2780
2837
|
// src/tasks/tabular-regression/data.ts
|
|
2781
|
-
var
|
|
2838
|
+
var taskData22 = {
|
|
2782
2839
|
datasets: [
|
|
2783
2840
|
{
|
|
2784
2841
|
description: "A comprehensive curation of datasets covering all benchmarks.",
|
|
@@ -2830,10 +2887,10 @@ var taskData21 = {
|
|
|
2830
2887
|
widgetModels: ["scikit-learn/Fish-Weight"],
|
|
2831
2888
|
youtubeId: ""
|
|
2832
2889
|
};
|
|
2833
|
-
var
|
|
2890
|
+
var data_default22 = taskData22;
|
|
2834
2891
|
|
|
2835
2892
|
// src/tasks/text-to-image/data.ts
|
|
2836
|
-
var
|
|
2893
|
+
var taskData23 = {
|
|
2837
2894
|
datasets: [
|
|
2838
2895
|
{
|
|
2839
2896
|
description: "RedCaps is a large-scale dataset of 12M image-text pairs collected from Reddit.",
|
|
@@ -2925,10 +2982,10 @@ var taskData22 = {
|
|
|
2925
2982
|
widgetModels: ["CompVis/stable-diffusion-v1-4"],
|
|
2926
2983
|
youtubeId: ""
|
|
2927
2984
|
};
|
|
2928
|
-
var
|
|
2985
|
+
var data_default23 = taskData23;
|
|
2929
2986
|
|
|
2930
2987
|
// src/tasks/text-to-speech/data.ts
|
|
2931
|
-
var
|
|
2988
|
+
var taskData24 = {
|
|
2932
2989
|
canonicalId: "text-to-audio",
|
|
2933
2990
|
datasets: [
|
|
2934
2991
|
{
|
|
@@ -2993,10 +3050,10 @@ var taskData23 = {
|
|
|
2993
3050
|
widgetModels: ["suno/bark"],
|
|
2994
3051
|
youtubeId: "NW62DpzJ274"
|
|
2995
3052
|
};
|
|
2996
|
-
var
|
|
3053
|
+
var data_default24 = taskData24;
|
|
2997
3054
|
|
|
2998
3055
|
// src/tasks/token-classification/data.ts
|
|
2999
|
-
var
|
|
3056
|
+
var taskData25 = {
|
|
3000
3057
|
datasets: [
|
|
3001
3058
|
{
|
|
3002
3059
|
description: "A widely used dataset useful to benchmark named entity recognition models.",
|
|
@@ -3072,10 +3129,10 @@ var taskData24 = {
|
|
|
3072
3129
|
widgetModels: ["dslim/bert-base-NER"],
|
|
3073
3130
|
youtubeId: "wVHdVlPScxA"
|
|
3074
3131
|
};
|
|
3075
|
-
var
|
|
3132
|
+
var data_default25 = taskData25;
|
|
3076
3133
|
|
|
3077
3134
|
// src/tasks/translation/data.ts
|
|
3078
|
-
var
|
|
3135
|
+
var taskData26 = {
|
|
3079
3136
|
canonicalId: "text2text-generation",
|
|
3080
3137
|
datasets: [
|
|
3081
3138
|
{
|
|
@@ -3137,10 +3194,10 @@ var taskData25 = {
|
|
|
3137
3194
|
widgetModels: ["t5-small"],
|
|
3138
3195
|
youtubeId: "1JvfrvZgi6c"
|
|
3139
3196
|
};
|
|
3140
|
-
var
|
|
3197
|
+
var data_default26 = taskData26;
|
|
3141
3198
|
|
|
3142
3199
|
// src/tasks/text-classification/data.ts
|
|
3143
|
-
var
|
|
3200
|
+
var taskData27 = {
|
|
3144
3201
|
datasets: [
|
|
3145
3202
|
{
|
|
3146
3203
|
description: "A widely used dataset used to benchmark multiple variants of text classification.",
|
|
@@ -3225,10 +3282,10 @@ var taskData26 = {
|
|
|
3225
3282
|
widgetModels: ["distilbert-base-uncased-finetuned-sst-2-english"],
|
|
3226
3283
|
youtubeId: "leNG9fN9FQU"
|
|
3227
3284
|
};
|
|
3228
|
-
var
|
|
3285
|
+
var data_default27 = taskData27;
|
|
3229
3286
|
|
|
3230
3287
|
// src/tasks/text-generation/data.ts
|
|
3231
|
-
var
|
|
3288
|
+
var taskData28 = {
|
|
3232
3289
|
datasets: [
|
|
3233
3290
|
{
|
|
3234
3291
|
description: "A large multilingual dataset of text crawled from the web.",
|
|
@@ -3329,10 +3386,10 @@ var taskData27 = {
|
|
|
3329
3386
|
widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
|
|
3330
3387
|
youtubeId: "Vpjb1lu0MDk"
|
|
3331
3388
|
};
|
|
3332
|
-
var
|
|
3389
|
+
var data_default28 = taskData28;
|
|
3333
3390
|
|
|
3334
3391
|
// src/tasks/text-to-video/data.ts
|
|
3335
|
-
var
|
|
3392
|
+
var taskData29 = {
|
|
3336
3393
|
datasets: [
|
|
3337
3394
|
{
|
|
3338
3395
|
description: "Microsoft Research Video to Text is a large-scale dataset for open domain video captioning",
|
|
@@ -3424,10 +3481,10 @@ var taskData28 = {
|
|
|
3424
3481
|
widgetModels: [],
|
|
3425
3482
|
youtubeId: void 0
|
|
3426
3483
|
};
|
|
3427
|
-
var
|
|
3484
|
+
var data_default29 = taskData29;
|
|
3428
3485
|
|
|
3429
3486
|
// src/tasks/unconditional-image-generation/data.ts
|
|
3430
|
-
var
|
|
3487
|
+
var taskData30 = {
|
|
3431
3488
|
datasets: [
|
|
3432
3489
|
{
|
|
3433
3490
|
description: "The CIFAR-100 dataset consists of 60000 32x32 colour images in 100 classes, with 600 images per class.",
|
|
@@ -3489,10 +3546,10 @@ var taskData29 = {
|
|
|
3489
3546
|
// TODO: Add related video
|
|
3490
3547
|
youtubeId: ""
|
|
3491
3548
|
};
|
|
3492
|
-
var
|
|
3549
|
+
var data_default30 = taskData30;
|
|
3493
3550
|
|
|
3494
3551
|
// src/tasks/video-classification/data.ts
|
|
3495
|
-
var
|
|
3552
|
+
var taskData31 = {
|
|
3496
3553
|
datasets: [
|
|
3497
3554
|
{
|
|
3498
3555
|
// TODO write proper description
|
|
@@ -3571,10 +3628,10 @@ var taskData30 = {
|
|
|
3571
3628
|
widgetModels: [],
|
|
3572
3629
|
youtubeId: ""
|
|
3573
3630
|
};
|
|
3574
|
-
var
|
|
3631
|
+
var data_default31 = taskData31;
|
|
3575
3632
|
|
|
3576
3633
|
// src/tasks/visual-question-answering/data.ts
|
|
3577
|
-
var
|
|
3634
|
+
var taskData32 = {
|
|
3578
3635
|
datasets: [
|
|
3579
3636
|
{
|
|
3580
3637
|
description: "A widely used dataset containing questions (with answers) about images.",
|
|
@@ -3664,10 +3721,10 @@ var taskData31 = {
|
|
|
3664
3721
|
widgetModels: ["dandelin/vilt-b32-finetuned-vqa"],
|
|
3665
3722
|
youtubeId: ""
|
|
3666
3723
|
};
|
|
3667
|
-
var
|
|
3724
|
+
var data_default32 = taskData32;
|
|
3668
3725
|
|
|
3669
3726
|
// src/tasks/zero-shot-classification/data.ts
|
|
3670
|
-
var
|
|
3727
|
+
var taskData33 = {
|
|
3671
3728
|
datasets: [
|
|
3672
3729
|
{
|
|
3673
3730
|
description: "A widely used dataset used to benchmark multiple variants of text classification.",
|
|
@@ -3726,10 +3783,10 @@ var taskData32 = {
|
|
|
3726
3783
|
summary: "Zero-shot text classification is a task in natural language processing where a model is trained on a set of labeled examples but is then able to classify new examples from previously unseen classes.",
|
|
3727
3784
|
widgetModels: ["facebook/bart-large-mnli"]
|
|
3728
3785
|
};
|
|
3729
|
-
var
|
|
3786
|
+
var data_default33 = taskData33;
|
|
3730
3787
|
|
|
3731
3788
|
// src/tasks/zero-shot-image-classification/data.ts
|
|
3732
|
-
var
|
|
3789
|
+
var taskData34 = {
|
|
3733
3790
|
datasets: [
|
|
3734
3791
|
{
|
|
3735
3792
|
// TODO write proper description
|
|
@@ -3803,10 +3860,10 @@ var taskData33 = {
|
|
|
3803
3860
|
widgetModels: ["openai/clip-vit-large-patch14-336"],
|
|
3804
3861
|
youtubeId: ""
|
|
3805
3862
|
};
|
|
3806
|
-
var
|
|
3863
|
+
var data_default34 = taskData34;
|
|
3807
3864
|
|
|
3808
3865
|
// src/tasks/zero-shot-object-detection/data.ts
|
|
3809
|
-
var
|
|
3866
|
+
var taskData35 = {
|
|
3810
3867
|
datasets: [],
|
|
3811
3868
|
demo: {
|
|
3812
3869
|
inputs: [
|
|
@@ -3861,7 +3918,7 @@ var taskData34 = {
|
|
|
3861
3918
|
widgetModels: [],
|
|
3862
3919
|
youtubeId: ""
|
|
3863
3920
|
};
|
|
3864
|
-
var
|
|
3921
|
+
var data_default35 = taskData35;
|
|
3865
3922
|
|
|
3866
3923
|
// src/tasks/index.ts
|
|
3867
3924
|
var TASKS_MODEL_LIBRARIES = {
|
|
@@ -3923,7 +3980,7 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
3923
3980
|
"text-to-3d": [],
|
|
3924
3981
|
"image-to-3d": []
|
|
3925
3982
|
};
|
|
3926
|
-
function getData(type, partialTaskData =
|
|
3983
|
+
function getData(type, partialTaskData = data_default15) {
|
|
3927
3984
|
return {
|
|
3928
3985
|
...partialTaskData,
|
|
3929
3986
|
id: type,
|
|
@@ -3935,52 +3992,52 @@ var TASKS_DATA = {
|
|
|
3935
3992
|
"audio-classification": getData("audio-classification", data_default),
|
|
3936
3993
|
"audio-to-audio": getData("audio-to-audio", data_default2),
|
|
3937
3994
|
"automatic-speech-recognition": getData("automatic-speech-recognition", data_default3),
|
|
3938
|
-
"depth-estimation": getData("depth-estimation",
|
|
3995
|
+
"depth-estimation": getData("depth-estimation", data_default14),
|
|
3939
3996
|
"document-question-answering": getData("document-question-answering", data_default4),
|
|
3940
3997
|
"feature-extraction": getData("feature-extraction", data_default5),
|
|
3941
3998
|
"fill-mask": getData("fill-mask", data_default6),
|
|
3942
3999
|
"graph-ml": void 0,
|
|
3943
4000
|
"image-classification": getData("image-classification", data_default7),
|
|
3944
|
-
"image-
|
|
4001
|
+
"image-feature-extraction": getData("image-feature-extraction", data_default8),
|
|
4002
|
+
"image-segmentation": getData("image-segmentation", data_default11),
|
|
3945
4003
|
"image-text-to-text": void 0,
|
|
3946
|
-
"image-to-image": getData("image-to-image",
|
|
3947
|
-
"image-to-text": getData("image-to-text",
|
|
4004
|
+
"image-to-image": getData("image-to-image", data_default9),
|
|
4005
|
+
"image-to-text": getData("image-to-text", data_default10),
|
|
3948
4006
|
"image-to-video": void 0,
|
|
3949
|
-
"mask-generation": getData("mask-generation",
|
|
4007
|
+
"mask-generation": getData("mask-generation", data_default12),
|
|
3950
4008
|
"multiple-choice": void 0,
|
|
3951
|
-
"object-detection": getData("object-detection",
|
|
3952
|
-
"video-classification": getData("video-classification",
|
|
4009
|
+
"object-detection": getData("object-detection", data_default13),
|
|
4010
|
+
"video-classification": getData("video-classification", data_default31),
|
|
3953
4011
|
other: void 0,
|
|
3954
|
-
"question-answering": getData("question-answering",
|
|
3955
|
-
"reinforcement-learning": getData("reinforcement-learning",
|
|
4012
|
+
"question-answering": getData("question-answering", data_default17),
|
|
4013
|
+
"reinforcement-learning": getData("reinforcement-learning", data_default16),
|
|
3956
4014
|
robotics: void 0,
|
|
3957
|
-
"sentence-similarity": getData("sentence-similarity",
|
|
3958
|
-
summarization: getData("summarization",
|
|
3959
|
-
"table-question-answering": getData("table-question-answering",
|
|
4015
|
+
"sentence-similarity": getData("sentence-similarity", data_default18),
|
|
4016
|
+
summarization: getData("summarization", data_default19),
|
|
4017
|
+
"table-question-answering": getData("table-question-answering", data_default20),
|
|
3960
4018
|
"table-to-text": void 0,
|
|
3961
|
-
"tabular-classification": getData("tabular-classification",
|
|
3962
|
-
"tabular-regression": getData("tabular-regression",
|
|
4019
|
+
"tabular-classification": getData("tabular-classification", data_default21),
|
|
4020
|
+
"tabular-regression": getData("tabular-regression", data_default22),
|
|
3963
4021
|
"tabular-to-text": void 0,
|
|
3964
|
-
"text-classification": getData("text-classification",
|
|
3965
|
-
"text-generation": getData("text-generation",
|
|
4022
|
+
"text-classification": getData("text-classification", data_default27),
|
|
4023
|
+
"text-generation": getData("text-generation", data_default28),
|
|
3966
4024
|
"text-retrieval": void 0,
|
|
3967
|
-
"text-to-image": getData("text-to-image",
|
|
3968
|
-
"text-to-speech": getData("text-to-speech",
|
|
4025
|
+
"text-to-image": getData("text-to-image", data_default23),
|
|
4026
|
+
"text-to-speech": getData("text-to-speech", data_default24),
|
|
3969
4027
|
"text-to-audio": void 0,
|
|
3970
|
-
"text-to-video": getData("text-to-video",
|
|
4028
|
+
"text-to-video": getData("text-to-video", data_default29),
|
|
3971
4029
|
"text2text-generation": void 0,
|
|
3972
4030
|
"time-series-forecasting": void 0,
|
|
3973
|
-
"token-classification": getData("token-classification",
|
|
3974
|
-
translation: getData("translation",
|
|
3975
|
-
"unconditional-image-generation": getData("unconditional-image-generation",
|
|
3976
|
-
"visual-question-answering": getData("visual-question-answering",
|
|
4031
|
+
"token-classification": getData("token-classification", data_default25),
|
|
4032
|
+
translation: getData("translation", data_default26),
|
|
4033
|
+
"unconditional-image-generation": getData("unconditional-image-generation", data_default30),
|
|
4034
|
+
"visual-question-answering": getData("visual-question-answering", data_default32),
|
|
3977
4035
|
"voice-activity-detection": void 0,
|
|
3978
|
-
"zero-shot-classification": getData("zero-shot-classification",
|
|
3979
|
-
"zero-shot-image-classification": getData("zero-shot-image-classification",
|
|
3980
|
-
"zero-shot-object-detection": getData("zero-shot-object-detection",
|
|
3981
|
-
"text-to-3d": getData("text-to-3d",
|
|
3982
|
-
"image-to-3d": getData("image-to-3d",
|
|
3983
|
-
"image-feature-extraction": getData("image-feature-extraction", data_default14)
|
|
4036
|
+
"zero-shot-classification": getData("zero-shot-classification", data_default33),
|
|
4037
|
+
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default34),
|
|
4038
|
+
"zero-shot-object-detection": getData("zero-shot-object-detection", data_default35),
|
|
4039
|
+
"text-to-3d": getData("text-to-3d", data_default15),
|
|
4040
|
+
"image-to-3d": getData("image-to-3d", data_default15)
|
|
3984
4041
|
};
|
|
3985
4042
|
|
|
3986
4043
|
// src/model-libraries-snippets.ts
|
|
@@ -4113,6 +4170,13 @@ var keras = (model) => [
|
|
|
4113
4170
|
model = from_pretrained_keras("${model.id}")
|
|
4114
4171
|
`
|
|
4115
4172
|
];
|
|
4173
|
+
var keras_nlp = (model) => [
|
|
4174
|
+
`import keras_nlp
|
|
4175
|
+
|
|
4176
|
+
tokenizer = keras_nlp.models.Tokenizer.from_preset("hf://${model.id}")
|
|
4177
|
+
backbone = keras_nlp.models.Backbone.from_preset("hf://${model.id}")
|
|
4178
|
+
`
|
|
4179
|
+
];
|
|
4116
4180
|
var open_clip = (model) => [
|
|
4117
4181
|
`import open_clip
|
|
4118
4182
|
|
|
@@ -4447,6 +4511,11 @@ IWorker engine = WorkerFactory.CreateWorker(BackendType.GPUCompute, model);
|
|
|
4447
4511
|
// Please see provided C# file for more details
|
|
4448
4512
|
`
|
|
4449
4513
|
];
|
|
4514
|
+
var voicecraft = (model) => [
|
|
4515
|
+
`from voicecraft import VoiceCraft
|
|
4516
|
+
|
|
4517
|
+
model = VoiceCraft.from_pretrained("${model.id}")`
|
|
4518
|
+
];
|
|
4450
4519
|
var mlx = (model) => [
|
|
4451
4520
|
`pip install huggingface_hub hf_transfer
|
|
4452
4521
|
|
|
@@ -4635,6 +4704,13 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
|
4635
4704
|
filter: true,
|
|
4636
4705
|
countDownloads: { term: { path: "saved_model.pb" } }
|
|
4637
4706
|
},
|
|
4707
|
+
"keras-nlp": {
|
|
4708
|
+
prettyLabel: "KerasNLP",
|
|
4709
|
+
repoName: "KerasNLP",
|
|
4710
|
+
repoUrl: "https://keras.io/keras_nlp/",
|
|
4711
|
+
docsUrl: "https://github.com/keras-team/keras-nlp",
|
|
4712
|
+
snippets: keras_nlp
|
|
4713
|
+
},
|
|
4638
4714
|
k2: {
|
|
4639
4715
|
prettyLabel: "K2",
|
|
4640
4716
|
repoName: "k2",
|
|
@@ -4851,6 +4927,13 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
|
4851
4927
|
wildcard: { path: "*.sentis" }
|
|
4852
4928
|
}
|
|
4853
4929
|
},
|
|
4930
|
+
voicecraft: {
|
|
4931
|
+
prettyLabel: "VoiceCraft",
|
|
4932
|
+
repoName: "VoiceCraft",
|
|
4933
|
+
repoUrl: "https://github.com/jasonppy/VoiceCraft",
|
|
4934
|
+
docsUrl: "https://github.com/jasonppy/VoiceCraft",
|
|
4935
|
+
snippets: voicecraft
|
|
4936
|
+
},
|
|
4854
4937
|
whisperkit: {
|
|
4855
4938
|
prettyLabel: "WhisperKit",
|
|
4856
4939
|
repoName: "WhisperKit",
|
package/dist/index.d.ts
CHANGED
|
@@ -878,6 +878,13 @@ declare const MODEL_LIBRARIES_UI_ELEMENTS: {
|
|
|
878
878
|
};
|
|
879
879
|
};
|
|
880
880
|
};
|
|
881
|
+
"keras-nlp": {
|
|
882
|
+
prettyLabel: string;
|
|
883
|
+
repoName: string;
|
|
884
|
+
repoUrl: string;
|
|
885
|
+
docsUrl: string;
|
|
886
|
+
snippets: (model: ModelData) => string[];
|
|
887
|
+
};
|
|
881
888
|
k2: {
|
|
882
889
|
prettyLabel: string;
|
|
883
890
|
repoName: string;
|
|
@@ -1132,6 +1139,13 @@ declare const MODEL_LIBRARIES_UI_ELEMENTS: {
|
|
|
1132
1139
|
};
|
|
1133
1140
|
};
|
|
1134
1141
|
};
|
|
1142
|
+
voicecraft: {
|
|
1143
|
+
prettyLabel: string;
|
|
1144
|
+
repoName: string;
|
|
1145
|
+
repoUrl: string;
|
|
1146
|
+
docsUrl: string;
|
|
1147
|
+
snippets: (model: ModelData) => string[];
|
|
1148
|
+
};
|
|
1135
1149
|
whisperkit: {
|
|
1136
1150
|
prettyLabel: string;
|
|
1137
1151
|
repoName: string;
|
|
@@ -1144,15 +1158,15 @@ declare const MODEL_LIBRARIES_UI_ELEMENTS: {
|
|
|
1144
1158
|
};
|
|
1145
1159
|
};
|
|
1146
1160
|
type ModelLibraryKey = keyof typeof MODEL_LIBRARIES_UI_ELEMENTS;
|
|
1147
|
-
declare const ALL_MODEL_LIBRARY_KEYS: ("sklearn" | "adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "bertopic" | "diffusers" | "doctr" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gliner" | "grok" | "keras" | "k2" | "mindspore" | "ml-agents" | "mlx" | "mlx-image" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "sample-factory" | "sentence-transformers" | "setfit" | "spacy" | "span-marker" | "speechbrain" | "stable-baselines3" | "stanza" | "tensorflowtts" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "whisperkit")[];
|
|
1148
|
-
declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: ("sklearn" | "adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "bertopic" | "diffusers" | "doctr" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gliner" | "grok" | "keras" | "k2" | "mindspore" | "ml-agents" | "mlx" | "mlx-image" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "sample-factory" | "sentence-transformers" | "setfit" | "spacy" | "span-marker" | "speechbrain" | "stable-baselines3" | "stanza" | "tensorflowtts" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "whisperkit")[];
|
|
1161
|
+
declare const ALL_MODEL_LIBRARY_KEYS: ("sklearn" | "adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "bertopic" | "diffusers" | "doctr" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gliner" | "grok" | "keras" | "keras-nlp" | "k2" | "mindspore" | "ml-agents" | "mlx" | "mlx-image" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "sample-factory" | "sentence-transformers" | "setfit" | "spacy" | "span-marker" | "speechbrain" | "stable-baselines3" | "stanza" | "tensorflowtts" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
|
|
1162
|
+
declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: ("sklearn" | "adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "bertopic" | "diffusers" | "doctr" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gliner" | "grok" | "keras" | "keras-nlp" | "k2" | "mindspore" | "ml-agents" | "mlx" | "mlx-image" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "sample-factory" | "sentence-transformers" | "setfit" | "spacy" | "span-marker" | "speechbrain" | "stable-baselines3" | "stanza" | "tensorflowtts" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
|
|
1149
1163
|
|
|
1150
1164
|
/**
|
|
1151
1165
|
* Mapping from library name to its supported tasks.
|
|
1152
1166
|
* Inference API (serverless) should be disabled for all other (library, task) pairs beyond this mapping.
|
|
1153
1167
|
* This mapping is partially generated automatically by "python-api-export-tasks" action in
|
|
1154
1168
|
* huggingface/api-inference-community repo upon merge. For transformers, the mapping is manually
|
|
1155
|
-
* based on api-inference.
|
|
1169
|
+
* based on api-inference (hf_types.rs).
|
|
1156
1170
|
*/
|
|
1157
1171
|
declare const LIBRARY_TASK_MAPPING: Partial<Record<ModelLibraryKey, PipelineType[]>>;
|
|
1158
1172
|
|