@huggingface/tasks 0.7.1 → 0.9.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.cjs CHANGED
@@ -85,12 +85,20 @@ var LIBRARY_TASK_MAPPING = {
85
85
  "fill-mask",
86
86
  "image-classification",
87
87
  "image-segmentation",
88
- "image-to-text",
89
88
  "image-to-image",
89
+ "image-to-text",
90
90
  "object-detection",
91
91
  "question-answering",
92
- "text-generation",
92
+ "summarization",
93
+ "table-question-answering",
93
94
  "text2text-generation",
95
+ "text-classification",
96
+ "text-generation",
97
+ "text-to-audio",
98
+ "text-to-speech",
99
+ "token-classification",
100
+ "translation",
101
+ "video-classification",
94
102
  "visual-question-answering",
95
103
  "zero-shot-classification",
96
104
  "zero-shot-image-classification"
@@ -1716,7 +1724,7 @@ var taskData5 = {
1716
1724
  }
1717
1725
  ],
1718
1726
  spaces: [],
1719
- summary: "Feature extraction refers to the process of transforming raw data into numerical features that can be processed while preserving the information in the original dataset.",
1727
+ summary: "Feature extraction is the task of extracting features learnt in a model.",
1720
1728
  widgetModels: ["facebook/bart-base"]
1721
1729
  };
1722
1730
  var data_default5 = taskData5;
@@ -1882,8 +1890,57 @@ var taskData7 = {
1882
1890
  };
1883
1891
  var data_default7 = taskData7;
1884
1892
 
1885
- // src/tasks/image-to-image/data.ts
1893
+ // src/tasks/image-feature-extraction/data.ts
1886
1894
  var taskData8 = {
1895
+ datasets: [
1896
+ {
1897
+ description: "ImageNet-1K is a image classification dataset in which images are used to train image-feature-extraction models.",
1898
+ id: "imagenet-1k"
1899
+ }
1900
+ ],
1901
+ demo: {
1902
+ inputs: [
1903
+ {
1904
+ filename: "mask-generation-input.png",
1905
+ type: "img"
1906
+ }
1907
+ ],
1908
+ outputs: [
1909
+ {
1910
+ table: [
1911
+ ["Dimension 1", "Dimension 2", "Dimension 3"],
1912
+ ["0.21236686408519745", "1.0919708013534546", "0.8512550592422485"],
1913
+ ["0.809657871723175", "-0.18544459342956543", "-0.7851548194885254"],
1914
+ ["1.3103108406066895", "-0.2479034662246704", "-0.9107287526130676"],
1915
+ ["1.8536205291748047", "-0.36419737339019775", "0.09717650711536407"]
1916
+ ],
1917
+ type: "tabular"
1918
+ }
1919
+ ]
1920
+ },
1921
+ metrics: [],
1922
+ models: [
1923
+ {
1924
+ description: "A powerful image feature extraction model.",
1925
+ id: "timm/vit_large_patch14_dinov2.lvd142m"
1926
+ },
1927
+ {
1928
+ description: "A strong image feature extraction model.",
1929
+ id: "google/vit-base-patch16-224-in21k"
1930
+ },
1931
+ {
1932
+ description: "A robust image feature extraction models.",
1933
+ id: "facebook/dino-vitb16"
1934
+ }
1935
+ ],
1936
+ spaces: [],
1937
+ summary: "Image feature extraction is the task of extracting features learnt in a computer vision model.",
1938
+ widgetModels: []
1939
+ };
1940
+ var data_default8 = taskData8;
1941
+
1942
+ // src/tasks/image-to-image/data.ts
1943
+ var taskData9 = {
1887
1944
  datasets: [
1888
1945
  {
1889
1946
  description: "Synthetic dataset, for image relighting",
@@ -1975,10 +2032,10 @@ var taskData8 = {
1975
2032
  widgetModels: ["lllyasviel/sd-controlnet-canny"],
1976
2033
  youtubeId: ""
1977
2034
  };
1978
- var data_default8 = taskData8;
2035
+ var data_default9 = taskData9;
1979
2036
 
1980
2037
  // src/tasks/image-to-text/data.ts
1981
- var taskData9 = {
2038
+ var taskData10 = {
1982
2039
  datasets: [
1983
2040
  {
1984
2041
  // TODO write proper description
@@ -2055,10 +2112,10 @@ var taskData9 = {
2055
2112
  widgetModels: ["Salesforce/blip-image-captioning-base"],
2056
2113
  youtubeId: ""
2057
2114
  };
2058
- var data_default9 = taskData9;
2115
+ var data_default10 = taskData10;
2059
2116
 
2060
2117
  // src/tasks/image-segmentation/data.ts
2061
- var taskData10 = {
2118
+ var taskData11 = {
2062
2119
  datasets: [
2063
2120
  {
2064
2121
  description: "Scene segmentation dataset.",
@@ -2150,10 +2207,10 @@ var taskData10 = {
2150
2207
  widgetModels: ["facebook/detr-resnet-50-panoptic"],
2151
2208
  youtubeId: "dKE8SIt9C-w"
2152
2209
  };
2153
- var data_default10 = taskData10;
2210
+ var data_default11 = taskData11;
2154
2211
 
2155
2212
  // src/tasks/mask-generation/data.ts
2156
- var taskData11 = {
2213
+ var taskData12 = {
2157
2214
  datasets: [],
2158
2215
  demo: {
2159
2216
  inputs: [
@@ -2202,10 +2259,10 @@ var taskData11 = {
2202
2259
  widgetModels: [],
2203
2260
  youtubeId: ""
2204
2261
  };
2205
- var data_default11 = taskData11;
2262
+ var data_default12 = taskData12;
2206
2263
 
2207
2264
  // src/tasks/object-detection/data.ts
2208
- var taskData12 = {
2265
+ var taskData13 = {
2209
2266
  datasets: [
2210
2267
  {
2211
2268
  // TODO write proper description
@@ -2277,10 +2334,10 @@ var taskData12 = {
2277
2334
  widgetModels: ["facebook/detr-resnet-50"],
2278
2335
  youtubeId: "WdAeKSOpxhw"
2279
2336
  };
2280
- var data_default12 = taskData12;
2337
+ var data_default13 = taskData13;
2281
2338
 
2282
2339
  // src/tasks/depth-estimation/data.ts
2283
- var taskData13 = {
2340
+ var taskData14 = {
2284
2341
  datasets: [
2285
2342
  {
2286
2343
  description: "NYU Depth V2 Dataset: Video dataset containing both RGB and depth sensor data",
@@ -2334,10 +2391,10 @@ var taskData13 = {
2334
2391
  widgetModels: [""],
2335
2392
  youtubeId: ""
2336
2393
  };
2337
- var data_default13 = taskData13;
2394
+ var data_default14 = taskData14;
2338
2395
 
2339
2396
  // src/tasks/placeholder/data.ts
2340
- var taskData14 = {
2397
+ var taskData15 = {
2341
2398
  datasets: [],
2342
2399
  demo: {
2343
2400
  inputs: [],
@@ -2354,10 +2411,10 @@ var taskData14 = {
2354
2411
  /// (eg, text2text-generation is the canonical ID of translation)
2355
2412
  canonicalId: void 0
2356
2413
  };
2357
- var data_default14 = taskData14;
2414
+ var data_default15 = taskData15;
2358
2415
 
2359
2416
  // src/tasks/reinforcement-learning/data.ts
2360
- var taskData15 = {
2417
+ var taskData16 = {
2361
2418
  datasets: [
2362
2419
  {
2363
2420
  description: "A curation of widely used datasets for Data Driven Deep Reinforcement Learning (D4RL)",
@@ -2423,10 +2480,10 @@ var taskData15 = {
2423
2480
  widgetModels: [],
2424
2481
  youtubeId: "q0BiUn5LiBc"
2425
2482
  };
2426
- var data_default15 = taskData15;
2483
+ var data_default16 = taskData16;
2427
2484
 
2428
2485
  // src/tasks/question-answering/data.ts
2429
- var taskData16 = {
2486
+ var taskData17 = {
2430
2487
  datasets: [
2431
2488
  {
2432
2489
  // TODO write proper description
@@ -2490,10 +2547,10 @@ var taskData16 = {
2490
2547
  widgetModels: ["deepset/roberta-base-squad2"],
2491
2548
  youtubeId: "ajPx5LwJD-I"
2492
2549
  };
2493
- var data_default16 = taskData16;
2550
+ var data_default17 = taskData17;
2494
2551
 
2495
2552
  // src/tasks/sentence-similarity/data.ts
2496
- var taskData17 = {
2553
+ var taskData18 = {
2497
2554
  datasets: [
2498
2555
  {
2499
2556
  description: "Bing queries with relevant passages from various web sources.",
@@ -2585,10 +2642,10 @@ var taskData17 = {
2585
2642
  widgetModels: ["sentence-transformers/all-MiniLM-L6-v2"],
2586
2643
  youtubeId: "VCZq5AkbNEU"
2587
2644
  };
2588
- var data_default17 = taskData17;
2645
+ var data_default18 = taskData18;
2589
2646
 
2590
2647
  // src/tasks/summarization/data.ts
2591
- var taskData18 = {
2648
+ var taskData19 = {
2592
2649
  canonicalId: "text2text-generation",
2593
2650
  datasets: [
2594
2651
  {
@@ -2654,10 +2711,10 @@ var taskData18 = {
2654
2711
  widgetModels: ["sshleifer/distilbart-cnn-12-6"],
2655
2712
  youtubeId: "yHnr5Dk2zCI"
2656
2713
  };
2657
- var data_default18 = taskData18;
2714
+ var data_default19 = taskData19;
2658
2715
 
2659
2716
  // src/tasks/table-question-answering/data.ts
2660
- var taskData19 = {
2717
+ var taskData20 = {
2661
2718
  datasets: [
2662
2719
  {
2663
2720
  description: "The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.",
@@ -2708,10 +2765,10 @@ var taskData19 = {
2708
2765
  summary: "Table Question Answering (Table QA) is the answering a question about an information on a given table.",
2709
2766
  widgetModels: ["google/tapas-base-finetuned-wtq"]
2710
2767
  };
2711
- var data_default19 = taskData19;
2768
+ var data_default20 = taskData20;
2712
2769
 
2713
2770
  // src/tasks/tabular-classification/data.ts
2714
- var taskData20 = {
2771
+ var taskData21 = {
2715
2772
  datasets: [
2716
2773
  {
2717
2774
  description: "A comprehensive curation of datasets covering all benchmarks.",
@@ -2775,10 +2832,10 @@ var taskData20 = {
2775
2832
  widgetModels: ["scikit-learn/tabular-playground"],
2776
2833
  youtubeId: ""
2777
2834
  };
2778
- var data_default20 = taskData20;
2835
+ var data_default21 = taskData21;
2779
2836
 
2780
2837
  // src/tasks/tabular-regression/data.ts
2781
- var taskData21 = {
2838
+ var taskData22 = {
2782
2839
  datasets: [
2783
2840
  {
2784
2841
  description: "A comprehensive curation of datasets covering all benchmarks.",
@@ -2830,10 +2887,10 @@ var taskData21 = {
2830
2887
  widgetModels: ["scikit-learn/Fish-Weight"],
2831
2888
  youtubeId: ""
2832
2889
  };
2833
- var data_default21 = taskData21;
2890
+ var data_default22 = taskData22;
2834
2891
 
2835
2892
  // src/tasks/text-to-image/data.ts
2836
- var taskData22 = {
2893
+ var taskData23 = {
2837
2894
  datasets: [
2838
2895
  {
2839
2896
  description: "RedCaps is a large-scale dataset of 12M image-text pairs collected from Reddit.",
@@ -2925,10 +2982,10 @@ var taskData22 = {
2925
2982
  widgetModels: ["CompVis/stable-diffusion-v1-4"],
2926
2983
  youtubeId: ""
2927
2984
  };
2928
- var data_default22 = taskData22;
2985
+ var data_default23 = taskData23;
2929
2986
 
2930
2987
  // src/tasks/text-to-speech/data.ts
2931
- var taskData23 = {
2988
+ var taskData24 = {
2932
2989
  canonicalId: "text-to-audio",
2933
2990
  datasets: [
2934
2991
  {
@@ -2993,10 +3050,10 @@ var taskData23 = {
2993
3050
  widgetModels: ["suno/bark"],
2994
3051
  youtubeId: "NW62DpzJ274"
2995
3052
  };
2996
- var data_default23 = taskData23;
3053
+ var data_default24 = taskData24;
2997
3054
 
2998
3055
  // src/tasks/token-classification/data.ts
2999
- var taskData24 = {
3056
+ var taskData25 = {
3000
3057
  datasets: [
3001
3058
  {
3002
3059
  description: "A widely used dataset useful to benchmark named entity recognition models.",
@@ -3072,10 +3129,10 @@ var taskData24 = {
3072
3129
  widgetModels: ["dslim/bert-base-NER"],
3073
3130
  youtubeId: "wVHdVlPScxA"
3074
3131
  };
3075
- var data_default24 = taskData24;
3132
+ var data_default25 = taskData25;
3076
3133
 
3077
3134
  // src/tasks/translation/data.ts
3078
- var taskData25 = {
3135
+ var taskData26 = {
3079
3136
  canonicalId: "text2text-generation",
3080
3137
  datasets: [
3081
3138
  {
@@ -3137,10 +3194,10 @@ var taskData25 = {
3137
3194
  widgetModels: ["t5-small"],
3138
3195
  youtubeId: "1JvfrvZgi6c"
3139
3196
  };
3140
- var data_default25 = taskData25;
3197
+ var data_default26 = taskData26;
3141
3198
 
3142
3199
  // src/tasks/text-classification/data.ts
3143
- var taskData26 = {
3200
+ var taskData27 = {
3144
3201
  datasets: [
3145
3202
  {
3146
3203
  description: "A widely used dataset used to benchmark multiple variants of text classification.",
@@ -3225,10 +3282,10 @@ var taskData26 = {
3225
3282
  widgetModels: ["distilbert-base-uncased-finetuned-sst-2-english"],
3226
3283
  youtubeId: "leNG9fN9FQU"
3227
3284
  };
3228
- var data_default26 = taskData26;
3285
+ var data_default27 = taskData27;
3229
3286
 
3230
3287
  // src/tasks/text-generation/data.ts
3231
- var taskData27 = {
3288
+ var taskData28 = {
3232
3289
  datasets: [
3233
3290
  {
3234
3291
  description: "A large multilingual dataset of text crawled from the web.",
@@ -3329,10 +3386,10 @@ var taskData27 = {
3329
3386
  widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
3330
3387
  youtubeId: "Vpjb1lu0MDk"
3331
3388
  };
3332
- var data_default27 = taskData27;
3389
+ var data_default28 = taskData28;
3333
3390
 
3334
3391
  // src/tasks/text-to-video/data.ts
3335
- var taskData28 = {
3392
+ var taskData29 = {
3336
3393
  datasets: [
3337
3394
  {
3338
3395
  description: "Microsoft Research Video to Text is a large-scale dataset for open domain video captioning",
@@ -3424,10 +3481,10 @@ var taskData28 = {
3424
3481
  widgetModels: [],
3425
3482
  youtubeId: void 0
3426
3483
  };
3427
- var data_default28 = taskData28;
3484
+ var data_default29 = taskData29;
3428
3485
 
3429
3486
  // src/tasks/unconditional-image-generation/data.ts
3430
- var taskData29 = {
3487
+ var taskData30 = {
3431
3488
  datasets: [
3432
3489
  {
3433
3490
  description: "The CIFAR-100 dataset consists of 60000 32x32 colour images in 100 classes, with 600 images per class.",
@@ -3489,10 +3546,10 @@ var taskData29 = {
3489
3546
  // TODO: Add related video
3490
3547
  youtubeId: ""
3491
3548
  };
3492
- var data_default29 = taskData29;
3549
+ var data_default30 = taskData30;
3493
3550
 
3494
3551
  // src/tasks/video-classification/data.ts
3495
- var taskData30 = {
3552
+ var taskData31 = {
3496
3553
  datasets: [
3497
3554
  {
3498
3555
  // TODO write proper description
@@ -3571,10 +3628,10 @@ var taskData30 = {
3571
3628
  widgetModels: [],
3572
3629
  youtubeId: ""
3573
3630
  };
3574
- var data_default30 = taskData30;
3631
+ var data_default31 = taskData31;
3575
3632
 
3576
3633
  // src/tasks/visual-question-answering/data.ts
3577
- var taskData31 = {
3634
+ var taskData32 = {
3578
3635
  datasets: [
3579
3636
  {
3580
3637
  description: "A widely used dataset containing questions (with answers) about images.",
@@ -3664,10 +3721,10 @@ var taskData31 = {
3664
3721
  widgetModels: ["dandelin/vilt-b32-finetuned-vqa"],
3665
3722
  youtubeId: ""
3666
3723
  };
3667
- var data_default31 = taskData31;
3724
+ var data_default32 = taskData32;
3668
3725
 
3669
3726
  // src/tasks/zero-shot-classification/data.ts
3670
- var taskData32 = {
3727
+ var taskData33 = {
3671
3728
  datasets: [
3672
3729
  {
3673
3730
  description: "A widely used dataset used to benchmark multiple variants of text classification.",
@@ -3726,10 +3783,10 @@ var taskData32 = {
3726
3783
  summary: "Zero-shot text classification is a task in natural language processing where a model is trained on a set of labeled examples but is then able to classify new examples from previously unseen classes.",
3727
3784
  widgetModels: ["facebook/bart-large-mnli"]
3728
3785
  };
3729
- var data_default32 = taskData32;
3786
+ var data_default33 = taskData33;
3730
3787
 
3731
3788
  // src/tasks/zero-shot-image-classification/data.ts
3732
- var taskData33 = {
3789
+ var taskData34 = {
3733
3790
  datasets: [
3734
3791
  {
3735
3792
  // TODO write proper description
@@ -3803,10 +3860,10 @@ var taskData33 = {
3803
3860
  widgetModels: ["openai/clip-vit-large-patch14-336"],
3804
3861
  youtubeId: ""
3805
3862
  };
3806
- var data_default33 = taskData33;
3863
+ var data_default34 = taskData34;
3807
3864
 
3808
3865
  // src/tasks/zero-shot-object-detection/data.ts
3809
- var taskData34 = {
3866
+ var taskData35 = {
3810
3867
  datasets: [],
3811
3868
  demo: {
3812
3869
  inputs: [
@@ -3861,7 +3918,7 @@ var taskData34 = {
3861
3918
  widgetModels: [],
3862
3919
  youtubeId: ""
3863
3920
  };
3864
- var data_default34 = taskData34;
3921
+ var data_default35 = taskData35;
3865
3922
 
3866
3923
  // src/tasks/index.ts
3867
3924
  var TASKS_MODEL_LIBRARIES = {
@@ -3923,7 +3980,7 @@ var TASKS_MODEL_LIBRARIES = {
3923
3980
  "text-to-3d": [],
3924
3981
  "image-to-3d": []
3925
3982
  };
3926
- function getData(type, partialTaskData = data_default14) {
3983
+ function getData(type, partialTaskData = data_default15) {
3927
3984
  return {
3928
3985
  ...partialTaskData,
3929
3986
  id: type,
@@ -3935,52 +3992,52 @@ var TASKS_DATA = {
3935
3992
  "audio-classification": getData("audio-classification", data_default),
3936
3993
  "audio-to-audio": getData("audio-to-audio", data_default2),
3937
3994
  "automatic-speech-recognition": getData("automatic-speech-recognition", data_default3),
3938
- "depth-estimation": getData("depth-estimation", data_default13),
3995
+ "depth-estimation": getData("depth-estimation", data_default14),
3939
3996
  "document-question-answering": getData("document-question-answering", data_default4),
3940
3997
  "feature-extraction": getData("feature-extraction", data_default5),
3941
3998
  "fill-mask": getData("fill-mask", data_default6),
3942
3999
  "graph-ml": void 0,
3943
4000
  "image-classification": getData("image-classification", data_default7),
3944
- "image-segmentation": getData("image-segmentation", data_default10),
4001
+ "image-feature-extraction": getData("image-feature-extraction", data_default8),
4002
+ "image-segmentation": getData("image-segmentation", data_default11),
3945
4003
  "image-text-to-text": void 0,
3946
- "image-to-image": getData("image-to-image", data_default8),
3947
- "image-to-text": getData("image-to-text", data_default9),
4004
+ "image-to-image": getData("image-to-image", data_default9),
4005
+ "image-to-text": getData("image-to-text", data_default10),
3948
4006
  "image-to-video": void 0,
3949
- "mask-generation": getData("mask-generation", data_default11),
4007
+ "mask-generation": getData("mask-generation", data_default12),
3950
4008
  "multiple-choice": void 0,
3951
- "object-detection": getData("object-detection", data_default12),
3952
- "video-classification": getData("video-classification", data_default30),
4009
+ "object-detection": getData("object-detection", data_default13),
4010
+ "video-classification": getData("video-classification", data_default31),
3953
4011
  other: void 0,
3954
- "question-answering": getData("question-answering", data_default16),
3955
- "reinforcement-learning": getData("reinforcement-learning", data_default15),
4012
+ "question-answering": getData("question-answering", data_default17),
4013
+ "reinforcement-learning": getData("reinforcement-learning", data_default16),
3956
4014
  robotics: void 0,
3957
- "sentence-similarity": getData("sentence-similarity", data_default17),
3958
- summarization: getData("summarization", data_default18),
3959
- "table-question-answering": getData("table-question-answering", data_default19),
4015
+ "sentence-similarity": getData("sentence-similarity", data_default18),
4016
+ summarization: getData("summarization", data_default19),
4017
+ "table-question-answering": getData("table-question-answering", data_default20),
3960
4018
  "table-to-text": void 0,
3961
- "tabular-classification": getData("tabular-classification", data_default20),
3962
- "tabular-regression": getData("tabular-regression", data_default21),
4019
+ "tabular-classification": getData("tabular-classification", data_default21),
4020
+ "tabular-regression": getData("tabular-regression", data_default22),
3963
4021
  "tabular-to-text": void 0,
3964
- "text-classification": getData("text-classification", data_default26),
3965
- "text-generation": getData("text-generation", data_default27),
4022
+ "text-classification": getData("text-classification", data_default27),
4023
+ "text-generation": getData("text-generation", data_default28),
3966
4024
  "text-retrieval": void 0,
3967
- "text-to-image": getData("text-to-image", data_default22),
3968
- "text-to-speech": getData("text-to-speech", data_default23),
4025
+ "text-to-image": getData("text-to-image", data_default23),
4026
+ "text-to-speech": getData("text-to-speech", data_default24),
3969
4027
  "text-to-audio": void 0,
3970
- "text-to-video": getData("text-to-video", data_default28),
4028
+ "text-to-video": getData("text-to-video", data_default29),
3971
4029
  "text2text-generation": void 0,
3972
4030
  "time-series-forecasting": void 0,
3973
- "token-classification": getData("token-classification", data_default24),
3974
- translation: getData("translation", data_default25),
3975
- "unconditional-image-generation": getData("unconditional-image-generation", data_default29),
3976
- "visual-question-answering": getData("visual-question-answering", data_default31),
4031
+ "token-classification": getData("token-classification", data_default25),
4032
+ translation: getData("translation", data_default26),
4033
+ "unconditional-image-generation": getData("unconditional-image-generation", data_default30),
4034
+ "visual-question-answering": getData("visual-question-answering", data_default32),
3977
4035
  "voice-activity-detection": void 0,
3978
- "zero-shot-classification": getData("zero-shot-classification", data_default32),
3979
- "zero-shot-image-classification": getData("zero-shot-image-classification", data_default33),
3980
- "zero-shot-object-detection": getData("zero-shot-object-detection", data_default34),
3981
- "text-to-3d": getData("text-to-3d", data_default14),
3982
- "image-to-3d": getData("image-to-3d", data_default14),
3983
- "image-feature-extraction": getData("image-feature-extraction", data_default14)
4036
+ "zero-shot-classification": getData("zero-shot-classification", data_default33),
4037
+ "zero-shot-image-classification": getData("zero-shot-image-classification", data_default34),
4038
+ "zero-shot-object-detection": getData("zero-shot-object-detection", data_default35),
4039
+ "text-to-3d": getData("text-to-3d", data_default15),
4040
+ "image-to-3d": getData("image-to-3d", data_default15)
3984
4041
  };
3985
4042
 
3986
4043
  // src/model-libraries-snippets.ts
@@ -4113,6 +4170,13 @@ var keras = (model) => [
4113
4170
  model = from_pretrained_keras("${model.id}")
4114
4171
  `
4115
4172
  ];
4173
+ var keras_nlp = (model) => [
4174
+ `import keras_nlp
4175
+
4176
+ tokenizer = keras_nlp.models.Tokenizer.from_preset("hf://${model.id}")
4177
+ backbone = keras_nlp.models.Backbone.from_preset("hf://${model.id}")
4178
+ `
4179
+ ];
4116
4180
  var open_clip = (model) => [
4117
4181
  `import open_clip
4118
4182
 
@@ -4447,6 +4511,11 @@ IWorker engine = WorkerFactory.CreateWorker(BackendType.GPUCompute, model);
4447
4511
  // Please see provided C# file for more details
4448
4512
  `
4449
4513
  ];
4514
+ var voicecraft = (model) => [
4515
+ `from voicecraft import VoiceCraft
4516
+
4517
+ model = VoiceCraft.from_pretrained("${model.id}")`
4518
+ ];
4450
4519
  var mlx = (model) => [
4451
4520
  `pip install huggingface_hub hf_transfer
4452
4521
 
@@ -4635,6 +4704,13 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
4635
4704
  filter: true,
4636
4705
  countDownloads: { term: { path: "saved_model.pb" } }
4637
4706
  },
4707
+ "keras-nlp": {
4708
+ prettyLabel: "KerasNLP",
4709
+ repoName: "KerasNLP",
4710
+ repoUrl: "https://keras.io/keras_nlp/",
4711
+ docsUrl: "https://github.com/keras-team/keras-nlp",
4712
+ snippets: keras_nlp
4713
+ },
4638
4714
  k2: {
4639
4715
  prettyLabel: "K2",
4640
4716
  repoName: "k2",
@@ -4851,6 +4927,13 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
4851
4927
  wildcard: { path: "*.sentis" }
4852
4928
  }
4853
4929
  },
4930
+ voicecraft: {
4931
+ prettyLabel: "VoiceCraft",
4932
+ repoName: "VoiceCraft",
4933
+ repoUrl: "https://github.com/jasonppy/VoiceCraft",
4934
+ docsUrl: "https://github.com/jasonppy/VoiceCraft",
4935
+ snippets: voicecraft
4936
+ },
4854
4937
  whisperkit: {
4855
4938
  prettyLabel: "WhisperKit",
4856
4939
  repoName: "WhisperKit",
package/dist/index.d.ts CHANGED
@@ -878,6 +878,13 @@ declare const MODEL_LIBRARIES_UI_ELEMENTS: {
878
878
  };
879
879
  };
880
880
  };
881
+ "keras-nlp": {
882
+ prettyLabel: string;
883
+ repoName: string;
884
+ repoUrl: string;
885
+ docsUrl: string;
886
+ snippets: (model: ModelData) => string[];
887
+ };
881
888
  k2: {
882
889
  prettyLabel: string;
883
890
  repoName: string;
@@ -1132,6 +1139,13 @@ declare const MODEL_LIBRARIES_UI_ELEMENTS: {
1132
1139
  };
1133
1140
  };
1134
1141
  };
1142
+ voicecraft: {
1143
+ prettyLabel: string;
1144
+ repoName: string;
1145
+ repoUrl: string;
1146
+ docsUrl: string;
1147
+ snippets: (model: ModelData) => string[];
1148
+ };
1135
1149
  whisperkit: {
1136
1150
  prettyLabel: string;
1137
1151
  repoName: string;
@@ -1144,15 +1158,15 @@ declare const MODEL_LIBRARIES_UI_ELEMENTS: {
1144
1158
  };
1145
1159
  };
1146
1160
  type ModelLibraryKey = keyof typeof MODEL_LIBRARIES_UI_ELEMENTS;
1147
- declare const ALL_MODEL_LIBRARY_KEYS: ("sklearn" | "adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "bertopic" | "diffusers" | "doctr" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gliner" | "grok" | "keras" | "k2" | "mindspore" | "ml-agents" | "mlx" | "mlx-image" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "sample-factory" | "sentence-transformers" | "setfit" | "spacy" | "span-marker" | "speechbrain" | "stable-baselines3" | "stanza" | "tensorflowtts" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "whisperkit")[];
1148
- declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: ("sklearn" | "adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "bertopic" | "diffusers" | "doctr" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gliner" | "grok" | "keras" | "k2" | "mindspore" | "ml-agents" | "mlx" | "mlx-image" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "sample-factory" | "sentence-transformers" | "setfit" | "spacy" | "span-marker" | "speechbrain" | "stable-baselines3" | "stanza" | "tensorflowtts" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "whisperkit")[];
1161
+ declare const ALL_MODEL_LIBRARY_KEYS: ("sklearn" | "adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "bertopic" | "diffusers" | "doctr" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gliner" | "grok" | "keras" | "keras-nlp" | "k2" | "mindspore" | "ml-agents" | "mlx" | "mlx-image" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "sample-factory" | "sentence-transformers" | "setfit" | "spacy" | "span-marker" | "speechbrain" | "stable-baselines3" | "stanza" | "tensorflowtts" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
1162
+ declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: ("sklearn" | "adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "bertopic" | "diffusers" | "doctr" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gliner" | "grok" | "keras" | "keras-nlp" | "k2" | "mindspore" | "ml-agents" | "mlx" | "mlx-image" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "sample-factory" | "sentence-transformers" | "setfit" | "spacy" | "span-marker" | "speechbrain" | "stable-baselines3" | "stanza" | "tensorflowtts" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
1149
1163
 
1150
1164
  /**
1151
1165
  * Mapping from library name to its supported tasks.
1152
1166
  * Inference API (serverless) should be disabled for all other (library, task) pairs beyond this mapping.
1153
1167
  * This mapping is partially generated automatically by "python-api-export-tasks" action in
1154
1168
  * huggingface/api-inference-community repo upon merge. For transformers, the mapping is manually
1155
- * based on api-inference.
1169
+ * based on api-inference (hf_types.rs).
1156
1170
  */
1157
1171
  declare const LIBRARY_TASK_MAPPING: Partial<Record<ModelLibraryKey, PipelineType[]>>;
1158
1172