@google-cloud/discoveryengine 2.4.0 → 2.5.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +334 -416
- package/build/protos/google/cloud/discoveryengine/v1/search_service.proto +152 -0
- package/build/protos/google/cloud/discoveryengine/v1alpha/search_service.proto +128 -4
- package/build/protos/google/cloud/discoveryengine/v1beta/search_service.proto +128 -4
- package/build/protos/protos.d.ts +829 -518
- package/build/protos/protos.js +2459 -1694
- package/build/protos/protos.json +539 -194
- package/build/src/v1/identity_mapping_store_service_client.js +5 -5
- package/build/src/v1/search_service_client.d.ts +558 -0
- package/build/src/v1/search_service_client.js +372 -0
- package/build/src/v1alpha/search_service_client.d.ts +210 -12
- package/build/src/v1alpha/search_service_client.js +140 -8
- package/build/src/v1beta/search_service_client.d.ts +420 -24
- package/build/src/v1beta/search_service_client.js +280 -16
- package/package.json +1 -1
@@ -296,8 +296,14 @@ export declare class SearchServiceClient {
|
|
296
296
|
* The ranking expression controls the customized ranking on retrieval
|
297
297
|
* documents. This overrides
|
298
298
|
* {@link protos.google.cloud.discoveryengine.v1beta.ServingConfig.ranking_expression|ServingConfig.ranking_expression}.
|
299
|
-
* The
|
300
|
-
*
|
299
|
+
* The syntax and supported features depend on the
|
300
|
+
* `ranking_expression_backend` value. If `ranking_expression_backend` is not
|
301
|
+
* provided, it defaults to `RANK_BY_EMBEDDING`.
|
302
|
+
*
|
303
|
+
* If
|
304
|
+
* {@link protos.google.cloud.discoveryengine.v1beta.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
305
|
+
* is not provided or set to `RANK_BY_EMBEDDING`, it should be a single
|
306
|
+
* function or multiple functions that are joined by "+".
|
301
307
|
*
|
302
308
|
* * ranking_expression = function, { " + ", function };
|
303
309
|
*
|
@@ -312,13 +318,73 @@ export declare class SearchServiceClient {
|
|
312
318
|
* between query and document.
|
313
319
|
* * `embedding_field_path`: the document embedding field
|
314
320
|
* used with query embedding vector.
|
315
|
-
* * `dotProduct`: embedding function between embedding_field_path and
|
316
|
-
* embedding vector.
|
321
|
+
* * `dotProduct`: embedding function between `embedding_field_path` and
|
322
|
+
* query embedding vector.
|
317
323
|
*
|
318
324
|
* Example ranking expression:
|
319
325
|
*
|
320
326
|
* If document has an embedding field doc_embedding, the ranking expression
|
321
327
|
* could be `0.5 * relevance_score + 0.3 * dotProduct(doc_embedding)`.
|
328
|
+
*
|
329
|
+
* If
|
330
|
+
* {@link protos.google.cloud.discoveryengine.v1beta.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
331
|
+
* is set to `RANK_BY_FORMULA`, the following expression types (and
|
332
|
+
* combinations of those chained using + or
|
333
|
+
* * operators) are supported:
|
334
|
+
*
|
335
|
+
* * `double`
|
336
|
+
* * `signal`
|
337
|
+
* * `log(signal)`
|
338
|
+
* * `exp(signal)`
|
339
|
+
* * `rr(signal, double > 0)` -- reciprocal rank transformation with second
|
340
|
+
* argument being a denominator constant.
|
341
|
+
* * `is_nan(signal)` -- returns 0 if signal is NaN, 1 otherwise.
|
342
|
+
* * `fill_nan(signal1, signal2 | double)` -- if signal1 is NaN, returns
|
343
|
+
* signal2 | double, else returns signal1.
|
344
|
+
*
|
345
|
+
* Here are a few examples of ranking formulas that use the supported
|
346
|
+
* ranking expression types:
|
347
|
+
*
|
348
|
+
* - `0.2 * semantic_similarity_score + 0.8 * log(keyword_similarity_score)`
|
349
|
+
* -- mostly rank by the logarithm of `keyword_similarity_score` with slight
|
350
|
+
* `semantic_smilarity_score` adjustment.
|
351
|
+
* - `0.2 * exp(fill_nan(semantic_similarity_score, 0)) + 0.3 *
|
352
|
+
* is_nan(keyword_similarity_score)` -- rank by the exponent of
|
353
|
+
* `semantic_similarity_score` filling the value with 0 if it's NaN, also
|
354
|
+
* add constant 0.3 adjustment to the final score if
|
355
|
+
* `semantic_similarity_score` is NaN.
|
356
|
+
* - `0.2 * rr(semantic_similarity_score, 16) + 0.8 *
|
357
|
+
* rr(keyword_similarity_score, 16)` -- mostly rank by the reciprocal rank
|
358
|
+
* of `keyword_similarity_score` with slight adjustment of reciprocal rank
|
359
|
+
* of `semantic_smilarity_score`.
|
360
|
+
*
|
361
|
+
* The following signals are supported:
|
362
|
+
*
|
363
|
+
* * `semantic_similarity_score`: semantic similarity adjustment that is
|
364
|
+
* calculated using the embeddings generated by a proprietary Google model.
|
365
|
+
* This score determines how semantically similar a search query is to a
|
366
|
+
* document.
|
367
|
+
* * `keyword_similarity_score`: keyword match adjustment uses the Best
|
368
|
+
* Match 25 (BM25) ranking function. This score is calculated using a
|
369
|
+
* probabilistic model to estimate the probability that a document is
|
370
|
+
* relevant to a given query.
|
371
|
+
* * `relevance_score`: semantic relevance adjustment that uses a
|
372
|
+
* proprietary Google model to determine the meaning and intent behind a
|
373
|
+
* user's query in context with the content in the documents.
|
374
|
+
* * `pctr_rank`: predicted conversion rate adjustment as a rank use
|
375
|
+
* predicted Click-through rate (pCTR) to gauge the relevance and
|
376
|
+
* attractiveness of a search result from a user's perspective. A higher
|
377
|
+
* pCTR suggests that the result is more likely to satisfy the user's query
|
378
|
+
* and intent, making it a valuable signal for ranking.
|
379
|
+
* * `freshness_rank`: freshness adjustment as a rank
|
380
|
+
* * `document_age`: The time in hours elapsed since the document was last
|
381
|
+
* updated, a floating-point number (e.g., 0.25 means 15 minutes).
|
382
|
+
* * `topicality_rank`: topicality adjustment as a rank. Uses proprietary
|
383
|
+
* Google model to determine the keyword-based overlap between the query and
|
384
|
+
* the document.
|
385
|
+
* * `base_rank`: the default rank of the result
|
386
|
+
* @param {google.cloud.discoveryengine.v1beta.SearchRequest.RankingExpressionBackend} [request.rankingExpressionBackend]
|
387
|
+
* The backend to use for the ranking expression evaluation.
|
322
388
|
* @param {boolean} request.safeSearch
|
323
389
|
* Whether to turn on safe search. This is only supported for
|
324
390
|
* website search.
|
@@ -587,8 +653,14 @@ export declare class SearchServiceClient {
|
|
587
653
|
* The ranking expression controls the customized ranking on retrieval
|
588
654
|
* documents. This overrides
|
589
655
|
* {@link protos.google.cloud.discoveryengine.v1beta.ServingConfig.ranking_expression|ServingConfig.ranking_expression}.
|
590
|
-
* The
|
591
|
-
*
|
656
|
+
* The syntax and supported features depend on the
|
657
|
+
* `ranking_expression_backend` value. If `ranking_expression_backend` is not
|
658
|
+
* provided, it defaults to `RANK_BY_EMBEDDING`.
|
659
|
+
*
|
660
|
+
* If
|
661
|
+
* {@link protos.google.cloud.discoveryengine.v1beta.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
662
|
+
* is not provided or set to `RANK_BY_EMBEDDING`, it should be a single
|
663
|
+
* function or multiple functions that are joined by "+".
|
592
664
|
*
|
593
665
|
* * ranking_expression = function, { " + ", function };
|
594
666
|
*
|
@@ -603,13 +675,73 @@ export declare class SearchServiceClient {
|
|
603
675
|
* between query and document.
|
604
676
|
* * `embedding_field_path`: the document embedding field
|
605
677
|
* used with query embedding vector.
|
606
|
-
* * `dotProduct`: embedding function between embedding_field_path and
|
607
|
-
* embedding vector.
|
678
|
+
* * `dotProduct`: embedding function between `embedding_field_path` and
|
679
|
+
* query embedding vector.
|
608
680
|
*
|
609
681
|
* Example ranking expression:
|
610
682
|
*
|
611
683
|
* If document has an embedding field doc_embedding, the ranking expression
|
612
684
|
* could be `0.5 * relevance_score + 0.3 * dotProduct(doc_embedding)`.
|
685
|
+
*
|
686
|
+
* If
|
687
|
+
* {@link protos.google.cloud.discoveryengine.v1beta.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
688
|
+
* is set to `RANK_BY_FORMULA`, the following expression types (and
|
689
|
+
* combinations of those chained using + or
|
690
|
+
* * operators) are supported:
|
691
|
+
*
|
692
|
+
* * `double`
|
693
|
+
* * `signal`
|
694
|
+
* * `log(signal)`
|
695
|
+
* * `exp(signal)`
|
696
|
+
* * `rr(signal, double > 0)` -- reciprocal rank transformation with second
|
697
|
+
* argument being a denominator constant.
|
698
|
+
* * `is_nan(signal)` -- returns 0 if signal is NaN, 1 otherwise.
|
699
|
+
* * `fill_nan(signal1, signal2 | double)` -- if signal1 is NaN, returns
|
700
|
+
* signal2 | double, else returns signal1.
|
701
|
+
*
|
702
|
+
* Here are a few examples of ranking formulas that use the supported
|
703
|
+
* ranking expression types:
|
704
|
+
*
|
705
|
+
* - `0.2 * semantic_similarity_score + 0.8 * log(keyword_similarity_score)`
|
706
|
+
* -- mostly rank by the logarithm of `keyword_similarity_score` with slight
|
707
|
+
* `semantic_smilarity_score` adjustment.
|
708
|
+
* - `0.2 * exp(fill_nan(semantic_similarity_score, 0)) + 0.3 *
|
709
|
+
* is_nan(keyword_similarity_score)` -- rank by the exponent of
|
710
|
+
* `semantic_similarity_score` filling the value with 0 if it's NaN, also
|
711
|
+
* add constant 0.3 adjustment to the final score if
|
712
|
+
* `semantic_similarity_score` is NaN.
|
713
|
+
* - `0.2 * rr(semantic_similarity_score, 16) + 0.8 *
|
714
|
+
* rr(keyword_similarity_score, 16)` -- mostly rank by the reciprocal rank
|
715
|
+
* of `keyword_similarity_score` with slight adjustment of reciprocal rank
|
716
|
+
* of `semantic_smilarity_score`.
|
717
|
+
*
|
718
|
+
* The following signals are supported:
|
719
|
+
*
|
720
|
+
* * `semantic_similarity_score`: semantic similarity adjustment that is
|
721
|
+
* calculated using the embeddings generated by a proprietary Google model.
|
722
|
+
* This score determines how semantically similar a search query is to a
|
723
|
+
* document.
|
724
|
+
* * `keyword_similarity_score`: keyword match adjustment uses the Best
|
725
|
+
* Match 25 (BM25) ranking function. This score is calculated using a
|
726
|
+
* probabilistic model to estimate the probability that a document is
|
727
|
+
* relevant to a given query.
|
728
|
+
* * `relevance_score`: semantic relevance adjustment that uses a
|
729
|
+
* proprietary Google model to determine the meaning and intent behind a
|
730
|
+
* user's query in context with the content in the documents.
|
731
|
+
* * `pctr_rank`: predicted conversion rate adjustment as a rank use
|
732
|
+
* predicted Click-through rate (pCTR) to gauge the relevance and
|
733
|
+
* attractiveness of a search result from a user's perspective. A higher
|
734
|
+
* pCTR suggests that the result is more likely to satisfy the user's query
|
735
|
+
* and intent, making it a valuable signal for ranking.
|
736
|
+
* * `freshness_rank`: freshness adjustment as a rank
|
737
|
+
* * `document_age`: The time in hours elapsed since the document was last
|
738
|
+
* updated, a floating-point number (e.g., 0.25 means 15 minutes).
|
739
|
+
* * `topicality_rank`: topicality adjustment as a rank. Uses proprietary
|
740
|
+
* Google model to determine the keyword-based overlap between the query and
|
741
|
+
* the document.
|
742
|
+
* * `base_rank`: the default rank of the result
|
743
|
+
* @param {google.cloud.discoveryengine.v1beta.SearchRequest.RankingExpressionBackend} [request.rankingExpressionBackend]
|
744
|
+
* The backend to use for the ranking expression evaluation.
|
613
745
|
* @param {boolean} request.safeSearch
|
614
746
|
* Whether to turn on safe search. This is only supported for
|
615
747
|
* website search.
|
@@ -873,8 +1005,14 @@ export declare class SearchServiceClient {
|
|
873
1005
|
* The ranking expression controls the customized ranking on retrieval
|
874
1006
|
* documents. This overrides
|
875
1007
|
* {@link protos.google.cloud.discoveryengine.v1beta.ServingConfig.ranking_expression|ServingConfig.ranking_expression}.
|
876
|
-
* The
|
877
|
-
*
|
1008
|
+
* The syntax and supported features depend on the
|
1009
|
+
* `ranking_expression_backend` value. If `ranking_expression_backend` is not
|
1010
|
+
* provided, it defaults to `RANK_BY_EMBEDDING`.
|
1011
|
+
*
|
1012
|
+
* If
|
1013
|
+
* {@link protos.google.cloud.discoveryengine.v1beta.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
1014
|
+
* is not provided or set to `RANK_BY_EMBEDDING`, it should be a single
|
1015
|
+
* function or multiple functions that are joined by "+".
|
878
1016
|
*
|
879
1017
|
* * ranking_expression = function, { " + ", function };
|
880
1018
|
*
|
@@ -889,13 +1027,73 @@ export declare class SearchServiceClient {
|
|
889
1027
|
* between query and document.
|
890
1028
|
* * `embedding_field_path`: the document embedding field
|
891
1029
|
* used with query embedding vector.
|
892
|
-
* * `dotProduct`: embedding function between embedding_field_path and
|
893
|
-
* embedding vector.
|
1030
|
+
* * `dotProduct`: embedding function between `embedding_field_path` and
|
1031
|
+
* query embedding vector.
|
894
1032
|
*
|
895
1033
|
* Example ranking expression:
|
896
1034
|
*
|
897
1035
|
* If document has an embedding field doc_embedding, the ranking expression
|
898
1036
|
* could be `0.5 * relevance_score + 0.3 * dotProduct(doc_embedding)`.
|
1037
|
+
*
|
1038
|
+
* If
|
1039
|
+
* {@link protos.google.cloud.discoveryengine.v1beta.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
1040
|
+
* is set to `RANK_BY_FORMULA`, the following expression types (and
|
1041
|
+
* combinations of those chained using + or
|
1042
|
+
* * operators) are supported:
|
1043
|
+
*
|
1044
|
+
* * `double`
|
1045
|
+
* * `signal`
|
1046
|
+
* * `log(signal)`
|
1047
|
+
* * `exp(signal)`
|
1048
|
+
* * `rr(signal, double > 0)` -- reciprocal rank transformation with second
|
1049
|
+
* argument being a denominator constant.
|
1050
|
+
* * `is_nan(signal)` -- returns 0 if signal is NaN, 1 otherwise.
|
1051
|
+
* * `fill_nan(signal1, signal2 | double)` -- if signal1 is NaN, returns
|
1052
|
+
* signal2 | double, else returns signal1.
|
1053
|
+
*
|
1054
|
+
* Here are a few examples of ranking formulas that use the supported
|
1055
|
+
* ranking expression types:
|
1056
|
+
*
|
1057
|
+
* - `0.2 * semantic_similarity_score + 0.8 * log(keyword_similarity_score)`
|
1058
|
+
* -- mostly rank by the logarithm of `keyword_similarity_score` with slight
|
1059
|
+
* `semantic_smilarity_score` adjustment.
|
1060
|
+
* - `0.2 * exp(fill_nan(semantic_similarity_score, 0)) + 0.3 *
|
1061
|
+
* is_nan(keyword_similarity_score)` -- rank by the exponent of
|
1062
|
+
* `semantic_similarity_score` filling the value with 0 if it's NaN, also
|
1063
|
+
* add constant 0.3 adjustment to the final score if
|
1064
|
+
* `semantic_similarity_score` is NaN.
|
1065
|
+
* - `0.2 * rr(semantic_similarity_score, 16) + 0.8 *
|
1066
|
+
* rr(keyword_similarity_score, 16)` -- mostly rank by the reciprocal rank
|
1067
|
+
* of `keyword_similarity_score` with slight adjustment of reciprocal rank
|
1068
|
+
* of `semantic_smilarity_score`.
|
1069
|
+
*
|
1070
|
+
* The following signals are supported:
|
1071
|
+
*
|
1072
|
+
* * `semantic_similarity_score`: semantic similarity adjustment that is
|
1073
|
+
* calculated using the embeddings generated by a proprietary Google model.
|
1074
|
+
* This score determines how semantically similar a search query is to a
|
1075
|
+
* document.
|
1076
|
+
* * `keyword_similarity_score`: keyword match adjustment uses the Best
|
1077
|
+
* Match 25 (BM25) ranking function. This score is calculated using a
|
1078
|
+
* probabilistic model to estimate the probability that a document is
|
1079
|
+
* relevant to a given query.
|
1080
|
+
* * `relevance_score`: semantic relevance adjustment that uses a
|
1081
|
+
* proprietary Google model to determine the meaning and intent behind a
|
1082
|
+
* user's query in context with the content in the documents.
|
1083
|
+
* * `pctr_rank`: predicted conversion rate adjustment as a rank use
|
1084
|
+
* predicted Click-through rate (pCTR) to gauge the relevance and
|
1085
|
+
* attractiveness of a search result from a user's perspective. A higher
|
1086
|
+
* pCTR suggests that the result is more likely to satisfy the user's query
|
1087
|
+
* and intent, making it a valuable signal for ranking.
|
1088
|
+
* * `freshness_rank`: freshness adjustment as a rank
|
1089
|
+
* * `document_age`: The time in hours elapsed since the document was last
|
1090
|
+
* updated, a floating-point number (e.g., 0.25 means 15 minutes).
|
1091
|
+
* * `topicality_rank`: topicality adjustment as a rank. Uses proprietary
|
1092
|
+
* Google model to determine the keyword-based overlap between the query and
|
1093
|
+
* the document.
|
1094
|
+
* * `base_rank`: the default rank of the result
|
1095
|
+
* @param {google.cloud.discoveryengine.v1beta.SearchRequest.RankingExpressionBackend} [request.rankingExpressionBackend]
|
1096
|
+
* The backend to use for the ranking expression evaluation.
|
899
1097
|
* @param {boolean} request.safeSearch
|
900
1098
|
* Whether to turn on safe search. This is only supported for
|
901
1099
|
* website search.
|
@@ -1171,8 +1369,14 @@ export declare class SearchServiceClient {
|
|
1171
1369
|
* The ranking expression controls the customized ranking on retrieval
|
1172
1370
|
* documents. This overrides
|
1173
1371
|
* {@link protos.google.cloud.discoveryengine.v1beta.ServingConfig.ranking_expression|ServingConfig.ranking_expression}.
|
1174
|
-
* The
|
1175
|
-
*
|
1372
|
+
* The syntax and supported features depend on the
|
1373
|
+
* `ranking_expression_backend` value. If `ranking_expression_backend` is not
|
1374
|
+
* provided, it defaults to `RANK_BY_EMBEDDING`.
|
1375
|
+
*
|
1376
|
+
* If
|
1377
|
+
* {@link protos.google.cloud.discoveryengine.v1beta.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
1378
|
+
* is not provided or set to `RANK_BY_EMBEDDING`, it should be a single
|
1379
|
+
* function or multiple functions that are joined by "+".
|
1176
1380
|
*
|
1177
1381
|
* * ranking_expression = function, { " + ", function };
|
1178
1382
|
*
|
@@ -1187,13 +1391,73 @@ export declare class SearchServiceClient {
|
|
1187
1391
|
* between query and document.
|
1188
1392
|
* * `embedding_field_path`: the document embedding field
|
1189
1393
|
* used with query embedding vector.
|
1190
|
-
* * `dotProduct`: embedding function between embedding_field_path and
|
1191
|
-
* embedding vector.
|
1394
|
+
* * `dotProduct`: embedding function between `embedding_field_path` and
|
1395
|
+
* query embedding vector.
|
1192
1396
|
*
|
1193
1397
|
* Example ranking expression:
|
1194
1398
|
*
|
1195
1399
|
* If document has an embedding field doc_embedding, the ranking expression
|
1196
1400
|
* could be `0.5 * relevance_score + 0.3 * dotProduct(doc_embedding)`.
|
1401
|
+
*
|
1402
|
+
* If
|
1403
|
+
* {@link protos.google.cloud.discoveryengine.v1beta.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
1404
|
+
* is set to `RANK_BY_FORMULA`, the following expression types (and
|
1405
|
+
* combinations of those chained using + or
|
1406
|
+
* * operators) are supported:
|
1407
|
+
*
|
1408
|
+
* * `double`
|
1409
|
+
* * `signal`
|
1410
|
+
* * `log(signal)`
|
1411
|
+
* * `exp(signal)`
|
1412
|
+
* * `rr(signal, double > 0)` -- reciprocal rank transformation with second
|
1413
|
+
* argument being a denominator constant.
|
1414
|
+
* * `is_nan(signal)` -- returns 0 if signal is NaN, 1 otherwise.
|
1415
|
+
* * `fill_nan(signal1, signal2 | double)` -- if signal1 is NaN, returns
|
1416
|
+
* signal2 | double, else returns signal1.
|
1417
|
+
*
|
1418
|
+
* Here are a few examples of ranking formulas that use the supported
|
1419
|
+
* ranking expression types:
|
1420
|
+
*
|
1421
|
+
* - `0.2 * semantic_similarity_score + 0.8 * log(keyword_similarity_score)`
|
1422
|
+
* -- mostly rank by the logarithm of `keyword_similarity_score` with slight
|
1423
|
+
* `semantic_smilarity_score` adjustment.
|
1424
|
+
* - `0.2 * exp(fill_nan(semantic_similarity_score, 0)) + 0.3 *
|
1425
|
+
* is_nan(keyword_similarity_score)` -- rank by the exponent of
|
1426
|
+
* `semantic_similarity_score` filling the value with 0 if it's NaN, also
|
1427
|
+
* add constant 0.3 adjustment to the final score if
|
1428
|
+
* `semantic_similarity_score` is NaN.
|
1429
|
+
* - `0.2 * rr(semantic_similarity_score, 16) + 0.8 *
|
1430
|
+
* rr(keyword_similarity_score, 16)` -- mostly rank by the reciprocal rank
|
1431
|
+
* of `keyword_similarity_score` with slight adjustment of reciprocal rank
|
1432
|
+
* of `semantic_smilarity_score`.
|
1433
|
+
*
|
1434
|
+
* The following signals are supported:
|
1435
|
+
*
|
1436
|
+
* * `semantic_similarity_score`: semantic similarity adjustment that is
|
1437
|
+
* calculated using the embeddings generated by a proprietary Google model.
|
1438
|
+
* This score determines how semantically similar a search query is to a
|
1439
|
+
* document.
|
1440
|
+
* * `keyword_similarity_score`: keyword match adjustment uses the Best
|
1441
|
+
* Match 25 (BM25) ranking function. This score is calculated using a
|
1442
|
+
* probabilistic model to estimate the probability that a document is
|
1443
|
+
* relevant to a given query.
|
1444
|
+
* * `relevance_score`: semantic relevance adjustment that uses a
|
1445
|
+
* proprietary Google model to determine the meaning and intent behind a
|
1446
|
+
* user's query in context with the content in the documents.
|
1447
|
+
* * `pctr_rank`: predicted conversion rate adjustment as a rank use
|
1448
|
+
* predicted Click-through rate (pCTR) to gauge the relevance and
|
1449
|
+
* attractiveness of a search result from a user's perspective. A higher
|
1450
|
+
* pCTR suggests that the result is more likely to satisfy the user's query
|
1451
|
+
* and intent, making it a valuable signal for ranking.
|
1452
|
+
* * `freshness_rank`: freshness adjustment as a rank
|
1453
|
+
* * `document_age`: The time in hours elapsed since the document was last
|
1454
|
+
* updated, a floating-point number (e.g., 0.25 means 15 minutes).
|
1455
|
+
* * `topicality_rank`: topicality adjustment as a rank. Uses proprietary
|
1456
|
+
* Google model to determine the keyword-based overlap between the query and
|
1457
|
+
* the document.
|
1458
|
+
* * `base_rank`: the default rank of the result
|
1459
|
+
* @param {google.cloud.discoveryengine.v1beta.SearchRequest.RankingExpressionBackend} [request.rankingExpressionBackend]
|
1460
|
+
* The backend to use for the ranking expression evaluation.
|
1197
1461
|
* @param {boolean} request.safeSearch
|
1198
1462
|
* Whether to turn on safe search. This is only supported for
|
1199
1463
|
* website search.
|
@@ -1462,8 +1726,14 @@ export declare class SearchServiceClient {
|
|
1462
1726
|
* The ranking expression controls the customized ranking on retrieval
|
1463
1727
|
* documents. This overrides
|
1464
1728
|
* {@link protos.google.cloud.discoveryengine.v1beta.ServingConfig.ranking_expression|ServingConfig.ranking_expression}.
|
1465
|
-
* The
|
1466
|
-
*
|
1729
|
+
* The syntax and supported features depend on the
|
1730
|
+
* `ranking_expression_backend` value. If `ranking_expression_backend` is not
|
1731
|
+
* provided, it defaults to `RANK_BY_EMBEDDING`.
|
1732
|
+
*
|
1733
|
+
* If
|
1734
|
+
* {@link protos.google.cloud.discoveryengine.v1beta.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
1735
|
+
* is not provided or set to `RANK_BY_EMBEDDING`, it should be a single
|
1736
|
+
* function or multiple functions that are joined by "+".
|
1467
1737
|
*
|
1468
1738
|
* * ranking_expression = function, { " + ", function };
|
1469
1739
|
*
|
@@ -1478,13 +1748,73 @@ export declare class SearchServiceClient {
|
|
1478
1748
|
* between query and document.
|
1479
1749
|
* * `embedding_field_path`: the document embedding field
|
1480
1750
|
* used with query embedding vector.
|
1481
|
-
* * `dotProduct`: embedding function between embedding_field_path and
|
1482
|
-
* embedding vector.
|
1751
|
+
* * `dotProduct`: embedding function between `embedding_field_path` and
|
1752
|
+
* query embedding vector.
|
1483
1753
|
*
|
1484
1754
|
* Example ranking expression:
|
1485
1755
|
*
|
1486
1756
|
* If document has an embedding field doc_embedding, the ranking expression
|
1487
1757
|
* could be `0.5 * relevance_score + 0.3 * dotProduct(doc_embedding)`.
|
1758
|
+
*
|
1759
|
+
* If
|
1760
|
+
* {@link protos.google.cloud.discoveryengine.v1beta.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
1761
|
+
* is set to `RANK_BY_FORMULA`, the following expression types (and
|
1762
|
+
* combinations of those chained using + or
|
1763
|
+
* * operators) are supported:
|
1764
|
+
*
|
1765
|
+
* * `double`
|
1766
|
+
* * `signal`
|
1767
|
+
* * `log(signal)`
|
1768
|
+
* * `exp(signal)`
|
1769
|
+
* * `rr(signal, double > 0)` -- reciprocal rank transformation with second
|
1770
|
+
* argument being a denominator constant.
|
1771
|
+
* * `is_nan(signal)` -- returns 0 if signal is NaN, 1 otherwise.
|
1772
|
+
* * `fill_nan(signal1, signal2 | double)` -- if signal1 is NaN, returns
|
1773
|
+
* signal2 | double, else returns signal1.
|
1774
|
+
*
|
1775
|
+
* Here are a few examples of ranking formulas that use the supported
|
1776
|
+
* ranking expression types:
|
1777
|
+
*
|
1778
|
+
* - `0.2 * semantic_similarity_score + 0.8 * log(keyword_similarity_score)`
|
1779
|
+
* -- mostly rank by the logarithm of `keyword_similarity_score` with slight
|
1780
|
+
* `semantic_smilarity_score` adjustment.
|
1781
|
+
* - `0.2 * exp(fill_nan(semantic_similarity_score, 0)) + 0.3 *
|
1782
|
+
* is_nan(keyword_similarity_score)` -- rank by the exponent of
|
1783
|
+
* `semantic_similarity_score` filling the value with 0 if it's NaN, also
|
1784
|
+
* add constant 0.3 adjustment to the final score if
|
1785
|
+
* `semantic_similarity_score` is NaN.
|
1786
|
+
* - `0.2 * rr(semantic_similarity_score, 16) + 0.8 *
|
1787
|
+
* rr(keyword_similarity_score, 16)` -- mostly rank by the reciprocal rank
|
1788
|
+
* of `keyword_similarity_score` with slight adjustment of reciprocal rank
|
1789
|
+
* of `semantic_smilarity_score`.
|
1790
|
+
*
|
1791
|
+
* The following signals are supported:
|
1792
|
+
*
|
1793
|
+
* * `semantic_similarity_score`: semantic similarity adjustment that is
|
1794
|
+
* calculated using the embeddings generated by a proprietary Google model.
|
1795
|
+
* This score determines how semantically similar a search query is to a
|
1796
|
+
* document.
|
1797
|
+
* * `keyword_similarity_score`: keyword match adjustment uses the Best
|
1798
|
+
* Match 25 (BM25) ranking function. This score is calculated using a
|
1799
|
+
* probabilistic model to estimate the probability that a document is
|
1800
|
+
* relevant to a given query.
|
1801
|
+
* * `relevance_score`: semantic relevance adjustment that uses a
|
1802
|
+
* proprietary Google model to determine the meaning and intent behind a
|
1803
|
+
* user's query in context with the content in the documents.
|
1804
|
+
* * `pctr_rank`: predicted conversion rate adjustment as a rank use
|
1805
|
+
* predicted Click-through rate (pCTR) to gauge the relevance and
|
1806
|
+
* attractiveness of a search result from a user's perspective. A higher
|
1807
|
+
* pCTR suggests that the result is more likely to satisfy the user's query
|
1808
|
+
* and intent, making it a valuable signal for ranking.
|
1809
|
+
* * `freshness_rank`: freshness adjustment as a rank
|
1810
|
+
* * `document_age`: The time in hours elapsed since the document was last
|
1811
|
+
* updated, a floating-point number (e.g., 0.25 means 15 minutes).
|
1812
|
+
* * `topicality_rank`: topicality adjustment as a rank. Uses proprietary
|
1813
|
+
* Google model to determine the keyword-based overlap between the query and
|
1814
|
+
* the document.
|
1815
|
+
* * `base_rank`: the default rank of the result
|
1816
|
+
* @param {google.cloud.discoveryengine.v1beta.SearchRequest.RankingExpressionBackend} [request.rankingExpressionBackend]
|
1817
|
+
* The backend to use for the ranking expression evaluation.
|
1488
1818
|
* @param {boolean} request.safeSearch
|
1489
1819
|
* Whether to turn on safe search. This is only supported for
|
1490
1820
|
* website search.
|
@@ -1748,8 +2078,14 @@ export declare class SearchServiceClient {
|
|
1748
2078
|
* The ranking expression controls the customized ranking on retrieval
|
1749
2079
|
* documents. This overrides
|
1750
2080
|
* {@link protos.google.cloud.discoveryengine.v1beta.ServingConfig.ranking_expression|ServingConfig.ranking_expression}.
|
1751
|
-
* The
|
1752
|
-
*
|
2081
|
+
* The syntax and supported features depend on the
|
2082
|
+
* `ranking_expression_backend` value. If `ranking_expression_backend` is not
|
2083
|
+
* provided, it defaults to `RANK_BY_EMBEDDING`.
|
2084
|
+
*
|
2085
|
+
* If
|
2086
|
+
* {@link protos.google.cloud.discoveryengine.v1beta.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
2087
|
+
* is not provided or set to `RANK_BY_EMBEDDING`, it should be a single
|
2088
|
+
* function or multiple functions that are joined by "+".
|
1753
2089
|
*
|
1754
2090
|
* * ranking_expression = function, { " + ", function };
|
1755
2091
|
*
|
@@ -1764,13 +2100,73 @@ export declare class SearchServiceClient {
|
|
1764
2100
|
* between query and document.
|
1765
2101
|
* * `embedding_field_path`: the document embedding field
|
1766
2102
|
* used with query embedding vector.
|
1767
|
-
* * `dotProduct`: embedding function between embedding_field_path and
|
1768
|
-
* embedding vector.
|
2103
|
+
* * `dotProduct`: embedding function between `embedding_field_path` and
|
2104
|
+
* query embedding vector.
|
1769
2105
|
*
|
1770
2106
|
* Example ranking expression:
|
1771
2107
|
*
|
1772
2108
|
* If document has an embedding field doc_embedding, the ranking expression
|
1773
2109
|
* could be `0.5 * relevance_score + 0.3 * dotProduct(doc_embedding)`.
|
2110
|
+
*
|
2111
|
+
* If
|
2112
|
+
* {@link protos.google.cloud.discoveryengine.v1beta.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
2113
|
+
* is set to `RANK_BY_FORMULA`, the following expression types (and
|
2114
|
+
* combinations of those chained using + or
|
2115
|
+
* * operators) are supported:
|
2116
|
+
*
|
2117
|
+
* * `double`
|
2118
|
+
* * `signal`
|
2119
|
+
* * `log(signal)`
|
2120
|
+
* * `exp(signal)`
|
2121
|
+
* * `rr(signal, double > 0)` -- reciprocal rank transformation with second
|
2122
|
+
* argument being a denominator constant.
|
2123
|
+
* * `is_nan(signal)` -- returns 0 if signal is NaN, 1 otherwise.
|
2124
|
+
* * `fill_nan(signal1, signal2 | double)` -- if signal1 is NaN, returns
|
2125
|
+
* signal2 | double, else returns signal1.
|
2126
|
+
*
|
2127
|
+
* Here are a few examples of ranking formulas that use the supported
|
2128
|
+
* ranking expression types:
|
2129
|
+
*
|
2130
|
+
* - `0.2 * semantic_similarity_score + 0.8 * log(keyword_similarity_score)`
|
2131
|
+
* -- mostly rank by the logarithm of `keyword_similarity_score` with slight
|
2132
|
+
* `semantic_smilarity_score` adjustment.
|
2133
|
+
* - `0.2 * exp(fill_nan(semantic_similarity_score, 0)) + 0.3 *
|
2134
|
+
* is_nan(keyword_similarity_score)` -- rank by the exponent of
|
2135
|
+
* `semantic_similarity_score` filling the value with 0 if it's NaN, also
|
2136
|
+
* add constant 0.3 adjustment to the final score if
|
2137
|
+
* `semantic_similarity_score` is NaN.
|
2138
|
+
* - `0.2 * rr(semantic_similarity_score, 16) + 0.8 *
|
2139
|
+
* rr(keyword_similarity_score, 16)` -- mostly rank by the reciprocal rank
|
2140
|
+
* of `keyword_similarity_score` with slight adjustment of reciprocal rank
|
2141
|
+
* of `semantic_smilarity_score`.
|
2142
|
+
*
|
2143
|
+
* The following signals are supported:
|
2144
|
+
*
|
2145
|
+
* * `semantic_similarity_score`: semantic similarity adjustment that is
|
2146
|
+
* calculated using the embeddings generated by a proprietary Google model.
|
2147
|
+
* This score determines how semantically similar a search query is to a
|
2148
|
+
* document.
|
2149
|
+
* * `keyword_similarity_score`: keyword match adjustment uses the Best
|
2150
|
+
* Match 25 (BM25) ranking function. This score is calculated using a
|
2151
|
+
* probabilistic model to estimate the probability that a document is
|
2152
|
+
* relevant to a given query.
|
2153
|
+
* * `relevance_score`: semantic relevance adjustment that uses a
|
2154
|
+
* proprietary Google model to determine the meaning and intent behind a
|
2155
|
+
* user's query in context with the content in the documents.
|
2156
|
+
* * `pctr_rank`: predicted conversion rate adjustment as a rank use
|
2157
|
+
* predicted Click-through rate (pCTR) to gauge the relevance and
|
2158
|
+
* attractiveness of a search result from a user's perspective. A higher
|
2159
|
+
* pCTR suggests that the result is more likely to satisfy the user's query
|
2160
|
+
* and intent, making it a valuable signal for ranking.
|
2161
|
+
* * `freshness_rank`: freshness adjustment as a rank
|
2162
|
+
* * `document_age`: The time in hours elapsed since the document was last
|
2163
|
+
* updated, a floating-point number (e.g., 0.25 means 15 minutes).
|
2164
|
+
* * `topicality_rank`: topicality adjustment as a rank. Uses proprietary
|
2165
|
+
* Google model to determine the keyword-based overlap between the query and
|
2166
|
+
* the document.
|
2167
|
+
* * `base_rank`: the default rank of the result
|
2168
|
+
* @param {google.cloud.discoveryengine.v1beta.SearchRequest.RankingExpressionBackend} [request.rankingExpressionBackend]
|
2169
|
+
* The backend to use for the ranking expression evaluation.
|
1774
2170
|
* @param {boolean} request.safeSearch
|
1775
2171
|
* Whether to turn on safe search. This is only supported for
|
1776
2172
|
* website search.
|