@google-cloud/discoveryengine 2.4.0 → 2.5.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -293,8 +293,14 @@ export declare class SearchServiceClient {
293
293
  * The ranking expression controls the customized ranking on retrieval
294
294
  * documents. This overrides
295
295
  * {@link protos.google.cloud.discoveryengine.v1alpha.ServingConfig.ranking_expression|ServingConfig.ranking_expression}.
296
- * The ranking expression is a single function or multiple functions that are
297
- * joined by "+".
296
+ * The syntax and supported features depend on the
297
+ * `ranking_expression_backend` value. If `ranking_expression_backend` is not
298
+ * provided, it defaults to `RANK_BY_EMBEDDING`.
299
+ *
300
+ * If
301
+ * {@link protos.google.cloud.discoveryengine.v1alpha.SearchRequest.ranking_expression_backend|ranking_expression_backend}
302
+ * is not provided or set to `RANK_BY_EMBEDDING`, it should be a single
303
+ * function or multiple functions that are joined by "+".
298
304
  *
299
305
  * * ranking_expression = function, { " + ", function };
300
306
  *
@@ -309,13 +315,73 @@ export declare class SearchServiceClient {
309
315
  * between query and document.
310
316
  * * `embedding_field_path`: the document embedding field
311
317
  * used with query embedding vector.
312
- * * `dotProduct`: embedding function between embedding_field_path and query
313
- * embedding vector.
318
+ * * `dotProduct`: embedding function between `embedding_field_path` and
319
+ * query embedding vector.
314
320
  *
315
321
  * Example ranking expression:
316
322
  *
317
323
  * If document has an embedding field doc_embedding, the ranking expression
318
324
  * could be `0.5 * relevance_score + 0.3 * dotProduct(doc_embedding)`.
325
+ *
326
+ * If
327
+ * {@link protos.google.cloud.discoveryengine.v1alpha.SearchRequest.ranking_expression_backend|ranking_expression_backend}
328
+ * is set to `RANK_BY_FORMULA`, the following expression types (and
329
+ * combinations of those chained using + or
330
+ * * operators) are supported:
331
+ *
332
+ * * `double`
333
+ * * `signal`
334
+ * * `log(signal)`
335
+ * * `exp(signal)`
336
+ * * `rr(signal, double > 0)` -- reciprocal rank transformation with second
337
+ * argument being a denominator constant.
338
+ * * `is_nan(signal)` -- returns 0 if signal is NaN, 1 otherwise.
339
+ * * `fill_nan(signal1, signal2 | double)` -- if signal1 is NaN, returns
340
+ * signal2 | double, else returns signal1.
341
+ *
342
+ * Here are a few examples of ranking formulas that use the supported
343
+ * ranking expression types:
344
+ *
345
+ * - `0.2 * semantic_similarity_score + 0.8 * log(keyword_similarity_score)`
346
+ * -- mostly rank by the logarithm of `keyword_similarity_score` with slight
347
+ * `semantic_smilarity_score` adjustment.
348
+ * - `0.2 * exp(fill_nan(semantic_similarity_score, 0)) + 0.3 *
349
+ * is_nan(keyword_similarity_score)` -- rank by the exponent of
350
+ * `semantic_similarity_score` filling the value with 0 if it's NaN, also
351
+ * add constant 0.3 adjustment to the final score if
352
+ * `semantic_similarity_score` is NaN.
353
+ * - `0.2 * rr(semantic_similarity_score, 16) + 0.8 *
354
+ * rr(keyword_similarity_score, 16)` -- mostly rank by the reciprocal rank
355
+ * of `keyword_similarity_score` with slight adjustment of reciprocal rank
356
+ * of `semantic_smilarity_score`.
357
+ *
358
+ * The following signals are supported:
359
+ *
360
+ * * `semantic_similarity_score`: semantic similarity adjustment that is
361
+ * calculated using the embeddings generated by a proprietary Google model.
362
+ * This score determines how semantically similar a search query is to a
363
+ * document.
364
+ * * `keyword_similarity_score`: keyword match adjustment uses the Best
365
+ * Match 25 (BM25) ranking function. This score is calculated using a
366
+ * probabilistic model to estimate the probability that a document is
367
+ * relevant to a given query.
368
+ * * `relevance_score`: semantic relevance adjustment that uses a
369
+ * proprietary Google model to determine the meaning and intent behind a
370
+ * user's query in context with the content in the documents.
371
+ * * `pctr_rank`: predicted conversion rate adjustment as a rank use
372
+ * predicted Click-through rate (pCTR) to gauge the relevance and
373
+ * attractiveness of a search result from a user's perspective. A higher
374
+ * pCTR suggests that the result is more likely to satisfy the user's query
375
+ * and intent, making it a valuable signal for ranking.
376
+ * * `freshness_rank`: freshness adjustment as a rank
377
+ * * `document_age`: The time in hours elapsed since the document was last
378
+ * updated, a floating-point number (e.g., 0.25 means 15 minutes).
379
+ * * `topicality_rank`: topicality adjustment as a rank. Uses proprietary
380
+ * Google model to determine the keyword-based overlap between the query and
381
+ * the document.
382
+ * * `base_rank`: the default rank of the result
383
+ * @param {google.cloud.discoveryengine.v1alpha.SearchRequest.RankingExpressionBackend} [request.rankingExpressionBackend]
384
+ * The backend to use for the ranking expression evaluation.
319
385
  * @param {boolean} request.safeSearch
320
386
  * Whether to turn on safe search. This is only supported for
321
387
  * website search.
@@ -574,8 +640,14 @@ export declare class SearchServiceClient {
574
640
  * The ranking expression controls the customized ranking on retrieval
575
641
  * documents. This overrides
576
642
  * {@link protos.google.cloud.discoveryengine.v1alpha.ServingConfig.ranking_expression|ServingConfig.ranking_expression}.
577
- * The ranking expression is a single function or multiple functions that are
578
- * joined by "+".
643
+ * The syntax and supported features depend on the
644
+ * `ranking_expression_backend` value. If `ranking_expression_backend` is not
645
+ * provided, it defaults to `RANK_BY_EMBEDDING`.
646
+ *
647
+ * If
648
+ * {@link protos.google.cloud.discoveryengine.v1alpha.SearchRequest.ranking_expression_backend|ranking_expression_backend}
649
+ * is not provided or set to `RANK_BY_EMBEDDING`, it should be a single
650
+ * function or multiple functions that are joined by "+".
579
651
  *
580
652
  * * ranking_expression = function, { " + ", function };
581
653
  *
@@ -590,13 +662,73 @@ export declare class SearchServiceClient {
590
662
  * between query and document.
591
663
  * * `embedding_field_path`: the document embedding field
592
664
  * used with query embedding vector.
593
- * * `dotProduct`: embedding function between embedding_field_path and query
594
- * embedding vector.
665
+ * * `dotProduct`: embedding function between `embedding_field_path` and
666
+ * query embedding vector.
595
667
  *
596
668
  * Example ranking expression:
597
669
  *
598
670
  * If document has an embedding field doc_embedding, the ranking expression
599
671
  * could be `0.5 * relevance_score + 0.3 * dotProduct(doc_embedding)`.
672
+ *
673
+ * If
674
+ * {@link protos.google.cloud.discoveryengine.v1alpha.SearchRequest.ranking_expression_backend|ranking_expression_backend}
675
+ * is set to `RANK_BY_FORMULA`, the following expression types (and
676
+ * combinations of those chained using + or
677
+ * * operators) are supported:
678
+ *
679
+ * * `double`
680
+ * * `signal`
681
+ * * `log(signal)`
682
+ * * `exp(signal)`
683
+ * * `rr(signal, double > 0)` -- reciprocal rank transformation with second
684
+ * argument being a denominator constant.
685
+ * * `is_nan(signal)` -- returns 0 if signal is NaN, 1 otherwise.
686
+ * * `fill_nan(signal1, signal2 | double)` -- if signal1 is NaN, returns
687
+ * signal2 | double, else returns signal1.
688
+ *
689
+ * Here are a few examples of ranking formulas that use the supported
690
+ * ranking expression types:
691
+ *
692
+ * - `0.2 * semantic_similarity_score + 0.8 * log(keyword_similarity_score)`
693
+ * -- mostly rank by the logarithm of `keyword_similarity_score` with slight
694
+ * `semantic_smilarity_score` adjustment.
695
+ * - `0.2 * exp(fill_nan(semantic_similarity_score, 0)) + 0.3 *
696
+ * is_nan(keyword_similarity_score)` -- rank by the exponent of
697
+ * `semantic_similarity_score` filling the value with 0 if it's NaN, also
698
+ * add constant 0.3 adjustment to the final score if
699
+ * `semantic_similarity_score` is NaN.
700
+ * - `0.2 * rr(semantic_similarity_score, 16) + 0.8 *
701
+ * rr(keyword_similarity_score, 16)` -- mostly rank by the reciprocal rank
702
+ * of `keyword_similarity_score` with slight adjustment of reciprocal rank
703
+ * of `semantic_smilarity_score`.
704
+ *
705
+ * The following signals are supported:
706
+ *
707
+ * * `semantic_similarity_score`: semantic similarity adjustment that is
708
+ * calculated using the embeddings generated by a proprietary Google model.
709
+ * This score determines how semantically similar a search query is to a
710
+ * document.
711
+ * * `keyword_similarity_score`: keyword match adjustment uses the Best
712
+ * Match 25 (BM25) ranking function. This score is calculated using a
713
+ * probabilistic model to estimate the probability that a document is
714
+ * relevant to a given query.
715
+ * * `relevance_score`: semantic relevance adjustment that uses a
716
+ * proprietary Google model to determine the meaning and intent behind a
717
+ * user's query in context with the content in the documents.
718
+ * * `pctr_rank`: predicted conversion rate adjustment as a rank use
719
+ * predicted Click-through rate (pCTR) to gauge the relevance and
720
+ * attractiveness of a search result from a user's perspective. A higher
721
+ * pCTR suggests that the result is more likely to satisfy the user's query
722
+ * and intent, making it a valuable signal for ranking.
723
+ * * `freshness_rank`: freshness adjustment as a rank
724
+ * * `document_age`: The time in hours elapsed since the document was last
725
+ * updated, a floating-point number (e.g., 0.25 means 15 minutes).
726
+ * * `topicality_rank`: topicality adjustment as a rank. Uses proprietary
727
+ * Google model to determine the keyword-based overlap between the query and
728
+ * the document.
729
+ * * `base_rank`: the default rank of the result
730
+ * @param {google.cloud.discoveryengine.v1alpha.SearchRequest.RankingExpressionBackend} [request.rankingExpressionBackend]
731
+ * The backend to use for the ranking expression evaluation.
600
732
  * @param {boolean} request.safeSearch
601
733
  * Whether to turn on safe search. This is only supported for
602
734
  * website search.
@@ -850,8 +982,14 @@ export declare class SearchServiceClient {
850
982
  * The ranking expression controls the customized ranking on retrieval
851
983
  * documents. This overrides
852
984
  * {@link protos.google.cloud.discoveryengine.v1alpha.ServingConfig.ranking_expression|ServingConfig.ranking_expression}.
853
- * The ranking expression is a single function or multiple functions that are
854
- * joined by "+".
985
+ * The syntax and supported features depend on the
986
+ * `ranking_expression_backend` value. If `ranking_expression_backend` is not
987
+ * provided, it defaults to `RANK_BY_EMBEDDING`.
988
+ *
989
+ * If
990
+ * {@link protos.google.cloud.discoveryengine.v1alpha.SearchRequest.ranking_expression_backend|ranking_expression_backend}
991
+ * is not provided or set to `RANK_BY_EMBEDDING`, it should be a single
992
+ * function or multiple functions that are joined by "+".
855
993
  *
856
994
  * * ranking_expression = function, { " + ", function };
857
995
  *
@@ -866,13 +1004,73 @@ export declare class SearchServiceClient {
866
1004
  * between query and document.
867
1005
  * * `embedding_field_path`: the document embedding field
868
1006
  * used with query embedding vector.
869
- * * `dotProduct`: embedding function between embedding_field_path and query
870
- * embedding vector.
1007
+ * * `dotProduct`: embedding function between `embedding_field_path` and
1008
+ * query embedding vector.
871
1009
  *
872
1010
  * Example ranking expression:
873
1011
  *
874
1012
  * If document has an embedding field doc_embedding, the ranking expression
875
1013
  * could be `0.5 * relevance_score + 0.3 * dotProduct(doc_embedding)`.
1014
+ *
1015
+ * If
1016
+ * {@link protos.google.cloud.discoveryengine.v1alpha.SearchRequest.ranking_expression_backend|ranking_expression_backend}
1017
+ * is set to `RANK_BY_FORMULA`, the following expression types (and
1018
+ * combinations of those chained using + or
1019
+ * * operators) are supported:
1020
+ *
1021
+ * * `double`
1022
+ * * `signal`
1023
+ * * `log(signal)`
1024
+ * * `exp(signal)`
1025
+ * * `rr(signal, double > 0)` -- reciprocal rank transformation with second
1026
+ * argument being a denominator constant.
1027
+ * * `is_nan(signal)` -- returns 0 if signal is NaN, 1 otherwise.
1028
+ * * `fill_nan(signal1, signal2 | double)` -- if signal1 is NaN, returns
1029
+ * signal2 | double, else returns signal1.
1030
+ *
1031
+ * Here are a few examples of ranking formulas that use the supported
1032
+ * ranking expression types:
1033
+ *
1034
+ * - `0.2 * semantic_similarity_score + 0.8 * log(keyword_similarity_score)`
1035
+ * -- mostly rank by the logarithm of `keyword_similarity_score` with slight
1036
+ * `semantic_smilarity_score` adjustment.
1037
+ * - `0.2 * exp(fill_nan(semantic_similarity_score, 0)) + 0.3 *
1038
+ * is_nan(keyword_similarity_score)` -- rank by the exponent of
1039
+ * `semantic_similarity_score` filling the value with 0 if it's NaN, also
1040
+ * add constant 0.3 adjustment to the final score if
1041
+ * `semantic_similarity_score` is NaN.
1042
+ * - `0.2 * rr(semantic_similarity_score, 16) + 0.8 *
1043
+ * rr(keyword_similarity_score, 16)` -- mostly rank by the reciprocal rank
1044
+ * of `keyword_similarity_score` with slight adjustment of reciprocal rank
1045
+ * of `semantic_smilarity_score`.
1046
+ *
1047
+ * The following signals are supported:
1048
+ *
1049
+ * * `semantic_similarity_score`: semantic similarity adjustment that is
1050
+ * calculated using the embeddings generated by a proprietary Google model.
1051
+ * This score determines how semantically similar a search query is to a
1052
+ * document.
1053
+ * * `keyword_similarity_score`: keyword match adjustment uses the Best
1054
+ * Match 25 (BM25) ranking function. This score is calculated using a
1055
+ * probabilistic model to estimate the probability that a document is
1056
+ * relevant to a given query.
1057
+ * * `relevance_score`: semantic relevance adjustment that uses a
1058
+ * proprietary Google model to determine the meaning and intent behind a
1059
+ * user's query in context with the content in the documents.
1060
+ * * `pctr_rank`: predicted conversion rate adjustment as a rank use
1061
+ * predicted Click-through rate (pCTR) to gauge the relevance and
1062
+ * attractiveness of a search result from a user's perspective. A higher
1063
+ * pCTR suggests that the result is more likely to satisfy the user's query
1064
+ * and intent, making it a valuable signal for ranking.
1065
+ * * `freshness_rank`: freshness adjustment as a rank
1066
+ * * `document_age`: The time in hours elapsed since the document was last
1067
+ * updated, a floating-point number (e.g., 0.25 means 15 minutes).
1068
+ * * `topicality_rank`: topicality adjustment as a rank. Uses proprietary
1069
+ * Google model to determine the keyword-based overlap between the query and
1070
+ * the document.
1071
+ * * `base_rank`: the default rank of the result
1072
+ * @param {google.cloud.discoveryengine.v1alpha.SearchRequest.RankingExpressionBackend} [request.rankingExpressionBackend]
1073
+ * The backend to use for the ranking expression evaluation.
876
1074
  * @param {boolean} request.safeSearch
877
1075
  * Whether to turn on safe search. This is only supported for
878
1076
  * website search.
@@ -526,8 +526,14 @@ class SearchServiceClient {
526
526
  * The ranking expression controls the customized ranking on retrieval
527
527
  * documents. This overrides
528
528
  * {@link protos.google.cloud.discoveryengine.v1alpha.ServingConfig.ranking_expression|ServingConfig.ranking_expression}.
529
- * The ranking expression is a single function or multiple functions that are
530
- * joined by "+".
529
+ * The syntax and supported features depend on the
530
+ * `ranking_expression_backend` value. If `ranking_expression_backend` is not
531
+ * provided, it defaults to `RANK_BY_EMBEDDING`.
532
+ *
533
+ * If
534
+ * {@link protos.google.cloud.discoveryengine.v1alpha.SearchRequest.ranking_expression_backend|ranking_expression_backend}
535
+ * is not provided or set to `RANK_BY_EMBEDDING`, it should be a single
536
+ * function or multiple functions that are joined by "+".
531
537
  *
532
538
  * * ranking_expression = function, { " + ", function };
533
539
  *
@@ -542,13 +548,73 @@ class SearchServiceClient {
542
548
  * between query and document.
543
549
  * * `embedding_field_path`: the document embedding field
544
550
  * used with query embedding vector.
545
- * * `dotProduct`: embedding function between embedding_field_path and query
546
- * embedding vector.
551
+ * * `dotProduct`: embedding function between `embedding_field_path` and
552
+ * query embedding vector.
547
553
  *
548
554
  * Example ranking expression:
549
555
  *
550
556
  * If document has an embedding field doc_embedding, the ranking expression
551
557
  * could be `0.5 * relevance_score + 0.3 * dotProduct(doc_embedding)`.
558
+ *
559
+ * If
560
+ * {@link protos.google.cloud.discoveryengine.v1alpha.SearchRequest.ranking_expression_backend|ranking_expression_backend}
561
+ * is set to `RANK_BY_FORMULA`, the following expression types (and
562
+ * combinations of those chained using + or
563
+ * * operators) are supported:
564
+ *
565
+ * * `double`
566
+ * * `signal`
567
+ * * `log(signal)`
568
+ * * `exp(signal)`
569
+ * * `rr(signal, double > 0)` -- reciprocal rank transformation with second
570
+ * argument being a denominator constant.
571
+ * * `is_nan(signal)` -- returns 0 if signal is NaN, 1 otherwise.
572
+ * * `fill_nan(signal1, signal2 | double)` -- if signal1 is NaN, returns
573
+ * signal2 | double, else returns signal1.
574
+ *
575
+ * Here are a few examples of ranking formulas that use the supported
576
+ * ranking expression types:
577
+ *
578
+ * - `0.2 * semantic_similarity_score + 0.8 * log(keyword_similarity_score)`
579
+ * -- mostly rank by the logarithm of `keyword_similarity_score` with slight
580
+ * `semantic_smilarity_score` adjustment.
581
+ * - `0.2 * exp(fill_nan(semantic_similarity_score, 0)) + 0.3 *
582
+ * is_nan(keyword_similarity_score)` -- rank by the exponent of
583
+ * `semantic_similarity_score` filling the value with 0 if it's NaN, also
584
+ * add constant 0.3 adjustment to the final score if
585
+ * `semantic_similarity_score` is NaN.
586
+ * - `0.2 * rr(semantic_similarity_score, 16) + 0.8 *
587
+ * rr(keyword_similarity_score, 16)` -- mostly rank by the reciprocal rank
588
+ * of `keyword_similarity_score` with slight adjustment of reciprocal rank
589
+ * of `semantic_smilarity_score`.
590
+ *
591
+ * The following signals are supported:
592
+ *
593
+ * * `semantic_similarity_score`: semantic similarity adjustment that is
594
+ * calculated using the embeddings generated by a proprietary Google model.
595
+ * This score determines how semantically similar a search query is to a
596
+ * document.
597
+ * * `keyword_similarity_score`: keyword match adjustment uses the Best
598
+ * Match 25 (BM25) ranking function. This score is calculated using a
599
+ * probabilistic model to estimate the probability that a document is
600
+ * relevant to a given query.
601
+ * * `relevance_score`: semantic relevance adjustment that uses a
602
+ * proprietary Google model to determine the meaning and intent behind a
603
+ * user's query in context with the content in the documents.
604
+ * * `pctr_rank`: predicted conversion rate adjustment as a rank use
605
+ * predicted Click-through rate (pCTR) to gauge the relevance and
606
+ * attractiveness of a search result from a user's perspective. A higher
607
+ * pCTR suggests that the result is more likely to satisfy the user's query
608
+ * and intent, making it a valuable signal for ranking.
609
+ * * `freshness_rank`: freshness adjustment as a rank
610
+ * * `document_age`: The time in hours elapsed since the document was last
611
+ * updated, a floating-point number (e.g., 0.25 means 15 minutes).
612
+ * * `topicality_rank`: topicality adjustment as a rank. Uses proprietary
613
+ * Google model to determine the keyword-based overlap between the query and
614
+ * the document.
615
+ * * `base_rank`: the default rank of the result
616
+ * @param {google.cloud.discoveryengine.v1alpha.SearchRequest.RankingExpressionBackend} [request.rankingExpressionBackend]
617
+ * The backend to use for the ranking expression evaluation.
552
618
  * @param {boolean} request.safeSearch
553
619
  * Whether to turn on safe search. This is only supported for
554
620
  * website search.
@@ -815,8 +881,14 @@ class SearchServiceClient {
815
881
  * The ranking expression controls the customized ranking on retrieval
816
882
  * documents. This overrides
817
883
  * {@link protos.google.cloud.discoveryengine.v1alpha.ServingConfig.ranking_expression|ServingConfig.ranking_expression}.
818
- * The ranking expression is a single function or multiple functions that are
819
- * joined by "+".
884
+ * The syntax and supported features depend on the
885
+ * `ranking_expression_backend` value. If `ranking_expression_backend` is not
886
+ * provided, it defaults to `RANK_BY_EMBEDDING`.
887
+ *
888
+ * If
889
+ * {@link protos.google.cloud.discoveryengine.v1alpha.SearchRequest.ranking_expression_backend|ranking_expression_backend}
890
+ * is not provided or set to `RANK_BY_EMBEDDING`, it should be a single
891
+ * function or multiple functions that are joined by "+".
820
892
  *
821
893
  * * ranking_expression = function, { " + ", function };
822
894
  *
@@ -831,13 +903,73 @@ class SearchServiceClient {
831
903
  * between query and document.
832
904
  * * `embedding_field_path`: the document embedding field
833
905
  * used with query embedding vector.
834
- * * `dotProduct`: embedding function between embedding_field_path and query
835
- * embedding vector.
906
+ * * `dotProduct`: embedding function between `embedding_field_path` and
907
+ * query embedding vector.
836
908
  *
837
909
  * Example ranking expression:
838
910
  *
839
911
  * If document has an embedding field doc_embedding, the ranking expression
840
912
  * could be `0.5 * relevance_score + 0.3 * dotProduct(doc_embedding)`.
913
+ *
914
+ * If
915
+ * {@link protos.google.cloud.discoveryengine.v1alpha.SearchRequest.ranking_expression_backend|ranking_expression_backend}
916
+ * is set to `RANK_BY_FORMULA`, the following expression types (and
917
+ * combinations of those chained using + or
918
+ * * operators) are supported:
919
+ *
920
+ * * `double`
921
+ * * `signal`
922
+ * * `log(signal)`
923
+ * * `exp(signal)`
924
+ * * `rr(signal, double > 0)` -- reciprocal rank transformation with second
925
+ * argument being a denominator constant.
926
+ * * `is_nan(signal)` -- returns 0 if signal is NaN, 1 otherwise.
927
+ * * `fill_nan(signal1, signal2 | double)` -- if signal1 is NaN, returns
928
+ * signal2 | double, else returns signal1.
929
+ *
930
+ * Here are a few examples of ranking formulas that use the supported
931
+ * ranking expression types:
932
+ *
933
+ * - `0.2 * semantic_similarity_score + 0.8 * log(keyword_similarity_score)`
934
+ * -- mostly rank by the logarithm of `keyword_similarity_score` with slight
935
+ * `semantic_smilarity_score` adjustment.
936
+ * - `0.2 * exp(fill_nan(semantic_similarity_score, 0)) + 0.3 *
937
+ * is_nan(keyword_similarity_score)` -- rank by the exponent of
938
+ * `semantic_similarity_score` filling the value with 0 if it's NaN, also
939
+ * add constant 0.3 adjustment to the final score if
940
+ * `semantic_similarity_score` is NaN.
941
+ * - `0.2 * rr(semantic_similarity_score, 16) + 0.8 *
942
+ * rr(keyword_similarity_score, 16)` -- mostly rank by the reciprocal rank
943
+ * of `keyword_similarity_score` with slight adjustment of reciprocal rank
944
+ * of `semantic_smilarity_score`.
945
+ *
946
+ * The following signals are supported:
947
+ *
948
+ * * `semantic_similarity_score`: semantic similarity adjustment that is
949
+ * calculated using the embeddings generated by a proprietary Google model.
950
+ * This score determines how semantically similar a search query is to a
951
+ * document.
952
+ * * `keyword_similarity_score`: keyword match adjustment uses the Best
953
+ * Match 25 (BM25) ranking function. This score is calculated using a
954
+ * probabilistic model to estimate the probability that a document is
955
+ * relevant to a given query.
956
+ * * `relevance_score`: semantic relevance adjustment that uses a
957
+ * proprietary Google model to determine the meaning and intent behind a
958
+ * user's query in context with the content in the documents.
959
+ * * `pctr_rank`: predicted conversion rate adjustment as a rank use
960
+ * predicted Click-through rate (pCTR) to gauge the relevance and
961
+ * attractiveness of a search result from a user's perspective. A higher
962
+ * pCTR suggests that the result is more likely to satisfy the user's query
963
+ * and intent, making it a valuable signal for ranking.
964
+ * * `freshness_rank`: freshness adjustment as a rank
965
+ * * `document_age`: The time in hours elapsed since the document was last
966
+ * updated, a floating-point number (e.g., 0.25 means 15 minutes).
967
+ * * `topicality_rank`: topicality adjustment as a rank. Uses proprietary
968
+ * Google model to determine the keyword-based overlap between the query and
969
+ * the document.
970
+ * * `base_rank`: the default rank of the result
971
+ * @param {google.cloud.discoveryengine.v1alpha.SearchRequest.RankingExpressionBackend} [request.rankingExpressionBackend]
972
+ * The backend to use for the ranking expression evaluation.
841
973
  * @param {boolean} request.safeSearch
842
974
  * Whether to turn on safe search. This is only supported for
843
975
  * website search.