@genai-fi/nanogpt 0.6.3 → 0.7.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (140) hide show
  1. package/dist/Generator.js +11 -11
  2. package/dist/NanoGPTModel.d.ts +2 -2
  3. package/dist/NanoGPTModel.js +104 -136
  4. package/dist/{RealDiv-BYViZwhN.js → RealDiv-C4hOvYOZ.js} +26 -25
  5. package/dist/{Reshape-t7Kcikjk.js → Reshape-BLijOA8h.js} +5 -5
  6. package/dist/TeachableLLM.js +5 -5
  7. package/dist/{TiedEmbedding-9WeDwvjO.js → TiedEmbedding-BLltddza.js} +4 -4
  8. package/dist/{axis_util-Bu4h7XWV.js → axis_util-DaAl5MER.js} +3 -3
  9. package/dist/backend.d.ts +1 -0
  10. package/dist/backend.js +7 -0
  11. package/dist/backend_util-DWiwsi2N.js +749 -0
  12. package/dist/{broadcast_to-DARN-DBD.js → broadcast_to-C4v-j9yA.js} +2 -2
  13. package/dist/{concat-5aPGqw3Z.js → concat-CsHeR4zV.js} +8 -8
  14. package/dist/{dataset-pgqp-YfL.js → dataset-JDyjG3QR.js} +3 -3
  15. package/dist/{dropout-Bciw46HT.js → dropout-hpDwECTe.js} +7 -7
  16. package/dist/{gather-DjyCjmOD.js → gather-D0_gPiBz.js} +4 -4
  17. package/dist/gelu-uyHP1x1f.js +26 -0
  18. package/dist/gpgpu_math-DJm3ZTAf.js +2371 -0
  19. package/dist/index-BPPzKVdR.js +12099 -0
  20. package/dist/{index-BAzbokzv.js → index-C0dhsYom.js} +405 -389
  21. package/dist/{kernel_funcs_utils-CUxJCg0g.js → kernel_funcs_utils-CwRTFqrc.js} +31 -30
  22. package/dist/layers/BaseLayer.js +2 -2
  23. package/dist/layers/CausalSelfAttention.js +6 -6
  24. package/dist/layers/MLP.js +5 -5
  25. package/dist/layers/RMSNorm.js +3 -3
  26. package/dist/layers/RoPECache.js +4 -4
  27. package/dist/layers/TiedEmbedding.js +5 -5
  28. package/dist/layers/TransformerBlock.js +1 -1
  29. package/dist/loader/loadTransformers.js +1 -1
  30. package/dist/loader/oldZipLoad.js +5 -5
  31. package/dist/{log_sum_exp-YEo2h3gb.js → log_sum_exp-D086OgZJ.js} +15 -15
  32. package/dist/main.d.ts +2 -0
  33. package/dist/main.js +9 -5
  34. package/dist/{mat_mul-7121rsJk.js → mat_mul-1nwdPkQ_.js} +4 -4
  35. package/dist/{max-DtlIuVeW.js → max-BQc2Aj-I.js} +4 -4
  36. package/dist/{mulmat_packed_gpu-D4nKF7Je.js → mulmat_packed_gpu-Gzf3I9UV.js} +1 -1
  37. package/dist/non_max_suppression_impl-CsEgBuMA.js +134 -0
  38. package/dist/{ones-BBlSRqn1.js → ones-D63HpSF_.js} +2 -2
  39. package/dist/ops/appendCache.js +3 -3
  40. package/dist/ops/attentionMask.js +1 -1
  41. package/dist/ops/cpu/appendCache.js +8 -8
  42. package/dist/ops/cpu/attentionMask.js +9 -9
  43. package/dist/ops/cpu/fusedSoftmax.js +17 -11
  44. package/dist/ops/cpu/gatherSub.js +7 -7
  45. package/dist/ops/cpu/gelu.js +13 -13
  46. package/dist/ops/cpu/matMulGelu.js +36 -24
  47. package/dist/ops/cpu/matMulMul.js +14 -8
  48. package/dist/ops/cpu/mulDropout.js +9 -3
  49. package/dist/ops/cpu/normRMS.js +5 -5
  50. package/dist/ops/cpu/qkv.js +3 -3
  51. package/dist/ops/cpu/rope.js +5 -5
  52. package/dist/ops/cpu/scatterSub.js +11 -11
  53. package/dist/ops/fusedSoftmax.js +1 -1
  54. package/dist/ops/gatherSub.js +1 -1
  55. package/dist/ops/gelu.js +2 -2
  56. package/dist/ops/grads/attentionMask.js +1 -1
  57. package/dist/ops/grads/fusedSoftmax.js +2 -2
  58. package/dist/ops/grads/gelu.js +3 -24
  59. package/dist/ops/grads/matMulGelu.js +5 -5
  60. package/dist/ops/grads/normRMS.js +6 -6
  61. package/dist/ops/grads/qkv.js +1 -1
  62. package/dist/ops/grads/rope.js +3 -3
  63. package/dist/ops/matMulGelu.js +1 -1
  64. package/dist/ops/matMulMul.js +1 -1
  65. package/dist/ops/mulDrop.js +1 -1
  66. package/dist/ops/normRMS.js +1 -1
  67. package/dist/ops/qkv.js +1 -1
  68. package/dist/ops/rope.js +4 -4
  69. package/dist/ops/scatterSub.js +1 -1
  70. package/dist/ops/webgl/appendCache.js +1 -1
  71. package/dist/ops/webgl/attentionMask.js +1 -1
  72. package/dist/ops/webgl/fusedSoftmax.js +4 -4
  73. package/dist/ops/webgl/gatherSub.js +1 -1
  74. package/dist/ops/webgl/gelu.js +2 -2
  75. package/dist/ops/webgl/log.js +5 -5
  76. package/dist/ops/webgl/matMulGelu.js +17 -17
  77. package/dist/ops/webgl/matMulMul.js +1 -1
  78. package/dist/ops/webgl/mulDropout.js +4 -4
  79. package/dist/ops/webgl/normRMS.js +2 -2
  80. package/dist/ops/webgl/qkv.js +1 -1
  81. package/dist/ops/webgl/rope.js +1 -1
  82. package/dist/ops/webgl/scatterSub.js +1 -1
  83. package/dist/ops/webgpu/appendCache.d.ts +1 -0
  84. package/dist/ops/webgpu/appendCache.js +56 -0
  85. package/dist/ops/webgpu/attentionMask.d.ts +1 -0
  86. package/dist/ops/webgpu/attentionMask.js +64 -0
  87. package/dist/ops/webgpu/gatherSub.d.ts +1 -0
  88. package/dist/ops/webgpu/gatherSub.js +37 -0
  89. package/dist/ops/webgpu/gelu.d.ts +14 -0
  90. package/dist/ops/webgpu/gelu.js +86 -0
  91. package/dist/ops/webgpu/index.d.ts +0 -0
  92. package/dist/ops/webgpu/index.js +8 -0
  93. package/dist/ops/webgpu/normRMS.d.ts +1 -0
  94. package/dist/ops/webgpu/normRMS.js +115 -0
  95. package/dist/ops/webgpu/qkv.d.ts +1 -0
  96. package/dist/ops/webgpu/qkv.js +56 -0
  97. package/dist/ops/webgpu/rope.d.ts +1 -0
  98. package/dist/ops/webgpu/rope.js +68 -0
  99. package/dist/ops/webgpu/scatterSub.d.ts +1 -0
  100. package/dist/ops/webgpu/scatterSub.js +37 -0
  101. package/dist/{ops-C0sQEcPw.js → ops-CIQLNshk.js} +452 -503
  102. package/dist/{random_width-DWzaOgrn.js → random_width-DkYP8W8N.js} +143 -144
  103. package/dist/{range-DYsrnfiy.js → range-CYzpQY53.js} +1 -1
  104. package/dist/{reciprocal-CJQeasVa.js → reciprocal-_A9yv27J.js} +1 -1
  105. package/dist/{register_all_kernels-BfFCQAqs.js → register_all_kernels-guvSxp7M.js} +202 -200
  106. package/dist/{reshape-krWGKraP.js → reshape-BMUzc1UY.js} +3 -3
  107. package/dist/{scatter_nd_util-93ln7Hut.js → scatter_nd_util-IRBqKz_b.js} +3 -3
  108. package/dist/{selu_util-sntGesxr.js → selu_util-Dt_iuXaq.js} +6 -6
  109. package/dist/shared-BNa2q6jD.js +69 -0
  110. package/dist/{shared-Ca6iDobD.js → shared-CDu9S76h.js} +541 -606
  111. package/dist/{sin-D_h-qCSx.js → sin-Cocju-BY.js} +6 -6
  112. package/dist/{softmax-fsdtf6JC.js → softmax-GPNK3o-U.js} +3 -3
  113. package/dist/{split-eiktj-6L.js → split-CHzJjxDv.js} +4 -4
  114. package/dist/{stack-dfEEz2OY.js → stack-Dpgg_1W1.js} +2 -2
  115. package/dist/{sum-BE_Irnim.js → sum-B8wEpKsg.js} +5 -5
  116. package/dist/{tensor-Xyi595sG.js → tensor-RvZVNmg0.js} +1 -1
  117. package/dist/{tensor2d-CPEkynbH.js → tensor2d-B_kyod7_.js} +1 -1
  118. package/dist/training/AdamExt.js +1 -1
  119. package/dist/training/DatasetBuilder.js +2 -2
  120. package/dist/training/Evaluator.js +1 -1
  121. package/dist/training/FullTrainer.js +20 -20
  122. package/dist/training/Trainer.d.ts +5 -6
  123. package/dist/training/Trainer.js +59 -60
  124. package/dist/training/sparseCrossEntropy.js +4 -4
  125. package/dist/utilities/dummy.js +19 -19
  126. package/dist/utilities/generate.js +15 -16
  127. package/dist/utilities/multinomialCPU.d.ts +2 -0
  128. package/dist/utilities/multinomialCPU.js +13 -0
  129. package/dist/utilities/performance.d.ts +2 -0
  130. package/dist/utilities/performance.js +16 -0
  131. package/dist/utilities/profile.d.ts +1 -0
  132. package/dist/utilities/profile.js +9 -6
  133. package/dist/utilities/safetensors.js +2 -2
  134. package/dist/utilities/weights.js +2 -2
  135. package/dist/{variable-wSS22xj5.js → variable-DXEUOwew.js} +1 -1
  136. package/dist/webgpu_util-g13LvDIv.js +625 -0
  137. package/dist/{zeros-YJDE7oRb.js → zeros-DCPCdFGq.js} +8 -8
  138. package/package.json +2 -1
  139. package/dist/gpgpu_math-CNslybmD.js +0 -3115
  140. package/dist/norm-CzltS9Fz.js +0 -86
@@ -1,32 +1,34 @@
1
- import { o as oe, q as se, E as le, ch as ps, ci as hs, ck as en, cl as fs, cm as ms, co as gs, B as xs, cn as Cs, cp as bs, bm as To, i as Y, c$ as tn, cv as sn, aj as Do, z as nn, bo as Eo, cz as Is, cA as ys, cB as $s, ao as Nc, cE as on, l as vc, a as an, h as Ne, d0 as ks, cH as rn, cI as ws, L as It, bt as Fo, cM as Ns, d1 as cn, d2 as ln, s as Po, bx as Oo, d3 as un, cO as vs, d4 as dn, d5 as pn, ah as xe, d6 as S, a3 as Sc, a7 as Rc, T as Ao, d7 as Tc, cP as Dc, j as Ec, a4 as Fc, a5 as Pc, b as Oc, ac as L, d8 as _o, d9 as Lo, e as Me, aJ as Vt, da as Vo, aG as Wo, db as Ac, aF as Wt, af as Ke, dc as Mo, aq as hn, al as _c, g as z, bd as Ge, an as Lc, ar as fn, as as mn, D as Vc, aa as Wc, C as Bo, W as ne, ca as Go, cj as zo, bB as Uo, p as me, $ as st, bC as Ho, bD as Xo, bE as Ko, ai as ct, bF as qo, cq as jo, cr as Yo, bI as Qo, bH as Zo, aP as Jo, dd as ea, bJ as gn, ct as ta, aV as sa, J as na, bK as oa, bv as Te, c6 as aa, bL as ra, bM as ia, cu as ca, bN as la, a0 as xn, bO as Cn, b3 as ua, bP as da, u as nt, y as Mc, bQ as pa, bR as ha, bS as fa, c8 as ma, c9 as ga, de as xa, bl as Ss, bf as Ft, bi as bn, cw as Kn, df as mt, dg as Ca, cx as qn, dh as Bc, N as Gc, aR as ba, cy as Ia, bT as In, aS as ya, ax as $a, am as yt, di as ka, dj as wa, b4 as Na, c7 as va, dk as Sa, Y as Ra, G as Ta, dl as Da, bU as yn, aZ as $n, bW as kn, cD as Ea, M as zc, bX as Fa, bY as Pa, cF as Oa, cG as Aa, dm as _a, bZ as La, a2 as Va, be as Wa, S as Ma, a6 as Ba, b6 as Ga, b8 as za, b7 as Ua, b_ as Ha, cQ as Xa, b$ as Ka, P as qa, Z as ja, c0 as Ya, cJ as wn, dn as Qa, dp as Za, dq as Ja, R as er, K as Nn, b9 as tr, cK as sr, ba as nr, cL as or, c2 as ar, b5 as rr, b0 as vn, X as ir, dr as cr, aQ as lr, c3 as Sn, a1 as Rn, c4 as Tn, bV as Dn, c1 as ur, ds as dr, dt as pr, du as hr, dv as fr, dw as mr, F as gr, cN as xr, at as En, dx as Cr, dy as br, dz as Ir, bG as Fn, dA as yr, I as $r, bb as kr, av as Pn, b1 as wr, c5 as Nr, r as vr, dB as Sr, dC as jn, dD as Yn, dE as Uc, t as Hc, dF as Xc, dG as Kc, br as qc, b2 as jc, bc as Yc, bj as Qc, aO as Zc, bk as Jc, bs as el, a$ as tl, bg as sl, bh as nl, aM as Rr, bn as ol, a8 as al, ag as rl, bp as il, dH as cl, aT as ll, aU as ul, aW as dl, aX as pl, a9 as hl, bq as fl, a_ as ml, bz as gl, aY as xl, aw as Tr, bu as Cl, ap as bl, bw as Il, by as yl } from "./index-BAzbokzv.js";
2
- import { e as Dr, s as Er, l as Fr, a as Pr, b as Or, m as Ar, c as _r, r as Gs, f as $l, g as kl, h as wl, i as Nl, j as vl, k as Sl, n as Rl, o as Tl, q as Dl, t as El, u as Fl, v as Pl, w as Ol, x as Al, y as _l, z as Ll, A as Vl, B as Wl, C as Ml, p as Bl, F as Gl, G as zl, H as Ul, I as Hl, J as Xl, K as Kl, L as ql } from "./random_width-DWzaOgrn.js";
3
- import { r as re } from "./reshape-krWGKraP.js";
4
- import { b as jl } from "./broadcast_to-DARN-DBD.js";
5
- import { c as os } from "./concat-5aPGqw3Z.js";
6
- import { c as Yl, s as Ql } from "./sin-D_h-qCSx.js";
7
- import { w as Lr, n as ss, a as zs, r as Us, o as Vr, s as as, h as Zl, g as Jl, e as eu, b as tu, f as su, m as nu, p as ou, q as au, v as ru, j as iu, d as cu, c as lu, u as uu, x as Wr, y as Mr, z as Br } from "./ops-C0sQEcPw.js";
8
- import { m as Tt } from "./mat_mul-7121rsJk.js";
9
- import { w as Gr, k as Ye, h as Ve, x as du, z as pu, A as hu, y as fu, B as mu, v as gu, i as ot, j as lt, d as De, e as $t, g as Rs, S as zr, a as Ur, C as Hr, D as Xr, p as xu, q as Cu, r as bu, u as Iu } from "./selu_util-sntGesxr.js";
10
- import { n as Kr, m as yu } from "./norm-CzltS9Fz.js";
11
- import { e as $u, l as ku, a as wu } from "./log_sum_exp-YEo2h3gb.js";
12
- import { f as Nu } from "./dropout-Bciw46HT.js";
13
- import { g as vu } from "./gather-DjyCjmOD.js";
14
- import { c as Hs, z as qr } from "./zeros-YJDE7oRb.js";
15
- import { m as Su } from "./max-DtlIuVeW.js";
16
- import { r as Ru } from "./reciprocal-CJQeasVa.js";
17
- import { s as Xs } from "./split-eiktj-6L.js";
18
- import { s as Tu } from "./softmax-fsdtf6JC.js";
19
- import { s as Du } from "./stack-dfEEz2OY.js";
20
- import { s as Eu } from "./sum-BE_Irnim.js";
21
- import { a as j, u as ue, c as ut, i as dt, s as Fu, b as Pt, d as Pe, e as kt, f as gt, g as jr, r as Ot, h as Be, j as Pu, k as Ou, l as On, z as Au, n as An, o as Yr, p as _u, q as Lu, v as Vu, w as Wu, x as Mu, y as Bu, A as Gu, B as zu, C as Uu, D as Hu, E as ft, F as Xu, G as Ku, H as Qr, I as qu, J as ju, K as Yu, L as Qu, M as Zu, N as Ju, O as ed, P as td, Q as sd, R as nd, S as od, T as ad, U as rd, V as id, W as cd, X as ld, Y as ud, Z as dd, _ as pd, $ as hd, a0 as fd, a1 as md, a2 as gd, a3 as xd, a4 as Cd, a5 as bd, a6 as Id, a7 as yd, a8 as $d, a9 as kd, aa as wd, ab as Nd, ac as vd, ad as Sd, ae as Rd, af as Td, ag as Dd, ah as Ed, ai as Fd, aj as Pd, ak as Zr, al as Od, t as Jr, am as Ad, an as _d, ao as ei, ap as Ld, aq as Vd, ar as Wd, as as Md, at as Bd, au as Gd, av as zd, aw as Ud, ax as Hd, ay as Xd, az as Kd, aA as qd, aB as jd, aC as Yd, aD as Qd, aE as Zd, aF as Jd, aG as ep, aH as tp, aI as sp, aJ as np, aK as op, aL as ap, aM as rp, aN as ip, aO as cp, aP as lp, aQ as up, aR as dp, aS as pp, aT as hp, aU as ti, aV as fp, aW as mp, aX as gp, aY as xp, aZ as Cp, a_ as bp, a$ as Ip, b0 as yp, b1 as $p, b2 as kp } from "./shared-Ca6iDobD.js";
22
- import { m as xt, D as Ts, E as Ds, F as Es, G as si, H as ni, I as oi, J as je, K as ai, L as ri, M as ii, N as ci, O as li, P as ui, Q as di, S as pi, T as hi, U as fi, V as mi, W as gi, X as wp, Y as Np, Z as vp, _ as Sp, $ as Rp, a0 as Tp, a1 as xi, a2 as Ci, a3 as bi, a4 as Ii, a5 as Qn, a6 as Dp, a7 as Ep, a8 as Fp, a9 as Pp, aa as Op, ab as Ap, ac as _n, ad as ze, u as We, ae as yi, c as $i, af as _e, ag as ki, g as wi, a as Ni, ah as _p, ai as Lp, aj as Z, ak as Mt, al as Vp, am as Zn, an as Wp, ao as Mp, ap as Bt, aq as Bp, ar as Gp, as as Ks, at as jt, au as Yt, av as zp, aw as Up, ax as Jn, ay as Hp, az as Xp, aA as Vs, aB as Kp, aC as qp, aD as jp, aE as Qt, aF as Ws, aG as Yp, f as Ce, aH as we, aI as Zt, aJ as Jt, aK as Qp, d as eo, e as to, i as vi, aL as Zp, aM as Jp, aN as eh, aO as th, aP as sh, aQ as nh, j as Si, aR as Gt, h as oh, aS as ah, aT as rh } from "./gpgpu_math-CNslybmD.js";
23
- import { g as ye, a as $e, b as Re, c as Ee, e as Oe, h as Fs } from "./axis_util-Bu4h7XWV.js";
24
- import { s as ih } from "./index-C4L8Cm77.js";
25
- import { c as wt } from "./scatter_nd_util-93ln7Hut.js";
26
- import { a as Se, c as ch, U as it, d as tt, e as qe, A as so, f as Nt, B as Ln, h as Vn, m as At, u as ae, C as Ue, b as ke, i as Le, j as Wn, k as pt, l as vt, n as lh, o as uh, p as dh, q as ph } from "./kernel_funcs_utils-CUxJCg0g.js";
27
- import { R as hh, r as H, a as fh } from "./Reshape-t7Kcikjk.js";
28
- import { M as Ri } from "./mulmat_packed_gpu-D4nKF7Je.js";
29
- import { t as Ti, s as Mn, a as zt, m as mh, r as gh, b as xh, c as Ch, d as bh } from "./RealDiv-BYViZwhN.js";
1
+ import { x as oe, y as se, E as le, ck as ps, cl as hs, cn as en, co as fs, cp as ms, cr as gs, F as xs, cq as Cs, cs as bs, bp as To, l as Y, dd as tn, cy as sn, aj as Do, z as nn, br as Eo, cC as Is, cD as ys, cE as $s, ao as Nc, cH as on, q as vc, a as an, k as Ne, dl as ks, cK as rn, cL as ws, Q as It, bw as Fo, cP as Ns, dg as cn, dj as ln, b as Po, bA as Oo, ds as un, cR as vs, dv as dn, dw as pn, ai as xe, dx as S, aS as Sc, a6 as Rc, T as Ao, dy as Tc, cS as Dc, n as Ec, aT as Fc, aU as Pc, c as Oc, ac as L, d2 as _o, d3 as Lo, e as Me, aM as Vt, d7 as Vo, aK as Wo, d4 as Ac, aJ as Wt, ag as Ke, d8 as Mo, aq as hn, al as _c, j as z, bg as Ge, an as Lc, ar as fn, as as mn, I as Vc, a9 as Wc, H as Bo, Z as ne, cd as Go, cm as zo, bE as Uo, p as me, a2 as st, bF as Ho, bG as Xo, bH as Ko, ab as ct, bI as qo, ct as jo, cu as Yo, bL as Qo, bK as Zo, aO as Jo, dc as ea, bM as gn, cw as ta, aY as sa, M as na, bN as oa, by as Te, c9 as aa, bO as ra, bP as ia, cx as ca, bQ as la, a3 as xn, bR as Cn, b6 as ua, bS as da, u as nt, D as Mc, bT as pa, bU as ha, bV as fa, cb as ma, cc as ga, de as xa, bo as Ss, bi as Ft, bl as bn, cz as Kn, dz as mt, dA as Ca, cA as qn, df as Bc, U as Gc, aQ as ba, cB as Ia, bW as In, aV as ya, ax as $a, am as yt, d9 as ka, da as wa, b7 as Na, ca as va, di as Sa, $ as Ra, G as Ta, dk as Da, bX as yn, b0 as $n, bZ as kn, cG as Ea, N as zc, b_ as Fa, b$ as Pa, cI as Oa, cJ as Aa, dm as _a, c0 as La, aR as Va, bh as Wa, S as Ma, a5 as Ba, b9 as Ga, bb as za, ba as Ua, c1 as Ha, cT as Xa, c2 as Ka, P as qa, a0 as ja, c3 as Ya, cM as wn, dB as Qa, dC as Za, dD as Ja, R as er, O as Nn, bc as tr, cN as sr, bd as nr, cO as or, c5 as ar, b8 as rr, b3 as vn, _ as ir, dn as cr, aP as lr, c6 as Sn, a4 as Rn, c7 as Tn, bY as Dn, c4 as ur, dE as dr, dF as pr, dp as hr, dq as fr, dr as mr, J as gr, cQ as xr, at as En, dt as Cr, dG as br, dH as Ir, bJ as Fn, du as yr, L as $r, be as kr, av as Pn, b4 as wr, c8 as Nr, f as vr, dI as Sr, dJ as jn, d5 as Yn, d6 as Uc, t as Hc, dK as Xc, dL as Kc, bu as qc, b5 as jc, bf as Yc, bm as Qc, aN as Zc, bn as Jc, bv as el, b2 as tl, bj as sl, bk as nl, aG as Rr, bq as ol, a7 as al, ah as rl, bs as il, dh as cl, aW as ll, aX as ul, aZ as dl, a_ as pl, a8 as hl, bt as fl, b1 as ml, bC as gl, a$ as xl, aw as Tr, bx as Cl, ap as bl, bz as Il, bB as yl } from "./index-C0dhsYom.js";
2
+ import { e as Dr, s as Er, l as Fr, a as Pr, b as Or, m as Ar, c as _r, r as Gs, f as $l, g as kl, h as wl, i as Nl, j as vl, k as Sl, n as Rl, o as Tl, q as Dl, t as El, u as Fl, v as Pl, w as Ol, x as Al, y as _l, z as Ll, A as Vl, B as Wl, C as Ml, p as Bl, F as Gl, G as zl, H as Ul, I as Hl, J as Xl, K as Kl, L as ql } from "./random_width-DkYP8W8N.js";
3
+ import { r as re } from "./reshape-BMUzc1UY.js";
4
+ import { b as jl } from "./broadcast_to-C4v-j9yA.js";
5
+ import { c as os } from "./concat-CsHeR4zV.js";
6
+ import { c as Yl, s as Ql } from "./sin-Cocju-BY.js";
7
+ import { w as Lr, p as Vr, n as ss, a as zs, r as Us, q as Wr, s as as, f as Zl, g as Jl, d as eu, b as tu, e as su, o as nu, m as ou, v as au, x as ru, y as iu, j as cu, c as lu, t as uu, u as du } from "./ops-CIQLNshk.js";
8
+ import { m as Tt } from "./mat_mul-1nwdPkQ_.js";
9
+ import { w as Mr, k as Ye, h as Ve, x as pu, z as hu, A as fu, y as mu, D as gu, v as xu, i as ot, j as lt, d as De, e as $t, g as Rs, S as Br, a as Gr, B as zr, C as Ur, p as Cu, q as bu, r as Iu, u as yu } from "./selu_util-Dt_iuXaq.js";
10
+ import { e as $u, l as ku, a as wu } from "./log_sum_exp-D086OgZJ.js";
11
+ import { f as Nu } from "./dropout-hpDwECTe.js";
12
+ import { g as vu } from "./gather-D0_gPiBz.js";
13
+ import { c as Hs, z as Hr } from "./zeros-DCPCdFGq.js";
14
+ import { m as Su } from "./max-BQc2Aj-I.js";
15
+ import { r as Ru } from "./reciprocal-_A9yv27J.js";
16
+ import { s as Xs } from "./split-CHzJjxDv.js";
17
+ import { s as Tu } from "./softmax-GPNK3o-U.js";
18
+ import { s as Du } from "./stack-Dpgg_1W1.js";
19
+ import { s as Eu } from "./sum-B8wEpKsg.js";
20
+ import { a as j, u as ue, c as ut, i as dt, b as Fu, d as Pt, t as Pe, e as kt, f as gt, g as Xr, r as Ot, h as Be, j as Pu, k as Ou, l as On, z as Au, m as An, n as Kr, o as _u, p as Lu, q as Vu, v as Wu, w as Mu, x as Bu, y as Gu, A as zu, B as Uu, C as Hu, D as ft, E as Xu, F as Ku, G as qr, H as qu, I as ju, J as Yu, K as Qu, L as Zu, M as Ju, N as ed, O as td, P as sd, Q as nd, R as od, S as ad, T as rd, U as id, V as cd, W as ld, X as ud, Y as dd, Z as pd, _ as hd, $ as fd, a0 as md, a1 as gd, a2 as xd, a3 as Cd, a4 as bd, a5 as Id, a6 as yd, a7 as $d, a8 as kd, a9 as wd, aa as Nd, ab as vd, ac as Sd, ad as Rd, ae as Td, af as Dd, ag as Ed, ah as Fd, ai as Pd } from "./shared-CDu9S76h.js";
21
+ import { m as xt, A as Ts, B as Ds, C as Es, D as jr, F as Yr, H as Qr, G as je, I as Zr, J as Jr, K as ei, L as ti, M as si, z as ni, y as oi, x as ai, w as ri, u as ii, E as ci, T as li, U as Od, V as Ad, W as _d, X as Ld, Y as Vd, Z as Wd, N as ui, O as di, P as pi, Q as hi, c as fi, f as Md, S as Bd, _ as Gd } from "./backend_util-DWiwsi2N.js";
22
+ import { g as ye, a as $e, b as Re, c as Ee, e as Oe, h as Fs } from "./axis_util-DaAl5MER.js";
23
+ import { s as zd } from "./index-C4L8Cm77.js";
24
+ import { n as mi, b as gi, a as xi } from "./non_max_suppression_impl-CsEgBuMA.js";
25
+ import { c as wt } from "./scatter_nd_util-IRBqKz_b.js";
26
+ import { h as Qn, j as Ud, k as Hd, l as Xd, m as Kd, n as qd, o as jd, P as _n, p as ze, u as We, q as Ci, c as bi, T as _e, E as Ii, g as yi, a as $i, r as Yd, s as Qd, t as Z, v as Mt, w as Zd, x as Zn, y as Jd, z as ep, A as Bt, B as tp, C as sp, D as Ks, F as jt, G as Yt, H as np, I as op, J as Jn, K as ap, L as rp, M as Vs, N as ip, O as cp, Q as lp, R as Qt, S as Ws, U as up, f as Ce, V as we, W as Zt, X as Jt, Y as dp, d as eo, e as to, i as ki, Z as pp, _ as hp, $ as fp, a0 as mp, a1 as gp, a2 as xp, a3 as Gt } from "./gpgpu_math-DJm3ZTAf.js";
27
+ import { s as wi, a as Cp, t as Ni, b as bp, c as Ip, d as vi, e as yp, n as $p, f as kp, g as wp, h as Np, i as vp, j as Sp, k as Rp, l as Tp, o as Dp, p as Ep, q as Fp, r as Pp, u as Op, v as Ap, w as _p, x as Lp, y as Vp, z as Wp, A as Mp, B as Bp, C as Gp, D as zp, E as Up, F as Hp, G as Xp, H as Kp, I as qp, J as jp, K as Yp, L as Qp, M as Si, N as Zp, O as Jp, P as eh, Q as th, R as sh, S as nh, T as oh, U as ah, V as rh, W as ih } from "./shared-BNa2q6jD.js";
28
+ import { a as Se, c as ch, U as it, d as tt, e as qe, A as so, f as Nt, B as Ln, h as Vn, m as At, u as ae, C as Ue, b as ke, i as Le, j as Wn, k as pt, l as vt, n as lh, o as uh, p as dh, q as ph } from "./kernel_funcs_utils-CwRTFqrc.js";
29
+ import { R as hh, r as H, a as fh } from "./Reshape-BLijOA8h.js";
30
+ import { M as Ri } from "./mulmat_packed_gpu-Gzf3I9UV.js";
31
+ import { t as Ti, s as Mn, a as zt, m as mh, r as gh, b as xh, c as Ch, d as bh } from "./RealDiv-C4hOvYOZ.js";
30
32
  /**
31
33
  * @license
32
34
  * Copyright 2018 Google LLC. All Rights Reserved.
@@ -345,7 +347,7 @@ const Hh = /* @__PURE__ */ oe({ dot_: Uh });
345
347
  * =============================================================================
346
348
  */
347
349
  function Xh(o, t = null, e = !1) {
348
- return Kr(o, "euclidean", t, e);
350
+ return Vr(o, "euclidean", t, e);
349
351
  }
350
352
  const Kh = /* @__PURE__ */ oe({ euclideanNorm_: Xh });
351
353
  /**
@@ -476,7 +478,7 @@ const nf = /* @__PURE__ */ oe({ localResponseNormalization_: sf });
476
478
  */
477
479
  function of(o) {
478
480
  const t = se(o, "x", "logSigmoid");
479
- return vc((n) => ({ value: ss(Er(ss(n))), gradFunc: (r) => an(r, Gr(ss(n))) }))(t);
481
+ return vc((n) => ({ value: ss(Er(ss(n))), gradFunc: (r) => an(r, Mr(ss(n))) }))(t);
480
482
  }
481
483
  const af = /* @__PURE__ */ oe({ logSigmoid_: of });
482
484
  /**
@@ -722,7 +724,7 @@ function wf(o) {
722
724
  const s = re(o, [e, t]);
723
725
  n = qs(s);
724
726
  } else {
725
- const s = [e, 2 * (t - 1)], a = re(Us(o), [e, t]), r = re(Vr(o), [e, t]), i = Gs(as(a, [0, 1], [e, t - 2]), 1), c = an(Gs(as(r, [0, 1], [e, t - 2]), 1), Po(-1)), l = os([a, i], 1), u = os([r, c], 1), p = re(Hs(l, u), [s[0], s[1]]);
727
+ const s = [e, 2 * (t - 1)], a = re(Us(o), [e, t]), r = re(Wr(o), [e, t]), i = Gs(as(a, [0, 1], [e, t - 2]), 1), c = an(Gs(as(r, [0, 1], [e, t - 2]), 1), Po(-1)), l = os([a, i], 1), u = os([r, c], 1), p = re(Hs(l, u), [s[0], s[1]]);
726
728
  n = qs(p);
727
729
  }
728
730
  if (n = Us(n), o.rank === 3 && o.shape[0] !== 0) {
@@ -758,10 +760,10 @@ function vf(o, t) {
758
760
  m[o.shape.length - 1] = t, s = as(o, f, m), e = t;
759
761
  } else if (t != null && t > e) {
760
762
  const f = o.shape.map((m) => m);
761
- f[o.shape.length - 1] = t - e, s = os([o, qr(f)], o.shape.length - 1), e = t;
763
+ f[o.shape.length - 1] = t - e, s = os([o, Hr(f)], o.shape.length - 1), e = t;
762
764
  } else
763
765
  s = o;
764
- const a = nn(s), r = re(Hs(s, a), [n, e]), i = Ei(r), c = Math.floor(e / 2) + 1, l = Us(i), u = Vr(i), p = Xs(l, [c, e - c], l.shape.length - 1), d = Xs(u, [c, e - c], u.shape.length - 1), h = s.shape.slice();
766
+ const a = nn(s), r = re(Hs(s, a), [n, e]), i = Ei(r), c = Math.floor(e / 2) + 1, l = Us(i), u = Wr(i), p = Xs(l, [c, e - c], l.shape.length - 1), d = Xs(u, [c, e - c], u.shape.length - 1), h = s.shape.slice();
765
767
  return h[s.shape.length - 1] = c, re(Hs(p[0], d[0]), h);
766
768
  }
767
769
  const Sf = /* @__PURE__ */ oe({ rfft_: vf });
@@ -1698,7 +1700,7 @@ S().prototype.dot = function(o) {
1698
1700
  * =============================================================================
1699
1701
  */
1700
1702
  S().prototype.elu = function() {
1701
- return this.throwIfDisposed(), du(this);
1703
+ return this.throwIfDisposed(), pu(this);
1702
1704
  };
1703
1705
  /**
1704
1706
  * @license
@@ -2059,7 +2061,7 @@ S().prototype.isNaN = function() {
2059
2061
  * =============================================================================
2060
2062
  */
2061
2063
  S().prototype.leakyRelu = function(o) {
2062
- return this.throwIfDisposed(), pu(this, o);
2064
+ return this.throwIfDisposed(), hu(this, o);
2063
2065
  };
2064
2066
  /**
2065
2067
  * @license
@@ -2385,7 +2387,7 @@ S().prototype.mean = function(o, t) {
2385
2387
  * =============================================================================
2386
2388
  */
2387
2389
  S().prototype.min = function(o, t) {
2388
- return this.throwIfDisposed(), yu(this, o, t);
2390
+ return this.throwIfDisposed(), nu(this, o, t);
2389
2391
  };
2390
2392
  /**
2391
2393
  * @license
@@ -2404,7 +2406,7 @@ S().prototype.min = function(o, t) {
2404
2406
  * =============================================================================
2405
2407
  */
2406
2408
  S().prototype.minimum = function(o) {
2407
- return this.throwIfDisposed(), nu(this, o);
2409
+ return this.throwIfDisposed(), ou(this, o);
2408
2410
  };
2409
2411
  /**
2410
2412
  * @license
@@ -2499,7 +2501,7 @@ S().prototype.neg = function() {
2499
2501
  * =============================================================================
2500
2502
  */
2501
2503
  S().prototype.norm = function(o, t, e) {
2502
- return this.throwIfDisposed(), Kr(this, o, t, e);
2504
+ return this.throwIfDisposed(), Vr(this, o, t, e);
2503
2505
  };
2504
2506
  /**
2505
2507
  * @license
@@ -2616,7 +2618,7 @@ S().prototype.pow = function(o) {
2616
2618
  * =============================================================================
2617
2619
  */
2618
2620
  S().prototype.prelu = function(o) {
2619
- return this.throwIfDisposed(), hu(this, o);
2621
+ return this.throwIfDisposed(), fu(this, o);
2620
2622
  };
2621
2623
  /**
2622
2624
  * @license
@@ -2673,7 +2675,7 @@ S().prototype.reciprocal = function() {
2673
2675
  * =============================================================================
2674
2676
  */
2675
2677
  S().prototype.relu = function() {
2676
- return this.throwIfDisposed(), fu(this);
2678
+ return this.throwIfDisposed(), mu(this);
2677
2679
  };
2678
2680
  /**
2679
2681
  * @license
@@ -2692,7 +2694,7 @@ S().prototype.relu = function() {
2692
2694
  * =============================================================================
2693
2695
  */
2694
2696
  S().prototype.relu6 = function() {
2695
- return this.throwIfDisposed(), mu(this);
2697
+ return this.throwIfDisposed(), gu(this);
2696
2698
  };
2697
2699
  /**
2698
2700
  * @license
@@ -2749,7 +2751,7 @@ S().prototype.reshape = function(o) {
2749
2751
  * =============================================================================
2750
2752
  */
2751
2753
  S().prototype.resizeBilinear = function(o, t, e) {
2752
- return this.throwIfDisposed(), ou(this, o, t, e);
2754
+ return this.throwIfDisposed(), au(this, o, t, e);
2753
2755
  };
2754
2756
  /**
2755
2757
  * @license
@@ -2768,7 +2770,7 @@ S().prototype.resizeBilinear = function(o, t, e) {
2768
2770
  * =============================================================================
2769
2771
  */
2770
2772
  S().prototype.resizeNearestNeighbor = function(o, t, e) {
2771
- return this.throwIfDisposed(), au(this, o, t, e);
2773
+ return this.throwIfDisposed(), ru(this, o, t, e);
2772
2774
  };
2773
2775
  /**
2774
2776
  * @license
@@ -2825,7 +2827,7 @@ S().prototype.rfft = function() {
2825
2827
  * =============================================================================
2826
2828
  */
2827
2829
  S().prototype.round = function() {
2828
- return this.throwIfDisposed(), ru(this);
2830
+ return this.throwIfDisposed(), iu(this);
2829
2831
  };
2830
2832
  /**
2831
2833
  * @license
@@ -2901,7 +2903,7 @@ S().prototype.separableConv2d = function(o, t, e, n, s, a) {
2901
2903
  * =============================================================================
2902
2904
  */
2903
2905
  S().prototype.sigmoid = function() {
2904
- return this.throwIfDisposed(), Gr(this);
2906
+ return this.throwIfDisposed(), Mr(this);
2905
2907
  };
2906
2908
  /**
2907
2909
  * @license
@@ -3129,7 +3131,7 @@ S().prototype.squaredDifference = function(o) {
3129
3131
  * =============================================================================
3130
3132
  */
3131
3133
  S().prototype.squeeze = function(o) {
3132
- return this.throwIfDisposed(), iu(this, o);
3134
+ return this.throwIfDisposed(), cu(this, o);
3133
3135
  };
3134
3136
  /**
3135
3137
  * @license
@@ -3169,7 +3171,7 @@ S().prototype.stack = function(o, t) {
3169
3171
  * =============================================================================
3170
3172
  */
3171
3173
  S().prototype.step = function(o) {
3172
- return this.throwIfDisposed(), gu(this, o);
3174
+ return this.throwIfDisposed(), xu(this, o);
3173
3175
  };
3174
3176
  /**
3175
3177
  * @license
@@ -3283,7 +3285,7 @@ S().prototype.tanh = function() {
3283
3285
  * =============================================================================
3284
3286
  */
3285
3287
  S().prototype.tile = function(o) {
3286
- return this.throwIfDisposed(), cu(this, o);
3288
+ return this.throwIfDisposed(), lu(this, o);
3287
3289
  };
3288
3290
  /**
3289
3291
  * @license
@@ -3378,7 +3380,7 @@ S().prototype.topk = function(o, t) {
3378
3380
  * =============================================================================
3379
3381
  */
3380
3382
  S().prototype.transpose = function(o) {
3381
- return this.throwIfDisposed(), lu(this, o);
3383
+ return this.throwIfDisposed(), uu(this, o);
3382
3384
  };
3383
3385
  /**
3384
3386
  * @license
@@ -3435,7 +3437,7 @@ S().prototype.unsortedSegmentSum = function(o, t) {
3435
3437
  * =============================================================================
3436
3438
  */
3437
3439
  S().prototype.unstack = function(o) {
3438
- return this.throwIfDisposed(), uu(this, o);
3440
+ return this.throwIfDisposed(), du(this, o);
3439
3441
  };
3440
3442
  /**
3441
3443
  * @license
@@ -4677,7 +4679,7 @@ const Em = {
4677
4679
  function Fm(o) {
4678
4680
  const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { blockShape: a, crops: r } = n;
4679
4681
  j([s], "batchToSpaceND");
4680
- const i = a.reduce((g, C) => g * C), c = Ts(s.shape, a, i), l = Ds(c.length, a.length), u = Es(s.shape, a, i), p = si(r, a.length), d = ni(u, r, a.length), h = he({ inputs: { x: s }, backend: e, attrs: { shape: c } }), f = Pe({ inputs: { x: h }, backend: e, attrs: { perm: l } }), m = he({ inputs: { x: f }, backend: e, attrs: { shape: u } }), x = gt({
4682
+ const i = a.reduce((g, C) => g * C), c = Ts(s.shape, a, i), l = Ds(c.length, a.length), u = Es(s.shape, a, i), p = jr(r, a.length), d = Yr(u, r, a.length), h = he({ inputs: { x: s }, backend: e, attrs: { shape: c } }), f = Pe({ inputs: { x: h }, backend: e, attrs: { perm: l } }), m = he({ inputs: { x: f }, backend: e, attrs: { shape: u } }), x = gt({
4681
4683
  inputs: { x: m },
4682
4684
  backend: e,
4683
4685
  attrs: { begin: p, size: d }
@@ -4706,7 +4708,7 @@ const Pm = {
4706
4708
  * =============================================================================
4707
4709
  */
4708
4710
  function Om(o) {
4709
- const { inputs: t, backend: e, attrs: n } = o, { x: s, weights: a } = t, { size: r } = n, i = e.data.get(s.dataId).values, c = e.data.get(a.dataId).values, l = jr(i, c, a.dtype, a.shape, r);
4711
+ const { inputs: t, backend: e, attrs: n } = o, { x: s, weights: a } = t, { size: r } = n, i = e.data.get(s.dataId).values, c = e.data.get(a.dataId).values, l = Xr(i, c, a.dtype, a.shape, r);
4710
4712
  return e.makeTensorInfo([r], a.dtype, l);
4711
4713
  }
4712
4714
  const Am = {
@@ -4834,7 +4836,7 @@ const Gm = {
4834
4836
  */
4835
4837
  function bt(o) {
4836
4838
  const { inputs: t, backend: e, attrs: n } = o, { axis: s } = n, a = me(s, t[0].shape)[0], r = t.map((m) => m.shape);
4837
- oi(r, a);
4839
+ Qr(r, a);
4838
4840
  let i = je(t.map((m) => m.shape), a);
4839
4841
  if (z(i) === 0)
4840
4842
  return e.makeTensorInfo(i, t[0].dtype, []);
@@ -5427,7 +5429,7 @@ const ug = {
5427
5429
  function dg(o) {
5428
5430
  const { inputs: t, backend: e, attrs: n } = o, { x: s, weights: a } = t, { size: r, binaryOutput: i } = n;
5429
5431
  if (s.shape.length === 1) {
5430
- const c = e.data.get(s.dataId).values, l = e.data.get(a.dataId).values, u = jr(c, l, a.dtype, a.shape, r);
5432
+ const c = e.data.get(s.dataId).values, l = e.data.get(a.dataId).values, u = Xr(c, l, a.dtype, a.shape, r);
5431
5433
  return e.makeTensorInfo([r], a.dtype, u);
5432
5434
  } else if (s.shape.length === 2) {
5433
5435
  const c = e.bufferSync(s), l = e.bufferSync(a), u = Ou(c, l, r, i);
@@ -5937,16 +5939,16 @@ const Sg = {
5937
5939
  * =============================================================================
5938
5940
  */
5939
5941
  function Rg(o) {
5940
- const { inputs: t, backend: e, attrs: n } = o, { equation: s } = n, a = t, { allDims: r, summedDims: i, idDims: c } = ai(s, a.length);
5941
- ri(r.length, c, a);
5942
- const { path: l, steps: u } = ii(i, c), p = u.length;
5942
+ const { inputs: t, backend: e, attrs: n } = o, { equation: s } = n, a = t, { allDims: r, summedDims: i, idDims: c } = Zr(s, a.length);
5943
+ Jr(r.length, c, a);
5944
+ const { path: l, steps: u } = ei(i, c), p = u.length;
5943
5945
  let d = null, h = r.length;
5944
5946
  const f = [];
5945
5947
  for (let m = 0; m < p; ++m) {
5946
5948
  for (const x of u[m]) {
5947
- const { permutationIndices: g, expandDims: C } = ci(h, c[x]);
5949
+ const { permutationIndices: g, expandDims: C } = ti(h, c[x]);
5948
5950
  let I;
5949
- li(g) ? I = a[x] : (I = Pe({ inputs: { x: a[x] }, backend: e, attrs: { perm: g } }), f.push(I));
5951
+ si(g) ? I = a[x] : (I = Pe({ inputs: { x: a[x] }, backend: e, attrs: { perm: g } }), f.push(I));
5950
5952
  const b = I.shape.slice();
5951
5953
  for (let y = 0; y < C.length; ++y)
5952
5954
  b.splice(C[y], 0, 1);
@@ -6017,7 +6019,7 @@ const Eg = {
6017
6019
  * limitations under the License.
6018
6020
  * =============================================================================
6019
6021
  */
6020
- const Fg = mi, Pg = fi, Og = hi, Ag = pi, _g = di, Lg = ui, Vg = ue(In, (o) => {
6022
+ const Fg = ci, Pg = ii, Og = ri, Ag = ai, _g = oi, Lg = ni, Vg = ue(In, (o) => {
6021
6023
  const t = Math.sign(o), e = Math.abs(o), n = 1 / (1 + Fg * e);
6022
6024
  return t * (1 - ((((Lg * n + _g) * n + Ag) * n + Og) * n + Pg) * n * Math.exp(-e * e));
6023
6025
  }), Wg = {
@@ -6101,7 +6103,7 @@ function zi(o, t, e) {
6101
6103
  attrs: { begin: [x, 0], size: [1, a] }
6102
6104
  }), I = Be({ inputs: { real: g, imag: C }, backend: e }), { real: b, imag: y } = Gg(I, t, e), $ = xt(b, y);
6103
6105
  for (let k = 0; k < a; k++) {
6104
- const w = gi($, k);
6106
+ const w = li($, k);
6105
6107
  p[x * a + k] = w.real, d[x * a + k] = w.imag;
6106
6108
  }
6107
6109
  e.disposeIntermediateTensorInfo(g), e.disposeIntermediateTensorInfo(C), e.disposeIntermediateTensorInfo(I);
@@ -6120,7 +6122,7 @@ function Gg(o, t, e) {
6120
6122
  return i;
6121
6123
  } else {
6122
6124
  const i = xt(a, r), c = Ug(i, n, t);
6123
- return wp(c);
6125
+ return Od(c);
6124
6126
  }
6125
6127
  }
6126
6128
  function zg(o) {
@@ -6129,13 +6131,13 @@ function zg(o) {
6129
6131
  function Ys(o, t, e, n, s) {
6130
6132
  if (e === 1)
6131
6133
  return { real: o, imag: t };
6132
- const a = xt(o, t), r = e / 2, i = Np(a), c = i.real, l = i.imag, u = [c.length], p = s.makeTensorInfo(u, "float32", c), d = s.makeTensorInfo(u, "float32", l), h = Be({ inputs: { real: p, imag: d }, backend: s }), f = vp(a), m = f.real, x = f.imag, g = [m.length], C = s.makeTensorInfo(g, "float32", m), I = s.makeTensorInfo(g, "float32", x), b = Be({ inputs: { real: C, imag: I }, backend: s }), y = Ys(c, l, r, n, s), $ = y.real, k = y.imag, w = [$.length], v = s.makeTensorInfo(w, "float32", $), N = s.makeTensorInfo(w, "float32", k), P = Be({
6134
+ const a = xt(o, t), r = e / 2, i = Ad(a), c = i.real, l = i.imag, u = [c.length], p = s.makeTensorInfo(u, "float32", c), d = s.makeTensorInfo(u, "float32", l), h = Be({ inputs: { real: p, imag: d }, backend: s }), f = _d(a), m = f.real, x = f.imag, g = [m.length], C = s.makeTensorInfo(g, "float32", m), I = s.makeTensorInfo(g, "float32", x), b = Be({ inputs: { real: C, imag: I }, backend: s }), y = Ys(c, l, r, n, s), $ = y.real, k = y.imag, w = [$.length], v = s.makeTensorInfo(w, "float32", $), N = s.makeTensorInfo(w, "float32", k), P = Be({
6133
6135
  inputs: { real: v, imag: N },
6134
6136
  backend: s
6135
- }), O = Ys(m, x, r, n, s), E = O.real, F = O.imag, T = [E.length], D = s.makeTensorInfo(T, "float32", E), _ = s.makeTensorInfo(T, "float32", F), R = Be({ inputs: { real: D, imag: _ }, backend: s }), A = Sp(e, n), W = [A.real.length], V = s.makeTensorInfo(W, "float32", A.real), G = s.makeTensorInfo(W, "float32", A.imag), M = Be({ inputs: { real: V, imag: G }, backend: s }), U = An({ inputs: { a: M, b: R }, backend: s }), B = Pt({
6137
+ }), O = Ys(m, x, r, n, s), E = O.real, F = O.imag, T = [E.length], D = s.makeTensorInfo(T, "float32", E), _ = s.makeTensorInfo(T, "float32", F), R = Be({ inputs: { real: D, imag: _ }, backend: s }), A = Ld(e, n), W = [A.real.length], V = s.makeTensorInfo(W, "float32", A.real), G = s.makeTensorInfo(W, "float32", A.imag), M = Be({ inputs: { real: V, imag: G }, backend: s }), U = An({ inputs: { a: M, b: R }, backend: s }), B = Pt({
6136
6138
  inputs: { a: P, b: U },
6137
6139
  backend: s
6138
- }), X = Yr({
6140
+ }), X = Kr({
6139
6141
  inputs: { a: P, b: U },
6140
6142
  backend: s
6141
6143
  }), q = Ot({ inputs: { input: B }, backend: s }), J = Ot({ inputs: { input: X }, backend: s }), Q = Ct({ inputs: { input: B }, backend: s }), ee = Ct({ inputs: { input: X }, backend: s }), te = bt({
@@ -6154,10 +6156,10 @@ function Ug(o, t, e) {
6154
6156
  for (let s = 0; s < t; s++) {
6155
6157
  let a = 0, r = 0;
6156
6158
  for (let i = 0; i < t; i++) {
6157
- const c = Tp(s * i, t, e), l = gi(o, i);
6159
+ const c = Wd(s * i, t, e), l = li(o, i);
6158
6160
  a += l.real * c.real - l.imag * c.imag, r += l.real * c.imag + l.imag * c.real;
6159
6161
  }
6160
- e && (a /= t, r /= t), Rp(n, a, r, s);
6162
+ e && (a /= t, r /= t), Vd(n, a, r, s);
6161
6163
  }
6162
6164
  return n;
6163
6165
  }
@@ -6367,7 +6369,7 @@ const Jg = {
6367
6369
  * =============================================================================
6368
6370
  */
6369
6371
  function ex(o) {
6370
- const { inputs: t, backend: e } = o, { params: n, indices: s } = t, a = z(n.shape), r = s.shape, i = r[r.length - 1], [c, l, u, p] = xi(n, s);
6372
+ const { inputs: t, backend: e } = o, { params: n, indices: s } = t, a = z(n.shape), r = s.shape, i = r[r.length - 1], [c, l, u, p] = ui(n, s);
6371
6373
  if (l === 0)
6372
6374
  return e.makeTensorInfo(c, n.dtype, []);
6373
6375
  const d = e.data.get(s.dataId).values, h = e.bufferSync(n), f = _u(d, h, n.dtype, l, i, u, p, n.shape, a);
@@ -6404,7 +6406,7 @@ function sx(o) {
6404
6406
  }
6405
6407
  let p = i;
6406
6408
  i == null && (p = 0);
6407
- const d = z(a.shape), h = Ci(s, a, c, p), f = he({
6409
+ const d = z(a.shape), h = di(s, a, c, p), f = he({
6408
6410
  inputs: { x: s },
6409
6411
  backend: e,
6410
6412
  attrs: {
@@ -7132,7 +7134,7 @@ function Hi(o) {
7132
7134
  inputs: { x: s },
7133
7135
  backend: e,
7134
7136
  attrs: { reductionIndices: c, keepDims: !1 }
7135
- }), u = Oe(l.shape, c), p = he({ inputs: { x: l }, backend: e, attrs: { shape: u } }), d = Yr({ inputs: { a: s, b: p }, backend: e }), h = Bu({ inputs: { x: d }, backend: e }), f = Ut({ inputs: { x: h }, backend: e, attrs: { axis: c, keepDims: !1 } }), m = he({ inputs: { x: f }, backend: e, attrs: { shape: u } }), x = Gn({ inputs: { a: h, b: m }, backend: e });
7137
+ }), u = Oe(l.shape, c), p = he({ inputs: { x: l }, backend: e, attrs: { shape: u } }), d = Kr({ inputs: { a: s, b: p }, backend: e }), h = Bu({ inputs: { x: d }, backend: e }), f = Ut({ inputs: { x: h }, backend: e, attrs: { axis: c, keepDims: !1 } }), m = he({ inputs: { x: f }, backend: e, attrs: { shape: u } }), x = Gn({ inputs: { a: h, b: m }, backend: e });
7136
7138
  return e.disposeIntermediateTensorInfo(l), e.disposeIntermediateTensorInfo(p), e.disposeIntermediateTensorInfo(d), e.disposeIntermediateTensorInfo(h), e.disposeIntermediateTensorInfo(f), e.disposeIntermediateTensorInfo(m), x;
7137
7139
  }
7138
7140
  const qx = {
@@ -7165,7 +7167,7 @@ function jx(o) {
7165
7167
  x[0] = p[m];
7166
7168
  for (let I = 1; I < x.length; ++I)
7167
7169
  x[I] = x[I - 1] + p[m + I];
7168
- const g = ih.alea(r.toString()), C = f * a;
7170
+ const g = zd.alea(r.toString()), C = f * a;
7169
7171
  for (let I = 0; I < a; ++I) {
7170
7172
  const b = g();
7171
7173
  h[C + I] = x.length;
@@ -7199,7 +7201,7 @@ const Yx = {
7199
7201
  * limitations under the License.
7200
7202
  * =============================================================================
7201
7203
  */
7202
- const Qx = Wr;
7204
+ const Qx = mi;
7203
7205
  function Zx(o) {
7204
7206
  const { inputs: t, backend: e, attrs: n } = o, { boxes: s, scores: a } = t, { maxOutputSize: r, iouThreshold: i, scoreThreshold: c } = n;
7205
7207
  j(s, "NonMaxSuppression");
@@ -7227,7 +7229,7 @@ const Jx = {
7227
7229
  * limitations under the License.
7228
7230
  * =============================================================================
7229
7231
  */
7230
- const eC = Mr;
7232
+ const eC = gi;
7231
7233
  function tC(o) {
7232
7234
  const { inputs: t, backend: e, attrs: n } = o, { boxes: s, scores: a } = t, { maxOutputSize: r, iouThreshold: i, scoreThreshold: c, padToMaxOutputSize: l } = n;
7233
7235
  j(s, "NonMaxSuppressionPadded");
@@ -7258,7 +7260,7 @@ const sC = {
7258
7260
  * limitations under the License.
7259
7261
  * =============================================================================
7260
7262
  */
7261
- const nC = Br;
7263
+ const nC = xi;
7262
7264
  function oC(o) {
7263
7265
  const { inputs: t, backend: e, attrs: n } = o, { boxes: s, scores: a } = t, { maxOutputSize: r, iouThreshold: i, scoreThreshold: c, softNmsSigma: l } = n;
7264
7266
  j(s, "NonMaxSuppressionWithScore");
@@ -7842,7 +7844,7 @@ const AC = {
7842
7844
  kernelName: rr,
7843
7845
  backendName: "cpu",
7844
7846
  kernelFunc: ({ inputs: o, attrs: t, backend: e }) => {
7845
- const { image: n } = o, { radians: s, fillValue: a, center: r } = t, i = e, c = Ge(n.dtype, z(n.shape)), [l, u, p, d] = n.shape, [h, f] = bi(r, u, p), m = 255, x = Math.sin(s), g = Math.cos(s), C = i.data.get(n.dataId).values;
7847
+ const { image: n } = o, { radians: s, fillValue: a, center: r } = t, i = e, c = Ge(n.dtype, z(n.shape)), [l, u, p, d] = n.shape, [h, f] = pi(r, u, p), m = 255, x = Math.sin(s), g = Math.cos(s), C = i.data.get(n.dataId).values;
7846
7848
  for (let b = 0; b < l; b++) {
7847
7849
  const y = b * p * u * d;
7848
7850
  for (let $ = 0; $ < u; $++) {
@@ -8026,7 +8028,7 @@ const XC = {
8026
8028
  * limitations under the License.
8027
8029
  * =============================================================================
8028
8030
  */
8029
- const KC = Ur, qC = zr, jC = ue(Sn, (o) => o >= 0 ? qC * o : KC * (Math.exp(o) - 1)), YC = {
8031
+ const KC = Gr, qC = Br, jC = ue(Sn, (o) => o >= 0 ? qC * o : KC * (Math.exp(o) - 1)), YC = {
8030
8032
  kernelName: Sn,
8031
8033
  backendName: "cpu",
8032
8034
  kernelFunc: jC
@@ -8262,7 +8264,7 @@ function pb(o) {
8262
8264
  ${a.shape}`);
8263
8265
  if (s.shape[0] !== a.shape[0])
8264
8266
  throw new Error("segmentIds and indices should have same size.");
8265
- const r = e.data.get(n.dataId).values, i = e.data.get(s.dataId).values, c = e.data.get(a.dataId).values, [l, u] = Qr(r, n.shape, n.dtype, i, c, !0);
8267
+ const r = e.data.get(n.dataId).values, i = e.data.get(s.dataId).values, c = e.data.get(a.dataId).values, [l, u] = qr(r, n.shape, n.dtype, i, c, !0);
8266
8268
  return e.makeTensorInfo(u, n.dtype, l);
8267
8269
  }
8268
8270
  const hb = {
@@ -8298,7 +8300,7 @@ function fb(o) {
8298
8300
  ${a.shape}`);
8299
8301
  if (s.shape[0] !== a.shape[0])
8300
8302
  throw new Error("segmentIds and indices should have same size.");
8301
- const r = e.data.get(n.dataId).values, i = e.data.get(s.dataId).values, c = e.data.get(a.dataId).values, [l, u] = Qr(r, n.shape, n.dtype, i, c);
8303
+ const r = e.data.get(n.dataId).values, i = e.data.get(s.dataId).values, c = e.data.get(a.dataId).values, [l, u] = qr(r, n.shape, n.dtype, i, c);
8302
8304
  return e.makeTensorInfo(u, n.dtype, l);
8303
8305
  }
8304
8306
  const mb = {
@@ -8373,7 +8375,7 @@ const xb = {
8373
8375
  * =============================================================================
8374
8376
  */
8375
8377
  function Cb(o) {
8376
- const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { numOrSizeSplits: a, axis: r } = n, i = me(r, s.shape)[0], c = Ii(s, a, i), l = new Array(s.shape.length).fill(0), u = s.shape.slice();
8378
+ const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { numOrSizeSplits: a, axis: r } = n, i = me(r, s.shape)[0], c = hi(s, a, i), l = new Array(s.shape.length).fill(0), u = s.shape.slice();
8377
8379
  return c.map((p) => {
8378
8380
  const d = [...u];
8379
8381
  d[i] = p;
@@ -8459,13 +8461,13 @@ const yb = ue(En, (o, t) => {
8459
8461
  function kb(o) {
8460
8462
  const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { begin: a, end: r, strides: i, beginMask: c, endMask: l, ellipsisMask: u, newAxisMask: p, shrinkAxisMask: d } = n;
8461
8463
  j(s, "stridedSlice");
8462
- const { finalShapeSparse: h, finalShape: f, isIdentity: m, sliceDim0: x, isSimpleSlice: g, begin: C, end: I, strides: b } = Hr(s.shape, a, r, i, c, l, u, p, d);
8464
+ const { finalShapeSparse: h, finalShape: f, isIdentity: m, sliceDim0: x, isSimpleSlice: g, begin: C, end: I, strides: b } = zr(s.shape, a, r, i, c, l, u, p, d);
8463
8465
  let y;
8464
8466
  if (m)
8465
8467
  y = he({ inputs: { x: s }, backend: e, attrs: { shape: f } });
8466
8468
  else if (x || g) {
8467
8469
  Y(s.shape.length >= 1, () => `Input must have rank at least 1, got: ${s.shape.length}`);
8468
- const $ = Xr(C, I, b), k = gt({ inputs: { x: s }, backend: e, attrs: { begin: C, size: $ } });
8470
+ const $ = Ur(C, I, b), k = gt({ inputs: { x: s }, backend: e, attrs: { begin: C, size: $ } });
8469
8471
  y = he({ inputs: { x: k }, backend: e, attrs: { shape: f } }), e.disposeIntermediateTensorInfo(k);
8470
8472
  } else {
8471
8473
  const $ = e.bufferSync(s), k = qu(h, $, b, C);
@@ -9148,17 +9150,17 @@ K.registerFlag("WEBGL_PACK_REDUCE", () => K.getBool("WEBGL_PACK"));
9148
9150
  K.registerFlag("WEBGL_LAZILY_UNPACK", () => K.getBool("WEBGL_PACK"));
9149
9151
  K.registerFlag("WEBGL_CONV_IM2COL", () => K.getBool("WEBGL_PACK"));
9150
9152
  K.registerFlag("WEBGL_PACK_CONV2DTRANSPOSE", () => K.getBool("WEBGL_PACK"));
9151
- K.registerFlag("WEBGL_MAX_TEXTURE_SIZE", () => Dp(K.getNumber("WEBGL_VERSION")));
9152
- K.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER", () => Ep(K.getNumber("WEBGL_VERSION")));
9153
+ K.registerFlag("WEBGL_MAX_TEXTURE_SIZE", () => Ud(K.getNumber("WEBGL_VERSION")));
9154
+ K.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER", () => Hd(K.getNumber("WEBGL_VERSION")));
9153
9155
  K.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION", () => {
9154
9156
  const o = K.getNumber("WEBGL_VERSION");
9155
- return o === 0 ? 0 : Fp(o);
9157
+ return o === 0 ? 0 : Xd(o);
9156
9158
  });
9157
9159
  K.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE", () => K.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION") > 0 && !Sr());
9158
- K.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE", () => Pp(K.getNumber("WEBGL_VERSION")));
9160
+ K.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE", () => Kd(K.getNumber("WEBGL_VERSION")));
9159
9161
  K.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED", () => K.getBool("WEBGL_FORCE_F16_TEXTURES") ? !1 : K.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));
9160
- K.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED", () => Op(K.getNumber("WEBGL_VERSION")));
9161
- K.registerFlag("WEBGL_FENCE_API_ENABLED", () => Ap(K.getNumber("WEBGL_VERSION")));
9162
+ K.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED", () => qd(K.getNumber("WEBGL_VERSION")));
9163
+ K.registerFlag("WEBGL_FENCE_API_ENABLED", () => jd(K.getNumber("WEBGL_VERSION")));
9162
9164
  K.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM", () => K.getBool("WEBGL_RENDER_FLOAT32_ENABLED") ? 4 : 0);
9163
9165
  K.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD", () => -1, (o) => {
9164
9166
  if (typeof o != "number")
@@ -9204,7 +9206,7 @@ class s1 {
9204
9206
  const e = ze();
9205
9207
  this.outputShape = t, this.enableShapeUniforms = We(this.outputShape.length), this.userCode = `
9206
9208
  ivec3 outCoordsFromFlatIndex(int index) {
9207
- ${this.enableShapeUniforms ? yi(["r", "c", "d"], t) : $i(["r", "c", "d"], t)}
9209
+ ${this.enableShapeUniforms ? Ci(["r", "c", "d"], t) : bi(["r", "c", "d"], t)}
9208
9210
  return ivec3(r, c, d);
9209
9211
  }
9210
9212
 
@@ -9247,7 +9249,7 @@ class n1 {
9247
9249
  const e = ze();
9248
9250
  this.outputShape = t, this.enableShapeUniforms = We(this.outputShape.length), this.userCode = `
9249
9251
  ivec3 outCoordsFromFlatIndex(int index) {
9250
- ${this.enableShapeUniforms ? yi(["r", "c", "d"], t) : $i(["r", "c", "d"], t)}
9252
+ ${this.enableShapeUniforms ? Ci(["r", "c", "d"], t) : bi(["r", "c", "d"], t)}
9251
9253
  return ivec3(r, c, d);
9252
9254
  }
9253
9255
 
@@ -9289,7 +9291,7 @@ class o1 {
9289
9291
  this.variableNames = ["A"], this.outTexUsage = _e.DOWNLOAD;
9290
9292
  const e = ze();
9291
9293
  this.outputShape = t, this.userCode = `
9292
- ${ki}
9294
+ ${Ii}
9293
9295
 
9294
9296
  void main() {
9295
9297
  float x = getAAtOutCoords();
@@ -9319,7 +9321,7 @@ class a1 {
9319
9321
  this.variableNames = ["A"], this.packedInputs = !0, this.packedOutput = !1, this.outTexUsage = _e.DOWNLOAD;
9320
9322
  const e = ze();
9321
9323
  this.outputShape = t, this.userCode = `
9322
- ${ki}
9324
+ ${Ii}
9323
9325
 
9324
9326
  void main() {
9325
9327
  ivec3 coords = getOutputCoords();
@@ -9367,7 +9369,7 @@ class io {
9367
9369
  }`;
9368
9370
  }
9369
9371
  this.userCode = `
9370
- ${this.enableShapeUniforms ? wi() : Ni(t)}
9372
+ ${this.enableShapeUniforms ? yi() : $i(t)}
9371
9373
 
9372
9374
  void main() {
9373
9375
  ivec3 coords = getOutputCoords();
@@ -9446,7 +9448,7 @@ class i1 {
9446
9448
  `;
9447
9449
  }
9448
9450
  this.userCode = `
9449
- ${this.enableShapeUniforms ? wi() : Ni(t)}
9451
+ ${this.enableShapeUniforms ? yi() : $i(t)}
9450
9452
 
9451
9453
  void main() {
9452
9454
  ivec3 coords = getOutputCoords();
@@ -9491,19 +9493,19 @@ function c1(o) {
9491
9493
  gl_Position = vec4(clipSpacePos, 1);
9492
9494
  resultUV = uv;
9493
9495
  }`;
9494
- return Vp(o, e);
9496
+ return Zd(o, e);
9495
9497
  }
9496
9498
  function l1(o) {
9497
9499
  const t = new Float32Array([-1, 1, 0, 0, 1, -1, -1, 0, 0, 0, 1, 1, 0, 1, 1, 1, -1, 0, 1, 0]);
9498
- return _p(o, t);
9500
+ return Yd(o, t);
9499
9501
  }
9500
9502
  function u1(o) {
9501
9503
  const t = new Uint16Array([0, 1, 2, 2, 1, 3]);
9502
- return Lp(o, t);
9504
+ return Qd(o, t);
9503
9505
  }
9504
9506
  function Ht(o, t, e, n, s, a) {
9505
- Wp(t, e);
9506
- const r = Mp(o), i = o.TEXTURE_2D;
9507
+ Jd(t, e);
9508
+ const r = ep(o), i = o.TEXTURE_2D;
9507
9509
  return Z(o, () => o.bindTexture(i, r)), Z(o, () => o.texParameteri(i, o.TEXTURE_WRAP_S, o.CLAMP_TO_EDGE)), Z(o, () => o.texParameteri(i, o.TEXTURE_WRAP_T, o.CLAMP_TO_EDGE)), Z(o, () => o.texParameteri(i, o.TEXTURE_MIN_FILTER, o.NEAREST)), Z(o, () => o.texParameteri(i, o.TEXTURE_MAG_FILTER, o.NEAREST)), L().getNumber("WEBGL_VERSION") === 1 ? Z(o, () => o.texImage2D(i, 0, n, t, e, 0, s, a, null)) : Z(o, () => o.texStorage2D(i, 1, n, t, e)), Z(o, () => o.bindTexture(o.TEXTURE_2D, null)), { texture: r, texShape: [e, t] };
9508
9510
  }
9509
9511
  function ji(o) {
@@ -9563,11 +9565,11 @@ function I1(o, t, e) {
9563
9565
  return n.bindBuffer(n.PIXEL_PACK_BUFFER, t), n.getBufferSubData(n.PIXEL_PACK_BUFFER, 0, s), n.bindBuffer(n.PIXEL_PACK_BUFFER, null), s;
9564
9566
  }
9565
9567
  function y1(o, t, e, n) {
9566
- const [s, a] = Mt(t, e), r = 4, i = new Uint8Array(Bp(t * e, r));
9568
+ const [s, a] = Mt(t, e), r = 4, i = new Uint8Array(tp(t * e, r));
9567
9569
  return Z(o, () => o.readPixels(0, 0, s, a, n.downloadTextureFormat, o.UNSIGNED_BYTE, i)), new Float32Array(i.buffer);
9568
9570
  }
9569
9571
  function $1(o, t, e, n, s, a, r, i) {
9570
- const c = o, l = new Float32Array(Gp(a, r));
9572
+ const c = o, l = new Float32Array(sp(a, r));
9571
9573
  return c.bindBuffer(c.PIXEL_PACK_BUFFER, t), c.getBufferSubData(c.PIXEL_PACK_BUFFER, 0, l), c.bindBuffer(c.PIXEL_PACK_BUFFER, null), l;
9572
9574
  }
9573
9575
  function k1(o, t, e) {
@@ -9594,7 +9596,7 @@ class Ms {
9594
9596
  constructor(t) {
9595
9597
  this.outputTexture = null, this.program = null, this.disposed = !1, this.itemsToPoll = [];
9596
9598
  const e = L().getNumber("WEBGL_VERSION");
9597
- if (t != null ? (this.gl = t, Yp(e, t)) : this.gl = Ks(e), t = this.gl, L().getNumber("WEBGL_VERSION") === 2) {
9599
+ if (t != null ? (this.gl = t, up(e, t)) : this.gl = Ks(e), t = this.gl, L().getNumber("WEBGL_VERSION") === 2) {
9598
9600
  const a = t;
9599
9601
  this.createVertexArray = () => Z(a, () => a.createVertexArray()), this.bindVertexArray = (r) => Z(a, () => a.bindVertexArray(r)), this.deleteVertexArray = (r) => Z(a, () => a.deleteVertexArray(r)), this.getVertexArray = () => Z(a, () => a.getParameter(a.VERTEX_ARRAY_BINDING));
9600
9602
  } else if (t != null) {
@@ -9621,7 +9623,7 @@ class Ms {
9621
9623
  this.colorBufferHalfFloatExtension = this.gl.getExtension(s);
9622
9624
  else
9623
9625
  throw new Error("GL context does not support color renderable floats");
9624
- this.vertexBuffer = l1(this.gl), this.indexBuffer = u1(this.gl), this.framebuffer = zp(this.gl), this.textureConfig = Up(this.gl, this.textureHalfFloatExtension);
9626
+ this.vertexBuffer = l1(this.gl), this.indexBuffer = u1(this.gl), this.framebuffer = np(this.gl), this.textureConfig = op(this.gl, this.textureHalfFloatExtension);
9625
9627
  }
9626
9628
  get debug() {
9627
9629
  return L().getBool("DEBUG");
@@ -9693,8 +9695,8 @@ class Ms {
9693
9695
  this.throwIfDisposed();
9694
9696
  const e = this.gl;
9695
9697
  this.vertexShader == null && (this.vertexShader = c1(e));
9696
- const n = Hp(e);
9697
- Z(e, () => e.attachShader(n, this.vertexShader)), Z(e, () => e.attachShader(n, t)), Xp(e, n);
9698
+ const n = ap(e);
9699
+ Z(e, () => e.attachShader(n, this.vertexShader)), Z(e, () => e.attachShader(n, t)), rp(e, n);
9698
9700
  const s = Object.assign(n, { vao: this.createVertexArray() });
9699
9701
  return this.debug && Vs(e, s), s;
9700
9702
  }
@@ -9710,7 +9712,7 @@ class Ms {
9710
9712
  this.throwIfDisposed(), this.program = t, this.program != null && this.debug && Vs(this.gl, this.program), Z(this.gl, () => this.gl.useProgram(t));
9711
9713
  }
9712
9714
  getUniformLocation(t, e, n = !0) {
9713
- return this.throwIfDisposed(), n ? Kp(this.gl, t, e) : qp(this.gl, t, e);
9715
+ return this.throwIfDisposed(), n ? ip(this.gl, t, e) : cp(this.gl, t, e);
9714
9716
  }
9715
9717
  getAttributeLocation(t, e) {
9716
9718
  return this.throwIfDisposed(), Z(this.gl, () => this.gl.getAttribLocation(t, e));
@@ -9719,7 +9721,7 @@ class Ms {
9719
9721
  return this.throwIfDisposed(), this.gl.getUniformLocation(t, e);
9720
9722
  }
9721
9723
  setInputMatrixTexture(t, e, n) {
9722
- this.throwIfDisposed(), this.throwIfNoProgram(), jp(this.gl, t, e, n);
9724
+ this.throwIfDisposed(), this.throwIfNoProgram(), lp(this.gl, t, e, n);
9723
9725
  }
9724
9726
  setOutputMatrixTexture(t, e, n) {
9725
9727
  this.setOutputMatrixTextureDriver(t, n, e);
@@ -10297,7 +10299,7 @@ class Os extends _o {
10297
10299
  if (t != null)
10298
10300
  for (let e = 0; e < t.length; e++) {
10299
10301
  const n = t[e];
10300
- if (!Qp(n))
10302
+ if (!dp(n))
10301
10303
  throw L().getBool("WEBGL_RENDER_FLOAT32_CAPABLE") ? Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`) : Error(`The value ${n} cannot be represented on this device.`);
10302
10304
  }
10303
10305
  }
@@ -10423,7 +10425,7 @@ class Os extends _o {
10423
10425
  // Also remove the op from unary_op.
10424
10426
  abs(t) {
10425
10427
  if (this.shouldExecuteOnCPU([t]) && t.dtype !== "complex64") {
10426
- const s = Zr(this.texData.get(t.dataId).values);
10428
+ const s = wi(this.texData.get(t.dataId).values);
10427
10429
  return this.makeOutput(t.shape, t.dtype, s);
10428
10430
  }
10429
10431
  if (L().getBool("WEBGL_PACK_UNARY_OPERATIONS"))
@@ -10501,16 +10503,16 @@ class Os extends _o {
10501
10503
  }
10502
10504
  if (this.uploadToGPU(g.dataId), !!C.isPacked != !!t.packedInputs)
10503
10505
  g = C.isPacked ? this.unpackTensor(g) : this.packTensor(g), l.push(g), C = this.texData.get(g.dataId);
10504
- else if (C.isPacked && !vi(C.shape, g.shape)) {
10506
+ else if (C.isPacked && !ki(C.shape, g.shape)) {
10505
10507
  const I = g, b = g.shape;
10506
10508
  g.shape = C.shape, g = this.packedReshape(g, b), l.push(g), C = this.texData.get(g.dataId), I.shape = b;
10507
10509
  }
10508
10510
  return { shape: g.shape, texData: C, isUniform: !1 };
10509
10511
  });
10510
10512
  this.uploadToGPU(i.dataId);
10511
- const p = { shape: i.shape, texData: c, isUniform: !1 }, d = Zp(t, u, p), h = this.getAndSaveBinary(d, () => Jp(this.gpgpu, t, u, p)), f = this.activeTimers != null;
10513
+ const p = { shape: i.shape, texData: c, isUniform: !1 }, d = pp(t, u, p), h = this.getAndSaveBinary(d, () => hp(this.gpgpu, t, u, p)), f = this.activeTimers != null;
10512
10514
  let m;
10513
- f && (m = this.startTimer()), L().get("ENGINE_COMPILE_ONLY") || eh(this.gpgpu, h, u, p, s), l.forEach((g) => this.disposeIntermediateTensorInfo(g)), f && (m = this.endTimer(m), this.activeTimers.push({ name: t.constructor.name, query: this.getQueryTime(m) }));
10515
+ f && (m = this.startTimer()), L().get("ENGINE_COMPILE_ONLY") || fp(this.gpgpu, h, u, p, s), l.forEach((g) => this.disposeIntermediateTensorInfo(g)), f && (m = this.endTimer(m), this.activeTimers.push({ name: t.constructor.name, query: this.getQueryTime(m) }));
10514
10516
  const x = L().getNumber("WEBGL_FLUSH_THRESHOLD");
10515
10517
  if (x > 0) {
10516
10518
  const g = Ke();
@@ -10560,7 +10562,7 @@ class Os extends _o {
10560
10562
  let u;
10561
10563
  l && (u = Ke());
10562
10564
  let p = e.texShape;
10563
- if (p == null && (p = th(n, c), e.texShape = p), a != null) {
10565
+ if (p == null && (p = mp(n, c), e.texShape = p), a != null) {
10564
10566
  const d = Zt(n);
10565
10567
  let h, f = p[1], m = p[0];
10566
10568
  const x = a instanceof Uint8Array || a instanceof Uint8ClampedArray;
@@ -10617,13 +10619,13 @@ class Os extends _o {
10617
10619
  }
10618
10620
  checkCompletion_(t) {
10619
10621
  if (this.gpgpu.gl.getProgramParameter(t.webGLProgram, this.gpgpu.gl.LINK_STATUS) === !1)
10620
- throw console.log(this.gpgpu.gl.getProgramInfoLog(t.webGLProgram)), this.gpgpu.gl.getShaderParameter(t.fragmentShader, this.gpgpu.gl.COMPILE_STATUS) === !1 ? (sh(t.source, this.gpgpu.gl.getShaderInfoLog(t.fragmentShader)), new Error("Failed to compile fragment shader.")) : new Error("Failed to link vertex and fragment shaders.");
10622
+ throw console.log(this.gpgpu.gl.getProgramInfoLog(t.webGLProgram)), this.gpgpu.gl.getShaderParameter(t.fragmentShader, this.gpgpu.gl.COMPILE_STATUS) === !1 ? (gp(t.source, this.gpgpu.gl.getShaderInfoLog(t.fragmentShader)), new Error("Failed to compile fragment shader.")) : new Error("Failed to link vertex and fragment shaders.");
10621
10623
  return !0;
10622
10624
  }
10623
10625
  getUniformLocations() {
10624
10626
  for (const t of Object.values(this.binaryCache)) {
10625
10627
  this.gpgpu.buildVao(t.webGLProgram);
10626
- const { variablesLocations: e, customUniformLocations: n, infLoc: s, nanLoc: a, outShapeLocation: r, outShapeStridesLocation: i, outTexShapeLocation: c } = nh(this.gpgpu, t.program, t.webGLProgram);
10628
+ const { variablesLocations: e, customUniformLocations: n, infLoc: s, nanLoc: a, outShapeLocation: r, outShapeStridesLocation: i, outTexShapeLocation: c } = xp(this.gpgpu, t.program, t.webGLProgram);
10627
10629
  t.variablesLocations = e, t.customUniformLocations = n, t.infLoc = s, t.nanLoc = a, t.outShapeLocation = r, t.outShapeStridesLocation = i, t.outTexShapeLocation = c;
10628
10630
  }
10629
10631
  }
@@ -10757,7 +10759,7 @@ function Un(o) {
10757
10759
  return e.disposeIntermediateTensorInfo(d), e.disposeIntermediateTensorInfo(h), f;
10758
10760
  }
10759
10761
  if (e.shouldExecuteOnCPU([n, s])) {
10760
- const i = e.texData.get(n.dataId), c = e.texData.get(s.dataId), [l, u] = Od(n.shape, s.shape, i.values, c.values, a), p = e.makeTensorInfo(u, a), d = e.texData.get(p.dataId);
10762
+ const i = e.texData.get(n.dataId), c = e.texData.get(s.dataId), [l, u] = Cp(n.shape, s.shape, i.values, c.values, a), p = e.makeTensorInfo(u, a), d = e.texData.get(p.dataId);
10761
10763
  return d.values = l, p;
10762
10764
  }
10763
10765
  let r;
@@ -10790,7 +10792,7 @@ function ve(o) {
10790
10792
  c[u] = s.shape[a[u]];
10791
10793
  let l;
10792
10794
  if (r.shouldExecuteOnCPU([s])) {
10793
- const p = r.texData.get(s.dataId).values, d = Jr(p, s.shape, s.dtype, a, c);
10795
+ const p = r.texData.get(s.dataId).values, d = Ni(p, s.shape, s.dtype, a, c);
10794
10796
  l = r.makeTensorInfo(c, s.dtype);
10795
10797
  const h = r.texData.get(l.dataId);
10796
10798
  h.values = d;
@@ -10913,7 +10915,7 @@ const mo = "return abs(x);";
10913
10915
  function z1(o) {
10914
10916
  const { inputs: t, backend: e } = o, { x: n } = t;
10915
10917
  if (e.shouldExecuteOnCPU([n]) && n.dtype !== "complex64") {
10916
- const a = e.texData.get(n.dataId), r = Zr(a.values);
10918
+ const a = e.texData.get(n.dataId), r = wi(a.values);
10917
10919
  return e.makeTensorInfo(n.shape, n.dtype, r);
10918
10920
  }
10919
10921
  let s;
@@ -10993,7 +10995,7 @@ const go = "return a + b;", Q1 = ke({
10993
10995
  opSnippet: go,
10994
10996
  packedOpSnippet: go,
10995
10997
  supportsComplex: !0,
10996
- cpuKernelImpl: Ad
10998
+ cpuKernelImpl: bp
10997
10999
  }), Z1 = {
10998
11000
  kernelName: Qc,
10999
11001
  backendName: "webgl",
@@ -11332,7 +11334,7 @@ class iI {
11332
11334
  function tc(o, t, e, n = null) {
11333
11335
  let s = t.shape[0], a = t.shape[1];
11334
11336
  n != null && (s = n.shape[0], a = n.shape[1]);
11335
- const r = Si(a), i = { windowSize: r, inSize: a, batchSize: s, outSize: Math.ceil(a / r) }, c = new rI(i, e, n == null), l = [t];
11337
+ const r = fi(a), i = { windowSize: r, inSize: a, batchSize: s, outSize: Math.ceil(a / r) }, c = new rI(i, e, n == null), l = [t];
11336
11338
  n != null && l.push(n);
11337
11339
  const u = o.runWebGLProgram(c, l, "int32");
11338
11340
  if (u.shape[1] === 1)
@@ -11341,7 +11343,7 @@ function tc(o, t, e, n = null) {
11341
11343
  return o.disposeIntermediateTensorInfo(u), p;
11342
11344
  }
11343
11345
  function sc(o, t, e, n = null) {
11344
- const s = n != null ? n.shape : t.shape, a = s[s.length - 1], r = Si(a), i = new iI(s, r, e, n == null), c = n == null ? [t] : [t, n], l = o.runWebGLProgram(i, c, "int32");
11346
+ const s = n != null ? n.shape : t.shape, a = s[s.length - 1], r = fi(a), i = new iI(s, r, e, n == null), c = n == null ? [t] : [t, n], l = o.runWebGLProgram(i, c, "int32");
11345
11347
  if (l.shape.length === t.shape.length) {
11346
11348
  const u = sc(o, t, e, l);
11347
11349
  return o.disposeIntermediateTensorInfo(l), u;
@@ -12390,7 +12392,7 @@ class XI {
12390
12392
  function KI(o, t, e, n) {
12391
12393
  const s = n.texData.get(o.dataId), a = n.makeTensorInfo(e, o.dtype), r = n.texData.get(a.dataId);
12392
12394
  Object.assign(r, s), r.refCount = 1, r.shape = e, r.dtype = o.dtype;
12393
- let i = Iu(t, ne(o.shape));
12395
+ let i = yu(t, ne(o.shape));
12394
12396
  s.slice && (i += s.slice.flatOffset), r.slice = {
12395
12397
  flatOffset: i,
12396
12398
  // Point to the original dataId, which is used to do ref counting.
@@ -12400,14 +12402,14 @@ function KI(o, t, e, n) {
12400
12402
  return n.dataRefCount.set(r.slice.origDataId, c + 1), a;
12401
12403
  }
12402
12404
  function St(o) {
12403
- const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { begin: a, size: r } = n, [i, c] = xu(s, a, r);
12404
- if (Cu(s, i, c), z(c) === 0)
12405
+ const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { begin: a, size: r } = n, [i, c] = Cu(s, a, r);
12406
+ if (bu(s, i, c), z(c) === 0)
12405
12407
  return e.makeTensorInfo(c, s.dtype, []);
12406
12408
  if (e.shouldExecuteOnCPU([s]) || s.dtype === "string") {
12407
- const p = e.texData.get(s.dataId), d = _d(p.values, i, c, s.shape, s.dtype);
12409
+ const p = e.texData.get(s.dataId), d = Ip(p.values, i, c, s.shape, s.dtype);
12408
12410
  return e.makeTensorInfo(c, s.dtype, d);
12409
12411
  }
12410
- const { isPacked: l } = e.texData.get(s.dataId), u = bu(s.shape, i, c);
12412
+ const { isPacked: l } = e.texData.get(s.dataId), u = Iu(s.shape, i, c);
12411
12413
  if (l || !u) {
12412
12414
  const p = L().getBool("WEBGL_PACK_ARRAY_OPERATIONS") ? new XI(c) : new UI(c), d = [i];
12413
12415
  return e.runWebGLProgram(p, [s], s.dtype, d);
@@ -12438,7 +12440,7 @@ const qI = {
12438
12440
  const jI = (o) => {
12439
12441
  const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { blockShape: a, crops: r } = n;
12440
12442
  Y(s.shape.length <= 4, () => "batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");
12441
- const i = a.reduce((C, I) => C * I), c = Ts(s.shape, a, i), l = Ds(c.length, a.length), u = Es(s.shape, a, i), p = si(r, a.length), d = ni(u, r, a.length), h = [], f = H({ inputs: { x: s }, backend: e, attrs: { shape: c } }), m = ve({ inputs: { x: f }, backend: e, attrs: { perm: l } }), x = H({
12443
+ const i = a.reduce((C, I) => C * I), c = Ts(s.shape, a, i), l = Ds(c.length, a.length), u = Es(s.shape, a, i), p = jr(r, a.length), d = Yr(u, r, a.length), h = [], f = H({ inputs: { x: s }, backend: e, attrs: { shape: c } }), m = ve({ inputs: { x: f }, backend: e, attrs: { perm: l } }), x = H({
12442
12444
  inputs: { x: m },
12443
12445
  backend: e,
12444
12446
  attrs: { shape: u }
@@ -12470,7 +12472,7 @@ const jI = (o) => {
12470
12472
  * =============================================================================
12471
12473
  */
12472
12474
  function QI(o) {
12473
- const { inputs: t, backend: e, attrs: n } = o, { x: s, weights: a } = t, { size: r } = n, i = e.readSync(s.dataId), c = e.readSync(a.dataId), l = ei(i, c, a.dtype, a.shape, r);
12475
+ const { inputs: t, backend: e, attrs: n } = o, { x: s, weights: a } = t, { size: r } = n, i = e.readSync(s.dataId), c = e.readSync(a.dataId), l = vi(i, c, a.dtype, a.shape, r);
12474
12476
  return e.makeTensorInfo([r], a.dtype, l);
12475
12477
  }
12476
12478
  const ZI = {
@@ -12506,7 +12508,7 @@ const JI = `
12506
12508
  function ty(o) {
12507
12509
  const { inputs: t, backend: e } = o, { a: n, b: s } = t, a = L().getBool("WEBGL_PACK_BINARY_OPERATIONS"), r = L().getNumber("WEBGL_VERSION");
12508
12510
  if (e.shouldExecuteOnCPU([n, s]) || r === 1) {
12509
- const c = e.texData.get(n.dataId).values, l = e.texData.get(s.dataId).values, [u, p] = Ld(n.shape, s.shape, c, l, n.dtype), d = e.makeTensorInfo(p, n.dtype), h = e.texData.get(d.dataId);
12511
+ const c = e.texData.get(n.dataId).values, l = e.texData.get(s.dataId).values, [u, p] = yp(n.shape, s.shape, c, l, n.dtype), d = e.makeTensorInfo(p, n.dtype), h = e.texData.get(d.dataId);
12510
12512
  return h.values = u, d;
12511
12513
  }
12512
12514
  let i;
@@ -12558,7 +12560,7 @@ const oy = {
12558
12560
  * limitations under the License.
12559
12561
  * =============================================================================
12560
12562
  */
12561
- const ay = "return float(a != b);", oc = ke({ opSnippet: ay, cpuKernelImpl: Vd, dtype: "bool" }), ry = {
12563
+ const ay = "return float(a != b);", oc = ke({ opSnippet: ay, cpuKernelImpl: $p, dtype: "bool" }), ry = {
12562
12564
  kernelName: el,
12563
12565
  backendName: "webgl",
12564
12566
  kernelFunc: oc
@@ -12630,7 +12632,7 @@ function Zs(o) {
12630
12632
  if (a === "complex64") {
12631
12633
  if (s.dtype === "complex64")
12632
12634
  return Le({ inputs: { x: s }, backend: e });
12633
- const r = qr(s.shape), i = Zs({ inputs: { x: s }, backend: e, attrs: { dtype: "float32" } }), c = Nt({ inputs: { real: i, imag: r }, backend: e });
12635
+ const r = Hr(s.shape), i = Zs({ inputs: { x: s }, backend: e, attrs: { dtype: "float32" } }), c = Nt({ inputs: { real: i, imag: r }, backend: e });
12634
12636
  return r.dispose(), e.disposeIntermediateTensorInfo(i), c;
12635
12637
  }
12636
12638
  if (s.dtype === "complex64") {
@@ -12642,7 +12644,7 @@ function Zs(o) {
12642
12644
  return { dataId: r.dataId, shape: r.shape, dtype: a };
12643
12645
  }
12644
12646
  if (e.shouldExecuteOnCPU([s])) {
12645
- const r = e.texData.get(s.dataId).values, [i, c, l] = Wd(r, s.shape, s.dtype, a);
12647
+ const r = e.texData.get(s.dataId).values, [i, c, l] = kp(r, s.shape, s.dtype, a);
12646
12648
  return e.makeTensorInfo(i, c, l);
12647
12649
  }
12648
12650
  if (a === "int32")
@@ -12674,7 +12676,7 @@ const uy = {
12674
12676
  * limitations under the License.
12675
12677
  * =============================================================================
12676
12678
  */
12677
- const xo = "return ceil(x);", dy = ae({ opSnippet: xo, packedOpSnippet: xo, cpuKernelImpl: Md }), py = {
12679
+ const xo = "return ceil(x);", dy = ae({ opSnippet: xo, packedOpSnippet: xo, cpuKernelImpl: wp }), py = {
12678
12680
  kernelName: To,
12679
12681
  backendName: "webgl",
12680
12682
  kernelFunc: dy
@@ -13024,7 +13026,7 @@ function Et(o, t, e) {
13024
13026
  h.map((b) => b.shape),
13025
13027
  1
13026
13028
  /* axis */
13027
- ), x = h[0].shape[0] === 1, g = Bd(f, m, n, x), C = je(o.map((b) => b.shape), t), I = e.makeTensorInfo(C, n, g);
13029
+ ), x = h[0].shape[0] === 1, g = Np(f, m, n, x), C = je(o.map((b) => b.shape), t), I = e.makeTensorInfo(C, n, g);
13028
13030
  return h.forEach((b) => e.disposeIntermediateTensorInfo(b)), I;
13029
13031
  }
13030
13032
  const a = o.filter((h) => z(h.shape) > 0), r = L().getBool("WEBGL_PACK_ARRAY_OPERATIONS") && a[0].shape.length > 1;
@@ -13079,7 +13081,7 @@ function ky(o, t, e) {
13079
13081
  */
13080
13082
  function ac(o) {
13081
13083
  const { inputs: t, backend: e, attrs: n } = o, { axis: s } = n, a = me(s, t[0].shape)[0], r = t.map((l) => l.shape);
13082
- oi(r, a);
13084
+ Qr(r, a);
13083
13085
  const i = je(t.map((l) => l.shape), a);
13084
13086
  if (z(i) === 0)
13085
13087
  return e.makeTensorInfo(i, t[0].dtype, []);
@@ -13726,7 +13728,7 @@ function cc({ x: o, filter: t, convInfo: e, backend: n, bias: s = null, preluAct
13726
13728
  shape: [1, b, e.inChannels],
13727
13729
  dtype: o.dtype
13728
13730
  }, $ = l.shape;
13729
- l.shape = l.shape.slice(), l.shape[l.shape.length - 2]++, Y(vi(l.shape, y.shape), () => `packed reshape ${l.shape} to ${y.shape} isn't free`);
13731
+ l.shape = l.shape.slice(), l.shape[l.shape.length - 2]++, Y(ki(l.shape, y.shape), () => `packed reshape ${l.shape} to ${y.shape} isn't free`);
13730
13732
  const k = H({
13731
13733
  inputs: { x: t },
13732
13734
  backend: n,
@@ -14655,10 +14657,10 @@ const n0 = {
14655
14657
  function o0(o) {
14656
14658
  const { inputs: t, backend: e, attrs: n } = o, { x: s, weights: a } = t, { size: r, binaryOutput: i } = n;
14657
14659
  if (s.shape.length === 1) {
14658
- const c = e.readSync(s.dataId), l = e.readSync(a.dataId), u = ei(c, l, a.dtype, a.shape, r);
14660
+ const c = e.readSync(s.dataId), l = e.readSync(a.dataId), u = vi(c, l, a.dtype, a.shape, r);
14659
14661
  return e.makeTensorInfo([r], a.dtype, u);
14660
14662
  } else if (s.shape.length === 2) {
14661
- const c = e.bufferSync(s), l = e.bufferSync(a), u = Gd(c, l, r, i);
14663
+ const c = e.bufferSync(s), l = e.bufferSync(a), u = vp(c, l, r, i);
14662
14664
  return e.makeTensorInfo(u.shape, a.dtype, u.values);
14663
14665
  }
14664
14666
  throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${s.shape.length}.`);
@@ -15453,16 +15455,16 @@ const $0 = {
15453
15455
  * =============================================================================
15454
15456
  */
15455
15457
  function k0(o) {
15456
- const { inputs: t, backend: e, attrs: n } = o, { equation: s } = n, a = t, { allDims: r, summedDims: i, idDims: c } = ai(s, a.length);
15457
- ri(r.length, c, a);
15458
- const { path: l, steps: u } = ii(i, c), p = u.length;
15458
+ const { inputs: t, backend: e, attrs: n } = o, { equation: s } = n, a = t, { allDims: r, summedDims: i, idDims: c } = Zr(s, a.length);
15459
+ Jr(r.length, c, a);
15460
+ const { path: l, steps: u } = ei(i, c), p = u.length;
15459
15461
  let d = null, h = r.length;
15460
15462
  const f = [];
15461
15463
  for (let m = 0; m < p; ++m) {
15462
15464
  for (const x of u[m]) {
15463
- const { permutationIndices: g, expandDims: C } = ci(h, c[x]);
15465
+ const { permutationIndices: g, expandDims: C } = ti(h, c[x]);
15464
15466
  let I;
15465
- li(g) ? I = a[x] : (I = ve({ inputs: { x: a[x] }, backend: e, attrs: { perm: g } }), f.push(I));
15467
+ si(g) ? I = a[x] : (I = ve({ inputs: { x: a[x] }, backend: e, attrs: { perm: g } }), f.push(I));
15466
15468
  const b = I.shape.slice();
15467
15469
  for (let y = 0; y < C.length; ++y)
15468
15470
  b.splice(C[y], 0, 1);
@@ -15565,7 +15567,7 @@ const P0 = `
15565
15567
  opSnippet: O0,
15566
15568
  packedOpSnippet: P0,
15567
15569
  dtype: "bool",
15568
- cpuKernelImpl: zd
15570
+ cpuKernelImpl: Sp
15569
15571
  }), _0 = {
15570
15572
  kernelName: ol,
15571
15573
  backendName: "webgl",
@@ -15591,12 +15593,12 @@ const L0 = `
15591
15593
  // Error function is calculated approximately with elementary function.
15592
15594
  // See "Handbook of Mathematical Functions with Formulas,
15593
15595
  // Graphs, and Mathematical Tables", Abramowitz and Stegun.
15594
- float p = ${mi};
15595
- float a1 = ${fi};
15596
- float a2 = ${hi};
15597
- float a3 = ${pi};
15598
- float a4 = ${di};
15599
- float a5 = ${ui};
15596
+ float p = ${ci};
15597
+ float a1 = ${ii};
15598
+ float a2 = ${ri};
15599
+ float a3 = ${ai};
15600
+ float a4 = ${oi};
15601
+ float a5 = ${ni};
15600
15602
 
15601
15603
  float sign = sign(x);
15602
15604
  x = abs(x);
@@ -15637,7 +15639,7 @@ const M0 = vt + `
15637
15639
  `, hc = ae({
15638
15640
  opSnippet: M0,
15639
15641
  packedOpSnippet: B0,
15640
- cpuKernelImpl: Ud,
15642
+ cpuKernelImpl: Rp,
15641
15643
  dtype: "float32"
15642
15644
  }), G0 = {
15643
15645
  kernelName: al,
@@ -15686,7 +15688,7 @@ const z0 = {
15686
15688
  * limitations under the License.
15687
15689
  * =============================================================================
15688
15690
  */
15689
- const $o = "return exp(x) - 1.0;", U0 = ae({ opSnippet: $o, packedOpSnippet: $o, cpuKernelImpl: Hd }), H0 = {
15691
+ const $o = "return exp(x) - 1.0;", U0 = ae({ opSnippet: $o, packedOpSnippet: $o, cpuKernelImpl: Tp }), H0 = {
15690
15692
  kernelName: Eo,
15691
15693
  backendName: "webgl",
15692
15694
  kernelFunc: U0
@@ -15949,7 +15951,7 @@ const Q0 = {
15949
15951
  * limitations under the License.
15950
15952
  * =============================================================================
15951
15953
  */
15952
- const wo = "return floor(x);", Z0 = ae({ opSnippet: wo, packedOpSnippet: wo, cpuKernelImpl: Xd }), J0 = {
15954
+ const wo = "return floor(x);", Z0 = ae({ opSnippet: wo, packedOpSnippet: wo, cpuKernelImpl: Dp }), J0 = {
15953
15955
  kernelName: rl,
15954
15956
  backendName: "webgl",
15955
15957
  kernelFunc: Z0
@@ -16316,13 +16318,13 @@ class p$ {
16316
16318
  * =============================================================================
16317
16319
  */
16318
16320
  function h$(o) {
16319
- const { inputs: t, backend: e } = o, { params: n, indices: s } = t, a = s.shape, r = a[a.length - 1], i = z(n.shape), [c, l, u, p] = xi(n, s), d = H({ inputs: { x: s }, backend: e, attrs: { shape: [l, r] } }), h = H({
16321
+ const { inputs: t, backend: e } = o, { params: n, indices: s } = t, a = s.shape, r = a[a.length - 1], i = z(n.shape), [c, l, u, p] = ui(n, s), d = H({ inputs: { x: s }, backend: e, attrs: { shape: [l, r] } }), h = H({
16320
16322
  inputs: { x: n },
16321
16323
  backend: e,
16322
16324
  attrs: { shape: [z(n.shape) / u, u] }
16323
16325
  });
16324
16326
  if (e.shouldExecuteOnCPU([n, s]) || n.dtype === "string") {
16325
- const g = e.readSync(s.dataId), C = e.bufferSync(n), I = Kd(g, C, n.dtype, l, r, u, p, n.shape, i);
16327
+ const g = e.readSync(s.dataId), C = e.bufferSync(n), I = Ep(g, C, n.dtype, l, r, u, p, n.shape, i);
16326
16328
  return e.makeTensorInfo(c, n.dtype, I.values);
16327
16329
  }
16328
16330
  const f = new p$(r, p, [l, u], n.shape), m = e.runWebGLProgram(f, [h, d], h.dtype), x = H({ inputs: { x: m }, backend: e, attrs: { shape: c } });
@@ -16394,7 +16396,7 @@ function mc(o) {
16394
16396
  Y(y <= I - 1 && y >= 0, () => `GatherV2: the index value ${y} is not in [0, ${I - 1}]`);
16395
16397
  }
16396
16398
  }
16397
- const l = Ci(s, a, c, i), u = z(a.shape), p = [], d = H({
16399
+ const l = di(s, a, c, i), u = z(a.shape), p = [], d = H({
16398
16400
  inputs: { x: s },
16399
16401
  backend: e,
16400
16402
  attrs: {
@@ -16418,7 +16420,7 @@ function mc(o) {
16418
16420
  l.sliceSize
16419
16421
  ];
16420
16422
  if (e.shouldExecuteOnCPU([s, a]) || s.dtype === "string") {
16421
- const C = e.bufferSync(h), I = e.bufferSync(d), b = qd(I, C, f);
16423
+ const C = e.bufferSync(h), I = e.bufferSync(d), b = Fp(I, C, f);
16422
16424
  return p.forEach((y) => e.disposeIntermediateTensorInfo(y)), e.makeTensorInfo(l.outputShape, b.dtype, b.values);
16423
16425
  }
16424
16426
  const m = new m$(d.shape, f), x = e.runWebGLProgram(m, [d, h], d.dtype);
@@ -16452,7 +16454,7 @@ const C$ = "return float(a > b);", b$ = `
16452
16454
  `, I$ = ke({
16453
16455
  opSnippet: C$,
16454
16456
  packedOpSnippet: b$,
16455
- cpuKernelImpl: jd,
16457
+ cpuKernelImpl: Pp,
16456
16458
  dtype: "bool"
16457
16459
  }), y$ = {
16458
16460
  kernelName: ll,
@@ -16481,7 +16483,7 @@ const $$ = "return float(a >= b);", k$ = `
16481
16483
  opSnippet: $$,
16482
16484
  packedOpSnippet: k$,
16483
16485
  dtype: "bool",
16484
- cpuKernelImpl: Yd
16486
+ cpuKernelImpl: Op
16485
16487
  }), N$ = {
16486
16488
  kernelName: ul,
16487
16489
  backendName: "webgl",
@@ -16596,7 +16598,7 @@ const L$ = "return float(a < b);", V$ = `
16596
16598
  `, W$ = ke({
16597
16599
  opSnippet: L$,
16598
16600
  packedOpSnippet: V$,
16599
- cpuKernelImpl: Qd,
16601
+ cpuKernelImpl: Ap,
16600
16602
  dtype: "bool"
16601
16603
  }), M$ = {
16602
16604
  kernelName: dl,
@@ -16624,7 +16626,7 @@ const B$ = "return float(a <= b);", G$ = `
16624
16626
  `, z$ = ke({
16625
16627
  opSnippet: B$,
16626
16628
  packedOpSnippet: G$,
16627
- cpuKernelImpl: Zd,
16629
+ cpuKernelImpl: _p,
16628
16630
  dtype: "bool"
16629
16631
  }), U$ = {
16630
16632
  kernelName: pl,
@@ -16648,7 +16650,7 @@ const B$ = "return float(a <= b);", G$ = `
16648
16650
  * =============================================================================
16649
16651
  */
16650
16652
  function H$(o) {
16651
- const { backend: t, attrs: e } = o, { start: n, stop: s, num: a } = e, r = Jd(n, s, a);
16653
+ const { backend: t, attrs: e } = o, { start: n, stop: s, num: a } = e, r = Lp(n, s, a);
16652
16654
  return t.makeTensorInfo([r.length], "float32", r);
16653
16655
  }
16654
16656
  const X$ = {
@@ -16682,7 +16684,7 @@ const K$ = vt + `
16682
16684
  result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
16683
16685
  result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
16684
16686
  return result;
16685
- `, j$ = ae({ opSnippet: K$, packedOpSnippet: q$, cpuKernelImpl: ep }), Y$ = {
16687
+ `, j$ = ae({ opSnippet: K$, packedOpSnippet: q$, cpuKernelImpl: Vp }), Y$ = {
16686
16688
  kernelName: hl,
16687
16689
  backendName: "webgl",
16688
16690
  kernelFunc: j$
@@ -17071,7 +17073,7 @@ const Ck = Wn + `
17071
17073
  `, Ik = ke({
17072
17074
  opSnippet: Ck,
17073
17075
  packedOpSnippet: bk,
17074
- cpuKernelImpl: tp
17076
+ cpuKernelImpl: Wp
17075
17077
  }), yk = {
17076
17078
  kernelName: fl,
17077
17079
  backendName: "webgl",
@@ -17431,7 +17433,7 @@ const Ak = {
17431
17433
  const b = r.texData.get(f.dataId).values, y = new Array(i);
17432
17434
  for (let w = 0; w < y.length; w++)
17433
17435
  y[w] = n.shape[u[w]];
17434
- const $ = Jr(b, n.shape, n.dtype, u, y);
17436
+ const $ = Ni(b, n.shape, n.dtype, u, y);
17435
17437
  f = r.makeTensorInfo(y, n.dtype);
17436
17438
  const k = r.texData.get(f.dataId);
17437
17439
  k.values = $;
@@ -17513,7 +17515,7 @@ const Vk = Wn + `
17513
17515
  `, Mk = ke({
17514
17516
  opSnippet: Vk,
17515
17517
  packedOpSnippet: Wk,
17516
- cpuKernelImpl: sp
17518
+ cpuKernelImpl: Mp
17517
17519
  }), Bk = {
17518
17520
  kernelName: ml,
17519
17521
  backendName: "webgl",
@@ -17783,7 +17785,7 @@ const No = "return a - b;", gc = ke({
17783
17785
  opSnippet: No,
17784
17786
  packedOpSnippet: No,
17785
17787
  supportsComplex: !0,
17786
- cpuKernelImpl: np
17788
+ cpuKernelImpl: Bp
17787
17789
  }), Qk = {
17788
17790
  kernelName: gl,
17789
17791
  backendName: "webgl",
@@ -17875,7 +17877,7 @@ const tw = Ue + `
17875
17877
  function nw(o) {
17876
17878
  const { inputs: t, backend: e } = o, { x: n } = t;
17877
17879
  if (e.shouldExecuteOnCPU([n])) {
17878
- const a = e.texData.get(n.dataId), [r, i] = op(a.values, n.shape, n.dtype);
17880
+ const a = e.texData.get(n.dataId), [r, i] = Gp(a.values, n.shape, n.dtype);
17879
17881
  return e.makeTensorInfo(i, n.dtype, r);
17880
17882
  }
17881
17883
  let s;
@@ -17902,7 +17904,7 @@ const ow = {
17902
17904
  * limitations under the License.
17903
17905
  * =============================================================================
17904
17906
  */
17905
- const aw = Wr;
17907
+ const aw = mi;
17906
17908
  function rw(o) {
17907
17909
  Vt("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");
17908
17910
  const { inputs: t, backend: e, attrs: n } = o, { boxes: s, scores: a } = t, { maxOutputSize: r, iouThreshold: i, scoreThreshold: c } = n, l = e.readSync(s.dataId), u = e.readSync(a.dataId), { selectedIndices: p } = aw(l, u, r, i, c);
@@ -17929,7 +17931,7 @@ const iw = {
17929
17931
  * limitations under the License.
17930
17932
  * =============================================================================
17931
17933
  */
17932
- const cw = Mr;
17934
+ const cw = gi;
17933
17935
  function lw(o) {
17934
17936
  Vt("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");
17935
17937
  const { inputs: t, backend: e, attrs: n } = o, { boxes: s, scores: a } = t, { maxOutputSize: r, iouThreshold: i, scoreThreshold: c, padToMaxOutputSize: l } = n, u = e.readSync(s.dataId), p = e.readSync(a.dataId), { selectedIndices: d, validOutputs: h } = cw(u, p, r, i, c, l);
@@ -17959,7 +17961,7 @@ const uw = {
17959
17961
  * limitations under the License.
17960
17962
  * =============================================================================
17961
17963
  */
17962
- const dw = Br;
17964
+ const dw = xi;
17963
17965
  function pw(o) {
17964
17966
  Vt("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");
17965
17967
  const { inputs: t, backend: e, attrs: n } = o, { boxes: s, scores: a } = t, { maxOutputSize: r, iouThreshold: i, scoreThreshold: c, softNmsSigma: l } = n, u = e.readSync(s.dataId), p = e.readSync(a.dataId), d = r, h = i, f = c, m = l, { selectedIndices: x, selectedScores: g } = dw(u, p, d, h, f, m);
@@ -18349,7 +18351,7 @@ function Rw(o) {
18349
18351
  p != null && (d = ve({ inputs: { x: s }, backend: e, attrs: { perm: p } }), u = $e(u.length, i), c.push(d)), Re("prod", u, i);
18350
18352
  let h;
18351
18353
  if (e.shouldExecuteOnCPU([d])) {
18352
- const f = e.texData.get(d.dataId).values, { outVals: m, outShape: x, outDtype: g } = ap(d.shape, d.dtype, f, u);
18354
+ const f = e.texData.get(d.dataId).values, { outVals: m, outShape: x, outDtype: g } = zp(d.shape, d.dtype, f, u);
18353
18355
  h = e.makeTensorInfo(x, g, m);
18354
18356
  } else {
18355
18357
  const [f, m] = Ee(d.shape, u), x = z(m), g = H({ inputs: { x: d }, backend: e, attrs: { shape: [-1, x] } }), C = Tr(s.dtype), I = zt(g, C, "prod", e);
@@ -18384,7 +18386,7 @@ const Tw = {
18384
18386
  * =============================================================================
18385
18387
  */
18386
18388
  function Dw(o) {
18387
- const { inputs: t, backend: e, attrs: n } = o, { paramsNestedSplits: s, paramsDenseValues: a, indices: r } = t, { outputRaggedRank: i } = n, c = s.map((g) => e.readSync(g.dataId)), l = s.map((g) => g.shape), u = e.readSync(a.dataId), p = e.readSync(r.dataId), [d, h, f] = rp(c, l, u, a.shape, a.dtype, p, r.shape, i), m = d.map((g) => e.makeTensorInfo([g.length], "int32", g)), x = e.makeTensorInfo(f, a.dtype, h);
18389
+ const { inputs: t, backend: e, attrs: n } = o, { paramsNestedSplits: s, paramsDenseValues: a, indices: r } = t, { outputRaggedRank: i } = n, c = s.map((g) => e.readSync(g.dataId)), l = s.map((g) => g.shape), u = e.readSync(a.dataId), p = e.readSync(r.dataId), [d, h, f] = Up(c, l, u, a.shape, a.dtype, p, r.shape, i), m = d.map((g) => e.makeTensorInfo([g.length], "int32", g)), x = e.makeTensorInfo(f, a.dtype, h);
18388
18390
  return m.concat([x]);
18389
18391
  }
18390
18392
  const Ew = {
@@ -18409,7 +18411,7 @@ const Ew = {
18409
18411
  * =============================================================================
18410
18412
  */
18411
18413
  function Fw(o) {
18412
- const { inputs: t, backend: e } = o, { starts: n, limits: s, deltas: a } = t, r = e.readSync(n.dataId), i = e.readSync(s.dataId), c = e.readSync(a.dataId), [l, u] = ip(r, n.shape, n.dtype, i, s.shape, c, a.shape), p = e.makeTensorInfo([l.length], "int32", l), d = e.makeTensorInfo([u.length], n.dtype, u);
18414
+ const { inputs: t, backend: e } = o, { starts: n, limits: s, deltas: a } = t, r = e.readSync(n.dataId), i = e.readSync(s.dataId), c = e.readSync(a.dataId), [l, u] = Hp(r, n.shape, n.dtype, i, s.shape, c, a.shape), p = e.makeTensorInfo([l.length], "int32", l), d = e.makeTensorInfo([u.length], n.dtype, u);
18413
18415
  return [p, d];
18414
18416
  }
18415
18417
  const Pw = {
@@ -18434,7 +18436,7 @@ const Pw = {
18434
18436
  * =============================================================================
18435
18437
  */
18436
18438
  function Ow(o) {
18437
- const { inputs: t, backend: e, attrs: n } = o, { shape: s, values: a, defaultValue: r, rowPartitionTensors: i } = t, { rowPartitionTypes: c } = n, l = e.readSync(s.dataId), u = e.readSync(a.dataId), p = e.readSync(r.dataId), d = i.map((x) => e.readSync(x.dataId)), h = i.map((x) => x.shape), [f, m] = cp(l, s.shape, u, a.shape, a.dtype, p, r.shape, d, h, c);
18439
+ const { inputs: t, backend: e, attrs: n } = o, { shape: s, values: a, defaultValue: r, rowPartitionTensors: i } = t, { rowPartitionTypes: c } = n, l = e.readSync(s.dataId), u = e.readSync(a.dataId), p = e.readSync(r.dataId), d = i.map((x) => e.readSync(x.dataId)), h = i.map((x) => x.shape), [f, m] = Xp(l, s.shape, u, a.shape, a.dtype, p, r.shape, d, h, c);
18438
18440
  return e.makeTensorInfo(f, a.dtype, m);
18439
18441
  }
18440
18442
  const Aw = {
@@ -18459,7 +18461,7 @@ const Aw = {
18459
18461
  * =============================================================================
18460
18462
  */
18461
18463
  const Ic = (o) => {
18462
- const { backend: t, attrs: e } = o, { start: n, stop: s, step: a, dtype: r } = e, i = lp(n, s, a, r);
18464
+ const { backend: t, attrs: e } = o, { start: n, stop: s, step: a, dtype: r } = e, i = Kp(n, s, a, r);
18463
18465
  return t.makeTensorInfo([i.length], r, i);
18464
18466
  }, _w = {
18465
18467
  kernelName: er,
@@ -19369,7 +19371,7 @@ const hN = {
19369
19371
  kernelName: rr,
19370
19372
  backendName: "webgl",
19371
19373
  kernelFunc: ({ inputs: o, attrs: t, backend: e }) => {
19372
- const { image: n } = o, { radians: s, fillValue: a, center: r } = t, i = e, c = new pN(n.shape, a), [l, u] = bi(r, n.shape[1], n.shape[2]), p = [[l, u, Math.sin(s), Math.cos(s)]];
19374
+ const { image: n } = o, { radians: s, fillValue: a, center: r } = t, i = e, c = new pN(n.shape, a), [l, u] = pi(r, n.shape[1], n.shape[2]), p = [[l, u, Math.sin(s), Math.cos(s)]];
19373
19375
  return i.runWebGLProgram(c, [n], n.dtype, p);
19374
19376
  }
19375
19377
  };
@@ -19425,7 +19427,7 @@ const fN = `
19425
19427
  * limitations under the License.
19426
19428
  * =============================================================================
19427
19429
  */
19428
- const xN = "return inversesqrt(x);", CN = ae({ opSnippet: xN, cpuKernelImpl: up }), bN = {
19430
+ const xN = "return inversesqrt(x);", CN = ae({ opSnippet: xN, cpuKernelImpl: qp }), bN = {
19429
19431
  kernelName: Cl,
19430
19432
  backendName: "webgl",
19431
19433
  kernelFunc: CN
@@ -19743,8 +19745,8 @@ const RN = {
19743
19745
  const TN = `
19744
19746
  // Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
19745
19747
  // see: https://arxiv.org/abs/1706.02515
19746
- float scaleAlpha = ${Ur};
19747
- float scale = ${zr};
19748
+ float scaleAlpha = ${Gr};
19749
+ float scale = ${Br};
19748
19750
  return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
19749
19751
  `, DN = ae({ opSnippet: TN }), EN = {
19750
19752
  kernelName: Sn,
@@ -19782,7 +19784,7 @@ const FN = vt + `
19782
19784
  `, ON = ae({
19783
19785
  opSnippet: FN,
19784
19786
  packedOpSnippet: PN,
19785
- cpuKernelImpl: dp
19787
+ cpuKernelImpl: jp
19786
19788
  }), AN = {
19787
19789
  kernelName: bl,
19788
19790
  backendName: "webgl",
@@ -19973,7 +19975,7 @@ function QN(o) {
19973
19975
  if (r.shape.length !== 0)
19974
19976
  throw new Error(`Default value must be a scalar, saw:
19975
19977
  ${r.shape}`);
19976
- const i = e.readSync(n.dataId), c = e.readSync(s.dataId), l = e.readSync(a.dataId), u = e.readSync(r.dataId)[0], [p, d, h, f, m] = pp(i, n.shape, n.dtype, c, s.dtype, l, u);
19978
+ const i = e.readSync(n.dataId), c = e.readSync(s.dataId), l = e.readSync(a.dataId), u = e.readSync(r.dataId)[0], [p, d, h, f, m] = Yp(i, n.shape, n.dtype, c, s.dtype, l, u);
19977
19979
  return [
19978
19980
  e.makeTensorInfo(d, n.dtype, p),
19979
19981
  e.makeTensorInfo([d[0]], s.dtype, h),
@@ -20010,7 +20012,7 @@ function JN(o) {
20010
20012
  throw new Error(`Input shape should be a vector but received shape ${s.shape}`);
20011
20013
  if (a.shape.length !== 1)
20012
20014
  throw new Error(`Target shape should be a vector but received shape ${a.shape}`);
20013
- const r = Array.from(e.readSync(s.dataId)), i = e.readSync(n.dataId), c = Array.from(e.readSync(a.dataId)), [l, u, p] = hp(i, n.shape, n.dtype, r, c);
20015
+ const r = Array.from(e.readSync(s.dataId)), i = e.readSync(n.dataId), c = Array.from(e.readSync(a.dataId)), [l, u, p] = Qp(i, n.shape, n.dtype, r, c);
20014
20016
  return [
20015
20017
  e.makeTensorInfo(u, n.dtype, l),
20016
20018
  e.makeTensorInfo([p.length], a.dtype, new Int32Array(p))
@@ -20047,7 +20049,7 @@ function tv(o) {
20047
20049
  if (a.shape.length !== 1)
20048
20050
  throw new Error(`Segment ids should be a vector but received shape
20049
20051
  ${a.shape}`);
20050
- const r = e.readSync(n.dataId), i = e.readSync(s.dataId), c = e.readSync(a.dataId), [l, u] = ti(r, n.shape, n.dtype, i, c, !0);
20052
+ const r = e.readSync(n.dataId), i = e.readSync(s.dataId), c = e.readSync(a.dataId), [l, u] = Si(r, n.shape, n.dtype, i, c, !0);
20051
20053
  return e.makeTensorInfo(u, n.dtype, l);
20052
20054
  }
20053
20055
  const sv = {
@@ -20081,7 +20083,7 @@ function nv(o) {
20081
20083
  if (a.shape.length !== 1)
20082
20084
  throw new Error(`Segment ids should be a vector but received shape
20083
20085
  ${a.shape}`);
20084
- const r = e.readSync(n.dataId), i = e.readSync(s.dataId), c = e.readSync(a.dataId), [l, u] = ti(r, n.shape, n.dtype, i, c);
20086
+ const r = e.readSync(n.dataId), i = e.readSync(s.dataId), c = e.readSync(a.dataId), [l, u] = Si(r, n.shape, n.dtype, i, c);
20085
20087
  return e.makeTensorInfo(u, n.dtype, l);
20086
20088
  }
20087
20089
  const ov = {
@@ -20108,7 +20110,7 @@ const ov = {
20108
20110
  function av(o) {
20109
20111
  const { inputs: t, backend: e, attrs: n } = o, { sparseIndices: s, sparseValues: a, defaultValue: r } = t, { outputShape: i } = n, { sliceRank: c, numUpdates: l, sliceSize: u, strides: p, outputSize: d } = wt(a, s, i), h = !1;
20110
20112
  if (a.dtype === "string") {
20111
- const g = e.bufferSync(s), C = e.bufferSync(a), I = Wt(e.readSync(r.dataId)[0]), b = fp(g, C, i, d, u, l, c, p, I, h);
20113
+ const g = e.bufferSync(s), C = e.bufferSync(a), I = Wt(e.readSync(r.dataId)[0]), b = Zp(g, C, i, d, u, l, c, p, I, h);
20112
20114
  return e.makeTensorInfo(i, b.dtype, b.values);
20113
20115
  }
20114
20116
  const f = new Xn(l, c, s.shape.length, a.shape.length, p, [d, 1], h), m = e.runWebGLProgram(f, [a, s, r], a.dtype), x = H({ inputs: { x: m }, backend: e, attrs: { shape: i } });
@@ -20136,7 +20138,7 @@ const rv = {
20136
20138
  * =============================================================================
20137
20139
  */
20138
20140
  function iv(o) {
20139
- const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { numOrSizeSplits: a, axis: r } = n, i = me(r, s.shape)[0], c = Ii(s, a, i), l = s.shape.length, u = new Array(l).fill(0), p = s.shape.slice();
20141
+ const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { numOrSizeSplits: a, axis: r } = n, i = me(r, s.shape)[0], c = hi(s, a, i), l = s.shape.length, u = new Array(l).fill(0), p = s.shape.slice();
20140
20142
  return c.map((d) => {
20141
20143
  const h = [...p];
20142
20144
  h[i] = d;
@@ -20165,7 +20167,7 @@ const cv = {
20165
20167
  * limitations under the License.
20166
20168
  * =============================================================================
20167
20169
  */
20168
- const vo = "return sqrt(x);", lv = ae({ opSnippet: vo, packedOpSnippet: vo, cpuKernelImpl: mp }), uv = {
20170
+ const vo = "return sqrt(x);", lv = ae({ opSnippet: vo, packedOpSnippet: vo, cpuKernelImpl: Jp }), uv = {
20169
20171
  kernelName: Il,
20170
20172
  backendName: "webgl",
20171
20173
  kernelFunc: lv
@@ -20232,7 +20234,7 @@ function gv(o) {
20232
20234
  const { inputs: t, backend: e, attrs: n } = o, { x: s } = t;
20233
20235
  if (s.dtype !== "string")
20234
20236
  throw new Error("Input must be of datatype string");
20235
- const a = e.readSync(s.dataId), r = oh(a), i = gp(r, "string", n);
20237
+ const a = e.readSync(s.dataId), r = Md(a), i = eh(r, "string", n);
20236
20238
  return e.makeTensorInfo(s.shape, "string", i);
20237
20239
  }
20238
20240
  const xv = {
@@ -20322,16 +20324,16 @@ class Iv {
20322
20324
  * =============================================================================
20323
20325
  */
20324
20326
  function yv(o) {
20325
- const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { begin: a, end: r, strides: i, beginMask: c, endMask: l, ellipsisMask: u, newAxisMask: p, shrinkAxisMask: d } = n, { finalShapeSparse: h, finalShape: f, isIdentity: m, sliceDim0: x, isSimpleSlice: g, begin: C, end: I, strides: b } = Hr(s.shape, a, r, i, c, l, u, p, d);
20327
+ const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { begin: a, end: r, strides: i, beginMask: c, endMask: l, ellipsisMask: u, newAxisMask: p, shrinkAxisMask: d } = n, { finalShapeSparse: h, finalShape: f, isIdentity: m, sliceDim0: x, isSimpleSlice: g, begin: C, end: I, strides: b } = zr(s.shape, a, r, i, c, l, u, p, d);
20326
20328
  let y;
20327
20329
  if (m)
20328
20330
  y = H({ inputs: { x: s }, backend: e, attrs: { shape: f } });
20329
20331
  else if (x || g) {
20330
20332
  Y(s.shape.length >= 1, () => `Input must have rank at least 1, got: ${s.shape.length}`);
20331
- const k = Xr(C, I, b), w = St({ inputs: { x: s }, backend: e, attrs: { begin: C, size: k } });
20333
+ const k = Ur(C, I, b), w = St({ inputs: { x: s }, backend: e, attrs: { begin: C, size: k } });
20332
20334
  y = H({ inputs: { x: w }, backend: e, attrs: { shape: f } }), e.disposeIntermediateTensorInfo(w);
20333
20335
  } else if (e.shouldExecuteOnCPU([s])) {
20334
- const w = e.readSync(s.dataId), v = xe(s.shape, s.dtype, w), N = xp(h, v, b, C);
20336
+ const w = e.readSync(s.dataId), v = xe(s.shape, s.dtype, w), N = th(h, v, b, C);
20335
20337
  y = e.makeTensorInfo(f, s.dtype, N.values);
20336
20338
  } else {
20337
20339
  const w = new Iv(C, b, h);
@@ -20362,7 +20364,7 @@ const $v = {
20362
20364
  * =============================================================================
20363
20365
  */
20364
20366
  function kv(o) {
20365
- const { inputs: t, backend: e, attrs: n } = o, { separator: s, nGramWidths: a, leftPad: r, rightPad: i, padWidth: c, preserveShortSequences: l } = n, { data: u, dataSplits: p } = t, d = e.readSync(u.dataId), h = e.readSync(p.dataId), [f, m] = Cp(d, h, s, a, r, i, c, l);
20367
+ const { inputs: t, backend: e, attrs: n } = o, { separator: s, nGramWidths: a, leftPad: r, rightPad: i, padWidth: c, preserveShortSequences: l } = n, { data: u, dataSplits: p } = t, d = e.readSync(u.dataId), h = e.readSync(p.dataId), [f, m] = sh(d, h, s, a, r, i, c, l);
20366
20368
  return [
20367
20369
  e.makeTensorInfo([f.length], "string", f),
20368
20370
  e.makeTensorInfo(p.shape, "int32", m)
@@ -20397,7 +20399,7 @@ function Nv(o) {
20397
20399
  throw new Error(`Input must be a vector, got shape: ${a.shape}`);
20398
20400
  if (r.shape.length !== 0)
20399
20401
  throw new Error(`Delimiter must be a scalar, got shape: ${r.shape}`);
20400
- const i = e.readSync(a.dataId), c = e.readSync(r.dataId)[0], [l, u, p] = bp(i, c, s), d = u.length;
20402
+ const i = e.readSync(a.dataId), c = e.readSync(r.dataId)[0], [l, u, p] = nh(i, c, s), d = u.length;
20401
20403
  return [
20402
20404
  e.makeTensorInfo([d, 2], "int32", l),
20403
20405
  e.makeTensorInfo([d], "string", u),
@@ -20431,7 +20433,7 @@ function Sv(o) {
20431
20433
  throw new Error("Input must be of datatype string");
20432
20434
  if (s <= 0)
20433
20435
  throw new Error("Number of buckets must be at least 1");
20434
- const r = e.readSync(a.dataId), i = Ip(r, s);
20436
+ const r = e.readSync(a.dataId), i = oh(r, s);
20435
20437
  return e.makeTensorInfo(a.shape, "int32", i);
20436
20438
  }
20437
20439
  const Rv = {
@@ -20574,7 +20576,7 @@ function Vv(o) {
20574
20576
  function yc(o) {
20575
20577
  const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { reps: a } = n;
20576
20578
  if (s.dtype === "string" || s.shape.length > 5) {
20577
- const c = e.readSync(s.dataId), l = s.dtype === "string" ? c.map((d) => Wt(d)) : c, u = xe(s.shape, s.dtype, l), p = yp(u, a);
20579
+ const c = e.readSync(s.dataId), l = s.dtype === "string" ? c.map((d) => Wt(d)) : c, u = xe(s.shape, s.dtype, l), p = ah(u, a);
20578
20580
  return e.makeTensorInfo(p.shape, p.dtype, p.values);
20579
20581
  }
20580
20582
  const r = new Lv(s.shape, a);
@@ -20714,7 +20716,7 @@ function Ro(o) {
20714
20716
  function Gv(o) {
20715
20717
  const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { k: a, sorted: r } = n, i = L().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"), c = L().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"), l = s.shape, u = l[l.length - 1];
20716
20718
  if (e.shouldExecuteOnCPU([s]) || u < i || a > c) {
20717
- const N = e.readSync(s.dataId), [P, O] = $p(N, l, s.dtype, a, r);
20719
+ const N = e.readSync(s.dataId), [P, O] = rh(N, l, s.dtype, a, r);
20718
20720
  return [
20719
20721
  e.makeTensorInfo(P.shape, P.dtype, P.values),
20720
20722
  e.makeTensorInfo(O.shape, O.dtype, O.values)
@@ -20966,7 +20968,7 @@ const Xv = {
20966
20968
  function Kv(o) {
20967
20969
  const { inputs: t, attrs: e, backend: n } = o, { axis: s } = e, { x: a } = t;
20968
20970
  Gt(a, "unique"), console.warn("WARNING: ", "UI might be locked temporarily as data is being downloaded");
20969
- const r = n.readSync(a.dataId), { outputValues: i, outputShape: c, indices: l } = kp(r, s, a.shape, a.dtype);
20971
+ const r = n.readSync(a.dataId), { outputValues: i, outputShape: c, indices: l } = ih(r, s, a.shape, a.dtype);
20970
20972
  return [
20971
20973
  n.makeTensorInfo(c, a.dtype, i),
20972
20974
  n.makeTensorInfo([l.length], "int32", l)
@@ -21172,10 +21174,10 @@ function Zv(o) {
21172
21174
  const u = ye([l], i);
21173
21175
  let p = s;
21174
21176
  u != null && (p = ve({ inputs: { x: s }, backend: e, attrs: { perm: u } }), c.push(p), l = $e(1, i)[0]);
21175
- const d = ah(p.shape, l, r), h = z([p.shape[l]]), f = H({ inputs: { x: p }, backend: e, attrs: { shape: [-1, h] } });
21177
+ const d = Bd(p.shape, l, r), h = z([p.shape[l]]), f = H({ inputs: { x: p }, backend: e, attrs: { shape: [-1, h] } });
21176
21178
  c.push(f);
21177
21179
  const m = Tr(s.dtype), x = (b, y, $, k, w) => {
21178
- const v = b.shape[0], N = b.shape[1], P = rh(N, w), O = { windowSize: P, inSize: N, batchSize: v, numSegments: w }, E = new Qv(O, y), F = e.compileAndRun(E, [b, $], k);
21180
+ const v = b.shape[0], N = b.shape[1], P = Gd(N, w), O = { windowSize: P, inSize: N, batchSize: v, numSegments: w }, E = new Qv(O, y), F = e.compileAndRun(E, [b, $], k);
21179
21181
  if (c.push(F), F.shape[1] === w)
21180
21182
  return F;
21181
21183
  const T = Ic({