@genai-fi/nanogpt 0.6.3 → 0.7.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (140) hide show
  1. package/dist/Generator.js +11 -11
  2. package/dist/NanoGPTModel.d.ts +2 -2
  3. package/dist/NanoGPTModel.js +104 -136
  4. package/dist/{RealDiv-BYViZwhN.js → RealDiv-C4hOvYOZ.js} +26 -25
  5. package/dist/{Reshape-t7Kcikjk.js → Reshape-BLijOA8h.js} +5 -5
  6. package/dist/TeachableLLM.js +5 -5
  7. package/dist/{TiedEmbedding-9WeDwvjO.js → TiedEmbedding-BLltddza.js} +4 -4
  8. package/dist/{axis_util-Bu4h7XWV.js → axis_util-DaAl5MER.js} +3 -3
  9. package/dist/backend.d.ts +1 -0
  10. package/dist/backend.js +7 -0
  11. package/dist/backend_util-DWiwsi2N.js +749 -0
  12. package/dist/{broadcast_to-DARN-DBD.js → broadcast_to-C4v-j9yA.js} +2 -2
  13. package/dist/{concat-5aPGqw3Z.js → concat-CsHeR4zV.js} +8 -8
  14. package/dist/{dataset-pgqp-YfL.js → dataset-JDyjG3QR.js} +3 -3
  15. package/dist/{dropout-Bciw46HT.js → dropout-hpDwECTe.js} +7 -7
  16. package/dist/{gather-DjyCjmOD.js → gather-D0_gPiBz.js} +4 -4
  17. package/dist/gelu-uyHP1x1f.js +26 -0
  18. package/dist/gpgpu_math-DJm3ZTAf.js +2371 -0
  19. package/dist/index-BPPzKVdR.js +12099 -0
  20. package/dist/{index-BAzbokzv.js → index-C0dhsYom.js} +405 -389
  21. package/dist/{kernel_funcs_utils-CUxJCg0g.js → kernel_funcs_utils-CwRTFqrc.js} +31 -30
  22. package/dist/layers/BaseLayer.js +2 -2
  23. package/dist/layers/CausalSelfAttention.js +6 -6
  24. package/dist/layers/MLP.js +5 -5
  25. package/dist/layers/RMSNorm.js +3 -3
  26. package/dist/layers/RoPECache.js +4 -4
  27. package/dist/layers/TiedEmbedding.js +5 -5
  28. package/dist/layers/TransformerBlock.js +1 -1
  29. package/dist/loader/loadTransformers.js +1 -1
  30. package/dist/loader/oldZipLoad.js +5 -5
  31. package/dist/{log_sum_exp-YEo2h3gb.js → log_sum_exp-D086OgZJ.js} +15 -15
  32. package/dist/main.d.ts +2 -0
  33. package/dist/main.js +9 -5
  34. package/dist/{mat_mul-7121rsJk.js → mat_mul-1nwdPkQ_.js} +4 -4
  35. package/dist/{max-DtlIuVeW.js → max-BQc2Aj-I.js} +4 -4
  36. package/dist/{mulmat_packed_gpu-D4nKF7Je.js → mulmat_packed_gpu-Gzf3I9UV.js} +1 -1
  37. package/dist/non_max_suppression_impl-CsEgBuMA.js +134 -0
  38. package/dist/{ones-BBlSRqn1.js → ones-D63HpSF_.js} +2 -2
  39. package/dist/ops/appendCache.js +3 -3
  40. package/dist/ops/attentionMask.js +1 -1
  41. package/dist/ops/cpu/appendCache.js +8 -8
  42. package/dist/ops/cpu/attentionMask.js +9 -9
  43. package/dist/ops/cpu/fusedSoftmax.js +17 -11
  44. package/dist/ops/cpu/gatherSub.js +7 -7
  45. package/dist/ops/cpu/gelu.js +13 -13
  46. package/dist/ops/cpu/matMulGelu.js +36 -24
  47. package/dist/ops/cpu/matMulMul.js +14 -8
  48. package/dist/ops/cpu/mulDropout.js +9 -3
  49. package/dist/ops/cpu/normRMS.js +5 -5
  50. package/dist/ops/cpu/qkv.js +3 -3
  51. package/dist/ops/cpu/rope.js +5 -5
  52. package/dist/ops/cpu/scatterSub.js +11 -11
  53. package/dist/ops/fusedSoftmax.js +1 -1
  54. package/dist/ops/gatherSub.js +1 -1
  55. package/dist/ops/gelu.js +2 -2
  56. package/dist/ops/grads/attentionMask.js +1 -1
  57. package/dist/ops/grads/fusedSoftmax.js +2 -2
  58. package/dist/ops/grads/gelu.js +3 -24
  59. package/dist/ops/grads/matMulGelu.js +5 -5
  60. package/dist/ops/grads/normRMS.js +6 -6
  61. package/dist/ops/grads/qkv.js +1 -1
  62. package/dist/ops/grads/rope.js +3 -3
  63. package/dist/ops/matMulGelu.js +1 -1
  64. package/dist/ops/matMulMul.js +1 -1
  65. package/dist/ops/mulDrop.js +1 -1
  66. package/dist/ops/normRMS.js +1 -1
  67. package/dist/ops/qkv.js +1 -1
  68. package/dist/ops/rope.js +4 -4
  69. package/dist/ops/scatterSub.js +1 -1
  70. package/dist/ops/webgl/appendCache.js +1 -1
  71. package/dist/ops/webgl/attentionMask.js +1 -1
  72. package/dist/ops/webgl/fusedSoftmax.js +4 -4
  73. package/dist/ops/webgl/gatherSub.js +1 -1
  74. package/dist/ops/webgl/gelu.js +2 -2
  75. package/dist/ops/webgl/log.js +5 -5
  76. package/dist/ops/webgl/matMulGelu.js +17 -17
  77. package/dist/ops/webgl/matMulMul.js +1 -1
  78. package/dist/ops/webgl/mulDropout.js +4 -4
  79. package/dist/ops/webgl/normRMS.js +2 -2
  80. package/dist/ops/webgl/qkv.js +1 -1
  81. package/dist/ops/webgl/rope.js +1 -1
  82. package/dist/ops/webgl/scatterSub.js +1 -1
  83. package/dist/ops/webgpu/appendCache.d.ts +1 -0
  84. package/dist/ops/webgpu/appendCache.js +56 -0
  85. package/dist/ops/webgpu/attentionMask.d.ts +1 -0
  86. package/dist/ops/webgpu/attentionMask.js +64 -0
  87. package/dist/ops/webgpu/gatherSub.d.ts +1 -0
  88. package/dist/ops/webgpu/gatherSub.js +37 -0
  89. package/dist/ops/webgpu/gelu.d.ts +14 -0
  90. package/dist/ops/webgpu/gelu.js +86 -0
  91. package/dist/ops/webgpu/index.d.ts +0 -0
  92. package/dist/ops/webgpu/index.js +8 -0
  93. package/dist/ops/webgpu/normRMS.d.ts +1 -0
  94. package/dist/ops/webgpu/normRMS.js +115 -0
  95. package/dist/ops/webgpu/qkv.d.ts +1 -0
  96. package/dist/ops/webgpu/qkv.js +56 -0
  97. package/dist/ops/webgpu/rope.d.ts +1 -0
  98. package/dist/ops/webgpu/rope.js +68 -0
  99. package/dist/ops/webgpu/scatterSub.d.ts +1 -0
  100. package/dist/ops/webgpu/scatterSub.js +37 -0
  101. package/dist/{ops-C0sQEcPw.js → ops-CIQLNshk.js} +452 -503
  102. package/dist/{random_width-DWzaOgrn.js → random_width-DkYP8W8N.js} +143 -144
  103. package/dist/{range-DYsrnfiy.js → range-CYzpQY53.js} +1 -1
  104. package/dist/{reciprocal-CJQeasVa.js → reciprocal-_A9yv27J.js} +1 -1
  105. package/dist/{register_all_kernels-BfFCQAqs.js → register_all_kernels-guvSxp7M.js} +202 -200
  106. package/dist/{reshape-krWGKraP.js → reshape-BMUzc1UY.js} +3 -3
  107. package/dist/{scatter_nd_util-93ln7Hut.js → scatter_nd_util-IRBqKz_b.js} +3 -3
  108. package/dist/{selu_util-sntGesxr.js → selu_util-Dt_iuXaq.js} +6 -6
  109. package/dist/shared-BNa2q6jD.js +69 -0
  110. package/dist/{shared-Ca6iDobD.js → shared-CDu9S76h.js} +541 -606
  111. package/dist/{sin-D_h-qCSx.js → sin-Cocju-BY.js} +6 -6
  112. package/dist/{softmax-fsdtf6JC.js → softmax-GPNK3o-U.js} +3 -3
  113. package/dist/{split-eiktj-6L.js → split-CHzJjxDv.js} +4 -4
  114. package/dist/{stack-dfEEz2OY.js → stack-Dpgg_1W1.js} +2 -2
  115. package/dist/{sum-BE_Irnim.js → sum-B8wEpKsg.js} +5 -5
  116. package/dist/{tensor-Xyi595sG.js → tensor-RvZVNmg0.js} +1 -1
  117. package/dist/{tensor2d-CPEkynbH.js → tensor2d-B_kyod7_.js} +1 -1
  118. package/dist/training/AdamExt.js +1 -1
  119. package/dist/training/DatasetBuilder.js +2 -2
  120. package/dist/training/Evaluator.js +1 -1
  121. package/dist/training/FullTrainer.js +20 -20
  122. package/dist/training/Trainer.d.ts +5 -6
  123. package/dist/training/Trainer.js +59 -60
  124. package/dist/training/sparseCrossEntropy.js +4 -4
  125. package/dist/utilities/dummy.js +19 -19
  126. package/dist/utilities/generate.js +15 -16
  127. package/dist/utilities/multinomialCPU.d.ts +2 -0
  128. package/dist/utilities/multinomialCPU.js +13 -0
  129. package/dist/utilities/performance.d.ts +2 -0
  130. package/dist/utilities/performance.js +16 -0
  131. package/dist/utilities/profile.d.ts +1 -0
  132. package/dist/utilities/profile.js +9 -6
  133. package/dist/utilities/safetensors.js +2 -2
  134. package/dist/utilities/weights.js +2 -2
  135. package/dist/{variable-wSS22xj5.js → variable-DXEUOwew.js} +1 -1
  136. package/dist/webgpu_util-g13LvDIv.js +625 -0
  137. package/dist/{zeros-YJDE7oRb.js → zeros-DCPCdFGq.js} +8 -8
  138. package/package.json +2 -1
  139. package/dist/gpgpu_math-CNslybmD.js +0 -3115
  140. package/dist/norm-CzltS9Fz.js +0 -86
@@ -1,25 +1,24 @@
1
- import { o as T, q as I, E as O, bB as Oa, bC as Ma, bD as Ci, i as b, bE as Ii, L, bF as Di, bG as $i, bH as Ti, bI as zi, f as Ei, bJ as Li, bK as Fi, bL as Oi, bM as Mi, bN as _a, bO as _i, bP as Ra, bQ as Ri, bR as Ba, bS as Bi, B as Ge, h as kt, bn as Wa, bT as Wi, bU as Gi, bV as Pi, l as Pe, b as V, a as w, bW as Ga, bX as Ui, bY as Vi, bZ as ji, p as ce, a5 as pt, bs as Pa, b_ as Ki, b$ as Hi, c0 as qi, c1 as Ji, c2 as Zi, bu as Yi, c3 as Xi, c4 as Qi, x as Ua, ah as Va, ao as ja, c5 as tr, c6 as Ka, a7 as z, c7 as Ps, c8 as Ha, c9 as qa, g as pn, ca as Us, cb as Ja, cc as Za, cd as Ya, A as Xa, ce as Qa, cf as tl, cg as el, bc as nl, ch as sl, a4 as he, s as et, aj as U, ci as il, bj as rl, au as ht, cj as ol, z as Q, ck as al, cl as ll, cm as ul, cn as cl, co as hl, cp as pl, cq as dl, cr as fl, C as ml, cs as gl, bg as bl, bm as yl, ct as wl, J as kl, cu as xl, a0 as Nl, cv as vl, cw as Al, cx as Sl, aq as Cl, cy as Il, a8 as Dl, aS as $l, bo as Tl, ag as zl, bp as El, G as Ll, aU as Fl, ak as Ol, cz as Ml, cA as _l, cB as Rl, al as Bl, a9 as Wl, cC as Gl, cD as Pl, cE as Ul, M as Vl, bq as jl, cF as Kl, cG as Hl, a2 as ql, a_ as Jl, cH as Zl, cI as Yl, br as Xl, aY as Ql, P as tu, cJ as eu, j as rs, an as nu, bt as su, ax as iu, K as ru, as as ou, ar as au, D as lu, b9 as uu, cK as cu, ba as hu, cL as pu, b0 as du, aQ as fu, ap as mu, cM as gu, a1 as bu, aO as yu, S as wu, F as ku, bw as xu, cN as Nu, bx as vu, at as Au, bz as Su, N as Cu, cO as Iu, I as Du, b2 as $u, b1 as Tu, cP as Oe, cQ as zu, c as Eu, af as Vs, cR as Lu, t as x, a3 as $e, cS as S, cT as He, cU as qe, ai as Vt, d as J, ac as Fu, cV as js, k as Jt, H as Ou, T as Te, cW as Mu, cX as _u, m as Ks, cY as Ru, cZ as Hs, c_ as Bu } from "./index-BAzbokzv.js";
2
- import { k as ke, c as Nt, o as ze, s as er, b as nr, d as Wu, m as sr, t as In, l as ir, v as os, a as Gu, S as Pu, p as Uu, w as as, x as rr, y as Je, z as Vu, A as ju } from "./selu_util-sntGesxr.js";
3
- import { s as Dt, n as wt, w as ne, a as Ze, g as Ye, b as ls, c as K, d as Ce, e as Yt, f as Ku, u as dn, h as ye, t as fn, i as Hu, l as qu, j as us, m as or, k as qt } from "./ops-C0sQEcPw.js";
4
- import { r as N } from "./reshape-krWGKraP.js";
5
- import { s as W } from "./sum-BE_Irnim.js";
6
- import { m as ct } from "./mat_mul-7121rsJk.js";
7
- import { s as Qt } from "./split-eiktj-6L.js";
8
- import { s as Ju, c as ar } from "./sin-D_h-qCSx.js";
9
- import { e as Hn, g as lr, h as cs, c as Zu } from "./axis_util-Bu4h7XWV.js";
10
- import { a as se, e as ie, l as Yu } from "./log_sum_exp-YEo2h3gb.js";
11
- import { s as Dn } from "./stack-dfEEz2OY.js";
12
- import { o as xe } from "./ones-BBlSRqn1.js";
13
- import { M as Xu, f as ur, r as Qu, d as tc, a as $n } from "./dropout-Bciw46HT.js";
14
- import { z as vt } from "./zeros-YJDE7oRb.js";
15
- import { c as pe } from "./concat-5aPGqw3Z.js";
16
- import { g as cr } from "./gather-DjyCjmOD.js";
17
- import { s as hr } from "./softmax-fsdtf6JC.js";
18
- import { m as Ee } from "./max-DtlIuVeW.js";
19
- import { t as ec } from "./tensor-Xyi595sG.js";
20
- import { r as nc } from "./range-DYsrnfiy.js";
21
- import { m as sc } from "./norm-CzltS9Fz.js";
22
- import { v as ic } from "./variable-wSS22xj5.js";
1
+ import { x as T, y as I, E as O, bE as Oa, bF as Ma, bG as Ci, l as b, bH as Ii, Q as L, bI as Di, bJ as $i, bK as Ti, bL as zi, h as Ei, bM as Li, bN as Fi, bO as Oi, bP as Mi, bQ as _a, bR as _i, bS as Ra, bT as Ri, bU as Ba, bV as Bi, F as Ge, k as kt, bq as Wa, bW as Wi, bX as Gi, bY as Pi, q as Pe, c as V, a as w, bZ as Ga, b_ as Ui, b$ as Vi, c0 as ji, p as ce, aU as pt, bv as Pa, c1 as Ki, c2 as Hi, c3 as qi, c4 as Ji, c5 as Zi, bx as Xi, c6 as Yi, c7 as Qi, C as Ua, ai as Va, ao as ja, c8 as tr, c9 as Ka, a6 as z, ca as Ps, cb as Ha, cc as qa, j as pn, cd as Us, ce as Ja, cf as Za, cg as Xa, A as Ya, ch as Qa, ci as tl, cj as el, bf as nl, ck as sl, aT as he, b as et, aj as U, cl as il, bm as rl, au as ht, cm as ol, z as Q, cn as al, co as ll, cp as ul, cq as cl, cr as hl, cs as pl, ct as dl, cu as fl, H as ml, cv as gl, bj as bl, bp as yl, cw as wl, M as kl, cx as xl, a3 as Nl, cy as vl, cz as Al, cA as Sl, aq as Cl, cB as Il, a7 as Dl, aV as $l, br as Tl, ah as zl, bs as El, G as Ll, aX as Fl, ak as Ol, cC as Ml, cD as _l, cE as Rl, al as Bl, a8 as Wl, cF as Gl, cG as Pl, cH as Ul, N as Vl, bt as jl, cI as Kl, cJ as Hl, aR as ql, b1 as Jl, cK as Zl, cL as Xl, bu as Yl, a$ as Ql, P as tu, cM as eu, n as rs, an as nu, bw as su, ax as iu, O as ru, as as ou, ar as au, I as lu, bc as uu, cN as cu, bd as hu, cO as pu, b3 as du, aP as fu, ap as mu, cP as gu, a4 as bu, aN as yu, S as wu, J as ku, bz as xu, cQ as Nu, bA as vu, at as Au, bC as Su, U as Cu, cR as Iu, L as Du, b5 as $u, b4 as Tu, cS as Oe, cT as zu, i as Eu, ag as Vs, cU as Lu, t as x, aS as $e, cV as S, cW as He, cX as qe, ab as Vt, d as J, ac as Fu, cY as js, o as Jt, K as Ou, T as Te, cZ as Mu, c_ as _u, m as Ks, c$ as Ru, d0 as Hs, d1 as Bu } from "./index-C0dhsYom.js";
2
+ import { k as ke, c as Nt, o as ze, s as er, b as nr, d as Wu, m as sr, t as In, l as ir, v as os, a as Gu, S as Pu, p as Uu, w as as, x as rr, y as Je, z as Vu, A as ju } from "./selu_util-Dt_iuXaq.js";
3
+ import { s as Dt, n as wt, w as ne, a as Ze, g as Xe, b as ls, t as K, c as Ce, d as Xt, e as Ku, u as dn, f as ye, h as fn, i as Hu, l as qu, j as us, m as or, k as qt, o as Ju } from "./ops-CIQLNshk.js";
4
+ import { r as N } from "./reshape-BMUzc1UY.js";
5
+ import { s as W } from "./sum-B8wEpKsg.js";
6
+ import { m as ct } from "./mat_mul-1nwdPkQ_.js";
7
+ import { s as Qt } from "./split-CHzJjxDv.js";
8
+ import { s as Zu, c as ar } from "./sin-Cocju-BY.js";
9
+ import { e as Hn, g as lr, h as cs, c as Xu } from "./axis_util-DaAl5MER.js";
10
+ import { a as se, e as ie, l as Yu } from "./log_sum_exp-D086OgZJ.js";
11
+ import { s as Dn } from "./stack-Dpgg_1W1.js";
12
+ import { o as xe } from "./ones-D63HpSF_.js";
13
+ import { M as Qu, f as ur, r as tc, d as ec, a as $n } from "./dropout-hpDwECTe.js";
14
+ import { z as vt } from "./zeros-DCPCdFGq.js";
15
+ import { c as pe } from "./concat-CsHeR4zV.js";
16
+ import { g as cr } from "./gather-D0_gPiBz.js";
17
+ import { s as hr } from "./softmax-GPNK3o-U.js";
18
+ import { m as Ee } from "./max-BQc2Aj-I.js";
19
+ import { t as nc } from "./tensor-RvZVNmg0.js";
20
+ import { r as sc } from "./range-CYzpQY53.js";
21
+ import { v as ic } from "./variable-DXEUOwew.js";
23
22
  /**
24
23
  * @license
25
24
  * Copyright 2020 Google LLC. All Rights Reserved.
@@ -531,13 +530,13 @@ const dr = /* @__PURE__ */ T({ depthwiseConv2d_: Zc });
531
530
  * limitations under the License.
532
531
  * =============================================================================
533
532
  */
534
- function Yc(n, t) {
533
+ function Xc(n, t) {
535
534
  let e = I(n, "a", "equal", "string_or_numeric"), s = I(t, "b", "equal", "string_or_numeric");
536
535
  [e, s] = Ge(e, s), kt(e.shape, s.shape);
537
536
  const i = { a: e, b: s };
538
537
  return O.runKernel(Wa, i);
539
538
  }
540
- const re = /* @__PURE__ */ T({ equal_: Yc });
539
+ const re = /* @__PURE__ */ T({ equal_: Xc });
541
540
  /**
542
541
  * @license
543
542
  * Copyright 2018 Google LLC. All Rights Reserved.
@@ -554,13 +553,13 @@ const re = /* @__PURE__ */ T({ equal_: Yc });
554
553
  * limitations under the License.
555
554
  * =============================================================================
556
555
  */
557
- function Xc(n) {
556
+ function Yc(n) {
558
557
  let t = I(n, "x", "erf");
559
558
  b(t.dtype === "int32" || t.dtype === "float32", () => "Input dtype must be `int32` or `float32`."), t.dtype === "int32" && (t = L(t, "float32"));
560
559
  const e = { x: t };
561
560
  return O.runKernel(Wi, e);
562
561
  }
563
- const Qc = /* @__PURE__ */ T({ erf_: Xc });
562
+ const Qc = /* @__PURE__ */ T({ erf_: Yc });
564
563
  /**
565
564
  * @license
566
565
  * Copyright 2018 Google LLC. All Rights Reserved.
@@ -900,7 +899,7 @@ const gn = /* @__PURE__ */ T({ reverse_: kh });
900
899
  */
901
900
  function xh(n) {
902
901
  const e = { x: I(n, "x", "rsqrt", "float32") };
903
- return O.runKernel(Yi, e);
902
+ return O.runKernel(Xi, e);
904
903
  }
905
904
  const Nh = /* @__PURE__ */ T({ rsqrt_: xh });
906
905
  /**
@@ -921,7 +920,7 @@ const Nh = /* @__PURE__ */ T({ rsqrt_: xh });
921
920
  */
922
921
  function vh(n) {
923
922
  const e = { x: I(n, "x", "selu") };
924
- return O.runKernel(Xi, e);
923
+ return O.runKernel(Yi, e);
925
924
  }
926
925
  const Ah = /* @__PURE__ */ T({ selu_: vh });
927
926
  function Sh(n, t, e, s, i, r = [1, 1], o = "NHWC") {
@@ -1060,7 +1059,7 @@ const bn = /* @__PURE__ */ T({ slice4d_: Eh });
1060
1059
  function Lh(n, t = 0, e = 1, s, i) {
1061
1060
  if (Ua(n), s != null && s === "bool")
1062
1061
  throw new Error("Unsupported data type $ { dtype }");
1063
- const r = new Xu(t, e, s, !0, i), o = Va(n, s);
1062
+ const r = new Qu(t, e, s, !0, i), o = Va(n, s);
1064
1063
  for (let a = 0; a < o.values.length; a++)
1065
1064
  o.values[a] = r.nextValue();
1066
1065
  return o.toTensor();
@@ -1305,7 +1304,7 @@ function Uh({ a: n, b: t, transposeA: e = !1, transposeB: s = !1, bias: i, activ
1305
1304
  return at([ut, ft, bt, mt]), { value: N(bt, C), gradFunc: E };
1306
1305
  })(v, D, $);
1307
1306
  }
1308
- const Ys = /* @__PURE__ */ T({ fusedMatMul_: Uh });
1307
+ const Xs = /* @__PURE__ */ T({ fusedMatMul_: Uh });
1309
1308
  /**
1310
1309
  * @license
1311
1310
  * Copyright 2018 Google LLC. All Rights Reserved.
@@ -1402,7 +1401,7 @@ class Vh {
1402
1401
  * @doc {heading: 'Training', subheading: 'Optimizers', namespace: 'train'}
1403
1402
  */
1404
1403
  static rmsprop(t, e = 0.9, s = 0, i = null, r = !1) {
1405
- return new Ya(t, e, s, i, r);
1404
+ return new Xa(t, e, s, i, r);
1406
1405
  }
1407
1406
  /**
1408
1407
  * Constructs a `tf.AdamOptimizer` that uses the Adam algorithm.
@@ -1417,7 +1416,7 @@ class Vh {
1417
1416
  * @doc {heading: 'Training', subheading: 'Optimizers', namespace: 'train'}
1418
1417
  */
1419
1418
  static adam(t = 1e-3, e = 0.9, s = 0.999, i = null) {
1420
- return new Xa(t, e, s, i);
1419
+ return new Ya(t, e, s, i);
1421
1420
  }
1422
1421
  /**
1423
1422
  * Constructs a `tf.AdadeltaOptimizer` that uses the Adadelta algorithm.
@@ -1663,7 +1662,7 @@ const Zh = {
1663
1662
  * limitations under the License.
1664
1663
  * =============================================================================
1665
1664
  */
1666
- const Yh = {
1665
+ const Xh = {
1667
1666
  kernelName: Ci,
1668
1667
  inputsToSave: ["x"],
1669
1668
  gradFunc: (n, t) => {
@@ -1687,7 +1686,7 @@ const Yh = {
1687
1686
  * limitations under the License.
1688
1687
  * =============================================================================
1689
1688
  */
1690
- const Xh = {
1689
+ const Yh = {
1691
1690
  kernelName: al,
1692
1691
  inputsToSave: ["x"],
1693
1692
  gradFunc: (n, t) => {
@@ -2092,7 +2091,7 @@ const mp = {
2092
2091
  gradFunc: (n, t, e) => {
2093
2092
  const [s] = t, { clipValueMin: i, clipValueMax: r } = e;
2094
2093
  return {
2095
- x: () => ne(Ze(Ye(s, i), ls(s, r)), n, Q(n))
2094
+ x: () => ne(Ze(Xe(s, i), ls(s, r)), n, Q(n))
2096
2095
  };
2097
2096
  }
2098
2097
  };
@@ -2270,7 +2269,7 @@ const vp = {
2270
2269
  inputsToSave: ["x"],
2271
2270
  gradFunc: (n, t) => {
2272
2271
  const [e] = t;
2273
- return { x: () => w(wt(Ju(L(e, "float32"))), n) };
2272
+ return { x: () => w(wt(Zu(L(e, "float32"))), n) };
2274
2273
  }
2275
2274
  };
2276
2275
  /**
@@ -2626,7 +2625,7 @@ const Mp = {
2626
2625
  inputsToSave: ["x", "indices"],
2627
2626
  gradFunc: (n, t, e) => {
2628
2627
  const [s, i] = t, { axis: r, batchDims: o } = e, a = ce(r, s.shape)[0], l = (u, c, h) => () => {
2629
- const p = u.shape, f = c.size, y = p.slice(0, a), g = y.length, m = p.slice(r, p.length).slice(1), A = m.length, k = Xs(0, g), C = Xs(g + 1, g + 1 + A), v = Qs([
2628
+ const p = u.shape, f = c.size, y = p.slice(0, a), g = y.length, m = p.slice(r, p.length).slice(1), A = m.length, k = Ys(0, g), C = Ys(g + 1, g + 1 + A), v = Qs([
2630
2629
  y,
2631
2630
  [f],
2632
2631
  m
@@ -2642,7 +2641,7 @@ const Mp = {
2642
2641
  return { x: l(s, i, n), indices: () => i };
2643
2642
  }
2644
2643
  };
2645
- function Xs(n, t) {
2644
+ function Ys(n, t) {
2646
2645
  const e = [];
2647
2646
  for (let s = n; s < t; ++s)
2648
2647
  e.push(s);
@@ -2779,7 +2778,7 @@ const Pp = {
2779
2778
  kernelName: Bl,
2780
2779
  inputsToSave: ["x"],
2781
2780
  gradFunc: (n, t, e) => {
2782
- const [s] = t, { alpha: i } = e, r = Yt(s, 0);
2781
+ const [s] = t, { alpha: i } = e, r = Xt(s, 0);
2783
2782
  return { x: () => ne(r, n, w(n, i)) };
2784
2783
  }
2785
2784
  };
@@ -2978,7 +2977,7 @@ const Jp = {
2978
2977
  inputsToSave: ["a", "b"],
2979
2978
  gradFunc: (n, t) => {
2980
2979
  const [e, s] = t;
2981
- return { a: () => w(n, L(Ye(e, s), "float32")), b: () => w(n, L(Ku(e, s), "float32")) };
2980
+ return { a: () => w(n, L(Xe(e, s), "float32")), b: () => w(n, L(Ku(e, s), "float32")) };
2982
2981
  }
2983
2982
  };
2984
2983
  /**
@@ -3016,7 +3015,7 @@ function Zp(n, t, e, s, i, r, o) {
3016
3015
  const y = { dy: c, input: h, output: p }, g = { filterSize: s, strides: i, pad: r, dimRoundingMode: o }, m = O.runKernel(Kl, y, g);
3017
3016
  return f ? N(m, [m.shape[1], m.shape[2], m.shape[3], m.shape[4]]) : m;
3018
3017
  }
3019
- const Yp = /* @__PURE__ */ T({ maxPool3dGrad_: Zp });
3018
+ const Xp = /* @__PURE__ */ T({ maxPool3dGrad_: Zp });
3020
3019
  /**
3021
3020
  * @license
3022
3021
  * Copyright 2020 Google LLC. All Rights Reserved.
@@ -3033,14 +3032,14 @@ const Yp = /* @__PURE__ */ T({ maxPool3dGrad_: Zp });
3033
3032
  * limitations under the License.
3034
3033
  * =============================================================================
3035
3034
  */
3036
- const Xp = {
3035
+ const Yp = {
3037
3036
  kernelName: Vi,
3038
3037
  inputsToSave: ["x"],
3039
3038
  outputsToSave: [!0],
3040
3039
  gradFunc: (n, t, e) => {
3041
3040
  const [s, i] = t, { filterSize: r, strides: o, pad: a, dimRoundingMode: l } = e;
3042
3041
  return {
3043
- x: () => Yp(n, s, i, r, o, a, l)
3042
+ x: () => Xp(n, s, i, r, o, a, l)
3044
3043
  };
3045
3044
  }
3046
3045
  };
@@ -3114,7 +3113,7 @@ const nd = {
3114
3113
  kernelName: ji,
3115
3114
  inputsToSave: ["x"],
3116
3115
  gradFunc: (n, t, e) => {
3117
- const [s] = t, { axis: i } = e, r = ce(i, s.shape), a = Zu(s.shape, r)[1], l = pn(a);
3116
+ const [s] = t, { axis: i } = e, r = ce(i, s.shape), a = Xu(s.shape, r)[1], l = pn(a);
3118
3117
  return { x: () => {
3119
3118
  const c = s.shape.slice();
3120
3119
  r.forEach((f) => {
@@ -3173,7 +3172,7 @@ const id = {
3173
3172
  inputsToSave: ["a", "b"],
3174
3173
  gradFunc: (n, t) => {
3175
3174
  const [e, s] = t;
3176
- return { a: () => w(n, L(ls(e, s), "float32")), b: () => w(n, L(Yt(e, s), "float32")) };
3175
+ return { a: () => w(n, L(ls(e, s), "float32")), b: () => w(n, L(Xt(e, s), "float32")) };
3177
3176
  }
3178
3177
  };
3179
3178
  /**
@@ -3217,7 +3216,7 @@ const rd = {
3217
3216
  * =============================================================================
3218
3217
  */
3219
3218
  const od = {
3220
- kernelName: Yl,
3219
+ kernelName: Xl,
3221
3220
  inputsToSave: ["a", "b"],
3222
3221
  gradFunc: (n, t) => {
3223
3222
  const [e, s] = t, i = kt(e.shape, s.shape);
@@ -3247,7 +3246,7 @@ const od = {
3247
3246
  * =============================================================================
3248
3247
  */
3249
3248
  const ad = {
3250
- kernelName: Xl,
3249
+ kernelName: Yl,
3251
3250
  inputsToSave: ["a", "b"],
3252
3251
  gradFunc: (n, t) => {
3253
3252
  const [e, s] = t, i = kt(e.shape, s.shape);
@@ -3400,7 +3399,7 @@ const pd = {
3400
3399
  const p = ht(r.shape, a);
3401
3400
  return p.length > 0 && (h = W(h, p)), N(h, r.shape);
3402
3401
  }, b: () => {
3403
- const c = Yt(r, 0), h = ne(c, se(r), Q(r));
3402
+ const c = Xt(r, 0), h = ne(c, se(r), Q(r));
3404
3403
  let p = w(n, w(i, h));
3405
3404
  const f = ht(o.shape, a);
3406
3405
  return f.length > 0 && (p = W(p, f)), N(p, o.shape);
@@ -3427,7 +3426,7 @@ const dd = {
3427
3426
  kernelName: nu,
3428
3427
  inputsToSave: ["x", "alpha"],
3429
3428
  gradFunc: (n, t) => {
3430
- const [e, s] = t, i = Yt(e, 0);
3429
+ const [e, s] = t, i = Xt(e, 0);
3431
3430
  return {
3432
3431
  x: () => ne(i, n, w(n, s)),
3433
3432
  alpha: () => {
@@ -3726,7 +3725,7 @@ const Sd = {
3726
3725
  * =============================================================================
3727
3726
  */
3728
3727
  const Cd = {
3729
- kernelName: Yi,
3728
+ kernelName: Xi,
3730
3729
  inputsToSave: ["x"],
3731
3730
  gradFunc: (n, t) => {
3732
3731
  const [e] = t;
@@ -3780,13 +3779,13 @@ const Id = {
3780
3779
  * =============================================================================
3781
3780
  */
3782
3781
  const Dd = {
3783
- kernelName: Xi,
3782
+ kernelName: Yi,
3784
3783
  inputsToSave: ["x"],
3785
3784
  gradFunc: (n, t) => {
3786
3785
  const [e] = t;
3787
3786
  return {
3788
3787
  x: () => {
3789
- const s = Yt(e, et(0)), i = et(Gu), r = et(Pu), o = w(n, r), a = w(w(n, i), ie(L(e, "float32")));
3788
+ const s = Xt(e, et(0)), i = et(Gu), r = et(Pu), o = w(n, r), a = w(w(n, i), ie(L(e, "float32")));
3790
3789
  return ne(s, o, a);
3791
3790
  }
3792
3791
  };
@@ -4333,7 +4332,7 @@ const Hd = {
4333
4332
  };
4334
4333
  function qd(n, t) {
4335
4334
  const e = Oe(t, Q(t)), s = cr(n, e);
4336
- let i = Ye(t, et(0, "int32"));
4335
+ let i = Xe(t, et(0, "int32"));
4337
4336
  const r = s.rank - i.rank;
4338
4337
  for (let a = 0; a < r; ++a)
4339
4338
  i = ye(i, a + 1);
@@ -4383,8 +4382,8 @@ const Zd = [
4383
4382
  qh,
4384
4383
  Jh,
4385
4384
  Zh,
4386
- Yh,
4387
4385
  Xh,
4386
+ Yh,
4388
4387
  Qh,
4389
4388
  tp,
4390
4389
  ep,
@@ -4431,7 +4430,7 @@ const Zd = [
4431
4430
  ti,
4432
4431
  ti,
4433
4432
  Jp,
4434
- Xp,
4433
+ Yp,
4435
4434
  ed,
4436
4435
  nd,
4437
4436
  sd,
@@ -4636,7 +4635,7 @@ function Jn(n) {
4636
4635
  }
4637
4636
  }
4638
4637
  }
4639
- function Xe(n, t = {}, e = {}, s = "object", i = !1) {
4638
+ function Ye(n, t = {}, e = {}, s = "object", i = !1) {
4640
4639
  if (typeof n == "string") {
4641
4640
  const r = n;
4642
4641
  let o;
@@ -4683,11 +4682,11 @@ function Xe(n, t = {}, e = {}, s = "object", i = !1) {
4683
4682
  }
4684
4683
  }
4685
4684
  }
4686
- function Yd(n, t) {
4685
+ function Xd(n, t) {
4687
4686
  return n < t ? -1 : n > t ? 1 : 0;
4688
4687
  }
4689
4688
  function ln(n, t) {
4690
- return -1 * Yd(n, t);
4689
+ return -1 * Xd(n, t);
4691
4690
  }
4692
4691
  function te(n) {
4693
4692
  if (n == null)
@@ -4697,7 +4696,7 @@ function te(n) {
4697
4696
  t.indexOf(e) === -1 && t.push(e);
4698
4697
  return t;
4699
4698
  }
4700
- function Xd(n) {
4699
+ function Yd(n) {
4701
4700
  if (n == null)
4702
4701
  throw new d(`Invalid value in obj: ${JSON.stringify(n)}`);
4703
4702
  for (const t in n)
@@ -5023,7 +5022,7 @@ function Zn(n, t) {
5023
5022
  return Ce(n, t);
5024
5023
  }
5025
5024
  function zn(n, t = 0, e = 1, s, i) {
5026
- return Qu(n, t, e, s, i);
5025
+ return tc(n, t, e, s, i);
5027
5026
  }
5028
5027
  function Ut(n, t, e, s) {
5029
5028
  if (n.rank < 2 || t.rank < 2)
@@ -5034,12 +5033,12 @@ function Ut(n, t, e, s) {
5034
5033
  throw new B(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${n.shape} and y shape = ${t.shape}`);
5035
5034
  }
5036
5035
  if (n.rank === 2 && t.rank === 2)
5037
- return Ys({
5036
+ return Xs({
5038
5037
  a: n,
5039
5038
  b: t,
5040
5039
  transposeA: !1,
5041
5040
  transposeB: !1,
5042
- bias: s ? Yn(n.rank, s, _t()) : null,
5041
+ bias: s ? Xn(n.rank, s, _t()) : null,
5043
5042
  activation: e
5044
5043
  });
5045
5044
  {
@@ -5048,12 +5047,12 @@ function Ut(n, t, e, s) {
5048
5047
  const o = t.shape.slice(), a = o.pop(), l = o.pop(), u = [...o, a], c = Array.from({ length: t.rank }, (y, g) => g === 0 ? t.rank - 2 : g <= t.rank - 2 ? g - 1 : g);
5049
5048
  t = N(K(t, c), [l, -1]);
5050
5049
  const h = [...i, ...u];
5051
- return N(Ys({
5050
+ return N(Xs({
5052
5051
  a: n,
5053
5052
  b: t,
5054
5053
  transposeA: !1,
5055
5054
  transposeB: !1,
5056
- bias: s ? Yn(n.rank, s, _t()) : null,
5055
+ bias: s ? Xn(n.rank, s, _t()) : null,
5057
5056
  activation: e
5058
5057
  }), h);
5059
5058
  }
@@ -5064,7 +5063,7 @@ function Ir(n, t, e) {
5064
5063
  function tn(n) {
5065
5064
  return w(n, n);
5066
5065
  }
5067
- function Yn(n, t, e) {
5066
+ function Xn(n, t, e) {
5068
5067
  const s = t.shape;
5069
5068
  if (t.rank !== 1 && t.rank !== n)
5070
5069
  throw new d(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${n}`);
@@ -5088,7 +5087,7 @@ function Yn(n, t, e) {
5088
5087
  throw new d(`Unsupported input rank by biasAdd: ${t.rank}`);
5089
5088
  }
5090
5089
  function Rt(n, t, e) {
5091
- return x(() => (e == null && (e = _t()), tt(e), z(n, Yn(n.rank, t, e))));
5090
+ return x(() => (e == null && (e = _t()), tt(e), z(n, Xn(n.rank, t, e))));
5092
5091
  }
5093
5092
  function ff(n, t = 1) {
5094
5093
  if (t !== 1)
@@ -5099,7 +5098,7 @@ function mf(n) {
5099
5098
  return x(() => U(n, z($e(n), 1)));
5100
5099
  }
5101
5100
  function Dr(n, t, e, s) {
5102
- return x(() => tc(n, t, e, s));
5101
+ return x(() => ec(n, t, e, s));
5103
5102
  }
5104
5103
  function gf(n) {
5105
5104
  return x(() => {
@@ -5438,9 +5437,9 @@ const ai = {
5438
5437
  zeros: "Zeros"
5439
5438
  };
5440
5439
  function li(n, t = {}) {
5441
- return Xe(n, qe.getMap().classNameMap, t, "initializer");
5440
+ return Ye(n, qe.getMap().classNameMap, t, "initializer");
5442
5441
  }
5443
- function X(n) {
5442
+ function Y(n) {
5444
5443
  return ks(n);
5445
5444
  }
5446
5445
  function Z(n) {
@@ -5473,7 +5472,7 @@ function Z(n) {
5473
5472
  * https://opensource.org/licenses/MIT.
5474
5473
  * =============================================================================
5475
5474
  */
5476
- function Xn(n) {
5475
+ function Yn(n) {
5477
5476
  return Array.isArray(n) && Array.isArray(n[0]);
5478
5477
  }
5479
5478
  function yn(n) {
@@ -6438,14 +6437,14 @@ function zf(n, t) {
6438
6437
  throw new d(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${n.name}' (${n.dtype}).`);
6439
6438
  }
6440
6439
  }
6441
- class Xt {
6440
+ class Yt {
6442
6441
  /**
6443
6442
  * Constructor, optionally does copy-construction.
6444
6443
  * @param feeds An Array of `Feed`s, or another `FeedDict`, in which case
6445
6444
  * copy-construction will be performed.
6446
6445
  */
6447
6446
  constructor(t) {
6448
- if (this.id2Value = {}, this.id2Mask = {}, this.name2Id = {}, t instanceof Xt)
6447
+ if (this.id2Value = {}, this.id2Mask = {}, this.name2Id = {}, t instanceof Yt)
6449
6448
  for (const e in t.id2Value)
6450
6449
  this.id2Value[e] = t.id2Value[e], e in t.id2Mask && (this.id2Mask[e] = t.id2Mask[e]);
6451
6450
  else {
@@ -6551,7 +6550,7 @@ function Be(n, t, e, s) {
6551
6550
  h = y.sorted, p = y.recipientCounts, kn.put(c, h), xn.put(c, p);
6552
6551
  }
6553
6552
  p = {}, i || Object.assign(p, xn.get(c));
6554
- const f = new Xt(t);
6553
+ const f = new Yt(t);
6555
6554
  for (let y = 0; y < h.length; ++y) {
6556
6555
  const g = h[y], m = g.sourceLayer;
6557
6556
  if (m instanceof nn)
@@ -6743,7 +6742,7 @@ function rt(n) {
6743
6742
  return ks(n);
6744
6743
  }
6745
6744
  function pi(n, t = {}) {
6746
- return Xe(n, qe.getMap().classNameMap, t, "constraint");
6745
+ return Ye(n, qe.getMap().classNameMap, t, "constraint");
6747
6746
  }
6748
6747
  function ot(n) {
6749
6748
  if (n == null)
@@ -7088,7 +7087,7 @@ function Ur(n, t, e, s, i, r, o, a, l) {
7088
7087
  * =============================================================================
7089
7088
  */
7090
7089
  function Zt(n, t = {}, e = !1) {
7091
- return Xe(n, qe.getMap().classNameMap, t, "layer", e);
7090
+ return Ye(n, qe.getMap().classNameMap, t, "layer", e);
7092
7091
  }
7093
7092
  /**
7094
7093
  * @license
@@ -7235,7 +7234,7 @@ function Un(n) {
7235
7234
  */
7236
7235
  function jr(n, t) {
7237
7236
  return x(() => {
7238
- const e = w(0.5, Ot(t)), s = Pt(Yt(t, e), n.dtype);
7237
+ const e = w(0.5, Ot(t)), s = Pt(Xt(t, e), n.dtype);
7239
7238
  return nt(re(n, s), -1);
7240
7239
  });
7241
7240
  }
@@ -7245,13 +7244,13 @@ function Kr(n, t) {
7245
7244
  function Zf(n, t) {
7246
7245
  return x(() => L(W(Ze(re(n, 1), re(t, 1))), "float32"));
7247
7246
  }
7248
- function Yf(n, t) {
7247
+ function Xf(n, t) {
7249
7248
  return x(() => L(W(Ze(re(n, 0), re(t, 1))), "float32"));
7250
7249
  }
7251
- function Xf(n, t) {
7250
+ function Yf(n, t) {
7252
7251
  return x(() => {
7253
- const e = Zf(n, t), s = Yf(n, t), i = z(e, s);
7254
- return L(ne(Yt(i, 0), U(e, i), 0), "float32");
7252
+ const e = Zf(n, t), s = Xf(n, t), i = z(e, s);
7253
+ return L(ne(Xt(i, 0), U(e, i), 0), "float32");
7255
7254
  });
7256
7255
  }
7257
7256
  function Qf(n, t) {
@@ -7263,7 +7262,7 @@ function tm(n, t) {
7263
7262
  const em = Ln, nm = Ln, sm = Es, im = Es, rm = Ls, om = Ls, Hr = Ve, am = Vr, qr = vn, Sn = {
7264
7263
  binaryAccuracy: jr,
7265
7264
  categoricalAccuracy: Kr,
7266
- precision: Xf,
7265
+ precision: Yf,
7267
7266
  categoricalCrossentropy: Hr,
7268
7267
  sparseCategoricalCrossentropy: qr,
7269
7268
  mse: em,
@@ -7838,7 +7837,7 @@ class Lt extends G {
7838
7837
  call(t, e) {
7839
7838
  return x(() => {
7840
7839
  t = H(t);
7841
- const s = new Xt();
7840
+ const s = new Yt();
7842
7841
  for (let i = 0; i < this.inputs.length; ++i)
7843
7842
  s.add(this.inputs[i], t[i]);
7844
7843
  return Be(this.outputs, s, e);
@@ -8110,7 +8109,7 @@ class Lt extends G {
8110
8109
  const c = e.name, h = e.layers;
8111
8110
  for (const m of h)
8112
8111
  u(m);
8113
- for (; !Xd(o); )
8112
+ for (; !Yd(o); )
8114
8113
  for (const m of h) {
8115
8114
  const A = r[m.name];
8116
8115
  if (A.name in o) {
@@ -8191,10 +8190,10 @@ function gm(n, t, e) {
8191
8190
  } else
8192
8191
  throw new Error(`The model has multiple (${s}) outputs, so ${e} must be either an array with ${s} elements or an object with ${t} keys. Provided ${e} not understood: ${JSON.stringify(n)}`);
8193
8192
  }
8194
- function Yr(n, t) {
8193
+ function Xr(n, t) {
8195
8194
  return gm(n, t, "classWeight");
8196
8195
  }
8197
- async function Xr(n, t, e, s) {
8196
+ async function Yr(n, t, e, s) {
8198
8197
  if (e != null) {
8199
8198
  const i = x(() => {
8200
8199
  if (n.shape.length === 1)
@@ -8314,9 +8313,9 @@ async function km(n, t, e) {
8314
8313
  $.batch = k, $.size = v[0].shape[0], await p.onBatchBegin(k, $);
8315
8314
  const R = [];
8316
8315
  if (e.classWeight != null) {
8317
- const M = Yr(e.classWeight, n.outputNames);
8316
+ const M = Xr(e.classWeight, n.outputNames);
8318
8317
  for (let P = 0; P < M.length; ++P)
8319
- R.push(await Xr(D[P], null, M[P]));
8318
+ R.push(await Yr(D[P], null, M[P]));
8320
8319
  }
8321
8320
  const E = v.concat(D).concat(R), F = a(E);
8322
8321
  J(E);
@@ -8852,7 +8851,7 @@ class Ie extends Lt {
8852
8851
  execute(t, e) {
8853
8852
  if (Array.isArray(e) && e.length === 0)
8854
8853
  throw new d("`outputs` is an empty Array, which is not allowed.");
8855
- const s = Array.isArray(e), i = s ? e : [e], r = this.retrieveSymbolicTensors(i), o = new Xt();
8854
+ const s = Array.isArray(e), i = s ? e : [e], r = this.retrieveSymbolicTensors(i), o = new Yt();
8856
8855
  if (t instanceof Te && (t = [t]), Array.isArray(t)) {
8857
8856
  if (t.length !== this.inputs.length)
8858
8857
  throw new d(`The number of inputs provided (${t.length}) does not match the number of inputs of this model (${this.inputs.length}).`);
@@ -8919,7 +8918,7 @@ class Ie extends Lt {
8919
8918
  p.push({ key: this.inputs[y], value: h[y] });
8920
8919
  else
8921
8920
  p.push({ key: this.inputs[0], value: h });
8922
- const f = new Xt(p);
8921
+ const f = new Yt(p);
8923
8922
  return Be(this.outputs, f);
8924
8923
  }).forEach((u, c) => o[c].push(u));
8925
8924
  return yt(o.map((a) => pe(a, 0)));
@@ -9000,10 +8999,10 @@ class Ie extends Lt {
9000
8999
  throw new Error("sample weight is not supported yet.");
9001
9000
  let u = null;
9002
9001
  if (i != null) {
9003
- const c = Yr(i, this.outputNames);
9002
+ const c = Xr(i, this.outputNames);
9004
9003
  u = [];
9005
9004
  for (let h = 0; h < c.length; ++h)
9006
- u.push(await Xr(l[h], null, c[h]));
9005
+ u.push(await Yr(l[h], null, c[h]));
9007
9006
  }
9008
9007
  return [a, l, u];
9009
9008
  }
@@ -9072,7 +9071,7 @@ class Ie extends Lt {
9072
9071
  const h = [];
9073
9072
  for (let g = 0; g < this.inputs.length; ++g)
9074
9073
  h.push({ key: this.inputs[g], value: s[g] });
9075
- const p = new Xt(h), f = Be(this.outputs, p, { training: !0 });
9074
+ const p = new Yt(h), f = Be(this.outputs, p, { training: !0 });
9076
9075
  let y;
9077
9076
  for (let g = 0; g < this.lossFunctions.length; ++g) {
9078
9077
  const m = this.lossFunctions[g];
@@ -9110,7 +9109,7 @@ class Ie extends Lt {
9110
9109
  const i = t.slice(0, this.inputs.length), r = t.slice(this.inputs.length, this.inputs.length + this.outputs.length), o = [];
9111
9110
  for (let u = 0; u < this.inputs.length; ++u)
9112
9111
  o.push({ key: this.inputs[u], value: i[u] });
9113
- const a = new Xt(o), l = Be(this.outputs, a);
9112
+ const a = new Yt(o), l = Be(this.outputs, a);
9114
9113
  for (let u = 0; u < this.lossFunctions.length; ++u) {
9115
9114
  const c = this.lossFunctions[u], h = nt(c(r[u], l[u]));
9116
9115
  u === 0 ? s = h : s = z(s, h), e.push(s);
@@ -10295,7 +10294,7 @@ function ae(n) {
10295
10294
  return n.getClassName();
10296
10295
  }
10297
10296
  function Kn(n, t = {}) {
10298
- return Xe(n, qe.getMap().classNameMap, t, "activation");
10297
+ return Ye(n, qe.getMap().classNameMap, t, "activation");
10299
10298
  }
10300
10299
  function le(n) {
10301
10300
  if (n == null) {
@@ -10353,9 +10352,9 @@ function q(n) {
10353
10352
  return ks(n);
10354
10353
  }
10355
10354
  function Ni(n, t = {}) {
10356
- return Xe(n, qe.getMap().classNameMap, t, "regularizer");
10355
+ return Ye(n, qe.getMap().classNameMap, t, "regularizer");
10357
10356
  }
10358
- function Y(n) {
10357
+ function X(n) {
10359
10358
  if (n == null)
10360
10359
  return null;
10361
10360
  if (typeof n == "string") {
@@ -10411,7 +10410,7 @@ xo.className = "LeakyReLU";
10411
10410
  S(xo);
10412
10411
  class No extends G {
10413
10412
  constructor(t) {
10414
- if (super(t ?? {}), this.DEFAULT_ALPHA_INITIALIZER = "zeros", t == null && (t = {}), this.supportsMasking = !0, this.alphaInitializer = Z(t.alphaInitializer || this.DEFAULT_ALPHA_INITIALIZER), this.alphaRegularizer = Y(t.alphaRegularizer), this.alphaConstraint = ot(t.alphaConstraint), t.sharedAxes == null)
10413
+ if (super(t ?? {}), this.DEFAULT_ALPHA_INITIALIZER = "zeros", t == null && (t = {}), this.supportsMasking = !0, this.alphaInitializer = Z(t.alphaInitializer || this.DEFAULT_ALPHA_INITIALIZER), this.alphaRegularizer = X(t.alphaRegularizer), this.alphaConstraint = ot(t.alphaConstraint), t.sharedAxes == null)
10415
10414
  this.sharedAxes = null;
10416
10415
  else if (Array.isArray(t.sharedAxes))
10417
10416
  this.sharedAxes = t.sharedAxes;
@@ -10441,7 +10440,7 @@ class No extends G {
10441
10440
  }
10442
10441
  getConfig() {
10443
10442
  const t = {
10444
- alphaInitializer: X(this.alphaInitializer),
10443
+ alphaInitializer: Y(this.alphaInitializer),
10445
10444
  alphaRegularizer: q(this.alphaRegularizer),
10446
10445
  alphaConstraint: rt(this.alphaConstraint),
10447
10446
  sharedAxes: this.sharedAxes
@@ -10477,7 +10476,7 @@ class Ao extends G {
10477
10476
  }
10478
10477
  call(t, e) {
10479
10478
  const s = _(t);
10480
- return w(s, L(Yt(s, this.theta), "float32"));
10479
+ return w(s, L(Xt(s, this.theta), "float32"));
10481
10480
  }
10482
10481
  computeOutputShape(t) {
10483
10482
  return t;
@@ -10619,7 +10618,7 @@ class On extends G {
10619
10618
  constructor(t, e) {
10620
10619
  if (super(e), this.bias = null, this.DEFAULT_KERNEL_INITIALIZER = "glorotNormal", this.DEFAULT_BIAS_INITIALIZER = "zeros", On.verifyArgs(e), this.rank = t, lt(this.rank, "rank"), this.rank !== 1 && this.rank !== 2 && this.rank !== 3)
10621
10620
  throw new B(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);
10622
- if (this.kernelSize = De(e.kernelSize, t, "kernelSize"), this.strides = De(e.strides == null ? 1 : e.strides, t, "strides"), this.padding = e.padding == null ? "valid" : e.padding, At(this.padding), this.dataFormat = e.dataFormat == null ? "channelsLast" : e.dataFormat, tt(this.dataFormat), this.activation = le(e.activation), this.useBias = e.useBias == null ? !0 : e.useBias, this.biasInitializer = Z(e.biasInitializer || this.DEFAULT_BIAS_INITIALIZER), this.biasConstraint = ot(e.biasConstraint), this.biasRegularizer = Y(e.biasRegularizer), this.activityRegularizer = Y(e.activityRegularizer), this.dilationRate = De(e.dilationRate == null ? 1 : e.dilationRate, t, "dilationRate"), this.rank === 1 && Array.isArray(this.dilationRate) && this.dilationRate.length !== 1)
10621
+ if (this.kernelSize = De(e.kernelSize, t, "kernelSize"), this.strides = De(e.strides == null ? 1 : e.strides, t, "strides"), this.padding = e.padding == null ? "valid" : e.padding, At(this.padding), this.dataFormat = e.dataFormat == null ? "channelsLast" : e.dataFormat, tt(this.dataFormat), this.activation = le(e.activation), this.useBias = e.useBias == null ? !0 : e.useBias, this.biasInitializer = Z(e.biasInitializer || this.DEFAULT_BIAS_INITIALIZER), this.biasConstraint = ot(e.biasConstraint), this.biasRegularizer = X(e.biasRegularizer), this.activityRegularizer = X(e.activityRegularizer), this.dilationRate = De(e.dilationRate == null ? 1 : e.dilationRate, t, "dilationRate"), this.rank === 1 && Array.isArray(this.dilationRate) && this.dilationRate.length !== 1)
10623
10622
  throw new d(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);
10624
10623
  if (this.rank === 2) {
10625
10624
  if (typeof this.dilationRate == "number")
@@ -10646,7 +10645,7 @@ class On extends G {
10646
10645
  dilationRate: this.dilationRate,
10647
10646
  activation: ae(this.activation),
10648
10647
  useBias: this.useBias,
10649
- biasInitializer: X(this.biasInitializer),
10648
+ biasInitializer: Y(this.biasInitializer),
10650
10649
  biasRegularizer: q(this.biasRegularizer),
10651
10650
  activityRegularizer: q(this.activityRegularizer),
10652
10651
  biasConstraint: rt(this.biasConstraint)
@@ -10656,7 +10655,7 @@ class On extends G {
10656
10655
  }
10657
10656
  class Me extends On {
10658
10657
  constructor(t, e) {
10659
- super(t, e), this.kernel = null, Me.verifyArgs(e), this.filters = e.filters, lt(this.filters, "filters"), this.kernelInitializer = Z(e.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER), this.kernelConstraint = ot(e.kernelConstraint), this.kernelRegularizer = Y(e.kernelRegularizer);
10658
+ super(t, e), this.kernel = null, Me.verifyArgs(e), this.filters = e.filters, lt(this.filters, "filters"), this.kernelInitializer = Z(e.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER), this.kernelConstraint = ot(e.kernelConstraint), this.kernelRegularizer = X(e.kernelRegularizer);
10660
10659
  }
10661
10660
  build(t) {
10662
10661
  t = j(t);
@@ -10700,7 +10699,7 @@ class Me extends On {
10700
10699
  getConfig() {
10701
10700
  const t = {
10702
10701
  filters: this.filters,
10703
- kernelInitializer: X(this.kernelInitializer),
10702
+ kernelInitializer: Y(this.kernelInitializer),
10704
10703
  kernelRegularizer: q(this.kernelRegularizer),
10705
10704
  kernelConstraint: rt(this.kernelConstraint)
10706
10705
  }, e = super.getConfig();
@@ -10835,7 +10834,7 @@ class $o extends Me {
10835
10834
  throw new d("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");
10836
10835
  if (e.padding != null && e.padding !== "same" && e.padding !== "valid")
10837
10836
  throw new d(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(e.padding)}`);
10838
- this.depthMultiplier = e.depthMultiplier == null ? 1 : e.depthMultiplier, this.depthwiseInitializer = Z(e.depthwiseInitializer || this.DEFAULT_DEPTHWISE_INITIALIZER), this.depthwiseRegularizer = Y(e.depthwiseRegularizer), this.depthwiseConstraint = ot(e.depthwiseConstraint), this.pointwiseInitializer = Z(e.depthwiseInitializer || this.DEFAULT_POINTWISE_INITIALIZER), this.pointwiseRegularizer = Y(e.pointwiseRegularizer), this.pointwiseConstraint = ot(e.pointwiseConstraint);
10837
+ this.depthMultiplier = e.depthMultiplier == null ? 1 : e.depthMultiplier, this.depthwiseInitializer = Z(e.depthwiseInitializer || this.DEFAULT_DEPTHWISE_INITIALIZER), this.depthwiseRegularizer = X(e.depthwiseRegularizer), this.depthwiseConstraint = ot(e.depthwiseConstraint), this.pointwiseInitializer = Z(e.depthwiseInitializer || this.DEFAULT_POINTWISE_INITIALIZER), this.pointwiseRegularizer = X(e.pointwiseRegularizer), this.pointwiseConstraint = ot(e.pointwiseConstraint);
10839
10838
  }
10840
10839
  build(t) {
10841
10840
  if (t = j(t), t.length < this.rank + 2)
@@ -10861,7 +10860,7 @@ class $o extends Me {
10861
10860
  }
10862
10861
  getConfig() {
10863
10862
  const t = super.getConfig();
10864
- return delete t.rank, delete t.kernelInitializer, delete t.kernelRegularizer, delete t.kernelConstraint, t.depthwiseInitializer = X(this.depthwiseInitializer), t.pointwiseInitializer = X(this.pointwiseInitializer), t.depthwiseRegularizer = q(this.depthwiseRegularizer), t.pointwiseRegularizer = q(this.pointwiseRegularizer), t.depthwiseConstraint = rt(this.depthwiseConstraint), t.pointwiseConstraint = rt(this.pointwiseConstraint), t;
10863
+ return delete t.rank, delete t.kernelInitializer, delete t.kernelRegularizer, delete t.kernelConstraint, t.depthwiseInitializer = Y(this.depthwiseInitializer), t.pointwiseInitializer = Y(this.pointwiseInitializer), t.depthwiseRegularizer = q(this.depthwiseRegularizer), t.pointwiseRegularizer = q(this.pointwiseRegularizer), t.depthwiseConstraint = rt(this.depthwiseConstraint), t.pointwiseConstraint = rt(this.pointwiseConstraint), t;
10865
10864
  }
10866
10865
  }
10867
10866
  $o.className = "SeparableConv";
@@ -10985,7 +10984,7 @@ function Em(n, t, e = [1, 1], s = "valid", i, r) {
10985
10984
  }
10986
10985
  class Lo extends On {
10987
10986
  constructor(t) {
10988
- super(2, t), this.depthwiseKernel = null, this.depthMultiplier = t.depthMultiplier == null ? 1 : t.depthMultiplier, this.depthwiseInitializer = Z(t.depthwiseInitializer || this.DEFAULT_KERNEL_INITIALIZER), this.depthwiseConstraint = ot(t.depthwiseConstraint), this.depthwiseRegularizer = Y(t.depthwiseRegularizer);
10987
+ super(2, t), this.depthwiseKernel = null, this.depthMultiplier = t.depthMultiplier == null ? 1 : t.depthMultiplier, this.depthwiseInitializer = Z(t.depthwiseInitializer || this.DEFAULT_KERNEL_INITIALIZER), this.depthwiseConstraint = ot(t.depthwiseConstraint), this.depthwiseRegularizer = X(t.depthwiseRegularizer);
10989
10988
  }
10990
10989
  build(t) {
10991
10990
  if (t = j(t), t.length < 4)
@@ -11015,7 +11014,7 @@ class Lo extends On {
11015
11014
  }
11016
11015
  getConfig() {
11017
11016
  const t = super.getConfig();
11018
- return t.depthMultiplier = this.depthMultiplier, t.depthwiseInitializer = X(this.depthwiseInitializer), t.depthwiseRegularizer = q(this.depthwiseRegularizer), t.depthwiseConstraint = rt(this.depthwiseRegularizer), t;
11017
+ return t.depthMultiplier = this.depthMultiplier, t.depthwiseInitializer = Y(this.depthwiseInitializer), t.depthwiseRegularizer = q(this.depthwiseRegularizer), t.depthwiseConstraint = rt(this.depthwiseRegularizer), t;
11019
11018
  }
11020
11019
  }
11021
11020
  Lo.className = "DepthwiseConv2D";
@@ -11094,7 +11093,7 @@ class de extends G {
11094
11093
  this.states_ = t;
11095
11094
  }
11096
11095
  computeOutputShape(t) {
11097
- Xn(t) && (t = t[0]), t = t;
11096
+ Yn(t) && (t = t[0]), t = t;
11098
11097
  let e = this.cell.stateSize;
11099
11098
  Array.isArray(e) || (e = [e]);
11100
11099
  const s = e[0];
@@ -11139,7 +11138,7 @@ class de extends G {
11139
11138
  build(t) {
11140
11139
  if (this.numConstants != null)
11141
11140
  throw new B("Constants support is not implemented in RNN yet.");
11142
- Xn(t) && (t = t[0]), t = t;
11141
+ Yn(t) && (t = t[0]), t = t;
11143
11142
  const e = this.stateful ? t[0] : null, s = t.slice(2);
11144
11143
  this.inputSpec[0] = new it({ shape: [e, null, ...s] });
11145
11144
  const i = [t[0]].concat(t.slice(2));
@@ -11275,7 +11274,7 @@ class _n extends G {
11275
11274
  }
11276
11275
  class Ms extends _n {
11277
11276
  constructor(t) {
11278
- super(t), this.DEFAULT_ACTIVATION = "tanh", this.DEFAULT_KERNEL_INITIALIZER = "glorotNormal", this.DEFAULT_RECURRENT_INITIALIZER = "orthogonal", this.DEFAULT_BIAS_INITIALIZER = "zeros", this.units = t.units, lt(this.units, "units"), this.activation = le(t.activation == null ? this.DEFAULT_ACTIVATION : t.activation), this.useBias = t.useBias == null ? !0 : t.useBias, this.kernelInitializer = Z(t.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER), this.recurrentInitializer = Z(t.recurrentInitializer || this.DEFAULT_RECURRENT_INITIALIZER), this.biasInitializer = Z(t.biasInitializer || this.DEFAULT_BIAS_INITIALIZER), this.kernelRegularizer = Y(t.kernelRegularizer), this.recurrentRegularizer = Y(t.recurrentRegularizer), this.biasRegularizer = Y(t.biasRegularizer), this.kernelConstraint = ot(t.kernelConstraint), this.recurrentConstraint = ot(t.recurrentConstraint), this.biasConstraint = ot(t.biasConstraint), this.dropout = Fe([1, oe([0, t.dropout == null ? 0 : t.dropout])]), this.recurrentDropout = Fe([
11277
+ super(t), this.DEFAULT_ACTIVATION = "tanh", this.DEFAULT_KERNEL_INITIALIZER = "glorotNormal", this.DEFAULT_RECURRENT_INITIALIZER = "orthogonal", this.DEFAULT_BIAS_INITIALIZER = "zeros", this.units = t.units, lt(this.units, "units"), this.activation = le(t.activation == null ? this.DEFAULT_ACTIVATION : t.activation), this.useBias = t.useBias == null ? !0 : t.useBias, this.kernelInitializer = Z(t.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER), this.recurrentInitializer = Z(t.recurrentInitializer || this.DEFAULT_RECURRENT_INITIALIZER), this.biasInitializer = Z(t.biasInitializer || this.DEFAULT_BIAS_INITIALIZER), this.kernelRegularizer = X(t.kernelRegularizer), this.recurrentRegularizer = X(t.recurrentRegularizer), this.biasRegularizer = X(t.biasRegularizer), this.kernelConstraint = ot(t.kernelConstraint), this.recurrentConstraint = ot(t.recurrentConstraint), this.biasConstraint = ot(t.biasConstraint), this.dropout = Fe([1, oe([0, t.dropout == null ? 0 : t.dropout])]), this.recurrentDropout = Fe([
11279
11278
  1,
11280
11279
  oe([0, t.recurrentDropout == null ? 0 : t.recurrentDropout])
11281
11280
  ]), this.dropoutFunc = t.dropoutFunc, this.stateSize = this.units, this.dropoutMask = null, this.recurrentDropoutMask = null;
@@ -11319,9 +11318,9 @@ class Ms extends _n {
11319
11318
  units: this.units,
11320
11319
  activation: ae(this.activation),
11321
11320
  useBias: this.useBias,
11322
- kernelInitializer: X(this.kernelInitializer),
11323
- recurrentInitializer: X(this.recurrentInitializer),
11324
- biasInitializer: X(this.biasInitializer),
11321
+ kernelInitializer: Y(this.kernelInitializer),
11322
+ recurrentInitializer: Y(this.recurrentInitializer),
11323
+ biasInitializer: Y(this.biasInitializer),
11325
11324
  kernelRegularizer: q(this.kernelRegularizer),
11326
11325
  recurrentRegularizer: q(this.recurrentRegularizer),
11327
11326
  biasRegularizer: q(this.biasRegularizer),
@@ -11359,7 +11358,7 @@ class _s extends _n {
11359
11358
  constructor(t) {
11360
11359
  if (super(t), this.DEFAULT_ACTIVATION = "tanh", this.DEFAULT_RECURRENT_ACTIVATION = "hardSigmoid", this.DEFAULT_KERNEL_INITIALIZER = "glorotNormal", this.DEFAULT_RECURRENT_INITIALIZER = "orthogonal", this.DEFAULT_BIAS_INITIALIZER = "zeros", t.resetAfter)
11361
11360
  throw new d("GRUCell does not support reset_after parameter set to true.");
11362
- this.units = t.units, lt(this.units, "units"), this.activation = le(t.activation === void 0 ? this.DEFAULT_ACTIVATION : t.activation), this.recurrentActivation = le(t.recurrentActivation === void 0 ? this.DEFAULT_RECURRENT_ACTIVATION : t.recurrentActivation), this.useBias = t.useBias == null ? !0 : t.useBias, this.kernelInitializer = Z(t.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER), this.recurrentInitializer = Z(t.recurrentInitializer || this.DEFAULT_RECURRENT_INITIALIZER), this.biasInitializer = Z(t.biasInitializer || this.DEFAULT_BIAS_INITIALIZER), this.kernelRegularizer = Y(t.kernelRegularizer), this.recurrentRegularizer = Y(t.recurrentRegularizer), this.biasRegularizer = Y(t.biasRegularizer), this.kernelConstraint = ot(t.kernelConstraint), this.recurrentConstraint = ot(t.recurrentConstraint), this.biasConstraint = ot(t.biasConstraint), this.dropout = Fe([1, oe([0, t.dropout == null ? 0 : t.dropout])]), this.recurrentDropout = Fe([
11361
+ this.units = t.units, lt(this.units, "units"), this.activation = le(t.activation === void 0 ? this.DEFAULT_ACTIVATION : t.activation), this.recurrentActivation = le(t.recurrentActivation === void 0 ? this.DEFAULT_RECURRENT_ACTIVATION : t.recurrentActivation), this.useBias = t.useBias == null ? !0 : t.useBias, this.kernelInitializer = Z(t.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER), this.recurrentInitializer = Z(t.recurrentInitializer || this.DEFAULT_RECURRENT_INITIALIZER), this.biasInitializer = Z(t.biasInitializer || this.DEFAULT_BIAS_INITIALIZER), this.kernelRegularizer = X(t.kernelRegularizer), this.recurrentRegularizer = X(t.recurrentRegularizer), this.biasRegularizer = X(t.biasRegularizer), this.kernelConstraint = ot(t.kernelConstraint), this.recurrentConstraint = ot(t.recurrentConstraint), this.biasConstraint = ot(t.biasConstraint), this.dropout = Fe([1, oe([0, t.dropout == null ? 0 : t.dropout])]), this.recurrentDropout = Fe([
11363
11362
  1,
11364
11363
  oe([0, t.recurrentDropout == null ? 0 : t.recurrentDropout])
11365
11364
  ]), this.dropoutFunc = t.dropoutFunc, this.implementation = t.implementation, this.stateSize = this.units, this.dropoutMask = null, this.recurrentDropoutMask = null;
@@ -11407,9 +11406,9 @@ class _s extends _n {
11407
11406
  activation: ae(this.activation),
11408
11407
  recurrentActivation: ae(this.recurrentActivation),
11409
11408
  useBias: this.useBias,
11410
- kernelInitializer: X(this.kernelInitializer),
11411
- recurrentInitializer: X(this.recurrentInitializer),
11412
- biasInitializer: X(this.biasInitializer),
11409
+ kernelInitializer: Y(this.kernelInitializer),
11410
+ recurrentInitializer: Y(this.recurrentInitializer),
11411
+ biasInitializer: Y(this.biasInitializer),
11413
11412
  kernelRegularizer: q(this.kernelRegularizer),
11414
11413
  recurrentRegularizer: q(this.recurrentRegularizer),
11415
11414
  biasRegularizer: q(this.biasRegularizer),
@@ -11447,7 +11446,7 @@ _o.className = "GRU";
11447
11446
  S(_o);
11448
11447
  class Rn extends _n {
11449
11448
  constructor(t) {
11450
- super(t), this.DEFAULT_ACTIVATION = "tanh", this.DEFAULT_RECURRENT_ACTIVATION = "hardSigmoid", this.DEFAULT_KERNEL_INITIALIZER = "glorotNormal", this.DEFAULT_RECURRENT_INITIALIZER = "orthogonal", this.DEFAULT_BIAS_INITIALIZER = "zeros", this.units = t.units, lt(this.units, "units"), this.activation = le(t.activation === void 0 ? this.DEFAULT_ACTIVATION : t.activation), this.recurrentActivation = le(t.recurrentActivation === void 0 ? this.DEFAULT_RECURRENT_ACTIVATION : t.recurrentActivation), this.useBias = t.useBias == null ? !0 : t.useBias, this.kernelInitializer = Z(t.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER), this.recurrentInitializer = Z(t.recurrentInitializer || this.DEFAULT_RECURRENT_INITIALIZER), this.biasInitializer = Z(t.biasInitializer || this.DEFAULT_BIAS_INITIALIZER), this.unitForgetBias = t.unitForgetBias, this.kernelRegularizer = Y(t.kernelRegularizer), this.recurrentRegularizer = Y(t.recurrentRegularizer), this.biasRegularizer = Y(t.biasRegularizer), this.kernelConstraint = ot(t.kernelConstraint), this.recurrentConstraint = ot(t.recurrentConstraint), this.biasConstraint = ot(t.biasConstraint), this.dropout = Fe([1, oe([0, t.dropout == null ? 0 : t.dropout])]), this.recurrentDropout = Fe([
11449
+ super(t), this.DEFAULT_ACTIVATION = "tanh", this.DEFAULT_RECURRENT_ACTIVATION = "hardSigmoid", this.DEFAULT_KERNEL_INITIALIZER = "glorotNormal", this.DEFAULT_RECURRENT_INITIALIZER = "orthogonal", this.DEFAULT_BIAS_INITIALIZER = "zeros", this.units = t.units, lt(this.units, "units"), this.activation = le(t.activation === void 0 ? this.DEFAULT_ACTIVATION : t.activation), this.recurrentActivation = le(t.recurrentActivation === void 0 ? this.DEFAULT_RECURRENT_ACTIVATION : t.recurrentActivation), this.useBias = t.useBias == null ? !0 : t.useBias, this.kernelInitializer = Z(t.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER), this.recurrentInitializer = Z(t.recurrentInitializer || this.DEFAULT_RECURRENT_INITIALIZER), this.biasInitializer = Z(t.biasInitializer || this.DEFAULT_BIAS_INITIALIZER), this.unitForgetBias = t.unitForgetBias, this.kernelRegularizer = X(t.kernelRegularizer), this.recurrentRegularizer = X(t.recurrentRegularizer), this.biasRegularizer = X(t.biasRegularizer), this.kernelConstraint = ot(t.kernelConstraint), this.recurrentConstraint = ot(t.recurrentConstraint), this.biasConstraint = ot(t.biasConstraint), this.dropout = Fe([1, oe([0, t.dropout == null ? 0 : t.dropout])]), this.recurrentDropout = Fe([
11451
11450
  1,
11452
11451
  oe([0, t.recurrentDropout == null ? 0 : t.recurrentDropout])
11453
11452
  ]), this.dropoutFunc = t.dropoutFunc, this.implementation = t.implementation, this.stateSize = [this.units, this.units], this.dropoutMask = null, this.recurrentDropoutMask = null;
@@ -11512,9 +11511,9 @@ class Rn extends _n {
11512
11511
  activation: ae(this.activation),
11513
11512
  recurrentActivation: ae(this.recurrentActivation),
11514
11513
  useBias: this.useBias,
11515
- kernelInitializer: X(this.kernelInitializer),
11516
- recurrentInitializer: X(this.recurrentInitializer),
11517
- biasInitializer: X(this.biasInitializer),
11514
+ kernelInitializer: Y(this.kernelInitializer),
11515
+ recurrentInitializer: Y(this.recurrentInitializer),
11516
+ biasInitializer: Y(this.biasInitializer),
11518
11517
  unitForgetBias: this.unitForgetBias,
11519
11518
  kernelRegularizer: q(this.kernelRegularizer),
11520
11519
  recurrentRegularizer: q(this.recurrentRegularizer),
@@ -11581,7 +11580,7 @@ class Rs extends _n {
11581
11580
  });
11582
11581
  }
11583
11582
  build(t) {
11584
- Xn(t) && (t = t[0]), t = t;
11583
+ Yn(t) && (t = t[0]), t = t;
11585
11584
  let e;
11586
11585
  this.cells.forEach((s, i) => {
11587
11586
  ge(`RNNCell_${i}`, () => {
@@ -11891,7 +11890,7 @@ class Po extends G {
11891
11890
  let e = null;
11892
11891
  t.batchSize != null && (e = t.batchSize), this.batchInputShape = [e, t.inputDim];
11893
11892
  }
11894
- this.units = t.units, lt(this.units, "units"), this.activation = le(t.activation), t.useBias != null && (this.useBias = t.useBias), this.kernelInitializer = Z(t.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER), this.biasInitializer = Z(t.biasInitializer || this.DEFAULT_BIAS_INITIALIZER), this.kernelConstraint = ot(t.kernelConstraint), this.biasConstraint = ot(t.biasConstraint), this.kernelRegularizer = Y(t.kernelRegularizer), this.biasRegularizer = Y(t.biasRegularizer), this.activityRegularizer = Y(t.activityRegularizer), this.supportsMasking = !0, this.inputSpec = [{ minNDim: 2 }];
11893
+ this.units = t.units, lt(this.units, "units"), this.activation = le(t.activation), t.useBias != null && (this.useBias = t.useBias), this.kernelInitializer = Z(t.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER), this.biasInitializer = Z(t.biasInitializer || this.DEFAULT_BIAS_INITIALIZER), this.kernelConstraint = ot(t.kernelConstraint), this.biasConstraint = ot(t.biasConstraint), this.kernelRegularizer = X(t.kernelRegularizer), this.biasRegularizer = X(t.biasRegularizer), this.activityRegularizer = X(t.activityRegularizer), this.supportsMasking = !0, this.inputSpec = [{ minNDim: 2 }];
11895
11894
  }
11896
11895
  build(t) {
11897
11896
  t = j(t);
@@ -11916,8 +11915,8 @@ class Po extends G {
11916
11915
  units: this.units,
11917
11916
  activation: ae(this.activation),
11918
11917
  useBias: this.useBias,
11919
- kernelInitializer: X(this.kernelInitializer),
11920
- biasInitializer: X(this.biasInitializer),
11918
+ kernelInitializer: Y(this.kernelInitializer),
11919
+ biasInitializer: Y(this.biasInitializer),
11921
11920
  kernelRegularizer: q(this.kernelRegularizer),
11922
11921
  biasRegularizer: q(this.biasRegularizer),
11923
11922
  activityRegularizer: q(this.activityRegularizer),
@@ -12139,7 +12138,7 @@ class Jo extends G {
12139
12138
  let e = null;
12140
12139
  t.batchSize != null && (e = t.batchSize), t.inputLength == null ? this.batchInputShape = [e, null] : this.batchInputShape = [e].concat(H(t.inputLength));
12141
12140
  }
12142
- this.inputDim = t.inputDim, lt(this.inputDim, "inputDim"), this.outputDim = t.outputDim, lt(this.outputDim, "outputDim"), this.embeddingsInitializer = Z(t.embeddingsInitializer || this.DEFAULT_EMBEDDINGS_INITIALIZER), this.embeddingsRegularizer = Y(t.embeddingsRegularizer), this.activityRegularizer = Y(t.activityRegularizer), this.embeddingsConstraint = ot(t.embeddingsConstraint), this.maskZero = t.maskZero, this.supportsMasking = t.maskZero, this.inputLength = t.inputLength;
12141
+ this.inputDim = t.inputDim, lt(this.inputDim, "inputDim"), this.outputDim = t.outputDim, lt(this.outputDim, "outputDim"), this.embeddingsInitializer = Z(t.embeddingsInitializer || this.DEFAULT_EMBEDDINGS_INITIALIZER), this.embeddingsRegularizer = X(t.embeddingsRegularizer), this.activityRegularizer = X(t.activityRegularizer), this.embeddingsConstraint = ot(t.embeddingsConstraint), this.maskZero = t.maskZero, this.supportsMasking = t.maskZero, this.inputLength = t.inputLength;
12143
12142
  }
12144
12143
  build(t) {
12145
12144
  this.embeddings = this.addWeight("embeddings", [this.inputDim, this.outputDim], this.dtype, this.embeddingsInitializer, this.embeddingsRegularizer, !0, this.embeddingsConstraint), this.built = !0;
@@ -12181,7 +12180,7 @@ class Jo extends G {
12181
12180
  const t = {
12182
12181
  inputDim: this.inputDim,
12183
12182
  outputDim: this.outputDim,
12184
- embeddingsInitializer: X(this.embeddingsInitializer),
12183
+ embeddingsInitializer: Y(this.embeddingsInitializer),
12185
12184
  embeddingsRegularizer: q(this.embeddingsRegularizer),
12186
12185
  activityRegularizer: q(this.activityRegularizer),
12187
12186
  embeddingsConstraint: rt(this.embeddingsConstraint),
@@ -12355,7 +12354,7 @@ class Zo extends ve {
12355
12354
  }
12356
12355
  Zo.className = "Add";
12357
12356
  S(Zo);
12358
- class Yo extends ve {
12357
+ class Xo extends ve {
12359
12358
  constructor(t) {
12360
12359
  super(t);
12361
12360
  }
@@ -12368,9 +12367,9 @@ class Yo extends ve {
12368
12367
  });
12369
12368
  }
12370
12369
  }
12371
- Yo.className = "Multiply";
12372
- S(Yo);
12373
- class Xo extends ve {
12370
+ Xo.className = "Multiply";
12371
+ S(Xo);
12372
+ class Yo extends ve {
12374
12373
  constructor(t) {
12375
12374
  super(t);
12376
12375
  }
@@ -12383,8 +12382,8 @@ class Xo extends ve {
12383
12382
  });
12384
12383
  }
12385
12384
  }
12386
- Xo.className = "Average";
12387
- S(Xo);
12385
+ Yo.className = "Average";
12386
+ S(Yo);
12388
12387
  class Qo extends ve {
12389
12388
  constructor(t) {
12390
12389
  super(t);
@@ -12669,7 +12668,7 @@ class ra extends G {
12669
12668
  const s = this._getNoiseShape(t);
12670
12669
  return en(() => {
12671
12670
  const r = _(t), a = -1.6732632423543772 * 1.0507009873554805;
12672
- let l = Ye($n(s), this.rate);
12671
+ let l = Xe($n(s), this.rate);
12673
12672
  l = Pt(l, "float32");
12674
12673
  const u = ((1 - this.rate) * (1 + this.rate * a ** 2)) ** -0.5, c = -u * a * this.rate, h = z(w(r, l), w(z(l, -1), a));
12675
12674
  return z(w(h, u), c);
@@ -12722,7 +12721,7 @@ function _m(n, t, e, s, i = 1e-3) {
12722
12721
  }
12723
12722
  class oa extends G {
12724
12723
  constructor(t) {
12725
- t == null && (t = {}), super(t), this.supportsMasking = !0, this.axis = t.axis == null ? -1 : t.axis, this.momentum = t.momentum == null ? 0.99 : t.momentum, this.epsilon = t.epsilon == null ? 1e-3 : t.epsilon, this.center = t.center == null ? !0 : t.center, this.scale = t.scale == null ? !0 : t.scale, this.betaInitializer = Z(t.betaInitializer || "zeros"), this.gammaInitializer = Z(t.gammaInitializer || "ones"), this.movingMeanInitializer = Z(t.movingMeanInitializer || "zeros"), this.movingVarianceInitializer = Z(t.movingVarianceInitializer || "ones"), this.betaConstraint = ot(t.betaConstraint), this.gammaConstraint = ot(t.gammaConstraint), this.betaRegularizer = Y(t.betaRegularizer), this.gammaRegularizer = Y(t.gammaRegularizer);
12724
+ t == null && (t = {}), super(t), this.supportsMasking = !0, this.axis = t.axis == null ? -1 : t.axis, this.momentum = t.momentum == null ? 0.99 : t.momentum, this.epsilon = t.epsilon == null ? 1e-3 : t.epsilon, this.center = t.center == null ? !0 : t.center, this.scale = t.scale == null ? !0 : t.scale, this.betaInitializer = Z(t.betaInitializer || "zeros"), this.gammaInitializer = Z(t.gammaInitializer || "ones"), this.movingMeanInitializer = Z(t.movingMeanInitializer || "zeros"), this.movingVarianceInitializer = Z(t.movingVarianceInitializer || "ones"), this.betaConstraint = ot(t.betaConstraint), this.gammaConstraint = ot(t.gammaConstraint), this.betaRegularizer = X(t.betaRegularizer), this.gammaRegularizer = X(t.gammaRegularizer);
12726
12725
  }
12727
12726
  build(t) {
12728
12727
  t = j(t);
@@ -12768,10 +12767,10 @@ class oa extends G {
12768
12767
  epsilon: this.epsilon,
12769
12768
  center: this.center,
12770
12769
  scale: this.scale,
12771
- betaInitializer: X(this.betaInitializer),
12772
- gammaInitializer: X(this.gammaInitializer),
12773
- movingMeanInitializer: X(this.movingMeanInitializer),
12774
- movingVarianceInitializer: X(this.movingVarianceInitializer),
12770
+ betaInitializer: Y(this.betaInitializer),
12771
+ gammaInitializer: Y(this.gammaInitializer),
12772
+ movingMeanInitializer: Y(this.movingMeanInitializer),
12773
+ movingVarianceInitializer: Y(this.movingVarianceInitializer),
12775
12774
  betaRegularizer: q(this.betaRegularizer),
12776
12775
  gammaRegularizer: q(this.gammaRegularizer),
12777
12776
  betaConstraint: rt(this.betaConstraint),
@@ -12793,7 +12792,7 @@ class aa extends G {
12793
12792
  throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`);
12794
12793
  } else
12795
12794
  throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);
12796
- this.epsilon = t.epsilon == null ? 1e-3 : t.epsilon, this.center = t.center == null ? !0 : t.center, this.scale = t.scale == null ? !0 : t.scale, this.betaInitializer = Z(t.betaInitializer || "zeros"), this.gammaInitializer = Z(t.gammaInitializer || "ones"), this.betaRegularizer = Y(t.betaRegularizer), this.gammaRegularizer = Y(t.gammaRegularizer), this.supportsMasking = !0;
12795
+ this.epsilon = t.epsilon == null ? 1e-3 : t.epsilon, this.center = t.center == null ? !0 : t.center, this.scale = t.scale == null ? !0 : t.scale, this.betaInitializer = Z(t.betaInitializer || "zeros"), this.gammaInitializer = Z(t.gammaInitializer || "ones"), this.betaRegularizer = X(t.betaRegularizer), this.gammaRegularizer = X(t.gammaRegularizer), this.supportsMasking = !0;
12797
12796
  }
12798
12797
  build(t) {
12799
12798
  t = j(t);
@@ -12830,8 +12829,8 @@ class aa extends G {
12830
12829
  epsilon: this.epsilon,
12831
12830
  center: this.center,
12832
12831
  scale: this.scale,
12833
- betaInitializer: X(this.betaInitializer),
12834
- gammaInitializer: X(this.gammaInitializer),
12832
+ betaInitializer: Y(this.betaInitializer),
12833
+ gammaInitializer: Y(this.gammaInitializer),
12835
12834
  betaRegularizer: q(this.betaRegularizer),
12836
12835
  gammaRegularizer: q(this.gammaRegularizer)
12837
12836
  }, e = super.getConfig();
@@ -13438,7 +13437,7 @@ class $a extends G {
13438
13437
  t.rank === 3 ? (c = !0, u = Dn([t])) : u = t;
13439
13438
  for (let D = 0; D < u.shape[0]; D++)
13440
13439
  m.push(g);
13441
- const A = ec(m, [m.length, 4]), k = nc(0, m.length, 1, "int32"), v = Pm(u, A, k, [i, r], "nearest");
13440
+ const A = nc(m, [m.length, 4]), k = sc(0, m.length, 1, "int32"), v = Pm(u, A, k, [i, r], "nearest");
13442
13441
  return Pt(c ? _(dn(v)) : v, l);
13443
13442
  });
13444
13443
  }
@@ -13529,7 +13528,7 @@ class Ta extends G {
13529
13528
  Received countWeights=${e.countWeights}`);
13530
13529
  s = _(e.countWeights);
13531
13530
  }
13532
- const i = Ee(t), r = sc(t), o = Yt(this.numTokens, i).bufferSync().get(0), a = Ye(r, 0).bufferSync().get(0);
13531
+ const i = Ee(t), r = Ju(t), o = Xt(this.numTokens, i).bufferSync().get(0), a = Xe(r, 0).bufferSync().get(0);
13533
13532
  if (!(o && a))
13534
13533
  throw new d(`Input values must be between 0 < values <= numTokens with numTokens=${this.numTokens}`);
13535
13534
  return Um(t, this.outputMode, this.numTokens, s);