@genai-fi/nanogpt 0.10.2 → 0.10.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (249) hide show
  1. package/dist/Generator.js +11761 -171
  2. package/dist/{RealDiv-zz7FpkKX.js → RealDiv-KAPDe8zB.js} +23 -25
  3. package/dist/Reshape-BYkmUnAv.js +14 -0
  4. package/dist/{Reshape-CHdUjC72.js → Reshape-Zt6eb7yh.js} +18 -20
  5. package/dist/TeachableLLM.js +10 -11
  6. package/dist/{axis_util-BsIr9ZNu.js → axis_util-BaG7mf5A.js} +3 -3
  7. package/dist/backend.js +2 -2
  8. package/dist/{backend_util-B1XRLuq9.js → backend_util-RCe-rHaj.js} +72 -73
  9. package/dist/{backend_webgpu-CqpfEImu.js → backend_webgpu-DE3ACOLx.js} +45 -47
  10. package/dist/broadcast_to-B3eYlZm7.js +28 -0
  11. package/dist/checks/appendCache.js +2 -2
  12. package/dist/checks/attentionMask.js +3 -3
  13. package/dist/checks/gelu.js +2 -2
  14. package/dist/checks/matMulGelu.js +7 -11
  15. package/dist/checks/normRMS.js +9 -9
  16. package/dist/checks/normRMSGrad.js +3 -3
  17. package/dist/checks/packUnpack.js +2 -2
  18. package/dist/checks/qkv.js +12 -13
  19. package/dist/checks/rope.js +2 -2
  20. package/dist/clip_by_value-BnO7-a88.js +12 -0
  21. package/dist/complex-DjxcVmoX.js +11 -0
  22. package/dist/concat-BV8bt5H-.js +17 -0
  23. package/dist/{concat_util-iBYIyuQe.js → concat_util-DpW8mL_l.js} +1 -1
  24. package/dist/{dataset-D2P7rHAw.js → dataset-BcwmTGYc.js} +137 -139
  25. package/dist/dropout-BcvN9JYi.js +92 -0
  26. package/dist/expand_dims-DT4tEPwA.js +11 -0
  27. package/dist/{exports_initializers-CZSUJoVE.js → exports_initializers-Hta_rEnm.js} +1 -1
  28. package/dist/floor-D5QdR_le.js +9 -0
  29. package/dist/gather-D3JcZUaI.js +9 -0
  30. package/dist/{gelu-Bmhopi0J.js → gelu-CjNPL4OH.js} +10 -11
  31. package/dist/{gpgpu_math-DsCcikas.js → gpgpu_math-DAOmgtXR.js} +841 -1015
  32. package/dist/{index-DRyE072i.js → index-BwexR4lA.js} +262 -263
  33. package/dist/index-DOvlwCh-.js +3520 -0
  34. package/dist/{kernel_funcs_utils-CWfOAPGO.js → kernel_funcs_utils-CCzYdUZg.js} +130 -132
  35. package/dist/layers/BaseLayer.js +15 -16
  36. package/dist/layers/CausalSelfAttention.js +6 -6
  37. package/dist/layers/MLP.js +4 -4
  38. package/dist/layers/PositionEmbedding.js +7 -7
  39. package/dist/layers/RMSNorm.js +3 -3
  40. package/dist/layers/RoPECache.js +9 -9
  41. package/dist/layers/TiedEmbedding.js +6 -6
  42. package/dist/layers/TransformerBlock.js +1 -1
  43. package/dist/loader/loadTransformers.js +1 -1
  44. package/dist/loader/oldZipLoad.js +13 -14
  45. package/dist/log_sum_exp-ngO0-4pK.js +39 -0
  46. package/dist/main.js +49 -50
  47. package/dist/{matMul16-fEAJ4smh.js → matMul16-BWRSOCWB.js} +14 -15
  48. package/dist/matMulGelu-CzfgT6Wq.js +163 -0
  49. package/dist/mat_mul-SjpJRLyL.js +11 -0
  50. package/dist/mod-AnXEvvpo.js +11 -0
  51. package/dist/models/NanoGPTV1.js +2 -2
  52. package/dist/models/model.js +13 -14
  53. package/dist/ones-D2rT0xk2.js +14 -0
  54. package/dist/ops/adamAdjust.js +1 -1
  55. package/dist/ops/adamMoments.js +1 -1
  56. package/dist/ops/add16.js +1 -1
  57. package/dist/ops/appendCache.js +3 -3
  58. package/dist/ops/attentionMask.js +1 -1
  59. package/dist/ops/concat16.js +2 -2
  60. package/dist/ops/cpu/adamAdjust.js +13 -14
  61. package/dist/ops/cpu/adamMoments.js +6 -7
  62. package/dist/ops/cpu/appendCache.js +7 -8
  63. package/dist/ops/cpu/attentionMask.js +7 -7
  64. package/dist/ops/cpu/fusedSoftmax.js +10 -11
  65. package/dist/ops/cpu/gatherSub.js +9 -10
  66. package/dist/ops/cpu/gelu.js +9 -10
  67. package/dist/ops/cpu/matMul16.js +6 -7
  68. package/dist/ops/cpu/matMulGelu.js +5 -6
  69. package/dist/ops/cpu/matMulMul.js +3 -4
  70. package/dist/ops/cpu/mulDropout.js +3 -4
  71. package/dist/ops/cpu/normRMS.js +10 -11
  72. package/dist/ops/cpu/qkv.js +8 -9
  73. package/dist/ops/cpu/rope.js +5 -6
  74. package/dist/ops/cpu/scatterSub.js +17 -19
  75. package/dist/ops/dot16.js +2 -2
  76. package/dist/ops/gatherSub.js +1 -1
  77. package/dist/ops/gelu.js +2 -2
  78. package/dist/ops/grads/add16.js +11 -12
  79. package/dist/ops/grads/attentionMask.js +5 -6
  80. package/dist/ops/grads/gelu.js +3 -4
  81. package/dist/ops/grads/matMul16.js +4 -5
  82. package/dist/ops/grads/matMulGelu.js +9 -10
  83. package/dist/ops/grads/normRMS.js +7 -8
  84. package/dist/ops/grads/pack16.js +4 -5
  85. package/dist/ops/grads/qkv.js +17 -19
  86. package/dist/ops/grads/rope.js +3 -5
  87. package/dist/ops/grads/softmax16.js +3 -4
  88. package/dist/ops/grads/unpack16.js +3 -4
  89. package/dist/ops/grads/utils.d.ts +1 -0
  90. package/dist/ops/grads/utils.js +8 -4
  91. package/dist/ops/matMul16.js +3 -3
  92. package/dist/ops/matMulGelu.js +2 -2
  93. package/dist/ops/matMulMul.js +1 -1
  94. package/dist/ops/mul16.js +1 -1
  95. package/dist/ops/mulDrop.js +1 -1
  96. package/dist/ops/normRMS.js +1 -1
  97. package/dist/ops/pack16.js +3 -4
  98. package/dist/ops/qkv.js +4 -8
  99. package/dist/ops/reshape16.js +14 -16
  100. package/dist/ops/rope.d.ts +1 -1
  101. package/dist/ops/rope.js +3 -8
  102. package/dist/ops/scatterSub.js +1 -1
  103. package/dist/ops/slice16.js +2 -2
  104. package/dist/ops/softmax16.js +5 -8
  105. package/dist/ops/sub16.js +1 -1
  106. package/dist/ops/sum16.js +2 -2
  107. package/dist/ops/transpose16.js +23 -24
  108. package/dist/ops/unpack16.js +2 -2
  109. package/dist/ops/webgl/adamAdjust.js +2 -3
  110. package/dist/ops/webgl/adamMoments.js +1 -2
  111. package/dist/ops/webgl/appendCache.js +1 -2
  112. package/dist/ops/webgl/attentionMask.js +4 -5
  113. package/dist/ops/webgl/fusedSoftmax.js +4 -6
  114. package/dist/ops/webgl/gatherSub.js +6 -7
  115. package/dist/ops/webgl/gelu.js +2 -3
  116. package/dist/ops/webgl/log.js +11 -12
  117. package/dist/ops/webgl/matMul16.js +10 -11
  118. package/dist/ops/webgl/matMulGelu.js +7 -111
  119. package/dist/ops/webgl/matMulMul.js +9 -10
  120. package/dist/ops/webgl/mulDropout.js +8 -9
  121. package/dist/ops/webgl/normRMS.js +2 -3
  122. package/dist/ops/webgl/qkv.js +5 -6
  123. package/dist/ops/webgl/rope.js +7 -8
  124. package/dist/ops/webgl/scatterSub.js +5 -6
  125. package/dist/ops/webgpu/adamAdjust.js +10 -12
  126. package/dist/ops/webgpu/adamMoments.js +8 -10
  127. package/dist/ops/webgpu/add16.js +8 -9
  128. package/dist/ops/webgpu/appendCache.js +23 -25
  129. package/dist/ops/webgpu/attentionMask.js +8 -10
  130. package/dist/ops/webgpu/attentionMask32_program.js +2 -2
  131. package/dist/ops/webgpu/concat16.js +12 -14
  132. package/dist/ops/webgpu/gatherSub.js +11 -13
  133. package/dist/ops/webgpu/gelu.js +28 -29
  134. package/dist/ops/webgpu/matMul16.js +26 -28
  135. package/dist/ops/webgpu/matMul16_program.js +4 -5
  136. package/dist/ops/webgpu/mul16.js +9 -10
  137. package/dist/ops/webgpu/normRMS.js +15 -17
  138. package/dist/ops/webgpu/normRMSGrad.js +21 -28
  139. package/dist/ops/webgpu/pack16.js +12 -13
  140. package/dist/ops/webgpu/pack16_program.js +2 -2
  141. package/dist/ops/webgpu/qkv.js +16 -18
  142. package/dist/ops/webgpu/rope.js +25 -27
  143. package/dist/ops/webgpu/scatterSub.js +7 -9
  144. package/dist/ops/webgpu/slice16.js +21 -23
  145. package/dist/ops/webgpu/softmax16.js +17 -19
  146. package/dist/ops/webgpu/softmax16_program.js +2 -2
  147. package/dist/ops/webgpu/softmax16_subgroup_program.js +2 -2
  148. package/dist/ops/webgpu/softmax16grad.js +7 -8
  149. package/dist/ops/webgpu/sub16.js +7 -8
  150. package/dist/ops/webgpu/sum16.js +18 -20
  151. package/dist/ops/webgpu/transpose16.js +19 -20
  152. package/dist/ops/webgpu/transpose16_program.js +2 -2
  153. package/dist/ops/webgpu/transpose16_shared_program.js +11 -12
  154. package/dist/ops/webgpu/unpack16.js +3 -4
  155. package/dist/ops/webgpu/utils/binary_op.js +7 -8
  156. package/dist/ops/webgpu/utils/reductions.js +14 -22
  157. package/dist/ops-B5yanEdW.js +476 -0
  158. package/dist/pack16-nQ6JaLo-.js +39 -0
  159. package/dist/patches/webgpu_backend.js +19 -20
  160. package/dist/patches/webgpu_base.js +1 -1
  161. package/dist/patches/webgpu_program.js +21 -22
  162. package/dist/{random_width-BVV9HveY.js → random_width-or-CEftb.js} +2506 -2761
  163. package/dist/range-BklejeeW.js +10 -0
  164. package/dist/relu-CP0ZcxWO.js +9 -0
  165. package/dist/reshape-ByE68wS9.js +9 -0
  166. package/dist/resize_nearest_neighbor-B19mCEg2.js +175 -0
  167. package/dist/rope-Ir4mTyD1.js +24 -0
  168. package/dist/{scatter_nd_util-C7zXRT_h.js → scatter_nd_util-lvSiX8q4.js} +1 -1
  169. package/dist/selu_util-kbhpTdYD.js +44 -0
  170. package/dist/{shared-CHhxz-O5.js → shared-DT1TkE6w.js} +1 -1
  171. package/dist/{shared-D2NP_CpY.js → shared-dntlHIDQ.js} +343 -345
  172. package/dist/slice-BfEGSH82.js +12 -0
  173. package/dist/{slice_util-DyjSAD0u.js → slice_util-uTKwiEpW.js} +1 -1
  174. package/dist/{softmax-C9JQEtnO.js → softmax-CA5jFsLR.js} +4 -5
  175. package/dist/split-CVLc0w--.js +9 -0
  176. package/dist/squeeze-C7Z2srUo.js +10 -0
  177. package/dist/stack-Cf4n9h0N.js +11 -0
  178. package/dist/step-CINUs5QB.js +261 -0
  179. package/dist/sum-DWAtNGez.js +11 -0
  180. package/dist/tensor-DJoc7gJU.js +8 -0
  181. package/dist/tensor1d-D11P_7Dp.js +11 -0
  182. package/dist/{tensor2d-CSB4KOb0.js → tensor2d-Bs9wZRc7.js} +6 -7
  183. package/dist/{tensor4d-D7bLqGqz.js → tensor4d-BARPdTaS.js} +6 -7
  184. package/dist/{tfjs_backend-CNkSTL0c.js → tfjs_backend-y1cvNhLA.js} +255 -264
  185. package/dist/tile-mbfagpsB.js +11 -0
  186. package/dist/training/Adam.js +2 -2
  187. package/dist/training/AdamExt.js +1 -1
  188. package/dist/training/DatasetBuilder.js +2 -2
  189. package/dist/training/FullTrainer.js +1 -1
  190. package/dist/training/Trainer.js +2 -2
  191. package/dist/training/sparseCrossEntropy.js +5 -5
  192. package/dist/transpose-ClWiBS_b.js +36 -0
  193. package/dist/unsorted_segment_sum-BDDhB_E6.js +277 -0
  194. package/dist/utilities/dummy.js +3 -3
  195. package/dist/utilities/multinomialCPU.js +2 -2
  196. package/dist/utilities/packed.d.ts +1 -4
  197. package/dist/utilities/packed.js +10 -745
  198. package/dist/utilities/performance.js +1 -1
  199. package/dist/utilities/profile.js +1 -1
  200. package/dist/utilities/safetensors.js +2 -2
  201. package/dist/utilities/sentences.js +5 -5
  202. package/dist/utilities/weights.js +2 -2
  203. package/dist/{variable-DzfrwYuP.js → variable-WawDEaAb.js} +1 -1
  204. package/dist/{webgpu_program-DzaQiqel.js → webgpu_program-DuOXPQol.js} +178 -172
  205. package/dist/{webgpu_util-0_ubCEHJ.js → webgpu_util-RxEF33Rj.js} +34 -35
  206. package/dist/zeros-KnWaWf-X.js +13 -0
  207. package/dist/zeros_like-DvE73F4e.js +721 -0
  208. package/package.json +4 -2
  209. package/dist/Reshape-CDVLyVfz.js +0 -16
  210. package/dist/broadcast_to-B0ChcDaz.js +0 -30
  211. package/dist/complex-BBiRlsVq.js +0 -13
  212. package/dist/concat-DmBLPVGC.js +0 -19
  213. package/dist/dropout-B1x1kYMa.js +0 -99
  214. package/dist/expand_dims-ouvfxQ1n.js +0 -13
  215. package/dist/gather-CH9sdacz.js +0 -10
  216. package/dist/index-D6Q1lPZO.js +0 -2157
  217. package/dist/log_sum_exp-D3ftBNY5.js +0 -41
  218. package/dist/mat_mul-C59XWcJd.js +0 -12
  219. package/dist/mod-DESSvHIU.js +0 -12
  220. package/dist/mulmat_packed_gpu-Coh6qbJk.js +0 -55
  221. package/dist/ones-jU9jlQvM.js +0 -15
  222. package/dist/ops-BFDtP6th.js +0 -645
  223. package/dist/pack16-CmVZs6af.js +0 -41
  224. package/dist/patches/PackedTensor.d.ts +0 -12
  225. package/dist/patches/PackedTensor.js +0 -11
  226. package/dist/patches/engine.d.ts +0 -261
  227. package/dist/patches/engine.js +0 -12
  228. package/dist/patches/tape.d.ts +0 -12
  229. package/dist/patches/tape.js +0 -5
  230. package/dist/range-ZZZD60Fx.js +0 -11
  231. package/dist/reciprocal-CrYlsAGD.js +0 -10
  232. package/dist/register_all_kernels-nvj2k7OC.js +0 -12307
  233. package/dist/relu-BYDneVPn.js +0 -10
  234. package/dist/reshape-CaPQzFvz.js +0 -10
  235. package/dist/rope-s4W2XO9B.js +0 -32
  236. package/dist/selu_util-BGPXmd4B.js +0 -303
  237. package/dist/sin-Djs4aQiu.js +0 -16
  238. package/dist/slice-DvovR5wq.js +0 -13
  239. package/dist/split-DBck65sX.js +0 -10
  240. package/dist/squeeze-C00Ipm_7.js +0 -11
  241. package/dist/stack-ChnHwRpX.js +0 -13
  242. package/dist/sum-ywRJj3Zr.js +0 -12
  243. package/dist/tensor-0r5yOo2R.js +0 -8
  244. package/dist/tensor-CzmOBsdf.js +0 -909
  245. package/dist/tensor1d-BlUT89BP.js +0 -12
  246. package/dist/tensor_util-DfwaWayG.js +0 -523
  247. package/dist/tile-CR074jmp.js +0 -13
  248. package/dist/transpose-DH4gmHvu.js +0 -38
  249. package/dist/zeros-DBFVbpv5.js +0 -14
@@ -1,27 +1,26 @@
1
- import { W as Mt } from "./backend_webgpu-CqpfEImu.js";
2
- import { f as Et, j, J as ke } from "./index-D6Q1lPZO.js";
3
- import { i as Ut, a as Ht, c as b, f as v, M as Y, b as at, d as rt, e as nt } from "./webgpu_util-0_ubCEHJ.js";
4
- import { e as X, a as L, N as Gt, Z as Xt, s as D, l as Ye, b as De, p as te, Y as Kt, g as qt, i as ut, j as Yt, z as dt, f as jt } from "./tensor-CzmOBsdf.js";
1
+ import { W as Mt } from "./backend_webgpu-DE3ACOLx.js";
2
+ import { f as Et, j as X, l as L, de as Ut, df as Ht, bZ as Gt, h as D, a3 as j, aX as Xt, ag as Ye, aQ as Kt, ac as qt, ak as fe, bR as Yt, c9 as jt, ca as Qt, bX as Zt, cQ as Jt, as as es, n as De, af as te, aS as ts, bo as ss, bp as os, bq as is, cb as as, cc as rs, cd as ns, ce as us, cf as ds, cg as ls, am as cs, b7 as hs, br as ps, cA as fs, cR as ms, cS as gs, M as xs, S as Cs, bt as ws, bf as ys, dg as Ss, b9 as bs, ar as vs, bU as ks, bV as Is, i as Rs, b_ as Ps, F as $s, cU as Ds, ap as Ns, H as zs, bv as As, cF as Fs, bw as Ws, cB as Ls, cV as Vs, cC as Bs, bx as Ts, by as _s, bh as Os, bz as Ms, bA as Es, cD as Us, ch as Hs, bB as Gs, cH as Xs, cI as Ks, dh as qs, ci as Ys, cW as js, cX as Qs, di as Zs, c2 as Js, Y as eo, bg as to, aI as so, cY as oo, bC as io, bD as ao, an as ro, I as no, b$ as uo, cr as lo, bi as co, J as ho, c0 as po, dj as fo, ad as at, bu as mo, cG as go, dk as xo, aj as Co, K as wo, at as ke, b1 as yo, b2 as So, cs as bo, cj as vo, ck as ko, cl as Io, aJ as Ro, b3 as Po, b4 as $o, dl as Do, ao as No, b5 as zo, b6 as Ao, bF as Fo, cn as Wo, cm as Lo, c_ as Vo, c1 as Bo, bG as To, cE as _o, c$ as Oo, d0 as Mo, dm as Eo, a$ as Uo, b8 as Ho, co as Go, N as Xo, Q as Ko, dn as qo, aq as Yo, bk as jo, bl as Qo, bH as Zo, d5 as Jo, bI as ei, W as ti, ab as si, bJ as oi, d1 as ii, aK as ai, c3 as ri, a2 as ni, aT as ui, cp as di, P as li, aL as ci, bd as hi, d2 as pi, be as fi, d3 as mi, bL as gi, bj as xi, ba as Ci, bM as wi, ai as yi, dp as Si, a_ as bi, bN as vi, aH as ki, cq as Ii, bO as Ri, bP as Pi, bE as $i, bK as Di, dq as Ni, dr as zi, T as Ai, ax as rt, ds as Fi, Z as Wi, U as Li, c5 as Vi, d4 as Bi, bb as Ti, aM as _i, ct as Oi, dt as Mi, c7 as Ei, cu as Ui, bs as Hi, du as Gi, cv as Xi, bn as Ki, bc as qi, bQ as Yi, p as ji } from "./index-DOvlwCh-.js";
3
+ import { i as Qi, a as Zi, c as b, f as v, M as Y, b as nt, d as ut, e as dt } from "./webgpu_util-RxEF33Rj.js";
5
4
  import { g as _e, B as F } from "./binary_op_util-pKXltfxI.js";
6
- import { S as Qt, a as Zt, h as Ce, i as Ne, j as we, d as Q, e as Oe, g as Me, k as lt } from "./selu_util-BGPXmd4B.js";
7
- import { E as Jt, t as es, u as ts, w as ss, x as os, y as is, f as je, z as ct, A as ht, B as pt, C as as, D as rs, F as ns, G as us, H as ds, I as ls, J as cs, K as hs, L as ps, M as fs, N as ms, O as gs } from "./backend_util-B1XRLuq9.js";
8
- import { t as W, e as S, h as Z, b as G, c as Ie, P as ft, d as xs, a as Cs } from "./webgpu_program-DzaQiqel.js";
9
- import { aa as ws, a2 as ys, I as Ss, h as bs, u as fe, a9 as vs, bi as ks, bj as Is, A as Rs, bk as Ps, H as $s, _ as Ds, aM as Ns, aN as zs, aO as As, bl as Fs, bm as Ws, bn as Ls, bp as Vs, bo as Bs, bq as Ts, y as _s, aq as Os, aP as Ms, aQ as Es, br as Us, bs as Hs, B as Gs, f as Xs, aS as Ks, ag as qs, bN as Ys, as as js, F as Qs, x as Zs, aG as Js, a1 as eo, a8 as to, D as so, C as oo, aU as io, be as ao, aV as ro, aW as no, bu as uo, aX as lo, l as co, aY as ho, aw as po, aZ as fo, a_ as mo, a$ as go, bO as xo, b0 as Co, bg as wo, bh as yo, bP as So, bv as bo, bw as vo, bx as ko, bQ as Io, a7 as Ro, g as Po, ai as $o, V as Do, by as No, aH as zo, b1 as Ao, z as Fo, E as Wo, aI as Lo, bR as Vo, ax as Bo, Q as To, a6 as _o, bS as Oo, aT as Mo, bf as Eo, bT as Uo, k as Ho, G as Go, ak as Xo, al as Ko, bU as qo, bz as Yo, bA as jo, bB as Qo, W as Zo, am as Jo, an as ei, bV as ti, L as si, ao as oi, ap as ii, b3 as ai, bW as ri, bE as ni, bD as ui, af as di, b4 as li, b5 as ci, bF as hi, bG as pi, bX as fi, aj as mi, ar as gi, bH as xi, M as Ci, S as wi, i as yi, N as Si, az as bi, aA as vi, b6 as ki, ab as Ii, b7 as Ri, P as Pi, b8 as $i, ac as Di, X as Ni, aJ as zi, R as Ai, $ as Fi, d as Wi, e as Li, Y as Vi, aC as Bi, bI as Ti, aD as _i, bJ as Oi, ba as Mi, ay as Ei, at as Ui, aK as Hi, j as Gi, bY as Xi, ah as Ki, bb as qi, U as Yi, bK as ji, n as Qi, bc as Zi, b2 as Ji, b9 as ea, bZ as ta, b_ as sa, T as oa, b$ as ia, c as aa, ad as ra, bL as na, au as ua, Z as da, c0 as la, c1 as ca, ae as ha, bM as pa, aR as fa, c2 as ma, c3 as ga, aE as xa, av as Ca, bd as wa, r as ya } from "./tensor_util-DfwaWayG.js";
10
- import { r as R, a as Sa } from "./Reshape-CDVLyVfz.js";
11
- import { s as ba } from "./shared-D2NP_CpY.js";
12
- import { c as Ee, a as ye, b as Se, d as Ue, e as va, g as mt } from "./axis_util-BsIr9ZNu.js";
13
- import { p as ka, a as Ia, b as Ra, d as Pa } from "./slice_util-DyjSAD0u.js";
14
- import { z as $a } from "./zeros-DBFVbpv5.js";
15
- import { c as me, a as Da } from "./concat_util-iBYIyuQe.js";
5
+ import { S as Ji, a as ea } from "./selu_util-kbhpTdYD.js";
6
+ import { E as ta, t as sa, u as oa, w as ia, x as aa, y as ra, f as je, z as lt, A as ct, B as ht, C as na, D as ua, F as da, G as la, H as ca, I as ha, J as pa, K as fa, L as ma, M as ga, N as xa, O as Ca } from "./backend_util-RCe-rHaj.js";
7
+ import { t as W, e as S, h as Q, b as G, c as Ie, P as pt, d as wa, a as ya } from "./webgpu_program-DuOXPQol.js";
8
+ import { r as R, a as Sa } from "./Reshape-BYkmUnAv.js";
9
+ import { s as ba } from "./shared-dntlHIDQ.js";
10
+ import { c as Oe, a as Ce, b as we, d as Me, e as va, g as ft } from "./axis_util-BaG7mf5A.js";
11
+ import { h as ye, i as Ne, j as Se, b as Z, d as Ee, g as Ue, k as mt } from "./step-CINUs5QB.js";
12
+ import { p as ka, a as Ia, b as Ra, d as Pa } from "./slice_util-uTKwiEpW.js";
13
+ import { z as $a } from "./zeros-KnWaWf-X.js";
14
+ import { c as me, a as Da } from "./concat_util-DpW8mL_l.js";
16
15
  import { n as Na, a as za } from "./non_max_suppression_impl-B2W7YjZB.js";
17
- import { c as He } from "./scatter_nd_util-C7zXRT_h.js";
18
- Ut() && Et(
16
+ import { c as He } from "./scatter_nd_util-lvSiX8q4.js";
17
+ Qi() && Et(
19
18
  "webgpu",
20
19
  async () => {
21
20
  const o = {
22
21
  powerPreference: X().get("WEBGPU_USE_LOW_POWER_GPU") ? "low-power" : "high-performance"
23
22
  }, t = await navigator.gpu.requestAdapter(o), e = {}, i = [];
24
- t.features.has("timestamp-query") && i.push("timestamp-query"), t.features.has("bgra8unorm-storage") && i.push(["bgra8unorm-storage"]), e.requiredFeatures = i;
23
+ t.features.has("timestamp-query") && i.push("timestamp-query"), t.features.has("bgra8unorm-storage") && i.push(["bgra8unorm-storage"]), t.features.has("subgroups") && i.push("subgroups"), e.requiredFeatures = i;
25
24
  const s = t.limits;
26
25
  e.requiredLimits = {
27
26
  maxComputeWorkgroupStorageSize: s.maxComputeWorkgroupStorageSize,
@@ -94,12 +93,12 @@ const Aa = "return abs(a);", Fa = `
94
93
  // Error function is calculated approximately with elementary function.
95
94
  // See "Handbook of Mathematical Functions with Formulas,
96
95
  // Graphs, and Mathematical Tables", Abramowitz and Stegun.
97
- let p = ${Jt};
98
- let a1 = ${es};
99
- let a2 = ${ts};
100
- let a3 = ${ss};
101
- let a4 = ${os};
102
- let a5 = ${is};
96
+ let p = ${ta};
97
+ let a1 = ${sa};
98
+ let a2 = ${oa};
99
+ let a3 = ${ia};
100
+ let a4 = ${aa};
101
+ let a5 = ${ra};
103
102
 
104
103
  let sign = sign(a);
105
104
  let absA = abs(a);
@@ -116,9 +115,9 @@ const Aa = "return abs(a);", Fa = `
116
115
  return select(a, vec4<f32>(0.0), a < vec4<f32>(0.0));
117
116
  `, dr = "return round(a);", lr = "return inverseSqrt(a);", cr = `
118
117
  if (a >= 0.0) {
119
- return ${Qt} * a;
118
+ return ${Ji} * a;
120
119
  } else {
121
- return ${Zt} * (exp(a) - 1.0);
120
+ return ${ea} * (exp(a) - 1.0);
122
121
  }
123
122
  `, hr = "return 1.0 / (1.0 + exp(-1.0 * a));", pr = "return sign(a);", fr = "return sin(a);", mr = `
124
123
  let e2x = exp(a);
@@ -604,7 +603,7 @@ class $r {
604
603
  if (this.isVec4 = (d % 4 === 0 && !i || e[1] % 4 === 0 && i) && e[2] % 4 === 0 && !s, this.outputComponent = this.isVec4 ? 4 : 1, this.isVectorA = e[1] === 1 && !i, !this.isVec4 && this.isVectorA)
605
604
  this.elementsPerThread = [1, 1, 1], this.workgroupSize = [32, 1, 1];
606
605
  else {
607
- const c = Ht(e[1], d, e[2], i);
606
+ const c = Zi(e[1], d, e[2], i);
608
607
  this.workgroupSize = c.workgroupSize, this.elementsPerThread = c.elementsPerThread;
609
608
  }
610
609
  this.dispatch = b(this.dispatchLayout, this.outputShape, this.workgroupSize, this.elementsPerThread);
@@ -773,7 +772,7 @@ class Fr {
773
772
  // The problem is that we should initialize output to zero before using.
774
773
  // Otherwise, the original value will be added to the result.
775
774
  for (var i = 0; i < ${t}; i = i + 1) {
776
- ${Z("&result[flatIndex + i]", `${t > 1 ? "value[i]" : "value"}`, "float32")}
775
+ ${Q("&result[flatIndex + i]", `${t > 1 ? "value[i]" : "value"}`, "float32")}
777
776
  }
778
777
  }
779
778
  }
@@ -816,8 +815,8 @@ class Lr {
816
815
  function M(o) {
817
816
  const { backend: t, attrs: e } = o, { shape: i, value: s } = e;
818
817
  let { dtype: a } = e;
819
- if (a = a || Gt(s), a === "string") {
820
- const r = Xt(a, D(i));
818
+ if (a = a || Ht(s), a === "string") {
819
+ const r = Gt(a, D(i));
821
820
  return r.fill(s), t.makeTensorInfo(i, a, r);
822
821
  } else {
823
822
  const r = new Lr(i), n = [{ type: "float32", data: [s] }];
@@ -825,7 +824,7 @@ function M(o) {
825
824
  }
826
825
  }
827
826
  const Vr = {
828
- kernelName: ws,
827
+ kernelName: Ut,
829
828
  backendName: "webgpu",
830
829
  kernelFunc: M
831
830
  };
@@ -897,7 +896,7 @@ function Br(o) {
897
896
  });
898
897
  }
899
898
  const Tr = {
900
- kernelName: ys,
899
+ kernelName: Xt,
901
900
  backendName: "webgpu",
902
901
  kernelFunc: Br
903
902
  };
@@ -983,7 +982,7 @@ function U(o) {
983
982
  return o.backend.incRef(e.dataId), { dataId: e.dataId, shape: e.shape, dtype: e.dtype };
984
983
  }
985
984
  const _r = {
986
- kernelName: Ss,
985
+ kernelName: Kt,
987
986
  backendName: "webgpu",
988
987
  kernelFunc: U
989
988
  };
@@ -992,7 +991,7 @@ function oe(o) {
992
991
  return r.complexTensorInfos = { real: n, imag: u }, a;
993
992
  }
994
993
  const Or = {
995
- kernelName: bs,
994
+ kernelName: qt,
996
995
  backendName: "webgpu",
997
996
  kernelFunc: oe
998
997
  };
@@ -1094,22 +1093,22 @@ function V({ opType: o, cpuKernelImpl: t, supportsComplex: e = !1, dtype: i }) {
1094
1093
  }
1095
1094
  const { addImpl: Mr, castImpl: Er, ceilImpl: Ur, concatImpl: Hr, equalImpl: Gr, expImpl: Xr, expm1Impl: Kr, floorImpl: qr, floorDivImpl: Yr, gatherNdImpl: jr, gatherV2Impl: Qr, greaterEqualImpl: Zr, greaterImpl: Jr, lessEqualImpl: en, lessImpl: tn, logImpl: sn, maxImpl: on, maximumImpl: an, minimumImpl: rn, multiplyImpl: nn, negImpl: un, notEqualImpl: dn, prodImpl: ln, rangeImpl: cn, rsqrtImpl: hn, scatterImpl: pn, simpleAbsImpl: fn, sliceImpl: mn, stridedSliceImpl: gn, stringNGramsImpl: xn, subImpl: Cn, tileImpl: wn, topKImpl: yn, transposeImpl: Sn } = ba;
1096
1095
  const bn = N({ opType: y.ABS, cpuKernelImpl: fn }), vn = {
1097
- kernelName: vs,
1096
+ kernelName: Yt,
1098
1097
  backendName: "webgpu",
1099
1098
  kernelFunc: bn
1100
1099
  };
1101
1100
  const kn = N({ opType: y.ACOS }), In = {
1102
- kernelName: ks,
1101
+ kernelName: jt,
1103
1102
  backendName: "webgpu",
1104
1103
  kernelFunc: kn
1105
1104
  };
1106
1105
  const Rn = N({ opType: y.ACOSH }), Pn = {
1107
- kernelName: Is,
1106
+ kernelName: Qt,
1108
1107
  backendName: "webgpu",
1109
1108
  kernelFunc: Rn
1110
1109
  };
1111
1110
  const $n = V({ opType: F.ADD, cpuKernelImpl: Mr, supportsComplex: !0 }), Dn = {
1112
- kernelName: Rs,
1111
+ kernelName: Zt,
1113
1112
  backendName: "webgpu",
1114
1113
  kernelFunc: $n
1115
1114
  };
@@ -1146,7 +1145,7 @@ function zn(o) {
1146
1145
  return e.runWebGPUProgram(r, i, s);
1147
1146
  }
1148
1147
  const An = {
1149
- kernelName: Ps,
1148
+ kernelName: Jt,
1150
1149
  backendName: "webgpu",
1151
1150
  kernelFunc: zn
1152
1151
  };
@@ -1232,14 +1231,14 @@ function K(o) {
1232
1231
  return r.runWebGPUProgram(d, [s], s.dtype);
1233
1232
  }
1234
1233
  const Ln = {
1235
- kernelName: $s,
1234
+ kernelName: es,
1236
1235
  backendName: "webgpu",
1237
1236
  kernelFunc: K
1238
1237
  };
1239
1238
  class Vn {
1240
1239
  constructor(t, e, i) {
1241
1240
  this.variableNames = ["x"], this.uniforms = "reduceSize : i32,", this.size = !0, this.inputShape = [t.batchSize, t.inSize];
1242
- const [s] = Ee(this.inputShape, [1]);
1241
+ const [s] = Oe(this.inputShape, [1]);
1243
1242
  this.outputShape = s.length === 0 ? [1] : s, t.inSize >= 32768 && i >= 512 ? this.workgroupSize = [512, 1, 1] : t.inSize >= 4096 ? this.workgroupSize = [256, 1, 1] : this.workgroupSize = [64, 1, 1], this.dispatchLayout = v(this.outputShape), this.dispatch = b(this.dispatchLayout, this.outputShape, [1, 1, 1]), this.reduceType = e, this.shaderKey = `reduce_${e}`;
1244
1243
  }
1245
1244
  getUserCode() {
@@ -1309,10 +1308,10 @@ const Bn = {
1309
1308
  function ie(o, t, e, i, s) {
1310
1309
  const a = o.shape.length, r = [], n = te(t, o.shape);
1311
1310
  let u = n;
1312
- const d = ye(u, a);
1311
+ const d = Ce(u, a);
1313
1312
  let h = o;
1314
- d != null && (h = K({ inputs: { x: o }, attrs: { perm: d }, backend: s }), u = Se(u.length, a), r.push(h)), Ue(i, u, a);
1315
- const [l, c] = Ee(h.shape, u);
1313
+ d != null && (h = K({ inputs: { x: o }, attrs: { perm: d }, backend: s }), u = we(u.length, a), r.push(h)), Me(i, u, a);
1314
+ const [l, c] = Oe(h.shape, u);
1316
1315
  let p = l;
1317
1316
  e && (p = va(l, n));
1318
1317
  let f;
@@ -1331,7 +1330,7 @@ function ie(o, t, e, i, s) {
1331
1330
  throw new Error(`${i} CPU implementation is not yet supported.`);
1332
1331
  }
1333
1332
  } else {
1334
- const m = D(c), x = D(h.shape) / m, C = { windowSize: m, inSize: m, batchSize: x, outSize: 1 }, w = Bn[i] || Ds(o.dtype), k = [
1333
+ const m = D(c), x = D(h.shape) / m, C = { windowSize: m, inSize: m, batchSize: x, outSize: 1 }, w = Bn[i] || ts(o.dtype), k = [
1335
1334
  { type: "int32", data: [m] }
1336
1335
  ], I = new Vn(C, i, s.device.limits.maxComputeWorkgroupSizeX), P = s.runWebGPUProgram(I, [h], w, k);
1337
1336
  r.push(P), f = R({ inputs: { x: P }, attrs: { shape: p }, backend: s });
@@ -1343,7 +1342,7 @@ function Tn(o) {
1343
1342
  return ie(s, r, a, "all", e);
1344
1343
  }
1345
1344
  const _n = {
1346
- kernelName: Ns,
1345
+ kernelName: ss,
1347
1346
  backendName: "webgpu",
1348
1347
  kernelFunc: Tn
1349
1348
  };
@@ -1352,7 +1351,7 @@ function On(o) {
1352
1351
  return ie(s, r, a, "any", e);
1353
1352
  }
1354
1353
  const Mn = {
1355
- kernelName: zs,
1354
+ kernelName: os,
1356
1355
  backendName: "webgpu",
1357
1356
  kernelFunc: On
1358
1357
  };
@@ -1361,7 +1360,7 @@ class Ct {
1361
1360
  this.workgroupSize = [64, 1, 1], this.variableNames = ["x"], this.uniforms = "infinityValue : f32,", this.size = !0;
1362
1361
  const s = [e];
1363
1362
  this.op = i === "min" ? "<" : ">";
1364
- const [a, r] = Ee(t, s);
1363
+ const [a, r] = Oe(t, s);
1365
1364
  this.outputShape = a.length === 0 ? [1] : a, this.dispatchLayout = v(this.outputShape), D(r) < 32 ? (this.type = "plain", this.dispatch = b(this.dispatchLayout, this.outputShape, this.workgroupSize)) : (this.type = "shared", this.dispatch = b(this.dispatchLayout, this.outputShape, [1, 1, 1])), this.inputShape = t, this.shaderKey = `argMinMax_${this.op}_${this.type}`;
1366
1365
  }
1367
1366
  getUserCode() {
@@ -1446,55 +1445,55 @@ class Ct {
1446
1445
  function En(o) {
1447
1446
  const { inputs: t, backend: e, attrs: i } = o, { x: s } = t, { axis: a } = i;
1448
1447
  let r = te(a, s.shape);
1449
- const n = ye(r, s.shape.length);
1448
+ const n = Ce(r, s.shape.length);
1450
1449
  let u = s;
1451
1450
  const d = [];
1452
- n != null && (u = K({ inputs: { x: s }, backend: e, attrs: { perm: n } }), d.push(u), r = Se(r.length, u.shape.length)), Ue("argMax", [r[0]], u.shape.length);
1451
+ n != null && (u = K({ inputs: { x: s }, backend: e, attrs: { perm: n } }), d.push(u), r = we(r.length, u.shape.length)), Me("argMax", [r[0]], u.shape.length);
1453
1452
  const h = new Ct(u.shape, r[0], "max"), l = [{ type: "float32", data: [Number.NEGATIVE_INFINITY] }], c = e.runWebGPUProgram(h, [u], "int32", l);
1454
1453
  return d.forEach((p) => e.disposeData(p.dataId)), c;
1455
1454
  }
1456
1455
  const Un = {
1457
- kernelName: As,
1456
+ kernelName: is,
1458
1457
  backendName: "webgpu",
1459
1458
  kernelFunc: En
1460
1459
  };
1461
1460
  function Hn(o) {
1462
1461
  const { inputs: t, backend: e, attrs: i } = o, { x: s } = t, { axis: a } = i;
1463
1462
  let r = te(a, s.shape);
1464
- const n = ye(r, s.shape.length);
1463
+ const n = Ce(r, s.shape.length);
1465
1464
  let u = s;
1466
1465
  const d = [];
1467
- n != null && (u = K({ inputs: { x: s }, backend: e, attrs: { perm: n } }), d.push(u), r = Se(r.length, u.shape.length)), Ue("argMin", [r[0]], u.shape.length);
1466
+ n != null && (u = K({ inputs: { x: s }, backend: e, attrs: { perm: n } }), d.push(u), r = we(r.length, u.shape.length)), Me("argMin", [r[0]], u.shape.length);
1468
1467
  const h = new Ct(u.shape, r[0], "min"), l = [{ type: "float32", data: [Number.POSITIVE_INFINITY] }], c = e.runWebGPUProgram(h, [u], "int32", l);
1469
1468
  return d.forEach((p) => e.disposeData(p.dataId)), c;
1470
1469
  }
1471
1470
  const Gn = {
1472
- kernelName: Fs,
1471
+ kernelName: as,
1473
1472
  backendName: "webgpu",
1474
1473
  kernelFunc: Hn
1475
1474
  };
1476
1475
  const Xn = N({ opType: y.ASIN }), Kn = {
1477
- kernelName: Ws,
1476
+ kernelName: rs,
1478
1477
  backendName: "webgpu",
1479
1478
  kernelFunc: Xn
1480
1479
  };
1481
1480
  const qn = N({ opType: y.ASINH }), Yn = {
1482
- kernelName: Ls,
1481
+ kernelName: ns,
1483
1482
  backendName: "webgpu",
1484
1483
  kernelFunc: qn
1485
1484
  };
1486
1485
  const jn = N({ opType: y.ATAN }), Qn = {
1487
- kernelName: Vs,
1486
+ kernelName: us,
1488
1487
  backendName: "webgpu",
1489
1488
  kernelFunc: jn
1490
1489
  };
1491
1490
  const Zn = V({ opType: F.ATAN2 }), Jn = {
1492
- kernelName: Bs,
1491
+ kernelName: ds,
1493
1492
  backendName: "webgpu",
1494
1493
  kernelFunc: Zn
1495
1494
  };
1496
1495
  const eu = N({ opType: y.ATANH }), tu = {
1497
- kernelName: Ts,
1496
+ kernelName: ls,
1498
1497
  backendName: "webgpu",
1499
1498
  kernelFunc: eu
1500
1499
  };
@@ -1642,7 +1641,7 @@ function wt(o) {
1642
1641
  return ie(s, a, r, "max", e);
1643
1642
  }
1644
1643
  const ou = {
1645
- kernelName: _s,
1644
+ kernelName: cs,
1646
1645
  backendName: "webgpu",
1647
1646
  kernelFunc: wt
1648
1647
  };
@@ -1651,7 +1650,7 @@ function yt(o) {
1651
1650
  return ie(s, r, a, "mean", e);
1652
1651
  }
1653
1652
  const iu = {
1654
- kernelName: Os,
1653
+ kernelName: hs,
1655
1654
  backendName: "webgpu",
1656
1655
  kernelFunc: yt
1657
1656
  };
@@ -1690,11 +1689,11 @@ function St(o, t, e, i) {
1690
1689
  })), i.runWebGPUProgram(s, [o], o.dtype, a);
1691
1690
  }
1692
1691
  function au(o) {
1693
- const { inputs: t, backend: e, attrs: i } = o, { x: s } = t, { filterSize: a, strides: r, pad: n, dimRoundingMode: u } = i, h = Ce(s.shape, a, r, 1, n, u);
1692
+ const { inputs: t, backend: e, attrs: i } = o, { x: s } = t, { filterSize: a, strides: r, pad: n, dimRoundingMode: u } = i, h = ye(s.shape, a, r, 1, n, u);
1694
1693
  return St(s, h, "avg", e);
1695
1694
  }
1696
1695
  const ru = {
1697
- kernelName: Ms,
1696
+ kernelName: ps,
1698
1697
  backendName: "webgpu",
1699
1698
  kernelFunc: au
1700
1699
  };
@@ -1724,7 +1723,7 @@ function nu(o) {
1724
1723
  return e.runWebGPUProgram(c, [s], s.dtype, p);
1725
1724
  }
1726
1725
  const uu = {
1727
- kernelName: Es,
1726
+ kernelName: fs,
1728
1727
  backendName: "webgpu",
1729
1728
  kernelFunc: nu
1730
1729
  };
@@ -1862,14 +1861,14 @@ function cu(o) {
1862
1861
  return e.runWebGPUProgram(c, [s], r.dtype, f);
1863
1862
  }
1864
1863
  const hu = {
1865
- kernelName: Us,
1864
+ kernelName: ms,
1866
1865
  backendName: "webgpu",
1867
1866
  kernelFunc: cu
1868
1867
  };
1869
1868
  function pu(o) {
1870
1869
  const { inputs: t, backend: e, attrs: i } = o, { dy: s, input: a } = t, r = a;
1871
- at([s, a], "avgPoolGrad");
1872
- const { filterSize: n, strides: u, pad: d } = i, h = Ce(r.shape, n, u, 1, d), l = new du(h), c = 1 / (h.filterHeight * h.filterWidth), p = [
1870
+ nt([s, a], "avgPoolGrad");
1871
+ const { filterSize: n, strides: u, pad: d } = i, h = ye(r.shape, n, u, 1, d), l = new du(h), c = 1 / (h.filterHeight * h.filterWidth), p = [
1873
1872
  { type: "int32", data: [h.strideHeight, h.strideWidth] },
1874
1873
  {
1875
1874
  type: "int32",
@@ -1890,7 +1889,7 @@ function pu(o) {
1890
1889
  return e.runWebGPUProgram(l, [s], r.dtype, p);
1891
1890
  }
1892
1891
  const fu = {
1893
- kernelName: Hs,
1892
+ kernelName: gs,
1894
1893
  backendName: "webgpu",
1895
1894
  kernelFunc: pu
1896
1895
  };
@@ -1899,7 +1898,7 @@ function mu(o) {
1899
1898
  return Fe({ a: s, b: a, transposeA: r, transposeB: n, backend: e });
1900
1899
  }
1901
1900
  const gu = {
1902
- kernelName: Gs,
1901
+ kernelName: xs,
1903
1902
  backendName: "webgpu",
1904
1903
  kernelFunc: mu
1905
1904
  };
@@ -1943,14 +1942,14 @@ function de(o) {
1943
1942
  return e.runWebGPUProgram(d, [s], s.dtype, h);
1944
1943
  }
1945
1944
  const wu = {
1946
- kernelName: Xs,
1945
+ kernelName: Cs,
1947
1946
  backendName: "webgpu",
1948
1947
  kernelFunc: de
1949
1948
  };
1950
1949
  const yu = (o) => {
1951
1950
  const { inputs: t, backend: e, attrs: i } = o, { x: s } = t, { blockShape: a, crops: r } = i;
1952
1951
  L(s.shape.length <= 4, () => "batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");
1953
- const n = a.reduce((C, w) => C * w), u = ct(s.shape, a, n), d = ht(u.length, a.length), h = pt(s.shape, a, n), l = as(r, a.length), c = rs(h, r, a.length), p = [], f = R({ inputs: { x: s }, backend: e, attrs: { shape: u } }), m = K({ inputs: { x: f }, backend: e, attrs: { perm: d } }), g = R({
1952
+ const n = a.reduce((C, w) => C * w), u = lt(s.shape, a, n), d = ct(u.length, a.length), h = ht(s.shape, a, n), l = na(r, a.length), c = ua(h, r, a.length), p = [], f = R({ inputs: { x: s }, backend: e, attrs: { shape: u } }), m = K({ inputs: { x: f }, backend: e, attrs: { perm: d } }), g = R({
1954
1953
  inputs: { x: m },
1955
1954
  backend: e,
1956
1955
  attrs: { shape: h }
@@ -1961,13 +1960,13 @@ const yu = (o) => {
1961
1960
  });
1962
1961
  return p.push(f), p.push(m), p.push(g), p.forEach((C) => e.disposeData(C.dataId)), x;
1963
1962
  }, Su = {
1964
- kernelName: Ks,
1963
+ kernelName: ws,
1965
1964
  backendName: "webgpu",
1966
1965
  kernelFunc: yu
1967
1966
  };
1968
1967
  const bu = `
1969
1968
  fn bincount_write(index: i32, value: f32) {
1970
- ${Z("&result[index]", "value", "float32")}
1969
+ ${Q("&result[index]", "value", "float32")}
1971
1970
  }
1972
1971
  `, vu = `
1973
1972
  fn bincount_write(index: i32, value: f32) {
@@ -2005,7 +2004,7 @@ function ku(o) {
2005
2004
  return e.runWebGPUProgram(p, m, l, f, c);
2006
2005
  }
2007
2006
  const Iu = {
2008
- kernelName: qs,
2007
+ kernelName: ys,
2009
2008
  backendName: "webgpu",
2010
2009
  kernelFunc: ku
2011
2010
  };
@@ -2052,7 +2051,7 @@ function Pu(o) {
2052
2051
  return e.runWebGPUProgram(u, [i, s], "int32", d);
2053
2052
  }
2054
2053
  const $u = {
2055
- kernelName: Ys,
2054
+ kernelName: Ss,
2056
2055
  backendName: "webgpu",
2057
2056
  kernelFunc: Pu
2058
2057
  };
@@ -2061,7 +2060,7 @@ const vt = V({
2061
2060
  dtype: "bool",
2062
2061
  cpuKernelImpl: dn
2063
2062
  }), Du = {
2064
- kernelName: js,
2063
+ kernelName: bs,
2065
2064
  backendName: "webgpu",
2066
2065
  kernelFunc: vt
2067
2066
  };
@@ -2070,7 +2069,7 @@ function be(o) {
2070
2069
  return U({ inputs: { x: s.complexTensorInfos.real }, backend: e });
2071
2070
  }
2072
2071
  const Nu = {
2073
- kernelName: Qs,
2072
+ kernelName: vs,
2074
2073
  backendName: "webgpu",
2075
2074
  kernelFunc: be
2076
2075
  };
@@ -2090,7 +2089,7 @@ function Be(o) {
2090
2089
  const r = be({ inputs: { input: s }, backend: e }), n = Be({ inputs: { x: r }, backend: e, attrs: { dtype: a } });
2091
2090
  return e.disposeData(r.dataId), n;
2092
2091
  }
2093
- if (!Kt(s.dtype, a)) {
2092
+ if (!Is(s.dtype, a)) {
2094
2093
  const r = U({ inputs: { x: s }, backend: e });
2095
2094
  return { dataId: r.dataId, shape: r.shape, dtype: a };
2096
2095
  }
@@ -2101,18 +2100,18 @@ function Be(o) {
2101
2100
  if (a === "int32")
2102
2101
  return zu(s, e);
2103
2102
  if (a === "bool") {
2104
- const r = e.makeTensorInfo([], "bool", qt("bool", 1)), u = vt({ inputs: { a: s, b: r }, backend: e });
2103
+ const r = e.makeTensorInfo([], "bool", Rs("bool", 1)), u = vt({ inputs: { a: s, b: r }, backend: e });
2105
2104
  return e.disposeData(r.dataId), u;
2106
2105
  }
2107
2106
  throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`);
2108
2107
  }
2109
2108
  const Au = {
2110
- kernelName: Zs,
2109
+ kernelName: ks,
2111
2110
  backendName: "webgpu",
2112
2111
  kernelFunc: Be
2113
2112
  };
2114
2113
  const Fu = N({ opType: y.CEIL, cpuKernelImpl: Ur }), Wu = {
2115
- kernelName: Js,
2114
+ kernelName: Ps,
2116
2115
  backendName: "webgpu",
2117
2116
  kernelFunc: Fu
2118
2117
  };
@@ -2163,7 +2162,7 @@ function Bu(o) {
2163
2162
  return D(s.shape) % 4 === 0 ? n = new Lu(s.shape) : n = new Vu(s.shape), e.runWebGPUProgram(n, [s], s.dtype, u);
2164
2163
  }
2165
2164
  const Tu = {
2166
- kernelName: eo,
2165
+ kernelName: $s,
2167
2166
  backendName: "webgpu",
2168
2167
  kernelFunc: Bu
2169
2168
  };
@@ -2202,7 +2201,7 @@ function Ou(o) {
2202
2201
  return e.runWebGPUProgram(a, r, r[0].dtype);
2203
2202
  }
2204
2203
  const Mu = {
2205
- kernelName: to,
2204
+ kernelName: Ds,
2206
2205
  backendName: "webgpu",
2207
2206
  kernelFunc: Ou
2208
2207
  };
@@ -2249,7 +2248,7 @@ function We(o) {
2249
2248
  return U({ inputs: { x: s.complexTensorInfos.imag }, backend: e });
2250
2249
  }
2251
2250
  const Uu = {
2252
- kernelName: so,
2251
+ kernelName: Ns,
2253
2252
  backendName: "webgpu",
2254
2253
  kernelFunc: We
2255
2254
  };
@@ -2317,7 +2316,7 @@ function kt(o) {
2317
2316
  return u.length === 1 ? U({ inputs: { x: u[0] }, backend: e }) : he(u, a, e);
2318
2317
  }
2319
2318
  const Gu = {
2320
- kernelName: oo,
2319
+ kernelName: zs,
2321
2320
  backendName: "webgpu",
2322
2321
  kernelFunc: kt
2323
2322
  };
@@ -2411,7 +2410,7 @@ function Xu(o, t, e, i, s = !1, a = null, r = !1, n = 4, u = 4, d = 4) {
2411
2410
  }
2412
2411
  class Ku {
2413
2412
  constructor(t, e, i, s, a = !1, r = null, n = !1, u = !1) {
2414
- this.variableNames = ["x", "W"], this.uniforms = "filterDims : vec2<i32>, pads : vec2<i32>, strides : vec2<i32>, dilations : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,", this.outputShape = t.outShape, this.isChannelsLast = t.dataFormat === "channelsLast", this.isVec4 = ((t.inChannels % 4 === 0 || t.inChannels % 3 === 0) && this.isChannelsLast || t.outWidth % 4 === 0 && !this.isChannelsLast) && t.outChannels % 4 === 0, this.dispatchLayout = this.isChannelsLast ? { x: [3], y: [1, 2], z: [0] } : { x: [2, 3], y: [1], z: [0] }, this.workgroupSize = rt(this.dispatchLayout, this.outputShape, this.isVec4), this.elementsPerThread = nt(this.dispatchLayout, this.outputShape, this.isVec4), this.dispatch = b(this.dispatchLayout, this.outputShape, this.workgroupSize, this.elementsPerThread), this.isVec4 ? (this.outputComponent = 4, this.isChannelsLast && t.inChannels % 4 !== 0 ? (this.innerElementSize = 3, this.variableComponents = [1, 4]) : (this.innerElementSize = 4, this.variableComponents = [4, 4]), a && (this.variableNames.push("bias"), this.variableComponents.push(4)), n && (this.variableNames.push("preluActivationWeights"), this.variableComponents.push(4))) : (this.innerElementSize = this.elementsPerThread[0], a && this.variableNames.push("bias"), n && this.variableNames.push("preluActivationWeights")), this.sequentialAccessByThreads = u, this.addBias = a, this.activation = r, this.hasPreluActivationWeights = n, this.tileAOuter = this.workgroupSize[1] * this.elementsPerThread[1], this.tileBOuter = this.workgroupSize[0] * this.elementsPerThread[0], this.tileInner = Math.max(this.workgroupSize[0] * this.innerElementSize, this.workgroupSize[1]), this.fitAOuter = e % this.tileAOuter === 0, this.fitBOuter = i % this.tileBOuter === 0, this.fitInner = s % this.tileInner === 0, this.shaderKey = `conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}_${this.sequentialAccessByThreads}`;
2413
+ this.variableNames = ["x", "W"], this.uniforms = "filterDims : vec2<i32>, pads : vec2<i32>, strides : vec2<i32>, dilations : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,", this.outputShape = t.outShape, this.isChannelsLast = t.dataFormat === "channelsLast", this.isVec4 = ((t.inChannels % 4 === 0 || t.inChannels % 3 === 0) && this.isChannelsLast || t.outWidth % 4 === 0 && !this.isChannelsLast) && t.outChannels % 4 === 0, this.dispatchLayout = this.isChannelsLast ? { x: [3], y: [1, 2], z: [0] } : { x: [2, 3], y: [1], z: [0] }, this.workgroupSize = ut(this.dispatchLayout, this.outputShape, this.isVec4), this.elementsPerThread = dt(this.dispatchLayout, this.outputShape, this.isVec4), this.dispatch = b(this.dispatchLayout, this.outputShape, this.workgroupSize, this.elementsPerThread), this.isVec4 ? (this.outputComponent = 4, this.isChannelsLast && t.inChannels % 4 !== 0 ? (this.innerElementSize = 3, this.variableComponents = [1, 4]) : (this.innerElementSize = 4, this.variableComponents = [4, 4]), a && (this.variableNames.push("bias"), this.variableComponents.push(4)), n && (this.variableNames.push("preluActivationWeights"), this.variableComponents.push(4))) : (this.innerElementSize = this.elementsPerThread[0], a && this.variableNames.push("bias"), n && this.variableNames.push("preluActivationWeights")), this.sequentialAccessByThreads = u, this.addBias = a, this.activation = r, this.hasPreluActivationWeights = n, this.tileAOuter = this.workgroupSize[1] * this.elementsPerThread[1], this.tileBOuter = this.workgroupSize[0] * this.elementsPerThread[0], this.tileInner = Math.max(this.workgroupSize[0] * this.innerElementSize, this.workgroupSize[1]), this.fitAOuter = e % this.tileAOuter === 0, this.fitBOuter = i % this.tileBOuter === 0, this.fitInner = s % this.tileInner === 0, this.shaderKey = `conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}_${this.sequentialAccessByThreads}`;
2415
2414
  }
2416
2415
  getUserCode() {
2417
2416
  const t = this.isVec4 ? ze(this.elementsPerThread, this.workgroupSize, !this.isChannelsLast, this.tileInner) : Ae(this.elementsPerThread, this.workgroupSize, !this.isChannelsLast, this.tileInner, !1, null, this.sequentialAccessByThreads), e = this.isVec4 ? [this.innerElementSize, 4, 4] : [1, 1, 1];
@@ -2675,11 +2674,11 @@ function It({ x: o, filter: t, convInfo: e, backend: i, bias: s = null, preluAct
2675
2674
  return I;
2676
2675
  }
2677
2676
  function Zu(o) {
2678
- const { inputs: t, attrs: e, backend: i } = o, { x: s, filter: a } = t, { strides: r, pad: n, dataFormat: u, dilations: d, dimRoundingMode: h } = e, l = we(u), c = Q(s.shape, a.shape, r, d, n, h, !1, l);
2677
+ const { inputs: t, attrs: e, backend: i } = o, { x: s, filter: a } = t, { strides: r, pad: n, dataFormat: u, dilations: d, dimRoundingMode: h } = e, l = Se(u), c = Z(s.shape, a.shape, r, d, n, h, !1, l);
2679
2678
  return It({ x: s, filter: a, convInfo: c, backend: i });
2680
2679
  }
2681
2680
  const Ju = {
2682
- kernelName: io,
2681
+ kernelName: As,
2683
2682
  backendName: "webgpu",
2684
2683
  kernelFunc: Zu
2685
2684
  };
@@ -2996,7 +2995,7 @@ class od {
2996
2995
  }
2997
2996
  }
2998
2997
  function id(o) {
2999
- const { inputs: t, backend: e, attrs: i } = o, { x: s, dy: a } = t, { strides: r, pad: n, dataFormat: u, dimRoundingMode: d, filterShape: h } = i, l = we(u), c = Q(s.shape, h, r, 1, n, d, !1, l), p = new td(c), f = [
2998
+ const { inputs: t, backend: e, attrs: i } = o, { x: s, dy: a } = t, { strides: r, pad: n, dataFormat: u, dimRoundingMode: d, filterShape: h } = i, l = Se(u), c = Z(s.shape, h, r, 1, n, d, !1, l), p = new td(c), f = [
3000
2999
  { type: "int32", data: [c.padInfo.top, c.padInfo.left] },
3001
3000
  { type: "int32", data: [c.strideHeight, c.strideWidth] },
3002
3001
  { type: "int32", data: [c.batchSize] },
@@ -3008,7 +3007,7 @@ function id(o) {
3008
3007
  return e.runWebGPUProgram(p, [s, a], s.dtype, f);
3009
3008
  }
3010
3009
  const ad = {
3011
- kernelName: ao,
3010
+ kernelName: Fs,
3012
3011
  backendName: "webgpu",
3013
3012
  kernelFunc: id
3014
3013
  };
@@ -3087,7 +3086,7 @@ function rd(o = 4) {
3087
3086
  }
3088
3087
  class nd {
3089
3088
  constructor(t) {
3090
- this.variableNames = ["x", "W"], this.uniforms = "filterDims : vec2<i32>, pads : vec2<i32>, strides : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,", this.outputShape = t.inShape, L(t.dataFormat === "channelsLast", () => "TODO: NCHW is unimplemented"), this.isVec4 = t.inChannels % 4 === 0 && t.outChannels % 4 === 0, this.dispatchLayout = { x: [3], y: [1, 2], z: [0] }, this.workgroupSize = rt(this.dispatchLayout, this.outputShape, this.isVec4), this.elementsPerThread = nt(this.dispatchLayout, this.outputShape, this.isVec4), this.dispatch = b(this.dispatchLayout, this.outputShape, this.workgroupSize, this.elementsPerThread), this.isVec4 && (this.outputComponent = 4, this.variableComponents = [4, 1]), this.shaderKey = `conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}`;
3089
+ this.variableNames = ["x", "W"], this.uniforms = "filterDims : vec2<i32>, pads : vec2<i32>, strides : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,", this.outputShape = t.inShape, L(t.dataFormat === "channelsLast", () => "TODO: NCHW is unimplemented"), this.isVec4 = t.inChannels % 4 === 0 && t.outChannels % 4 === 0, this.dispatchLayout = { x: [3], y: [1, 2], z: [0] }, this.workgroupSize = ut(this.dispatchLayout, this.outputShape, this.isVec4), this.elementsPerThread = dt(this.dispatchLayout, this.outputShape, this.isVec4), this.dispatch = b(this.dispatchLayout, this.outputShape, this.workgroupSize, this.elementsPerThread), this.isVec4 && (this.outputComponent = 4, this.variableComponents = [4, 1]), this.shaderKey = `conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}`;
3091
3090
  }
3092
3091
  getUserCode() {
3093
3092
  const t = this.isVec4 ? ze(this.elementsPerThread, this.workgroupSize) : Ae(this.elementsPerThread, this.workgroupSize);
@@ -3098,7 +3097,7 @@ class nd {
3098
3097
  }
3099
3098
  }
3100
3099
  function ud(o) {
3101
- const { inputs: t, backend: e, attrs: i } = o, { dy: s, filter: a } = t, { inputShape: r, strides: n, pad: u, dataFormat: d, dimRoundingMode: h } = i, l = we(d), c = Q(r, a.shape, n, 1, u, h, !1, l), p = [
3100
+ const { inputs: t, backend: e, attrs: i } = o, { dy: s, filter: a } = t, { inputShape: r, strides: n, pad: u, dataFormat: d, dimRoundingMode: h } = i, l = Se(d), c = Z(r, a.shape, n, 1, u, h, !1, l), p = [
3102
3101
  { type: "int32", data: [c.filterHeight, c.filterWidth] },
3103
3102
  {
3104
3103
  type: "int32",
@@ -3129,7 +3128,7 @@ function ud(o) {
3129
3128
  return e.runWebGPUProgram(f, [s, a], "float32", p);
3130
3129
  }
3131
3130
  const dd = {
3132
- kernelName: ro,
3131
+ kernelName: Ws,
3133
3132
  backendName: "webgpu",
3134
3133
  kernelFunc: ud
3135
3134
  };
@@ -3224,7 +3223,7 @@ class ld {
3224
3223
  }
3225
3224
  }
3226
3225
  function cd(o) {
3227
- const { inputs: t, backend: e, attrs: i } = o, { x: s, filter: a } = t, { strides: r, pad: n, dilations: u } = i, d = Oe(s.shape, a.shape, r, u, n), h = [d.padInfo.front, d.padInfo.top, d.padInfo.left], l = [
3226
+ const { inputs: t, backend: e, attrs: i } = o, { x: s, filter: a } = t, { strides: r, pad: n, dilations: u } = i, d = Ee(s.shape, a.shape, r, u, n), h = [d.padInfo.front, d.padInfo.top, d.padInfo.left], l = [
3228
3227
  {
3229
3228
  type: "int32",
3230
3229
  data: [d.filterDepth, d.filterHeight, d.filterWidth]
@@ -3246,12 +3245,12 @@ function cd(o) {
3246
3245
  return e.runWebGPUProgram(c, [s, a], p, l);
3247
3246
  }
3248
3247
  const hd = {
3249
- kernelName: no,
3248
+ kernelName: Ls,
3250
3249
  backendName: "webgpu",
3251
3250
  kernelFunc: cd
3252
3251
  };
3253
3252
  function pd(o) {
3254
- const { inputs: t, backend: e, attrs: i } = o, { x: s, dy: a } = t, { strides: r, pad: n, filterShape: u } = i, d = Oe(s.shape, u, r, 1, n), h = new sd(d), l = [
3253
+ const { inputs: t, backend: e, attrs: i } = o, { x: s, dy: a } = t, { strides: r, pad: n, filterShape: u } = i, d = Ee(s.shape, u, r, 1, n), h = new sd(d), l = [
3255
3254
  {
3256
3255
  type: "int32",
3257
3256
  data: [d.padInfo.front, d.padInfo.top, d.padInfo.left]
@@ -3271,12 +3270,12 @@ function pd(o) {
3271
3270
  return e.runWebGPUProgram(h, [s, a], a.dtype, l);
3272
3271
  }
3273
3272
  const fd = {
3274
- kernelName: uo,
3273
+ kernelName: Vs,
3275
3274
  backendName: "webgpu",
3276
3275
  kernelFunc: pd
3277
3276
  };
3278
3277
  function md(o) {
3279
- const { inputs: t, backend: e, attrs: i } = o, { dy: s, filter: a } = t, { strides: r, pad: n, inputShape: u } = i, d = Oe(u, a.shape, r, 1, n), h = new od(d), l = [
3278
+ const { inputs: t, backend: e, attrs: i } = o, { dy: s, filter: a } = t, { strides: r, pad: n, inputShape: u } = i, d = Ee(u, a.shape, r, 1, n), h = new od(d), l = [
3280
3279
  {
3281
3280
  type: "int32",
3282
3281
  data: [d.filterDepth, d.filterHeight, d.filterWidth]
@@ -3301,17 +3300,17 @@ function md(o) {
3301
3300
  return e.runWebGPUProgram(h, [s, a], s.dtype, l);
3302
3301
  }
3303
3302
  const gd = {
3304
- kernelName: lo,
3303
+ kernelName: Bs,
3305
3304
  backendName: "webgpu",
3306
3305
  kernelFunc: md
3307
3306
  };
3308
3307
  const xd = N({ opType: y.COS }), Cd = {
3309
- kernelName: co,
3308
+ kernelName: Ts,
3310
3309
  backendName: "webgpu",
3311
3310
  kernelFunc: xd
3312
3311
  };
3313
3312
  const wd = N({ opType: y.COSH }), yd = {
3314
- kernelName: ho,
3313
+ kernelName: _s,
3315
3314
  backendName: "webgpu",
3316
3315
  kernelFunc: wd
3317
3316
  };
@@ -3402,7 +3401,7 @@ const bd = (o) => {
3402
3401
  const { inputs: t, backend: e, attrs: i } = o, { image: s, boxes: a, boxInd: r } = t, { cropSize: n, method: u, extrapolationValue: d } = i, h = new Sd(s.shape[3], a.shape, n, u), l = [{ type: "float32", data: [d] }];
3403
3402
  return e.runWebGPUProgram(h, [s, a, r], "float32", l);
3404
3403
  }, vd = {
3405
- kernelName: po,
3404
+ kernelName: Os,
3406
3405
  backendName: "webgpu",
3407
3406
  kernelFunc: bd
3408
3407
  };
@@ -3459,10 +3458,10 @@ function st(o, t, e) {
3459
3458
  throw Error(`Cumulative ${e} for rank ${o} is not yet supported`);
3460
3459
  }
3461
3460
  function Rt(o, t, e, i, s, a) {
3462
- const r = t.shape.length, n = ye([i], r);
3461
+ const r = t.shape.length, n = Ce([i], r);
3463
3462
  let u = t;
3464
3463
  n != null && (u = K({ inputs: { x: t }, backend: e, attrs: { perm: n } }));
3465
- const d = Se(1, r)[0];
3464
+ const d = we(1, r)[0];
3466
3465
  if (d !== r - 1)
3467
3466
  throw new Error(`WebGPU cumprod shader expects an inner-most axis=${t.shape.length - 1} but got axis=${i}`);
3468
3467
  const h = u.shape[d];
@@ -3476,7 +3475,7 @@ function Rt(o, t, e, i, s, a) {
3476
3475
  l = e.runWebGPUProgram(c, [l], l.dtype, f), e.disposeData(p.dataId);
3477
3476
  }
3478
3477
  if (n != null) {
3479
- const c = mt(n), p = K({ inputs: { x: l }, backend: e, attrs: { perm: c } });
3478
+ const c = ft(n), p = K({ inputs: { x: l }, backend: e, attrs: { perm: c } });
3480
3479
  return e.disposeData(l.dataId), e.disposeData(u.dataId), p;
3481
3480
  }
3482
3481
  return l;
@@ -3486,7 +3485,7 @@ function kd(o) {
3486
3485
  return Rt(xe.Prod, s, e, a, r, n);
3487
3486
  }
3488
3487
  const Id = {
3489
- kernelName: fo,
3488
+ kernelName: Ms,
3490
3489
  backendName: "webgpu",
3491
3490
  kernelFunc: kd
3492
3491
  };
@@ -3495,7 +3494,7 @@ function Rd(o) {
3495
3494
  return Rt(xe.Sum, s, e, a, r, n);
3496
3495
  }
3497
3496
  const Pd = {
3498
- kernelName: mo,
3497
+ kernelName: Es,
3499
3498
  backendName: "webgpu",
3500
3499
  kernelFunc: Rd
3501
3500
  };
@@ -3504,7 +3503,7 @@ function $d(o) {
3504
3503
  return e.runWebGPUProgram(m, x, l, g, f);
3505
3504
  }
3506
3505
  const Dd = {
3507
- kernelName: go,
3506
+ kernelName: Us,
3508
3507
  backendName: "webgpu",
3509
3508
  kernelFunc: $d
3510
3509
  };
@@ -3558,7 +3557,7 @@ function zd(o) {
3558
3557
  return e.runWebGPUProgram(g, [s], s.dtype, m);
3559
3558
  }
3560
3559
  const Ad = {
3561
- kernelName: xo,
3560
+ kernelName: Hs,
3562
3561
  backendName: "webgpu",
3563
3562
  kernelFunc: zd
3564
3563
  };
@@ -3781,10 +3780,10 @@ class $t {
3781
3780
  }
3782
3781
  }
3783
3782
  function Wd(o) {
3784
- const { inputs: t, backend: e, attrs: i } = o, { x: s, filter: a } = t, { strides: r, pad: n, dataFormat: u, dilations: d, dimRoundingMode: h } = i, l = we(u);
3783
+ const { inputs: t, backend: e, attrs: i } = o, { x: s, filter: a } = t, { strides: r, pad: n, dataFormat: u, dilations: d, dimRoundingMode: h } = i, l = Se(u);
3785
3784
  let c = d;
3786
3785
  c == null && (c = [1, 1]);
3787
- const p = Q(s.shape, a.shape, r, c, n, h, !0, l), f = [
3786
+ const p = Z(s.shape, a.shape, r, c, n, h, !0, l), f = [
3788
3787
  { type: "int32", data: [p.padInfo.top, p.padInfo.left] },
3789
3788
  { type: "int32", data: [p.inHeight, p.inWidth] }
3790
3789
  ], m = p.dataFormat === "channelsLast";
@@ -3795,7 +3794,7 @@ function Wd(o) {
3795
3794
  })), e.runWebGPUProgram(g, [s, a], s.dtype, f);
3796
3795
  }
3797
3796
  const Ld = {
3798
- kernelName: Co,
3797
+ kernelName: Gs,
3799
3798
  backendName: "webgpu",
3800
3799
  kernelFunc: Wd
3801
3800
  };
@@ -3895,7 +3894,7 @@ class Bd {
3895
3894
  }
3896
3895
  }
3897
3896
  function Td(o) {
3898
- const { inputs: t, backend: e, attrs: i } = o, { x: s, dy: a } = t, { strides: r, dilations: n, pad: u, dimRoundingMode: d, filterShape: h } = i, l = Q(
3897
+ const { inputs: t, backend: e, attrs: i } = o, { x: s, dy: a } = t, { strides: r, dilations: n, pad: u, dimRoundingMode: d, filterShape: h } = i, l = Z(
3899
3898
  s.shape,
3900
3899
  h,
3901
3900
  r,
@@ -3918,12 +3917,12 @@ function Td(o) {
3918
3917
  return e.runWebGPUProgram(c, [s, a], "float32", p);
3919
3918
  }
3920
3919
  const _d = {
3921
- kernelName: wo,
3920
+ kernelName: Xs,
3922
3921
  backendName: "webgpu",
3923
3922
  kernelFunc: Td
3924
3923
  };
3925
3924
  function Od(o) {
3926
- const { inputs: t, backend: e, attrs: i } = o, { dy: s, filter: a } = t, { strides: r, dilations: n, pad: u, dimRoundingMode: d, inputShape: h } = i, l = Q(
3925
+ const { inputs: t, backend: e, attrs: i } = o, { dy: s, filter: a } = t, { strides: r, dilations: n, pad: u, dimRoundingMode: d, inputShape: h } = i, l = Z(
3927
3926
  h,
3928
3927
  a.shape,
3929
3928
  r,
@@ -3949,7 +3948,7 @@ function Od(o) {
3949
3948
  return e.runWebGPUProgram(c, [s, a], s.dtype, p);
3950
3949
  }
3951
3950
  const Md = {
3952
- kernelName: yo,
3951
+ kernelName: Ks,
3953
3952
  backendName: "webgpu",
3954
3953
  kernelFunc: Od
3955
3954
  };
@@ -3974,7 +3973,7 @@ function Ud(o) {
3974
3973
  return e.disposeData(r.dataId), e.disposeData(u.dataId), d;
3975
3974
  }
3976
3975
  const Hd = {
3977
- kernelName: So,
3976
+ kernelName: qs,
3978
3977
  backendName: "webgpu",
3979
3978
  kernelFunc: Ud
3980
3979
  };
@@ -4019,7 +4018,7 @@ class Gd {
4019
4018
  }
4020
4019
  }
4021
4020
  function Xd(o) {
4022
- const { inputs: t, backend: e, attrs: i } = o, { x: s, filter: a } = t, { strides: r, pad: n, dilations: u } = i, d = Me(s.shape, a.shape, r, n, "NHWC", u), h = [d.padInfo.top, d.padInfo.left], l = [
4021
+ const { inputs: t, backend: e, attrs: i } = o, { x: s, filter: a } = t, { strides: r, pad: n, dilations: u } = i, d = Ue(s.shape, a.shape, r, n, "NHWC", u), h = [d.padInfo.top, d.padInfo.left], l = [
4023
4022
  { type: "int32", data: [d.filterHeight, d.filterWidth] },
4024
4023
  { type: "int32", data: [...h] },
4025
4024
  { type: "int32", data: [d.strideHeight, d.strideWidth] },
@@ -4028,7 +4027,7 @@ function Xd(o) {
4028
4027
  return e.runWebGPUProgram(c, [s, a], s.dtype, l);
4029
4028
  }
4030
4029
  const Kd = {
4031
- kernelName: bo,
4030
+ kernelName: Ys,
4032
4031
  backendName: "webgpu",
4033
4032
  kernelFunc: Xd
4034
4033
  };
@@ -4080,7 +4079,7 @@ class qd {
4080
4079
  let flatIndexIn = d + uniforms.xShape[3] *
4081
4080
  (xCMax + uniforms.xShape[2] * (xRMax + uniforms.xShape[1] * b));
4082
4081
  let value = getDy(b, r, c, d);
4083
- ${Z("&result[flatIndexIn]", "value", this.type)}
4082
+ ${Q("&result[flatIndexIn]", "value", this.type)}
4084
4083
  }
4085
4084
  }
4086
4085
  `;
@@ -4133,14 +4132,14 @@ class Yd {
4133
4132
 
4134
4133
  let flatIndexIn = d + uniforms.wShape[2] * (wCMax + wRMax * uniforms.wShape[1]);
4135
4134
  let value = getDy(b, r, c, d);
4136
- ${Z("&result[flatIndexIn]", "value", this.type)}
4135
+ ${Q("&result[flatIndexIn]", "value", this.type)}
4137
4136
  }
4138
4137
  }
4139
4138
  `;
4140
4139
  }
4141
4140
  }
4142
4141
  function jd(o) {
4143
- const { inputs: t, backend: e, attrs: i } = o, { x: s, filter: a, dy: r } = t, { strides: n, pad: u, dilations: d } = i, h = Me(s.shape, a.shape, n, u, "NHWC", d), l = a.dtype, c = new Yd(h, a.shape, l), p = [
4142
+ const { inputs: t, backend: e, attrs: i } = o, { x: s, filter: a, dy: r } = t, { strides: n, pad: u, dilations: d } = i, h = Ue(s.shape, a.shape, n, u, "NHWC", d), l = a.dtype, c = new Yd(h, a.shape, l), p = [
4144
4143
  { type: "int32", data: [h.filterHeight, h.filterWidth] },
4145
4144
  { type: "int32", data: [h.padInfo.top, h.padInfo.left] },
4146
4145
  { type: "int32", data: [h.strideHeight, h.strideWidth] },
@@ -4150,12 +4149,12 @@ function jd(o) {
4150
4149
  return e.runWebGPUProgram(c, [s, a, r], l, p, f);
4151
4150
  }
4152
4151
  const Qd = {
4153
- kernelName: vo,
4152
+ kernelName: js,
4154
4153
  backendName: "webgpu",
4155
4154
  kernelFunc: jd
4156
4155
  };
4157
4156
  function Zd(o) {
4158
- const { inputs: t, backend: e, attrs: i } = o, { x: s, filter: a, dy: r } = t, { strides: n, pad: u, dilations: d } = i, h = Me(s.shape, a.shape, n, u, "NHWC", d), l = s.dtype, c = new qd(h, l), p = [
4157
+ const { inputs: t, backend: e, attrs: i } = o, { x: s, filter: a, dy: r } = t, { strides: n, pad: u, dilations: d } = i, h = Ue(s.shape, a.shape, n, u, "NHWC", d), l = s.dtype, c = new qd(h, l), p = [
4159
4158
  { type: "int32", data: [h.filterHeight, h.filterWidth] },
4160
4159
  { type: "int32", data: [h.padInfo.top, h.padInfo.left] },
4161
4160
  { type: "int32", data: [h.strideHeight, h.strideWidth] },
@@ -4165,13 +4164,13 @@ function Zd(o) {
4165
4164
  return e.runWebGPUProgram(c, [s, a, r], l, p, f);
4166
4165
  }
4167
4166
  const Jd = {
4168
- kernelName: ko,
4167
+ kernelName: Qs,
4169
4168
  backendName: "webgpu",
4170
4169
  kernelFunc: Zd
4171
4170
  };
4172
4171
  class el {
4173
4172
  constructor(t, e, i) {
4174
- this.variableNames = ["Image"], this.uniforms = "alpha: f32,", this.workgroupSize = [64, 1, 1], this.pixelsOpType = ft.DRAW, this.size = !0, this.outputShape = t, this.dispatchLayout = v(this.outputShape), this.dispatch = b(this.dispatchLayout, this.outputShape, this.workgroupSize), this.type = e, this.textureFormat = i, this.shaderKey = `draw_${e}_${i}`;
4173
+ this.variableNames = ["Image"], this.uniforms = "alpha: f32,", this.workgroupSize = [64, 1, 1], this.pixelsOpType = pt.DRAW, this.size = !0, this.outputShape = t, this.dispatchLayout = v(this.outputShape), this.dispatch = b(this.dispatchLayout, this.outputShape, this.workgroupSize), this.type = e, this.textureFormat = i, this.shaderKey = `draw_${e}_${i}`;
4175
4174
  }
4176
4175
  getUserCode() {
4177
4176
  let t;
@@ -4227,7 +4226,7 @@ function tl(o) {
4227
4226
  return e.disposeData(w.dataId), s;
4228
4227
  }
4229
4228
  const sl = {
4230
- kernelName: Io,
4229
+ kernelName: Zs,
4231
4230
  backendName: "webgpu",
4232
4231
  kernelFunc: tl
4233
4232
  };
@@ -4236,7 +4235,7 @@ const Dt = V({
4236
4235
  cpuKernelImpl: nn,
4237
4236
  supportsComplex: !0
4238
4237
  }), ol = {
4239
- kernelName: Ro,
4238
+ kernelName: Js,
4240
4239
  backendName: "webgpu",
4241
4240
  kernelFunc: Dt
4242
4241
  };
@@ -4245,21 +4244,21 @@ function Nt(o) {
4245
4244
  return ie(s, a, r, "sum", e);
4246
4245
  }
4247
4246
  const il = {
4248
- kernelName: Po,
4247
+ kernelName: eo,
4249
4248
  backendName: "webgpu",
4250
4249
  kernelFunc: Nt
4251
4250
  };
4252
4251
  function al(o) {
4253
- const { inputs: t, backend: e, attrs: i } = o, { equation: s } = i, a = t, { allDims: r, summedDims: n, idDims: u } = ns(s, a.length);
4254
- us(r.length, u, a);
4255
- const { path: d, steps: h } = ds(n, u), l = h.length;
4252
+ const { inputs: t, backend: e, attrs: i } = o, { equation: s } = i, a = t, { allDims: r, summedDims: n, idDims: u } = da(s, a.length);
4253
+ la(r.length, u, a);
4254
+ const { path: d, steps: h } = ca(n, u), l = h.length;
4256
4255
  let c = null, p = r.length;
4257
4256
  const f = [];
4258
4257
  for (let m = 0; m < l; ++m) {
4259
4258
  for (const g of h[m]) {
4260
- const { permutationIndices: x, expandDims: C } = ls(p, u[g]);
4259
+ const { permutationIndices: x, expandDims: C } = ha(p, u[g]);
4261
4260
  let w;
4262
- cs(x) ? w = a[g] : (w = K({ inputs: { x: a[g] }, backend: e, attrs: { perm: x } }), f.push(w));
4261
+ pa(x) ? w = a[g] : (w = K({ inputs: { x: a[g] }, backend: e, attrs: { perm: x } }), f.push(w));
4263
4262
  const k = w.shape.slice();
4264
4263
  for (let I = 0; I < C.length; ++I)
4265
4264
  k.splice(C[I], 0, 1);
@@ -4279,12 +4278,12 @@ function al(o) {
4279
4278
  return c;
4280
4279
  }
4281
4280
  const rl = {
4282
- kernelName: $o,
4281
+ kernelName: to,
4283
4282
  backendName: "webgpu",
4284
4283
  kernelFunc: al
4285
4284
  };
4286
4285
  const nl = N({ opType: y.ELU }), ul = {
4287
- kernelName: Do,
4286
+ kernelName: so,
4288
4287
  backendName: "webgpu",
4289
4288
  kernelFunc: nl
4290
4289
  };
@@ -4292,17 +4291,17 @@ const dl = (o) => {
4292
4291
  const { inputs: t, backend: e } = o, { dy: i, y: s } = t, a = new Re(F.ELU_DER, i.shape, s.shape);
4293
4292
  return e.runWebGPUProgram(a, [i, s], i.dtype);
4294
4293
  }, ll = {
4295
- kernelName: No,
4294
+ kernelName: oo,
4296
4295
  backendName: "webgpu",
4297
4296
  kernelFunc: dl
4298
4297
  };
4299
4298
  const cl = V({ opType: F.EQUAL, dtype: "bool", cpuKernelImpl: Gr }), hl = {
4300
- kernelName: zo,
4299
+ kernelName: io,
4301
4300
  backendName: "webgpu",
4302
4301
  kernelFunc: cl
4303
4302
  };
4304
4303
  const pl = N({ opType: y.ERF }), fl = {
4305
- kernelName: Ao,
4304
+ kernelName: ao,
4306
4305
  backendName: "webgpu",
4307
4306
  kernelFunc: pl
4308
4307
  };
@@ -4311,7 +4310,7 @@ const ml = N({
4311
4310
  cpuKernelImpl: Xr,
4312
4311
  dtype: "float32"
4313
4312
  }), gl = {
4314
- kernelName: Fo,
4313
+ kernelName: ro,
4315
4314
  backendName: "webgpu",
4316
4315
  kernelFunc: ml
4317
4316
  };
@@ -4321,12 +4320,12 @@ function Te(o) {
4321
4320
  return s < 0 && (L(-(r + 1) <= s, () => `Axis must be in the interval [${-(r + 1)}, ${r}]`), u = r + s + 1), n.splice(u, 0, 1), R({ inputs: { x: a }, backend: i, attrs: { shape: n } });
4322
4321
  }
4323
4322
  const xl = {
4324
- kernelName: Wo,
4323
+ kernelName: no,
4325
4324
  backendName: "webgpu",
4326
4325
  kernelFunc: Te
4327
4326
  };
4328
4327
  const Cl = N({ opType: y.EXPM1, cpuKernelImpl: Kr }), wl = {
4329
- kernelName: Lo,
4328
+ kernelName: uo,
4330
4329
  backendName: "webgpu",
4331
4330
  kernelFunc: Cl
4332
4331
  };
@@ -4402,7 +4401,7 @@ function yl(o) {
4402
4401
  return zt(i, !1, e);
4403
4402
  }
4404
4403
  const Sl = {
4405
- kernelName: Vo,
4404
+ kernelName: lo,
4406
4405
  backendName: "webgpu",
4407
4406
  kernelFunc: yl
4408
4407
  };
@@ -4424,7 +4423,7 @@ class bl {
4424
4423
  }
4425
4424
  }
4426
4425
  const vl = {
4427
- kernelName: Bo,
4426
+ kernelName: co,
4428
4427
  backendName: "webgpu",
4429
4428
  kernelFunc: ({ inputs: o, backend: t }) => {
4430
4429
  const { image: e } = o, i = t, s = new bl(e.shape);
@@ -4432,7 +4431,7 @@ const vl = {
4432
4431
  }
4433
4432
  };
4434
4433
  const kl = N({ opType: y.FLOOR, cpuKernelImpl: qr }), Il = {
4435
- kernelName: To,
4434
+ kernelName: ho,
4436
4435
  backendName: "webgpu",
4437
4436
  kernelFunc: kl
4438
4437
  };
@@ -4441,13 +4440,13 @@ const Rl = V({
4441
4440
  cpuKernelImpl: Yr,
4442
4441
  dtype: "int32"
4443
4442
  }), Pl = {
4444
- kernelName: _o,
4443
+ kernelName: po,
4445
4444
  backendName: "webgpu",
4446
4445
  kernelFunc: Rl
4447
4446
  };
4448
4447
  class $l {
4449
4448
  constructor(t, e, i = !1) {
4450
- this.pixelsOpType = ft.FROM_PIXELS, this.outputShape = [0], this.variableNames = [], this.workgroupSize = [256, 1, 1], this.outputShape = t, this.dispatchLayout = v(this.outputShape), this.dispatch = b(this.dispatchLayout, this.outputShape, this.workgroupSize, [e, 1, 1]), this.importVideo = i, this.shaderKey = `fromPixels_${this.importVideo}`;
4449
+ this.pixelsOpType = pt.FROM_PIXELS, this.outputShape = [0], this.variableNames = [], this.workgroupSize = [256, 1, 1], this.outputShape = t, this.dispatchLayout = v(this.outputShape), this.dispatch = b(this.dispatchLayout, this.outputShape, this.workgroupSize, [e, 1, 1]), this.importVideo = i, this.shaderKey = `fromPixels_${this.importVideo}`;
4451
4450
  }
4452
4451
  getUserCode() {
4453
4452
  const t = this.importVideo ? "textureLoad(src, vec2<i32>(coords.yx));" : "textureLoad(src, vec2<i32>(coords.yx), 0)";
@@ -4467,7 +4466,7 @@ class $l {
4467
4466
  }
4468
4467
  }
4469
4468
  const Dl = {
4470
- kernelName: Oo,
4469
+ kernelName: fo,
4471
4470
  backendName: "webgpu",
4472
4471
  kernelFunc: Nl
4473
4472
  };
@@ -4494,7 +4493,7 @@ function Nl(o) {
4494
4493
  const B = GPUTextureUsage.COPY_DST | GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.TEXTURE_BINDING, H = e.textureManager.acquireTexture(c[1], c[0], "rgba8unorm", B);
4495
4494
  e.queue.copyExternalImageToTexture({ source: s }, { texture: H }, [c[1], c[0]]), C = H;
4496
4495
  }
4497
- const w = D(c), k = ut(c), I = new $l(c, a, p), P = [
4496
+ const w = D(c), k = at(c), I = new $l(c, a, p), P = [
4498
4497
  { type: "uint32", data: [w] },
4499
4498
  { type: "uint32", data: [a] },
4500
4499
  { type: "uint32", data: [...k] }
@@ -4540,7 +4539,7 @@ class zl {
4540
4539
  }
4541
4540
  }
4542
4541
  const Al = {
4543
- kernelName: Mo,
4542
+ kernelName: mo,
4544
4543
  backendName: "webgpu",
4545
4544
  kernelFunc: ({ inputs: o, attrs: t, backend: e }) => {
4546
4545
  const { x: i, scale: s, offset: a, mean: r, variance: n } = o, { varianceEpsilon: u } = t, d = e, h = [i, r, n];
@@ -4553,7 +4552,7 @@ const Al = {
4553
4552
  }
4554
4553
  };
4555
4554
  function Fl(o) {
4556
- const { inputs: t, backend: e, attrs: i } = o, { x: s, filter: a, bias: r, preluActivationWeights: n } = t, { strides: u, pad: d, dataFormat: h, dilations: l, dimRoundingMode: c, activation: p, leakyreluAlpha: f } = i, m = we(h), g = Q(s.shape, a.shape, u, l, d, c, !1, m);
4555
+ const { inputs: t, backend: e, attrs: i } = o, { x: s, filter: a, bias: r, preluActivationWeights: n } = t, { strides: u, pad: d, dataFormat: h, dilations: l, dimRoundingMode: c, activation: p, leakyreluAlpha: f } = i, m = Se(h), g = Z(s.shape, a.shape, u, l, d, c, !1, m);
4557
4556
  return It({
4558
4557
  x: s,
4559
4558
  filter: a,
@@ -4566,15 +4565,15 @@ function Fl(o) {
4566
4565
  });
4567
4566
  }
4568
4567
  const Wl = {
4569
- kernelName: Eo,
4568
+ kernelName: go,
4570
4569
  backendName: "webgpu",
4571
4570
  kernelFunc: Fl
4572
4571
  };
4573
4572
  function Ll(o) {
4574
4573
  const { inputs: t, backend: e, attrs: i } = o, { x: s, filter: a, bias: r, preluActivationWeights: n } = t, { strides: u, pad: d, dilations: h, dimRoundingMode: l, activation: c, leakyreluAlpha: p } = i;
4575
4574
  let f = h;
4576
- f == null && (f = [1, 1]), L(lt(u, f), () => `Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${f}'`);
4577
- const m = Q(
4575
+ f == null && (f = [1, 1]), L(mt(u, f), () => `Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${f}'`);
4576
+ const m = Z(
4578
4577
  s.shape,
4579
4578
  a.shape,
4580
4579
  u,
@@ -4596,7 +4595,7 @@ function Ll(o) {
4596
4595
  })), c === "leakyrelu" && (w.push({ type: "float32", data: [p] }), k.uniforms += " alpha : f32,"), e.runWebGPUProgram(k, g, "float32", w);
4597
4596
  }
4598
4597
  const Vl = {
4599
- kernelName: Uo,
4598
+ kernelName: xo,
4600
4599
  backendName: "webgpu",
4601
4600
  kernelFunc: Ll
4602
4601
  };
@@ -4624,7 +4623,7 @@ class Bl {
4624
4623
  }
4625
4624
  }
4626
4625
  function Tl(o) {
4627
- const { inputs: t, backend: e } = o, { params: i, indices: s } = t, a = s.shape, r = a[a.length - 1], n = D(i.shape), [u, d, h, l] = hs(i, s), c = R({ inputs: { x: s }, backend: e, attrs: { shape: [d, r] } }), p = R({
4626
+ const { inputs: t, backend: e } = o, { params: i, indices: s } = t, a = s.shape, r = a[a.length - 1], n = D(i.shape), [u, d, h, l] = fa(i, s), c = R({ inputs: { x: s }, backend: e, attrs: { shape: [d, r] } }), p = R({
4628
4627
  inputs: { x: i },
4629
4628
  backend: e,
4630
4629
  attrs: { shape: [D(i.shape) / h, h] }
@@ -4637,7 +4636,7 @@ function Tl(o) {
4637
4636
  return e.disposeData(c.dataId), e.disposeData(p.dataId), e.disposeData(g.dataId), x;
4638
4637
  }
4639
4638
  const _l = {
4640
- kernelName: Ho,
4639
+ kernelName: Co,
4641
4640
  backendName: "webgpu",
4642
4641
  kernelFunc: Tl
4643
4642
  };
@@ -4666,7 +4665,7 @@ function Ml(o) {
4666
4665
  return e.join();
4667
4666
  }
4668
4667
  function At(o) {
4669
- const { inputs: t, backend: e, attrs: i } = o, { x: s, indices: a } = t, { axis: r, batchDims: n } = i, u = te(r, s.shape)[0], d = ps(s, a, u, n), h = D(a.shape), l = [], c = R({
4668
+ const { inputs: t, backend: e, attrs: i } = o, { x: s, indices: a } = t, { axis: r, batchDims: n } = i, u = te(r, s.shape)[0], d = ma(s, a, u, n), h = D(a.shape), l = [], c = R({
4670
4669
  inputs: { x: s },
4671
4670
  backend: e,
4672
4671
  attrs: {
@@ -4699,7 +4698,7 @@ function At(o) {
4699
4698
  return l.forEach((C) => e.disposeData(C.dataId)), x;
4700
4699
  }
4701
4700
  const El = {
4702
- kernelName: Go,
4701
+ kernelName: wo,
4703
4702
  backendName: "webgpu",
4704
4703
  kernelFunc: At
4705
4704
  };
@@ -4708,7 +4707,7 @@ const Ul = V({
4708
4707
  cpuKernelImpl: Jr,
4709
4708
  dtype: "bool"
4710
4709
  }), Hl = {
4711
- kernelName: Xo,
4710
+ kernelName: yo,
4712
4711
  backendName: "webgpu",
4713
4712
  kernelFunc: Ul
4714
4713
  };
@@ -4717,7 +4716,7 @@ const Gl = V({
4717
4716
  dtype: "bool",
4718
4717
  cpuKernelImpl: Zr
4719
4718
  }), Xl = {
4720
- kernelName: Ko,
4719
+ kernelName: So,
4721
4720
  backendName: "webgpu",
4722
4721
  kernelFunc: Gl
4723
4722
  };
@@ -4726,22 +4725,22 @@ function Kl(o) {
4726
4725
  return zt(i, !0, e);
4727
4726
  }
4728
4727
  const ql = {
4729
- kernelName: qo,
4728
+ kernelName: bo,
4730
4729
  backendName: "webgpu",
4731
4730
  kernelFunc: Kl
4732
4731
  };
4733
4732
  const Yl = N({ opType: y.IS_FINITE, dtype: "bool" }), jl = {
4734
- kernelName: Yo,
4733
+ kernelName: vo,
4735
4734
  backendName: "webgpu",
4736
4735
  kernelFunc: Yl
4737
4736
  };
4738
4737
  const Ql = N({ opType: y.IS_INF, dtype: "bool" }), Zl = {
4739
- kernelName: jo,
4738
+ kernelName: ko,
4740
4739
  backendName: "webgpu",
4741
4740
  kernelFunc: Ql
4742
4741
  };
4743
4742
  const Jl = N({ opType: y.IS_NAN, dtype: "bool" }), ec = {
4744
- kernelName: Qo,
4743
+ kernelName: Io,
4745
4744
  backendName: "webgpu",
4746
4745
  kernelFunc: Jl
4747
4746
  };
@@ -4750,12 +4749,12 @@ function tc(o) {
4750
4749
  return e.runWebGPUProgram(n, [s], "float32", r);
4751
4750
  }
4752
4751
  const sc = {
4753
- kernelName: Zo,
4752
+ kernelName: Ro,
4754
4753
  backendName: "webgpu",
4755
4754
  kernelFunc: tc
4756
4755
  };
4757
4756
  const oc = V({ opType: F.LESS, dtype: "bool", cpuKernelImpl: tn }), ic = {
4758
- kernelName: Jo,
4757
+ kernelName: Po,
4759
4758
  backendName: "webgpu",
4760
4759
  kernelFunc: oc
4761
4760
  };
@@ -4764,7 +4763,7 @@ const ac = V({
4764
4763
  dtype: "bool",
4765
4764
  cpuKernelImpl: en
4766
4765
  }), rc = {
4767
- kernelName: ei,
4766
+ kernelName: $o,
4768
4767
  backendName: "webgpu",
4769
4768
  kernelFunc: ac
4770
4769
  };
@@ -4787,32 +4786,32 @@ function uc(o) {
4787
4786
  return t.runWebGPUProgram(n, [], "float32", u);
4788
4787
  }
4789
4788
  const dc = {
4790
- kernelName: ti,
4789
+ kernelName: Do,
4791
4790
  backendName: "webgpu",
4792
4791
  kernelFunc: uc
4793
4792
  };
4794
4793
  const lc = N({ opType: y.LOG, cpuKernelImpl: sn }), cc = {
4795
- kernelName: si,
4794
+ kernelName: No,
4796
4795
  backendName: "webgpu",
4797
4796
  kernelFunc: lc
4798
4797
  };
4799
4798
  const hc = N({ opType: y.LOG1P }), pc = {
4800
- kernelName: oi,
4799
+ kernelName: zo,
4801
4800
  backendName: "webgpu",
4802
4801
  kernelFunc: hc
4803
4802
  };
4804
4803
  const fc = V({ opType: F.LOGICAL_AND, dtype: "bool" }), mc = {
4805
- kernelName: ii,
4804
+ kernelName: Ao,
4806
4805
  backendName: "webgpu",
4807
4806
  kernelFunc: fc
4808
4807
  };
4809
4808
  const gc = N({ opType: y.LOGICAL_NOT }), xc = {
4810
- kernelName: ai,
4809
+ kernelName: Fo,
4811
4810
  backendName: "webgpu",
4812
4811
  kernelFunc: gc
4813
4812
  };
4814
4813
  const Cc = V({ opType: F.LOGICAL_OR }), wc = {
4815
- kernelName: ri,
4814
+ kernelName: Wo,
4816
4815
  backendName: "webgpu",
4817
4816
  kernelFunc: Cc
4818
4817
  };
@@ -4915,7 +4914,7 @@ function bc(o) {
4915
4914
  return e.runWebGPUProgram(d, [s], s.dtype, h);
4916
4915
  }
4917
4916
  const vc = {
4918
- kernelName: ni,
4917
+ kernelName: Lo,
4919
4918
  backendName: "webgpu",
4920
4919
  kernelFunc: bc
4921
4920
  };
@@ -4987,7 +4986,7 @@ function Ic(o) {
4987
4986
  return e.runWebGPUProgram(l, [s, a, r], s.dtype, c);
4988
4987
  }
4989
4988
  const Rc = {
4990
- kernelName: ui,
4989
+ kernelName: Vo,
4991
4990
  backendName: "webgpu",
4992
4991
  kernelFunc: Ic
4993
4992
  };
@@ -4995,16 +4994,16 @@ const Pc = V({
4995
4994
  opType: F.MAX,
4996
4995
  cpuKernelImpl: an
4997
4996
  }), $c = {
4998
- kernelName: di,
4997
+ kernelName: Bo,
4999
4998
  backendName: "webgpu",
5000
4999
  kernelFunc: Pc
5001
5000
  };
5002
5001
  function Dc(o) {
5003
- const { inputs: t, backend: e, attrs: i } = o, { x: s } = t, { filterSize: a, strides: r, pad: n, dimRoundingMode: u } = i, h = Ce(s.shape, a, r, 1, n, u);
5002
+ const { inputs: t, backend: e, attrs: i } = o, { x: s } = t, { filterSize: a, strides: r, pad: n, dimRoundingMode: u } = i, h = ye(s.shape, a, r, 1, n, u);
5004
5003
  return St(s, h, "max", e);
5005
5004
  }
5006
5005
  const Nc = {
5007
- kernelName: li,
5006
+ kernelName: To,
5008
5007
  backendName: "webgpu",
5009
5008
  kernelFunc: Dc
5010
5009
  };
@@ -5034,7 +5033,7 @@ function zc(o) {
5034
5033
  return e.runWebGPUProgram(c, [s], s.dtype, p);
5035
5034
  }
5036
5035
  const Ac = {
5037
- kernelName: ci,
5036
+ kernelName: _o,
5038
5037
  backendName: "webgpu",
5039
5038
  kernelFunc: zc
5040
5039
  };
@@ -5216,14 +5215,14 @@ function Lc(o) {
5216
5215
  return e.disposeData(m.dataId), x;
5217
5216
  }
5218
5217
  const Vc = {
5219
- kernelName: hi,
5218
+ kernelName: Oo,
5220
5219
  backendName: "webgpu",
5221
5220
  kernelFunc: Lc
5222
5221
  };
5223
5222
  function Bc(o) {
5224
5223
  const { inputs: t, backend: e, attrs: i } = o, { dy: s, input: a, output: r } = t, n = a;
5225
- at([a, r], "maxPoolGrad");
5226
- const { filterSize: u, strides: d, pad: h, dimRoundingMode: l } = i, c = Ce(n.shape, u, d, 1, h, l), p = new ge(c, "max", !0);
5224
+ nt([a, r], "maxPoolGrad");
5225
+ const { filterSize: u, strides: d, pad: h, dimRoundingMode: l } = i, c = ye(n.shape, u, d, 1, h, l), p = new ge(c, "max", !0);
5227
5226
  let f = [
5228
5227
  { type: "int32", data: [c.strideHeight, c.strideWidth] },
5229
5228
  { type: "int32", data: [c.padInfo.top, c.padInfo.left] },
@@ -5256,7 +5255,7 @@ function Bc(o) {
5256
5255
  return e.disposeData(m.dataId), x;
5257
5256
  }
5258
5257
  const Tc = {
5259
- kernelName: pi,
5258
+ kernelName: Mo,
5260
5259
  backendName: "webgpu",
5261
5260
  kernelFunc: Bc
5262
5261
  };
@@ -5264,8 +5263,8 @@ function _c(o) {
5264
5263
  const { inputs: t, backend: e, attrs: i } = o, { filterSize: s, strides: a, pad: r, includeBatchInIndex: n } = i, { x: u } = t;
5265
5264
  L(u.shape.length === 4, () => `Error in maxPool: input must be rank 4 but got rank ${u.shape.length}.`);
5266
5265
  const d = [1, 1];
5267
- L(lt(a, d), () => `Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${d}'`);
5268
- const h = Ce(u.shape, s, a, d, r), l = [
5266
+ L(mt(a, d), () => `Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${d}'`);
5267
+ const h = ye(u.shape, s, a, d, r), l = [
5269
5268
  { type: "int32", data: [h.strideHeight, h.strideWidth] },
5270
5269
  { type: "int32", data: [h.padInfo.top, h.padInfo.left] },
5271
5270
  { type: "int32", data: [h.dilationHeight, h.dilationWidth] },
@@ -5282,7 +5281,7 @@ function _c(o) {
5282
5281
  return [p, f];
5283
5282
  }
5284
5283
  const Oc = {
5285
- kernelName: fi,
5284
+ kernelName: Eo,
5286
5285
  backendName: "webgpu",
5287
5286
  kernelFunc: _c
5288
5287
  };
@@ -5291,7 +5290,7 @@ function Mc(o) {
5291
5290
  return ie(s, a, r, "min", e);
5292
5291
  }
5293
5292
  const Ec = {
5294
- kernelName: mi,
5293
+ kernelName: Uo,
5295
5294
  backendName: "webgpu",
5296
5295
  kernelFunc: Mc
5297
5296
  };
@@ -5299,7 +5298,7 @@ const Uc = V({
5299
5298
  opType: F.MIN,
5300
5299
  cpuKernelImpl: rn
5301
5300
  }), Hc = {
5302
- kernelName: gi,
5301
+ kernelName: Ho,
5303
5302
  backendName: "webgpu",
5304
5303
  kernelFunc: Uc
5305
5304
  };
@@ -5335,7 +5334,7 @@ class Gc {
5335
5334
  }
5336
5335
  }
5337
5336
  const Xc = {
5338
- kernelName: xi,
5337
+ kernelName: Go,
5339
5338
  backendName: "webgpu",
5340
5339
  kernelFunc: ({ inputs: o, attrs: t, backend: e }) => {
5341
5340
  const { x: i } = o, { paddings: s, mode: a } = t, r = e, n = s.map((h) => ({ type: "int32", data: [h[0], h[1]] })), u = new Gc(i.shape, s, a);
@@ -5343,7 +5342,7 @@ const Xc = {
5343
5342
  }
5344
5343
  };
5345
5344
  const Kc = V({ opType: F.MOD }), qc = {
5346
- kernelName: Ci,
5345
+ kernelName: Xo,
5347
5346
  backendName: "webgpu",
5348
5347
  kernelFunc: Kc
5349
5348
  };
@@ -5469,7 +5468,7 @@ function Wt(o) {
5469
5468
  return e.disposeData(r.dataId), e.disposeData(u.dataId), d;
5470
5469
  }
5471
5470
  const Qc = {
5472
- kernelName: wi,
5471
+ kernelName: Ko,
5473
5472
  backendName: "webgpu",
5474
5473
  kernelFunc: Wt
5475
5474
  };
@@ -5478,7 +5477,7 @@ function Zc(o) {
5478
5477
  return n || e.disposeData(u.dataId), p;
5479
5478
  }
5480
5479
  const Jc = {
5481
- kernelName: yi,
5480
+ kernelName: qo,
5482
5481
  backendName: "webgpu",
5483
5482
  kernelFunc: Zc
5484
5483
  };
@@ -5492,7 +5491,7 @@ function eh(o) {
5492
5491
  return e.runWebGPUProgram(s, [i], i.dtype);
5493
5492
  }
5494
5493
  const th = {
5495
- kernelName: Si,
5494
+ kernelName: Yo,
5496
5495
  backendName: "webgpu",
5497
5496
  kernelFunc: eh
5498
5497
  };
@@ -5502,7 +5501,7 @@ function sh(o) {
5502
5501
  return e.makeTensorInfo([l.length], "int32", new Int32Array(l));
5503
5502
  }
5504
5503
  const oh = {
5505
- kernelName: bi,
5504
+ kernelName: jo,
5506
5505
  backendName: "webgpu",
5507
5506
  kernelFunc: sh
5508
5507
  };
@@ -5515,7 +5514,7 @@ function ih(o) {
5515
5514
  ];
5516
5515
  }
5517
5516
  const ah = {
5518
- kernelName: vi,
5517
+ kernelName: Qo,
5519
5518
  backendName: "webgpu",
5520
5519
  kernelFunc: ih
5521
5520
  };
@@ -5542,7 +5541,7 @@ function nh(o) {
5542
5541
  return e.disposeData(p.dataId), m;
5543
5542
  }
5544
5543
  const uh = {
5545
- kernelName: ki,
5544
+ kernelName: Zo,
5546
5545
  backendName: "webgpu",
5547
5546
  kernelFunc: nh
5548
5547
  };
@@ -5562,7 +5561,7 @@ function $e(o) {
5562
5561
  });
5563
5562
  }
5564
5563
  const dh = {
5565
- kernelName: Ii,
5564
+ kernelName: Jo,
5566
5565
  backendName: "webgpu",
5567
5566
  kernelFunc: $e
5568
5567
  };
@@ -5577,7 +5576,7 @@ function Lt(o) {
5577
5576
  return M({ attrs: { shape: i.shape, dtype: i.dtype, value: 1 }, backend: e });
5578
5577
  }
5579
5578
  const lh = {
5580
- kernelName: Ri,
5579
+ kernelName: ei,
5581
5580
  backendName: "webgpu",
5582
5581
  kernelFunc: Lt
5583
5582
  };
@@ -5587,7 +5586,7 @@ function ch(o) {
5587
5586
  return Te({ inputs: { input: t[0] }, backend: e, attrs: { dim: s } });
5588
5587
  const a = t[0].shape, r = t[0].dtype;
5589
5588
  t.forEach((h) => {
5590
- Yt(a, h.shape, "All tensors passed to stack must have matching shapes"), L(r === h.dtype, () => "All tensors passed to stack must have matching dtypes");
5589
+ si(a, h.shape, "All tensors passed to stack must have matching shapes"), L(r === h.dtype, () => "All tensors passed to stack must have matching dtypes");
5591
5590
  });
5592
5591
  const n = [], u = t.map((h) => {
5593
5592
  const l = Te({ inputs: { input: h }, backend: e, attrs: { dim: s } });
@@ -5596,7 +5595,7 @@ function ch(o) {
5596
5595
  return n.forEach((h) => e.disposeData(h.dataId)), d;
5597
5596
  }
5598
5597
  const hh = {
5599
- kernelName: Pi,
5598
+ kernelName: ti,
5600
5599
  backendName: "webgpu",
5601
5600
  kernelFunc: ch
5602
5601
  };
@@ -5652,14 +5651,14 @@ const fh = (o) => {
5652
5651
  const u = new ph(s.shape, a);
5653
5652
  return e.runWebGPUProgram(u, [s], s.dtype, n);
5654
5653
  }, mh = {
5655
- kernelName: $i,
5654
+ kernelName: oi,
5656
5655
  backendName: "webgpu",
5657
5656
  kernelFunc: fh
5658
5657
  };
5659
5658
  const gh = V({
5660
5659
  opType: F.POW
5661
5660
  }), xh = {
5662
- kernelName: Di,
5661
+ kernelName: ii,
5663
5662
  backendName: "webgpu",
5664
5663
  kernelFunc: gh
5665
5664
  };
@@ -5668,7 +5667,7 @@ function Ch(o) {
5668
5667
  return e.runWebGPUProgram(a, [i, s], "float32");
5669
5668
  }
5670
5669
  const wh = {
5671
- kernelName: Ni,
5670
+ kernelName: ai,
5672
5671
  backendName: "webgpu",
5673
5672
  kernelFunc: Ch
5674
5673
  };
@@ -5677,7 +5676,7 @@ function yh(o) {
5677
5676
  return ie(s, a, r, "prod", e);
5678
5677
  }
5679
5678
  const Sh = {
5680
- kernelName: zi,
5679
+ kernelName: ri,
5681
5680
  backendName: "webgpu",
5682
5681
  kernelFunc: yh
5683
5682
  };
@@ -5685,27 +5684,27 @@ const bh = (o) => {
5685
5684
  const { backend: t, attrs: e } = o, { start: i, stop: s, step: a, dtype: r } = e, n = cn(i, s, a, r);
5686
5685
  return t.makeTensorInfo([n.length], r, n);
5687
5686
  }, vh = {
5688
- kernelName: Ai,
5687
+ kernelName: ni,
5689
5688
  backendName: "webgpu",
5690
5689
  kernelFunc: bh
5691
5690
  };
5692
5691
  const kh = V({ opType: F.DIV }), Ih = {
5693
- kernelName: Fi,
5692
+ kernelName: ui,
5694
5693
  backendName: "webgpu",
5695
5694
  kernelFunc: kh
5696
5695
  };
5697
5696
  const Rh = N({ opType: y.RECIPROCAL }), Ph = {
5698
- kernelName: Wi,
5697
+ kernelName: di,
5699
5698
  backendName: "webgpu",
5700
5699
  kernelFunc: Rh
5701
5700
  };
5702
5701
  const $h = N({ opType: y.RELU }), Dh = {
5703
- kernelName: Li,
5702
+ kernelName: li,
5704
5703
  backendName: "webgpu",
5705
5704
  kernelFunc: $h
5706
5705
  };
5707
5706
  const Nh = N({ opType: y.RELU6 }), zh = {
5708
- kernelName: Vi,
5707
+ kernelName: ci,
5709
5708
  backendName: "webgpu",
5710
5709
  kernelFunc: Nh
5711
5710
  };
@@ -5768,7 +5767,7 @@ function Fh(o) {
5768
5767
  return e.runWebGPUProgram(f, [s], "float32", p);
5769
5768
  }
5770
5769
  const Wh = {
5771
- kernelName: Bi,
5770
+ kernelName: hi,
5772
5771
  backendName: "webgpu",
5773
5772
  kernelFunc: Fh
5774
5773
  };
@@ -5875,7 +5874,7 @@ function Vh(o) {
5875
5874
  return e.runWebGPUProgram(w, [a], a.dtype, k);
5876
5875
  }
5877
5876
  const Bh = {
5878
- kernelName: Ti,
5877
+ kernelName: pi,
5879
5878
  backendName: "webgpu",
5880
5879
  kernelFunc: Vh
5881
5880
  };
@@ -5927,7 +5926,7 @@ function _h(o) {
5927
5926
  return e.runWebGPUProgram(f, [s], s.dtype, p);
5928
5927
  }
5929
5928
  const Oh = {
5930
- kernelName: _i,
5929
+ kernelName: fi,
5931
5930
  backendName: "webgpu",
5932
5931
  kernelFunc: _h
5933
5932
  };
@@ -6017,7 +6016,7 @@ function Eh(o) {
6017
6016
  return e.runWebGPUProgram(w, [a], a.dtype, k);
6018
6017
  }
6019
6018
  const Uh = {
6020
- kernelName: Oi,
6019
+ kernelName: mi,
6021
6020
  backendName: "webgpu",
6022
6021
  kernelFunc: Eh
6023
6022
  };
@@ -6079,7 +6078,7 @@ function Gh(o) {
6079
6078
  return e.disposeData(f.dataId), m;
6080
6079
  }
6081
6080
  const Xh = {
6082
- kernelName: Mi,
6081
+ kernelName: gi,
6083
6082
  backendName: "webgpu",
6084
6083
  kernelFunc: Gh
6085
6084
  };
@@ -6113,10 +6112,10 @@ class Kh {
6113
6112
  }
6114
6113
  }
6115
6114
  const qh = {
6116
- kernelName: Ei,
6115
+ kernelName: xi,
6117
6116
  backendName: "webgpu",
6118
6117
  kernelFunc: ({ inputs: o, attrs: t, backend: e }) => {
6119
- const { image: i } = o, { radians: s, fillValue: a, center: r } = t, n = e, u = new Kh(i.shape, a), [d, h] = fs(r, i.shape[1], i.shape[2]), l = [
6118
+ const { image: i } = o, { radians: s, fillValue: a, center: r } = t, n = e, u = new Kh(i.shape, a), [d, h] = ga(r, i.shape[1], i.shape[2]), l = [
6120
6119
  { type: "float32", data: [d] },
6121
6120
  { type: "float32", data: [h] },
6122
6121
  { type: "float32", data: [Math.sin(s)] },
@@ -6126,12 +6125,12 @@ const qh = {
6126
6125
  }
6127
6126
  };
6128
6127
  const Yh = N({ opType: y.ROUND }), jh = {
6129
- kernelName: Ui,
6128
+ kernelName: Ci,
6130
6129
  backendName: "webgpu",
6131
6130
  kernelFunc: Yh
6132
6131
  };
6133
6132
  const Qh = N({ opType: y.RSQRT, cpuKernelImpl: hn }), Zh = {
6134
- kernelName: Hi,
6133
+ kernelName: wi,
6135
6134
  backendName: "webgpu",
6136
6135
  kernelFunc: Qh
6137
6136
  };
@@ -6174,10 +6173,10 @@ class pe {
6174
6173
  flattenedIndex = flattenedIndex + indexInside * ${i};
6175
6174
  }
6176
6175
  let updateValue =
6177
- ${xs(this.type)}(${n});
6176
+ ${wa(this.type)}(${n});
6178
6177
  let flatIndex = getOutputIndexFromCoords(${s});
6179
6178
 
6180
- ${this.sumDupeIndices ? Z("&result[flatIndex]", "updateValue", this.type) : "atomicStore(&result[flatIndex], bitcast<i32>(updateValue));"}
6179
+ ${this.sumDupeIndices ? Q("&result[flatIndex]", "updateValue", this.type) : "atomicStore(&result[flatIndex], bitcast<i32>(updateValue));"}
6181
6180
  }
6182
6181
  }`;
6183
6182
  }
@@ -6194,7 +6193,7 @@ function Jh(o) {
6194
6193
  return e.disposeData(p.dataId), e.disposeData(f.dataId), e.disposeData(k.dataId), I;
6195
6194
  }
6196
6195
  const ep = {
6197
- kernelName: Gi,
6196
+ kernelName: yi,
6198
6197
  backendName: "webgpu",
6199
6198
  kernelFunc: Jh
6200
6199
  };
@@ -6233,7 +6232,7 @@ function sp(o) {
6233
6232
  return e.runWebGPUProgram(n, [s, a], "int32", u);
6234
6233
  }
6235
6234
  const op = {
6236
- kernelName: Xi,
6235
+ kernelName: Si,
6237
6236
  backendName: "webgpu",
6238
6237
  kernelFunc: sp
6239
6238
  };
@@ -6273,37 +6272,37 @@ function ap(o) {
6273
6272
  return e.runWebGPUProgram(r, [i, s, a], fe(s.dtype, a.dtype));
6274
6273
  }
6275
6274
  const rp = {
6276
- kernelName: Ki,
6275
+ kernelName: bi,
6277
6276
  backendName: "webgpu",
6278
6277
  kernelFunc: ap
6279
6278
  };
6280
6279
  const np = N({ opType: y.SELU }), up = {
6281
- kernelName: qi,
6280
+ kernelName: vi,
6282
6281
  backendName: "webgpu",
6283
6282
  kernelFunc: np
6284
6283
  };
6285
6284
  const dp = N({ opType: y.SIGMOID }), lp = {
6286
- kernelName: Yi,
6285
+ kernelName: ki,
6287
6286
  backendName: "webgpu",
6288
6287
  kernelFunc: dp
6289
6288
  };
6290
6289
  const cp = N({ opType: y.SIGN }), hp = {
6291
- kernelName: ji,
6290
+ kernelName: Ii,
6292
6291
  backendName: "webgpu",
6293
6292
  kernelFunc: cp
6294
6293
  };
6295
6294
  const pp = N({ opType: y.SIN }), fp = {
6296
- kernelName: Qi,
6295
+ kernelName: Ri,
6297
6296
  backendName: "webgpu",
6298
6297
  kernelFunc: pp
6299
6298
  };
6300
6299
  const mp = N({ opType: y.SINH }), gp = {
6301
- kernelName: Zi,
6300
+ kernelName: Pi,
6302
6301
  backendName: "webgpu",
6303
6302
  kernelFunc: mp
6304
6303
  };
6305
6304
  const xp = N({ opType: y.SOFTPLUS }), Cp = {
6306
- kernelName: Ji,
6305
+ kernelName: $i,
6307
6306
  backendName: "webgpu",
6308
6307
  kernelFunc: xp
6309
6308
  };
@@ -6320,7 +6319,7 @@ class wp {
6320
6319
  getUserCode() {
6321
6320
  const t = G(this.outputShape.length), e = xt(this.newDim);
6322
6321
  return `
6323
- ${Cs(this.paddedXShape, "PaddedX")}
6322
+ ${ya(this.paddedXShape, "PaddedX")}
6324
6323
  ${S("index")} {
6325
6324
  if(index < uniforms.size) {
6326
6325
  let coords = getCoordsFromIndex(index);
@@ -6342,7 +6341,7 @@ const yp = (o) => {
6342
6341
  const d = u.map(
6343
6342
  (C, w) => C[0] + s.shape[w] + C[1]
6344
6343
  /* afterPad */
6345
- ), h = ct(d, a, n, !1), l = ht(h.length, a.length, !1), c = pt(d, a, n, !1), p = ut(d), f = new wp(s.shape, d, u, h, l, p.length), m = [
6344
+ ), h = lt(d, a, n, !1), l = ct(h.length, a.length, !1), c = ht(d, a, n, !1), p = at(d), f = new wp(s.shape, d, u, h, l, p.length), m = [
6346
6345
  { type: "int32", data: h },
6347
6346
  { type: "int32", data: p }
6348
6347
  ];
@@ -6350,7 +6349,7 @@ const yp = (o) => {
6350
6349
  const g = e.runWebGPUProgram(f, [s], s.dtype, m), x = R({ inputs: { x: g }, backend: e, attrs: { shape: c } });
6351
6350
  return e.disposeData(g.dataId), x;
6352
6351
  }, Sp = {
6353
- kernelName: ea,
6352
+ kernelName: Di,
6354
6353
  backendName: "webgpu",
6355
6354
  kernelFunc: yp
6356
6355
  };
@@ -6369,7 +6368,7 @@ class bp {
6369
6368
 
6370
6369
  let value = input[indexInInput * uniforms.segmentSize + indexInSegment];
6371
6370
  let outIndex = segmentId * uniforms.segmentSize + indexInSegment;
6372
- ${Z("&result[outIndex]", "value", this.type)}
6371
+ ${Q("&result[outIndex]", "value", this.type)}
6373
6372
  }
6374
6373
  }
6375
6374
  `;
@@ -6384,7 +6383,7 @@ class vp {
6384
6383
  ${S("index")} {
6385
6384
  if (index < uniforms.segmentIdsShape) {
6386
6385
  let segmentId = segmentIds[index];
6387
- ${Z("&result[segmentId]", "1", "int32")}
6386
+ ${Q("&result[segmentId]", "1", "int32")}
6388
6387
  }
6389
6388
  }
6390
6389
  `;
@@ -6434,7 +6433,7 @@ function Ip(o) {
6434
6433
  return Bt(i, s, a, !1, e);
6435
6434
  }
6436
6435
  const Rp = {
6437
- kernelName: ta,
6436
+ kernelName: Ni,
6438
6437
  backendName: "webgpu",
6439
6438
  kernelFunc: Ip
6440
6439
  };
@@ -6443,7 +6442,7 @@ function Pp(o) {
6443
6442
  return Bt(i, s, a, !0, e);
6444
6443
  }
6445
6444
  const $p = {
6446
- kernelName: sa,
6445
+ kernelName: zi,
6447
6446
  backendName: "webgpu",
6448
6447
  kernelFunc: Pp
6449
6448
  };
@@ -6480,21 +6479,21 @@ function Np(o, t = "") {
6480
6479
  function Ke(o) {
6481
6480
  const { inputs: t, backend: e, attrs: i } = o, { x: s } = t, { reps: a } = i;
6482
6481
  if (e.shouldExecuteOnCPU([s]) || s.dtype === "string" || s.shape.length >= 5) {
6483
- const u = e.readSync(s.dataId), d = s.dtype === "string" ? u.map((c) => dt(c)) : u, h = ke(s.shape, s.dtype, d), l = wn(h, a);
6482
+ const u = e.readSync(s.dataId), d = s.dtype === "string" ? u.map((c) => rt(c)) : u, h = ke(s.shape, s.dtype, d), l = wn(h, a);
6484
6483
  return e.makeTensorInfo(l.shape, l.dtype, l.values);
6485
6484
  }
6486
6485
  const r = new Dp(s.shape, a);
6487
6486
  return e.runWebGPUProgram(r, [s], s.dtype);
6488
6487
  }
6489
6488
  const zp = {
6490
- kernelName: oa,
6489
+ kernelName: Ai,
6491
6490
  backendName: "webgpu",
6492
6491
  kernelFunc: Ke
6493
6492
  };
6494
6493
  function Ap(o) {
6495
6494
  const { inputs: t, backend: e, attrs: i } = o, { sparseIndices: s, sparseValues: a, defaultValue: r } = t, { outputShape: n } = i, { sliceRank: u, numUpdates: d, sliceSize: h, strides: l, outputSize: c } = He(a, s, n), p = !1;
6496
6495
  if (a.dtype === "string") {
6497
- const A = e.bufferSync(s), z = e.bufferSync(a), B = dt(e.readSync(r.dataId)[0]), T = pn(A, z, n, c, h, d, u, l, B, p);
6496
+ const A = e.bufferSync(s), z = e.bufferSync(a), B = rt(e.readSync(r.dataId)[0]), T = pn(A, z, n, c, h, d, u, l, B, p);
6498
6497
  return e.makeTensorInfo(n, T.dtype, T.values);
6499
6498
  }
6500
6499
  const f = [c / h, h], m = R({
@@ -6505,7 +6504,7 @@ function Ap(o) {
6505
6504
  inputs: { x: a },
6506
6505
  backend: e,
6507
6506
  attrs: { shape: [d, h] }
6508
- }) : U({ inputs: { x: a }, backend: e }), x = g.dtype, C = e.makeTensorInfo([], x, jt(1, x)), w = R({
6507
+ }) : U({ inputs: { x: a }, backend: e }), x = g.dtype, C = e.makeTensorInfo([], x, Wi(1, x)), w = R({
6509
6508
  inputs: { x: r },
6510
6509
  backend: e,
6511
6510
  attrs: { shape: Array(f.length).fill(1) }
@@ -6537,12 +6536,12 @@ function Ap(o) {
6537
6536
  return e.disposeData(m.dataId), e.disposeData(g.dataId), e.disposeData(w.dataId), e.disposeData(C.dataId), e.disposeData(k.dataId), $;
6538
6537
  }
6539
6538
  const Fp = {
6540
- kernelName: ia,
6539
+ kernelName: Fi,
6541
6540
  backendName: "webgpu",
6542
6541
  kernelFunc: Ap
6543
6542
  };
6544
6543
  function Wp(o) {
6545
- const { inputs: t, backend: e, attrs: i } = o, { x: s } = t, { numOrSizeSplits: a, axis: r } = i, n = te(r, s.shape)[0], u = ms(s, a, n), d = s.shape.length, h = new Array(d).fill(0), l = s.shape.slice();
6544
+ const { inputs: t, backend: e, attrs: i } = o, { x: s } = t, { numOrSizeSplits: a, axis: r } = i, n = te(r, s.shape)[0], u = xa(s, a, n), d = s.shape.length, h = new Array(d).fill(0), l = s.shape.slice();
6546
6545
  return u.map((c) => {
6547
6546
  const p = [...l];
6548
6547
  p[n] = c;
@@ -6551,17 +6550,17 @@ function Wp(o) {
6551
6550
  });
6552
6551
  }
6553
6552
  const Lp = {
6554
- kernelName: aa,
6553
+ kernelName: Li,
6555
6554
  backendName: "webgpu",
6556
6555
  kernelFunc: Wp
6557
6556
  };
6558
6557
  const Vp = N({ opType: y.SQRT }), Bp = {
6559
- kernelName: ra,
6558
+ kernelName: Vi,
6560
6559
  backendName: "webgpu",
6561
6560
  kernelFunc: Vp
6562
6561
  };
6563
6562
  const Tp = {
6564
- kernelName: na,
6563
+ kernelName: Bi,
6565
6564
  backendName: "webgpu",
6566
6565
  kernelFunc: ({ inputs: o, backend: t }) => {
6567
6566
  const { x: e } = o, i = t, s = new ue(e.shape, y.SQUARE);
@@ -6571,7 +6570,7 @@ const Tp = {
6571
6570
  const _p = V({
6572
6571
  opType: F.SQUARED_DIFFERENCE
6573
6572
  }), Op = {
6574
- kernelName: ua,
6573
+ kernelName: Ti,
6575
6574
  backendName: "webgpu",
6576
6575
  kernelFunc: _p
6577
6576
  };
@@ -6580,7 +6579,7 @@ function Mp({ inputs: o, attrs: t, backend: e }) {
6580
6579
  return e.runWebGPUProgram(s, [i], i.dtype, a);
6581
6580
  }
6582
6581
  const Ep = {
6583
- kernelName: da,
6582
+ kernelName: _i,
6584
6583
  backendName: "webgpu",
6585
6584
  kernelFunc: Mp
6586
6585
  };
@@ -6628,7 +6627,7 @@ function Hp(o) {
6628
6627
  return I;
6629
6628
  }
6630
6629
  const Gp = {
6631
- kernelName: la,
6630
+ kernelName: Oi,
6632
6631
  backendName: "webgpu",
6633
6632
  kernelFunc: Hp
6634
6633
  };
@@ -6640,22 +6639,22 @@ function Xp(o) {
6640
6639
  ];
6641
6640
  }
6642
6641
  const Kp = {
6643
- kernelName: ca,
6642
+ kernelName: Mi,
6644
6643
  backendName: "webgpu",
6645
6644
  kernelFunc: Xp
6646
6645
  };
6647
6646
  const qp = V({ opType: F.SUB, cpuKernelImpl: Cn, supportsComplex: !0 }), Yp = {
6648
- kernelName: ha,
6647
+ kernelName: Ei,
6649
6648
  backendName: "webgpu",
6650
6649
  kernelFunc: qp
6651
6650
  };
6652
6651
  const jp = N({ opType: y.TAN }), Qp = {
6653
- kernelName: pa,
6652
+ kernelName: Ui,
6654
6653
  backendName: "webgpu",
6655
6654
  kernelFunc: jp
6656
6655
  };
6657
6656
  const Zp = N({ opType: y.TANH }), Jp = {
6658
- kernelName: fa,
6657
+ kernelName: Hi,
6659
6658
  backendName: "webgpu",
6660
6659
  kernelFunc: Zp
6661
6660
  };
@@ -6683,7 +6682,7 @@ function ef(o) {
6683
6682
  return p.forEach(($) => e.disposeData($.dataId)), P;
6684
6683
  }
6685
6684
  const tf = {
6686
- kernelName: ma,
6685
+ kernelName: Gi,
6687
6686
  backendName: "webgpu",
6688
6687
  kernelFunc: ef
6689
6688
  };
@@ -6896,7 +6895,7 @@ function af(o) {
6896
6895
  return C = R({ inputs: { x: C }, attrs: { shape: w }, backend: e }), ne(e, k), [C, f];
6897
6896
  }
6898
6897
  const rf = {
6899
- kernelName: ga,
6898
+ kernelName: Xi,
6900
6899
  backendName: "webgpu",
6901
6900
  kernelFunc: af
6902
6901
  };
@@ -7057,7 +7056,7 @@ function uf(o) {
7057
7056
  return e.runWebGPUProgram(x, [s, a], "float32", k);
7058
7057
  }
7059
7058
  const df = {
7060
- kernelName: xa,
7059
+ kernelName: Ki,
7061
7060
  backendName: "webgpu",
7062
7061
  kernelFunc: uf
7063
7062
  };
@@ -7080,7 +7079,7 @@ function lf(o) {
7080
7079
  return l.forEach((m) => e.disposeData(m.dataId)), f;
7081
7080
  }
7082
7081
  const cf = {
7083
- kernelName: Ca,
7082
+ kernelName: qi,
7084
7083
  backendName: "webgpu",
7085
7084
  kernelFunc: lf
7086
7085
  };
@@ -7104,7 +7103,7 @@ class hf {
7104
7103
  let flatIndex = b * uniforms.numSegments + segmentId % uniforms.numSegments;
7105
7104
  let value = getX(b, inCol);
7106
7105
 
7107
- ${Z("&result[flatIndex]", "value", this.type)}
7106
+ ${Q("&result[flatIndex]", "value", this.type)}
7108
7107
  }
7109
7108
  }
7110
7109
  }
@@ -7114,10 +7113,10 @@ class hf {
7114
7113
  function pf(o) {
7115
7114
  const { inputs: t, backend: e, attrs: i } = o, { x: s, segmentIds: a } = t, { numSegments: r } = i, n = s.shape.length, u = [];
7116
7115
  let d = 0;
7117
- const h = ye([d], n);
7116
+ const h = Ce([d], n);
7118
7117
  let l = s;
7119
- h != null && (l = K({ inputs: { x: s }, backend: e, attrs: { perm: h } }), u.push(l), d = Se(1, n)[0]);
7120
- const c = gs(l.shape, d, r), p = D([l.shape[d]]), f = R({ inputs: { x: l }, backend: e, attrs: { shape: [-1, p] } });
7118
+ h != null && (l = K({ inputs: { x: s }, backend: e, attrs: { perm: h } }), u.push(l), d = we(1, n)[0]);
7119
+ const c = Ca(l.shape, d, r), p = D([l.shape[d]]), f = R({ inputs: { x: l }, backend: e, attrs: { shape: [-1, p] } });
7121
7120
  u.push(f);
7122
7121
  const m = s.dtype, g = [f.shape[0], r], x = M({ backend: e, attrs: { shape: g, value: 0, dtype: m } }), C = new hf(f.shape, g, m), w = [
7123
7122
  { type: "int32", data: [r] },
@@ -7127,13 +7126,13 @@ function pf(o) {
7127
7126
  let P = I;
7128
7127
  if (h != null) {
7129
7128
  u.push(I);
7130
- const $ = mt(h);
7129
+ const $ = ft(h);
7131
7130
  P = K({ inputs: { x: P }, backend: e, attrs: { perm: $ } });
7132
7131
  }
7133
7132
  return u.forEach(($) => e.disposeData($.dataId)), P;
7134
7133
  }
7135
7134
  const ff = {
7136
- kernelName: wa,
7135
+ kernelName: Yi,
7137
7136
  backendName: "webgpu",
7138
7137
  kernelFunc: pf
7139
7138
  };
@@ -7302,7 +7301,7 @@ const mf = [
7302
7301
  dh
7303
7302
  ];
7304
7303
  for (const o of mf)
7305
- ya(o);
7304
+ ji(o);
7306
7305
  export {
7307
7306
  Mt as WebGPUBackend
7308
7307
  };